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Abstract
We study the homotopy right Kan extension of homotopy sheaves on a category to its free
cocompletion, i.e. to its category of presheaves. Any pretopology on the original category
induces a canonical pretopology of generalised coverings on the free cocompletion. We
show that with respect to these pretopologies the homotopy right Kan extension along the
Yoneda embedding preserves homotopy sheaves valued in (sufficiently nice) simplicialmodel
categories. Moreover, we show that this induces an equivalence between sheaves of spaces
on the original category and colimit-preserving sheaves of spaces on its free cocompletion.
We present three applications in geometry and topology: first, we prove that diffeological
vector bundles descend along subductions of diffeological spaces. Second, we deduce that
various flavours of bundle gerbes with connection satisfy (∞, 2)-categorical descent. Finally,
we investigate smooth diffeomorphism actions in smooth bordism-type field theories on a
manifold. We show how these smooth actions allow us to extract the values of a field theory
on any object coherently from its values on generating objects of the bordism category.

Keywords Homotopy sheaves · ∞-Sheaves · Higher geometric structures · Diffeological
spaces · Gerbes
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1 Introduction andMain Results

Local-to-global properties are ubiquitous in topology, geometry, and quantum field theory.
The prototypical example of a local-to-global, or descent, property is the gluing of local
sections of a sheaf: given a manifold M with an open covering {Ui }i∈I , global sections of a
sheaf F on M are in bijection with families { fi ∈ F(Ui )}i∈I such that fi |Ui j = f j |Ui j for all
i, j ∈ I , with Ui j :=Ui ∩Uj .

Geometric structures onmanifolds are, in general, not described by sheaves of sets; instead,
one needs to pass to sheaves of higher categories. For example, complex vector bundles form
a sheaf on the site of manifolds and open coverings which is valued in categories rather than
sets. In the works of Schreiber [46], n-gerbes are described as sections of certain sheaves of
n-groupoids, for any n ∈ N. Geometric structures and their equivalences are thus described
most generally in terms of sheaves of higher categories on a category of test manifolds C
which is endowed with a (pre)topology τ .

To motivate the main questions of this paper, let us temporarily focus on sheaves of ∞-
groupoids. The∞-category of these sheaves has a presentation as a left Bousfield localisation
of the projective model categoryH∞,0 = Fun(Cop, Set́ ) of simplicial presheaves on C.1 We
denote its localisation at the τ -coverings by Hloc∞,0. Our prime example in this paper is the
case C = Cart, the category of cartesian spaces. It consists of the manifolds diffeomorphic
to R

n , for any n ∈ N0, and all smooth maps between them. It is an important (well-known)
observation that sheaves of ∞-groupoids on Cart allow us to describe geometric structures
not just on objects of Cart, but on all manifolds (and more) [46]: given a fibrant object
F ∈ Hloc∞,0 and a manifold M , one defines the space of (derived) sections of F on M as
the mapping space H∞,0(QM, F). Here, M is the presheaf on Cart consisting of smooth
maps to M , the functor Q is a cofibrant replacement2 in H∞,0, and H∞,0(−,−) denotes
the Set́ -enriched hom functor in H∞,0. If F is the simplicial presheaf on cartesian spaces
which describes G-bundles or n-gerbes, for instance, then the Kan complexH∞,0(QM, F)

is the ∞-groupoid of G-bundles or n-gerbes on M , respectively. In fact, we could use any
presheaf X on Cart in place of M and thus study geometries on any such X . (Later we will
even allow X to be a presheaf of ∞-groupoids itself.)

WewritêC = Fun(Cop, Set) for the category of (small) presheaves of sets on C. Motivated
by the above discussion, we pose the following two questions for sheaves on a generic site
(C, τ ):

1 In this introduction, we do not address sizes of sets; in the main text we do so using a nested triple of
Grothendieck universes.
2 Throughout the main body of the text, we use Dugger’s explicit construction of a cofibrant replacement
functor for projective model categories of simplicial presheaves [18].
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(1) If F satisfies descent with respect to the pretopology τ , does the assignment X �→
H∞,0(QX , F) satisfy descent with respect to a related pretopology τ̂ on̂C?

(2) If so, can we understand which τ̂ -sheaves on ̂C arise as extensions H∞,0(Q(−), F) of
some ordinary sheaf F on (C, τ )?

We answer both of these questions in this paper, working over general Grothendieck sites
(C, τ ): any pretopology τ on C induces a pretopology τ̂ of generalised coverings on̂C. We
prove that with respect to such a pair of pretopologies, the answer to the first question is
always ‘yes’. One way of saying this is that the process of extending any geometric structure
from objects of C to objects of̂C does not destroy the descent property; we can still think of
the extended structure as having geometric flavour and perform local-to-global constructions.

In concrete terms, the induced Grothendieck pretopology τ̂ on ̂C consists of the τ -local
epimorphisms, also called generalised coverings [17], which are defined as follows. Let
Y : C → ̂C denote the Yoneda embedding of C. A morphism π : Y → X in ̂C is a τ -local
epimorphism if, for every c ∈ C and every map Yc → X , there exists a covering {ci → c}i∈I
in the site (C, τ ) such that each composition Yci → Yc → X factors through π ; this is an
abstract way of saying that the morphism π has local sections.

LetM be a left proper cellular or combinatorial simplicialmodel category.We consider the
projective model structures on Fun(Cop,M) and Fun(̂Cop,M), and their left Bousfield locali-
sations Fun(Cop,M)loc and Fun(̂Cop,M)loc at the τ -coverings and τ̂ -coverings, respectively.
That is, the fibrant objects in these localisedmodel categories areM-valued homotopy sheaves
on (C, τ ) and (̂C, τ̂ ), respectively. We show the following result (see Theorems 3.30, 3.37
and Proposition 3.38 below):

Theorem 1.1 Let M be a left proper simplicial model category which is cellular or com-
binatorial and C a category. Let τ be a Grothendieck coverage on C, and τ̂ the induced
Grothendieck coverage of τ -local epimorphisms on̂C. There is a Quillen adjunction

ReM : Fun(̂Cop,M)loc Fun(Cop,M)loc : SM ,⊥

whose right adjoint restricts on fibrant objects to the homotopy right Kan extension along
the Yoneda embedding Y : C ↪→ ̂C,

SM|M f ib
∼= hoRanY .

A prime application is the case of homotopy sheaves of higher categories: denoting by
CSSn the model category of n-fold complete spaces [2, 9, 41], letHloc∞,n be the left Bousfield
localisation of the projective model structure on Fun(Cop,CSSn) at the Čech nerves of cover-
ings in (C, τ ). Similarly, we let ̂Hloc∞,n denote the left Bousfield localisation of Fun(̂C

op,CSSn)

at the Čech nerves of the τ -local epimorphisms. As a direct corollary to Theorem 1.1 we
obtain:

Corollary 1.2 Let n ∈ N0, and let C be a small category.

(1) For any fibrant F ∈ H∞,n, the presheafH∞,n

(

Q(−),F
)

is equivalent to the homotopy

right Kan extension hoRanYF of F along the Yoneda embedding Y : C → ̂C. In partic-
ular, H∞,n

(

Q(−),F
)

presents the ∞-categorical right Kan extension of presheaves of
(∞, n)-categories along Y.

(2) If (C, τ ) is a Grothendieck site, there is a Quillen adjunction

Re∞,n : ̂Hloc∞,n Hloc∞,n : H∞,n

(

Q(−),−)

.⊥

123



49 Page 4 of 57 S. Bunk

This answers our first question affirmatively since H∞,n(Q(−),−) preserves fibrant
objects.

In Sect. 4.1 we deduce the following strictification and descent result (Theorem 4.18 and
Theorem 4.12, respectively), thereby filling significant gaps in the literature on diffeological
spaces:

Theorem 1.3 Let VBunDfg : Dfgop → Cat be the pseudo-functor which assigns to a diffe-
ological space its category of diffeological vector bundles. The following statements hold
true:

(1) There is a strict functor ι∗VBunstr (which we construct explicitly) and an objectwise
equivalence of pseudo-functorsDfgop → CatL,

A : ι∗VBunstr
∼−→ VBunDfg .

(2) Diffeological vector bundles satisfy descent along subductions of diffeological spaces.

Here we use Rezk’s classifying diagram functor to deduce a 1-categorical analogue of
Corollary 1.2 for n = 1. This readily provides the desired descent result; the main remaining
work in proving Theorem 1.3 goes into the strictification of VBunDfg.

Further, we deduce from Corollary 1.2 that various flavours of the 2-category of bundle
gerbes with connection as introduced by Waldorf [50] extend to sheaves of (2, 2)-categories
on Ĉart (Theorem 4.21); via a 2-categorical nerve construction, they further provide examples
of homotopy sheaves of (∞, 2)-categories. Our motivation for working model categorically
up to this point stems from future applications to field theories: these are functors out of
(∞, n)-categories of cobordisms, which exists as n-fold or n-uple (complete) Segal spaces
[15, 35, 48]. This also feeds into another application: in smooth field theories on a background
manifold, one detects the full smooth structure of diffeomorphism groups rather than only
their connected components (i.e. mapping class groups). We show how one can nevertheless
coherently and smoothly reconstruct the values of a field theory on all objects from its values
on only the generating objects of the bordism category (Theorems 4.34 and 4.35).

In Sect. 5 we answer the second question above. To do so, we pass to quasi-categorical
language: let C be a quasi-category with a Grothendieck (pre)topology τ . Let̂C∞ denote the
quasi-category of (small) presheaves of spaces on C.Wewrite Sh(C, τ ) for the quasi-category
of τ -sheaves on C and Sh!(̂C∞, τ̂ ) for the quasi-category τ̂ -sheaves on̂C∞ whose underlying
functor̂C∞ → Sop preserves colimits.

Theorem 1.4 Let (C, τ ) be as above, and letY∗ denote the∞-categorical right Kan extension
of presheaves along the Yoneda embedding Y : Cop → ̂C

op
∞. The adjunction Y∗ 
 Y∗ restricts

to an equivalence of quasi-categories

Sh!(̂C∞, τ̂ ) Sh(C, τ ) .
Y∗

Y∗

Finally, to make contact with the first part of this paper, we prove a similar result where
C = NC is an ordinary category; this relates quasi-categorical τ -sheaves of spaces on NC
to τ̂ -sheaves of spaces on the 1-category of set-valued presheaves ̂C = Fun(Cop, SetL)

(Theorem 5.14).
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Conventions

Sizes and universesThroughout, we choose and fix a nested triple of Grothendieck universes
S ∈ L ∈ XL,3 and we assume that S contains the natural numbers. We write SetS and Set́ S
for the categories of S-small sets and S-small simplicial sets, respectively, and analogously
for the universes L and XL. As is common in the literature, we refer to the elements in SetS
simply as small sets, those of SetL as large sets and those of SetXL as extra large sets. All
indexing sets will be assumed to be S-small.

Let C be a small category. Consider the category ̂C:=Fun(Cop, SetS) of SetS-valued
presheaves on C. Observe that̂C is no longer small, since SetS is not small. However, since
SetS is a large category (its objects and morphisms each form sets in L), it follows that̂C is
a large category.

The Yoneda embeddinĝY : ̂C → Fun(̂Cop, SetL) is fully faithful; observing that an object
of SetS is also an object of SetL, the standard proof applies. Further, the Yoneda Lemma
holds true for both Y and ̂Y (again by the usual method of proof). Finally, observe for any
c ∈ C and for any X ∈ ̂C, by the Yoneda Lemma, there are canonical isomorphisms

̂YX (Yc) = ̂C(Yc, X) ∼= X(c) ∈ SetS ⊂ SetL .

Categories and higher categories In this article we use two different models for higher
categories. Section2 and Appendix A do not make use of higher categories. In Sects. 3
and 4 we use n-fold complete Segal spaces (introduced in [2]) as a model for (∞, n)-
categories. In particular, the term ‘∞-groupoid’ shall always refer to a Kan complex, and
‘(∞, n)-category’ shall always mean a n-fold complete Segal space. In Sect. 5, and only
there, all higher categories are modelled as quasi-categories in the sense of [12, 27, 34].
In order to make clear the distinction between ordinary categories (possibly endowed with
model structures), n-fold complete Segal spaces, and quasi-categories, we denote ordinary
categories by script letters C,D, . . ., n-fold complete Segal spaces (or presheaves thereof) by
ordinary capitals F,G, . . ., and quasi-categories by sans-serif capitals C,D, . . .. In particular,
the quasi-categories of small spaces is denoted SS, and analogously for the universes L and
XL. The term ‘small space’ (used on its own, as opposed to ‘Segal space’, for instance) shall
always mean an object in the quasi-category SS of small spaces, and analogously for the
terms ‘large space’ and ‘extra large space’ and the universes L and XL, respectively.

Enriched categories If V is a monoidal category and C is a V-enriched category (or V-
category), we denote the V-enriched hom-objects of C by CV(−,−). If V = Set́ L is
the category of simplicial sets, we also write C(−,−):=CSet́ L (−,−). If V is a symmet-
ric monoidal model category and C is a V-enriched model category (in the sense of [23,
Sec. 4]), we will equivalently say that C is a model V-category.

Tractability We recall from [3, Def. 1.21] that a large model category M is tractable if
there exists a regular L-small cardinal λ such that the category underlying M is locally λ-
presentable, and there exist L-small sets I , J of morphisms with the following properties:
the source and target of the morphisms in I and J are λ-presentable and cofibrant, the
fibrations (resp. trivial fibrations) in M are precisely those morphisms satisfying the right
lifting property with respect to J (resp. I ). In particular, M is combinatorial. For further

3 Note that, due to existing naming conventions in the literature, size M was not available.
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details and background on the formalism of enriched Bousfield localisation, we refer the
reader to [3].

Diagrams For J a large category and C a L-tractable or L-combinatorial model category (cf.
[2, 3]), the projective and the injective model structures on Fun(J,C) exist and are again
L-tractable (resp. L-combinatorial); we denote them by Fun(J,C)proj and Fun(J,C)in j ,
respectively. If J is a Reedy category, we denote the Reedy model structure on Fun(J,C) by
Fun(J,C)Reedy .

Left Bousfield localisation. We recall that if M is a large simplicial model category with a
chosen collection of morphisms A, then

• z ∈ M is A-local if it is fibrant inM and for every morphism f : x → y in A the induced
morphism

M(Qy, z)
(Q f )∗−−−→ M(Qx, z)

is a weak homotopy equivalence in Set́ L, and
• f ∈ M(x, y) is an A-local weak equivalence if for every A-local object z ∈ M the

morphism

M(Qy, z)
(Q f )∗−−−→ M(Qx, z)

is a weak equivalence in Set́ L.

In that case, the left Bousfield localisation L AM, provided it exists, is a large simplicial model
category with a simplicial left Quillen functorM → L AMwhich is universal among simpli-
cial left Quillen functors out ofM that send A-local weak equivalences to weak equivalences
(cf. for instance [3, Def. 4.42, Def. 4.45]).

2 Grothendieck Sites and Local Epimorphisms

We recall the definition of a Grothendieck pretopology and a site. Throughout this article,
we assume that C is a small category.

Definition 2.1 We writêC:=Fun(Cop, SetS) for the large category of small presheaves on C.

Let Y : C → ̂C, c �→ Yc, denote the Yoneda embedding of C.

Definition 2.2 ([26, Def. 2.1.9]) Let C be a small category.

(1) A coverage, or Grothendieck pretopology, on C is given by assigning to every object
c ∈ C a small set τ(c) of families of morphisms { fi : ci → c}i∈I (with I ∈ SetS)
satisfying the following properties: {1c} ∈ τ(c) for each c ∈ C, and for every family
{ fi : ci → c}i∈I ∈ τ(c) and any morphism g : c′ → c in C there exists a family
{ f ′

j : c′
j → c′} j∈J ∈ τ(c′) such that for every j ∈ J we find some i ∈ I and a

commutative diagram

c′
j ci

c′ c

f ′
j fi

g

(2) The families in { fi : ci → c}i∈I ∈ τ(c) are called covering families for c.
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(3) A (Grothendieck) site is a category C equipped with a coverage τ .

Later we will use the following technical condition:

Definition 2.3 We call a site (C, τ ) closed if it satisfies the following condition: let {ci →
c}i∈I be any covering family in (C, τ ). Further, for each i ∈ I , let {ci, j → ci } j∈Ji be a
covering family in (C, τ ). Then, there exists a covering family {dk → c}k∈K such that every
morphism dk → c factors through one of the composites ci, j → ci → c.

Example 2.4 Let Cart be the category of cartesian spaces, i.e. of sub-manifolds of R
∞ that

are diffeomorphic to some R
n , with smooth maps between these manifolds as morphisms.

This category is small and has finite products. A coverage on Cart is defined by calling a
family {ιi : ci → c}i∈I a covering family if it satisfies

(1) all ιi are open embeddings (in particular dim(ci ) = dim(c) for all i ∈ I ),
(2) the ιi cover c, i.e. c = ⋃

i∈I ιi (ci ), and
(3) every finite intersection ιi0(ci0)∩· · ·∩ ιim (cim ), with i0, . . . , im ∈ I , is a cartesian space.

Coverings {ιi : ci → c}i∈I with these properties are called differentiably good open coverings
of c. They induce a coverage τdgop on Cart, which turns (Cart, τdgop) into a site. This site is
even closed, because every open cover of c ∈ Cart admits a differentiably good refinement
[19, Cor. A.1]. There is a canonical embedding Cart ↪→ Mfd of Cart into the category of
all smooth manifolds. Thereby, any manifold M defines a presheaf M on Cart, defined by
M(c) = Mfd(c, M). 

Example 2.5 Let Op be the small category whose objects are open subsets of R

n for any
(varying) n ∈ N0 and whose morphisms are all smooth maps between such open subsets.
The category Op has finite products and carries a coverage whose covering families are the
open coverings. The resulting site is denoted (Op, τop); observe that it is closed. 

Definition 2.6 Let (C, τ ) be a site. A morphism π : Y → X in̂C is a τ -local epimorphism if
for every c ∈ C and each morphism ϕ : Yc → X there exists a covering { f j : c j → c} j∈J ∈
τ(c) and morphisms {ϕ j : Yc j → Y } j∈J with π ◦ ϕ j = ϕ ◦ f j for all j ∈ J .

One directly checks the following:

Lemma 2.7 For any site (C, τ ), the class of τ -local epimorphisms is stable under pullback.
In particular, the collection of τ -local epimorphisms defines a coverage τ̂ on̂C.

Note that in the Grothendieck site (̂C, τ̂ ) every covering family consists of a single mor-
phism. We list some general properties of τ -local epimorphisms:

Lemma 2.8 Let (C, τ ) be a site.

(1) Consider morphisms p ∈ ̂C(Y , X), q ∈ ̂C(Z , Y ). If p ◦ q is a τ -local epimorphism, then
so is p.

(2) For any covering family {ci → c}i∈I , the induced morphism∐

i∈I Yci → Yc is a τ -local
epimorphism.

(3) τ -local epimorphisms are stable under colimits: let J be a small category, let D′, D : J →
̂C be diagrams in ̂C, and let π : D′ → D be a morphism of diagrams such that each
component π j : D′

j → Dj is a τ -local epimorphism, for any j ∈ J. Then, the induced
morphism colim π : colim D′ → colim D is a τ -local epimorphism.
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(4) If X(c) �= ∅ for each c ∈ C, then the projection X × Z → Z is a τ -local epimorphism,
for any Z ∈ ̂C.

(5) The site (C, τ ) is closed if and only if τ -local epimorphisms are stable under composition,
if and only if (̂C, τ̂ ) is closed.

Proof Claims (1) appears as property LE2 in [31, p. 390]. Claim (2) follows straightforwardly
from the definition of a τ -local epimorphism. Claim (3) can be found as [31, Prop. 16.1.12].

Claim (4) is immediate since by assumption the projection X(c) × Y (c) → Y (c) is
surjective for each c ∈ C; we can hence use the identity covering of c to obtain the desired
lift.

For (5), it readily follows from the closedness of (C, τ ) that τ -local epimorphisms are
stable under composition, and thus also that (̂C, τ̂ ) is closed. On the other hand, assume that
τ -local epimorphisms are stable under composition. Consider an object c ∈ C, a covering
family { fi : ci → c}i∈I , and for each i ∈ I a covering family {ci,k → ci }k∈Ki . By claims (2)
and (3), we thus obtain τ -local epimorphisms

∐

i∈I

∐

k∈Ki

Yci,k −→
∐

i∈I
Yci −→ Yc .

By assumption, their composition is a τ -local epimorphism again, and hence it follows (using
that̂C(Yc,−) preserves colimits) that (C, τ ) is closed. Finally, assume that (̂C, τ̂ ) is closed.
Let f : Z → Y and g : Y → X be τ -local epimorphisms, and let p:=g ◦ f . By assumption,
there exists a τ -local epimorphism Z ′ → X which factors through g; that is, there exists
a morphism q : Z ′ → Z such that p ◦ q is a τ -local epimorphism. But then p is a τ -local
epimorphism by claim (1). ��

Let (C, τ ) be a site, and consider a covering U = {ci → c}i∈I . We can form its Čech
nerve, which is the simplicial object in̂C whose level-n object reads as

ČUn :=
∐

i0,...,in∈I
Ci0...in , with Ci0...in :=Yci0 ×

Yc

· · · ×
Yc

Ycin ∈ ̂C . (2.9)

Note that, in general, Ci0...in ∈ ̂C is not representable as soon as n �= 0. The simplicial
structure morphisms are given by projecting out or doubling the i-th factor, respectively.
Depending on the context we will view the Čech nerve ČU either as a simplicial object ČU•
in ̂C or as an augmented simplicial object ČU• → Yc in ̂C. For convenience, we recall the
following definitions:

Definition 2.10 Let (C, τ ) be a site, and let X ∈ ̂C be a presheaf onC. Then, X is called a sheaf
on (C, τ ) if for every object c ∈ C and for every covering family { fi : ci → c}i∈I ∈ τ(c) the
diagram

X(c) = ̂C(Yc, X)
∏

i0∈I
̂C(Ci0 , X)

∏

i0,i1∈I
̂C

(

Ci0i1 , X
)X( fi )

is an equaliser diagram in SetL. The category Sh(C, τ ) of sheaves on (C, τ ) is the full
subcategory of̂C on the sheaves.

3 Homotopy Sheaves and Descent Along Local Epimorphisms

Let (C, τ ) be a small site, and let Y : C → ̂C denote its Yoneda embedding. In this section we
show that the homotopy right Kan extension along Y∗ maps large higher τ -sheaves on C to
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large higher τ̂ -sheaves on ̂C. Here, τ̂ is the pretopology of τ -local epimorphisms on ̂C (see
Definition 2.6 and Lemma 2.7).

3.1 Sheaves of∞-Groupoids

Let C be a small category. Let H∞,0:=Fun(Cop, Set́ L) denote the extra-large category of
large simplicial presheaves on C. It is enriched, tensored and cotensored over Set́ L. Com-
posing the Yoneda embedding with the functor c• : SetL → Set́ L, we obtain a fully faithful
functor Y : C → H∞,0. From now on, we view the category H∞,0 as endowed with the
projective model structure.

Definition 3.1 A presheaf of ∞-groupoids on C is a fibrant object inH∞,0.

Proposition 3.2 H∞,0 is a left proper, tractable, model Set́ L-category. If C has finite prod-
ucts, then H∞,0 is additionally a symmetric monoidal model category.

Proof The existence and tractability of the projective model structure follow from [3,
Thm. 2.14] (since C is small). H∞,0 is left proper since its pushouts and weak equiva-
lences are defined objectwise, its cofibrations are (in particular) objectwise cofibrations, and
Set́ L is left proper. Its simplicial enrichment is a consequence of [3, Prop. 4.50]. If C has
finite products, then H∞,0 is symmetric monoidal by [3, Prop. 4.52], using that the Yoneda
embedding preserves limits and thatH∞,0 is a simplicial model category. ��

Note that [3, Prop. 4.52] gives a more general criterion for when a projective model
structure inherits a symmetric monoidal structure; however, for us the main case of interest
will be where C admits finite products.

Projectivemodel categories of simplicial presheaves have an explicit cofibrant replacement
functor Q [18]. In order to write it down, it is convenient to introduce the two-sided bar
construction; here, we follow [44, Sec. 4.2]:

Definition 3.3 Let M be a large cocomplete category tensored over Set́ L. Consider a large
category I and functors H : I → M and G : Iop → Set́ L.

(1) The two-sided simplicial bar construction of (G, H) is the simplicial object

B•(G, I, H) ∈ Fun(´op,M),

Bn(G, I, H) =
∐

i0,...,in

H(c0) ⊗ I(i0, i1) ⊗ · · · ⊗ I(in−1, in) ⊗ G(i0).

(2) The two-sided bar construction of (F,G) is the realisation of B•(G, I, H), i.e.

B(G, I, H) =
∫ [n]∈´op

�n ⊗ Bn(G, I, H) ∈ M .

For later reference, we record the following direct consequences of this definition:

Lemma 3.4 In the setting of Definition 3.3, the following statements hold true:

(1) Bar constructions commute: let J be a second large category, and let G ′ : Jop → Set́ L
and D : I × J → M be diagrams. Then, there is a canonical natural isomorphism

B
(

G ′, J, B(G, I, D)
) ∼= B

(

G, I, B(G ′, J, D)
)

.
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(2) Bar constructions are pointwise: if M = Fun(Cop, Set́ L) is the category of large sim-
plicial presheaves on a large category C and c ∈ C is any object, then evaluation at c
commutes with bar constructions: there is a natural isomorphism

B(G, I, H)(c) ∼= B
(

G, I, H(c)
)

.

(3) In the above setting, let additionally I = ´op. Then there is a natural morphism

B(∗,´op, H) −→ diag(H) ,

where diag denotes the functor taking the diagonal of a bisimplicial set. This morphism
is a weak equivalence of simplicial sets.

(4) If M is a large simplicial model category with cofibrant replacement functor QM, the
bar construction is a model for the homotopy colimit, i.e.

hocolim
j∈J

M(Dj) � B(∗, J, QM ◦ D) .

In particular, if Dj is already cofibrant in M for each j ∈ J, then we may compute the
homotopy colimit of D as

hocolim
j∈J

M(Dj) � B(∗, J, D) .

Proof Claim (1) follows readily from the fact that colimits commute. Claim (2) is a direct
consequence of the fact that colimits in presheaf categories are computed pointwise. Finally,
Claim (3) is an application of the Bousfield-Kan map (see [22, Sec. 18.7] for details), and
Claim (4) is [44, Cor. 5.1.3]. ��
Remark 3.5 Analogous statements hold true in the Grothendieck universes S and XL of small
and extra-large sets, respectively. 


Wenow define the cofibrant replacement functor inH∞,0 which wewill be using through-
out this article; it was introduced in [18].

Definition 3.6 We let Q : H∞,0 → H∞,0 denote the functor whose action on F ∈ H∞,0 is
given by

(QF)n = B(F,C,Y)n =
∐

c0,...,cn∈C
Yc0 × C(c0, c1) × · · · × C(cn−1, cn) × Fn(cn) . (3.7)

Observe that for X a simplicially constant simplicial presheaf on C, we have a canonical
isomorphism

QX = B(∗,C/X ,Y) .

Definition 3.8 Let (C, τ )be a smallGrothendieck site, and let τ̌ denote the class ofmorphisms
inH∞,0 consisting of Čech nerves of coverings in (C, τ ) (see (2.9)). Since C is small, this is
a small set. We letHloc∞,0 denote the left Bousfield localisationH

loc∞,0:=L τ̌H∞,0 of the large

category H∞,0. A sheaf of ∞-groupoids on (C, τ ) is a fibrant object inHloc∞,0.

The model structure on Hloc∞,0 is also called the local projective model structure on
Fun(Cop, Set́ L). Explicitly, an object F in Fun(Cop, Set́ L) is fibrant if

(1) F(c) is a Kan complex for every c ∈ C, and
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(2) for every covering family U = {ci → c}i∈I in (C, τ ), the morphism

F(c) −→holim
n∈´

Set́ L

(

· · ·H∞,0

(

Q(ČUn), F
) · · ·

)

= holim
n∈´

Set́ L

(

· · ·
∏

i0,...,in∈I
H∞,0(QCi0...in , F) · · ·

)

is a weak equivalence in Set́ L (compare (2.9)). Here we have used that Q is a left adjoint.

Proposition 3.9 Hloc∞,0 is a proper, tractable, Set́ L-model category. If H∞,0 is symmetric

monoidal as a model category, then so is Hloc∞,0.

Proof The first claim follows form [3, Thm. 2.14, Thm 4.56] and the fact that Set́ L is a large,
proper, tractable model category. The second claim is an application of [3, Thm. 4.58]. ��
Remark 3.10 If C has finite products, then the conditions of [3, Prop. 4.52] are satisfied, so
that in this case H∞,0, and hence alsoHloc∞,0, are symmetric monoidal model categories. 


The Set́ L-enriched hom in both H∞,0 andHloc∞,0 is given by

H∞,0(F,G) =
∫

c∈Cop
(G(c))F(c) ∈ Set́ L ,

where the argument of the end is given by the internal hom in Set́ L. In particular, there is a
natural isomorphism H∞,0(Yc, F) ∼= F(c) for any c ∈ C and any F ∈ H∞,0.

Since C is a small category (hence also large, since S ∈ L) and SetS is a large category,
̂C = Fun(Cop, SetS) is a large category. We define the extra-large category

̂H∞,0:=Fun
(

̂Cop, Set́ L
)

.

Since Set́ L is L-tractable, the projective model structure on ̂H∞,0 exists and is itself L-
tractable [3, Thm. 2.14]. We will always view ̂H∞,0 as endowed with this projective model
structure.

By Proposition 2.7, if (C, τ ) is a small site, then (̂C, τ̂ ) is a large site. Let (̂τ )̌ denote the
large set of Čech nerves of coverings in (̂C, τ̂ ) (this is a large set sincêC is large). Since ̂H∞,0

is left proper and L-tractable, and (̂τ )̌ is L-small, we can form the left Bousfield localisation

̂Hloc∞,0:=L (̂τ )̌
̂H∞,0 .

Both ̂H∞,0 and ̂Hloc∞,0 are symmetricmonoidal sincêC has finite products (by Propositions 3.2
and 3.9, respectively).

The Yoneda embedding Y : C → ̂C induces a pullback functor Y∗ : ̂H∞,0 → H∞,0. Since
both C and ̂C are large, and since both ̂H∞,0 and H∞,0 have all large limits and colimits,
there is a triple of adjunctions

̂H∞,0 H∞,0 .Y∗

Y∗
⊥

Y!
⊥

We can compute the right adjoint as

(Y∗F)(X) =
∫

c∈Cop
F(c)(

̂C)op(X ,Yc) ∼=
∫

c∈Cop
F(c)X(c) ∼= H∞,0(X , F) .
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(Note that here we view X ∈ ̂C as an object in H∞,0 via the canonical inclusions SetS ↪→
SetL ↪→ Set́ L.)

We now askwhether one of the functorsY! orY∗ maps sheaves of∞-groupoids on (C, τ ) to
sheaves of∞-groupoids on (̂C, τ̂ ), i.e. preserves fibrant objects as a functorHloc∞,0 → ̂Hloc∞,0.
Since this indicates that we are looking for a right Quillen functor, we focus on the right
adjoint Y∗. In general, Y∗ will not even preserve fibrant objects as a functorH∞,0 → ̂H∞,0.
However, if Q̃ : H∞,0 → H∞,0 is a functorial cofibrant replacement, then the functor

SQ̃∞,0:=Q̃∗ ◦ Y∗ : H∞,0 −→ ̂H∞,0 ,
(

SQ̃∞,0(F)
)

(X):=H(Q̃X , F)

preserves fibrations and trivial fibrations: H∞,0 is a model Set́ L-category, and so the sim-
plicially enriched hom

H∞,0(A,−) : H∞,0 → Set́ L

is a right Quillen functor whenever A ∈ H∞,0 is cofibrant.

Remark 3.11 The above holds true for any cofibrant replacement functor Q̃ in H∞,0. How-
ever, for technical reasons we always use Dugger’s functor Q from (3.7) for cofibrant
replacement in the projective model structure of simplicial presheaves in the remainder of
this article. We abbreviate S∞,0:=SQ∞,0. 


Let F ∈ H∞,0 and X ∈ ̂C. Using that QX is a bar construction we compute

(S∞,0F)(X) = H∞,0(QX , F)

= H∞,0

(

BH∞,0(∗,C/X ,Y), F
)

∼= CSet́ L

(∗, (C/X )op, F
)

,

where CSet́ L and BH∞,0 are the cobar and bar constructions in Set́ L and in H∞,0, respec-
tively. If F is projectively fibrant, then the last expression is a model for the homotopy limit
(see also recalled as Proposition 3.31 below),

(S∞,0F)(X) ∼= holimSet́ L
(

(C/X )op
prCop−−−→ Cop F−→ Set́ L

)

.

Now, using the Yoneda Lemma and [44, Ex. 9.2.11] we conclude:

Proposition 3.12 If F ∈ H∞,0 is fibrant, S∞,0F is the homotopy right Kan extension of F
along the (opposite of the) Yoneda embedding of C, i.e.

S∞,0F � hoRanY(F) .

Remark 3.13 In viewof Sect. 5,we emphasize that S∞,0 is a presentation of the∞-categorical
right Kan extension of presheaves of spaces on C to presheaves of spaces on̂C. 


In order to show that S∞,0 is a right Quillen functor, it remains to show that it is a right
adjoint. SincêC is a large category,̂C-indexed (co)ends exist in Set́ L, the extra-large category
of large simplicial sets. Therefore, a left adjoint to S∞,0 is given by

˜Re∞,0 : ̂H → H , ˜Re∞,0(̂G):=
∫ X∈̂Cop

̂G(X) ⊗ QX .

We also set
Re∞,0(̂G):=Q ◦ Y∗(̂G)
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Lemma 3.14 There is a canonical natural isomorphism

˜Re∞,0 ∼= Re∞,0 .

Thus, Re∞,0 is also a left adjoint to S∞,0.

Proof Using (3.7), we have the following natural isomorphisms

(

˜Re∞,0(̂G)
)

n =
∫ X∈̂Cop

∐

c0,...,cn∈C
Yc0 × C(c0, c1) × · · · × C(cn−1, cn) ×̂C(Ycn , X) × ̂Gn(X)

∼=
∐

c0,...,cn∈C
Yc0 × C(c0, c1) × · · · × C(cn−1, cn) × ̂Gn(Ycn )

= (

(Q ◦ Y∗)(̂G)
)

n ,

where the isomorphism is an application of the Yoneda Lemma for̂C. ��
Proposition 3.15 The functors Re∞,0 and S∞,0 give rise to a simplicial Quillen adjunction
which sits inside the following non-commutative diagram

̂C ̂H∞,0

H∞,0

Q

̂Y

Re∞,0

S∞,0

Further, there exists a natural isomorphism η : Re∞,0 ◦̂Y
∼=−→ Q.

Proof We have already shown above that Re∞,0 
 S∞,0 and that S∞,0 preserves fibration
and trivial fibrations. The rest is then a direct application of [18, Prop. 2.3]. In the present
case, η as written down there turns out to be an isomorphism as a consequence of the Yoneda
Lemma: recall that Re∞,0 = Q ◦ Y∗ and that there is a canonical isomorphism

Y∗(̂YX ) = ̂C(Y(−), X) ∼= X ,

natural in X ∈ ̂C. ��
Proposition 3.16 The functors Re∞,0 and S∞,0 have the following properties:

(1) The functor Re∞,0 : ̂H∞,0 → H∞ is homotopical.
(2) Let ̂Q : ̂H∞,0 → ̂H∞,0 denote the cofibrant replacement functor on ̂H∞,0 defined

in analogy with (3.7). For each fibrant object F ∈ H∞,0, there is a zig-zag of weak
equivalences

F
∼←− QF

∼−→ Re∞,0 ◦ S∞,0(F)
∼←− Re∞,0 ◦ ̂Q ◦ S∞,0(F) ,

which is natural in F.

Proof By Lemma 3.14, Re∞,0 ∼= Q ◦ Y∗. The functor Y∗ is homotopical since weak equiv-
alences in both H∞,0 and in ̂H∞,0 are defined objectwise. Thus, claim (1) follows since Q
is homotopical. As a consequence, the morphism

Re∞,0 ◦ ̂Q ◦ S∞,0(F) −→ Re∞,0 ◦ S∞,0(F)
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is a weak equivalence. For F ∈ H∞,0, we find that
(

Y∗ ◦ S∞,0(F)
)

(c) = S∞,0(F)(Yc) = H∞,0(QYc, F) ,

and since F is fibrant and Yc is cofibrant, the functor H∞,0(−, F) preserves the weak

equivalence QYc → Yc. Hence, there is a natural weak equivalence F
∼−→ Y∗ ◦ S∞,0(F).

To complete the proof, we apply the homotopical functor Q to this morphism. ��
We now investigate whether the Quillen adjunction Re∞,0 
 S∞,0 between the projec-

tive model structures descends to a Quillen adjunction between the local projective model
structures. We recall the following standard result:

Proposition 3.17 [22, Prop. 3.1.6, Prop. 3.3.18] LetM and N be two large simplicial model
categories, and let F 
 G be a simplicial Quillen adjunction from M to N. Suppose that
A, B are large sets of morphisms in M and in N, respectively, such that the left Bousfield
localisations L AM and LBN exist. If G maps B-local objects to A-local objects, then F 
 G
descends to a Quillen adjunction between the localised model categories.

Theorem 3.18 ([17, Cor. A.3]) Let C be a small category endowed with a coverage τ , and
let π : Y → X be a τ -local epimorphism in̂C with Čech nerve Čπ . The augmentation map
π [•] : Čπ → X is a weak equivalence inHloc∞,0.

The proof of Theorem 3.18 is rather technical; it requires a “wrestlingmatchwith the small
object argument” ([17] Subsection A.12). We refer the reader to that reference for details.

Remark 3.19 In [17], Theorem 3.18 is proven for the Čech localisation of the injectivemodel
structureHi onH. However, it also holds true inH∞,0 because the injective and projective
model structures on H (and ̂H) have the same weak equivalences, and so do the associated
local model structures (see also [11, Prop. 2.6] for details). 

Lemma 3.20 Let π : Y → X be a τ -local epimorphism in ̂C. Let (Čπ)∼ : ´op → H∞,0

denote the simplicial diagram which sends [n] ∈ ´ to the simplicially constant presheaf
Čπn. There is a commutative triangle in H∞,0:

hocolim
H∞,0
n∈´op(Čπ)∼ Čπ

X

(3.21)

The top morphism is an objectwise weak equivalence, and the diagonal morphisms are
weak equivalences in Hloc∞,0.

Proof The top morphism is induced by the Bousfield-Kan, or last-vertex map. It is an object-
wise weak equivalence by Lemma 3.4(3). The right-hand side is a local weak equivalence by
Theorem 3.18. Thus, it remains to show that the triangle commutes. We check this explicitly:
for each object c ∈ C, there are canonical natural isomorphisms

hocolim
H∞,0
n∈´op(Čπ)∼ = B

(∗,´op, (Čπ)∼
) ∼= N

(

´
/(Čπ(c))

)

n ,

where N denotes the nerve functor. For X ∈ Set́ S, recall the last-vertex map

N
(

´/X
) −→ X
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of small simplicial sets (see, for instance, [14, Lemma 7.3.11, Par. 7.3.14]). We describe this
explicitly in our case, i.e. for X = Čπ(c). An n-simplex in this simplicial set is explicitly
given by a sequence of morphisms

�k0 �k1 · · · �kn Čπ(c)
α01 α01 αn−1,n κ

of small simplicial sets. We denote these data by (α, κ). Consider the map ϕα : [n] → [kn]
in ´ which acts as

i �−→ αn−1,n ◦ · · · ◦ αi,i+1(ki ) .

The top morphism in diagram (3.21) acts by sending the n-simplex (α, κ) to the n-simplex
of Čπ(c) which is given by the composition

�n �kn Čπ(c) ,
κ

where the first map is the one constructed above from the data (α, κ). Explicitly, for a given
n-simplex α ∈ N´, the resulting map

Čπkn
∼= Y ×X · · · ×X Y

︸ ︷︷ ︸

kn copies of Y

−→ Čπn ∼= Y ×X · · · ×X Y
︸ ︷︷ ︸

n copies of Y

is the projection onto the Y -factors in positions ϕα(0), . . . , ϕα(n). This map commutes with
the maps to X . ��
Proposition 3.22 The functor S∞,0 : Hloc∞,0 → ̂Hloc∞,0 preserves local objects.

Proof Let π : Y → X be a τ -local epimorphism in̂C, and let F ∈ Hloc∞,0 be fibrant. We need
to show that the canonical morphism

S∞,0(F)(X) −→ holim
n∈´op

Set́ L
(

(S∞,0F)(Čπn)
)

is a weak equivalence in Set́ L. Substituting the definition of S∞,0, this is the same as the
canonical map

H∞,0(QX , F) −→ holim
n∈´op

Set́ L H∞,0

(

Q(Čπn), F
)

.

Observe that there is a canonical isomorphism

holim
n∈´op

Set́ L H∞,0

(

Q(Čπn), F
)

H∞,0

(

hocolim
n∈´op

H∞,0Q(Čπn), F
)∼=

in the homotopy category HoSet́ L (in fact, this can even be modelled as an isomorphism
in Set́ L in light of Lemma 3.4(1) and Proposition 3.31 below). Since the functor Q is a
bar construction (see (3.7)), it commutes with the homotopy colimit (which is also a bar
construction) by Lemma 3.4(1). Then, the morphism

H∞,0(QX , F) H∞,0

(

hocolim
n∈´op

H∞,0Q(Čπn), F
)

is the image of the left-hand diagonal morphism in the commutative triangle (3.21) under the
functorH∞,0(Q(−), F). Observe that the functor

H∞,0(Q(−), F) : Hloc∞,0 −→ Set́ L
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is homotopical since F is fibrant inHloc∞,0 andH
loc∞,0 is enriched over Set́ L. Combining this

with Lemma 3.20, we obtain that the above morphism is a weak equivalence in Set́ L. ��
Combining Proposition 3.17 and Proposition 3.22, we obtain

Theorem 3.23 The Quillen adjunction Re∞,0 : ̂H∞,0 � H∞,0 : S∞,0 induces a Quillen
adjunction

Re∞,0 : ̂Hloc∞,0 Hloc∞,0 : S∞,0 .⊥

In Sect. 5 we provide a version of Theorem 3.23 for fully coherent diagrams of spaces in
a quasi-categorical language; on the underlying quasi-categories, we will show that S∞,0 is
fully faithful and we identify its essential image.

3.2 Homotopy Sheaves with Values in Simplicial Model Categories

We now extend the results from Sect. 3.1 to homotopy sheaves on a small site (C, τ ), valued
not just in Set́ L, but in any large, combinatorial or cellular simplicial model category. We
begin by recalling some technology for enriched model categories.

Recall the notion of a V be a symmetric monoidal model category. A V-enriched model
category, or model V-category M (see, for instance, [23, Def. 4.2.18]). We denote the three
functors which are part of the enrichment by

(−) ⊗ (−) : V×M → M , MV(−,−) : Mop ×M → V , {−,−}: Vop ×M → M .

We import the following definition (using [44, Thms. 7.6.3, 11.5.1]):

Definition 3.24 Let I be a small category.

(1) The weighted I-colimit functor ofM is the functor

(−)⊗I(−) : Fun(Iop,V)×Fun(I,M) −→ M , (D, F) �−→
∫ i∈I

Di⊗Fi . (3.25)

(2) The weighted I-limit functor ofM is the functor

{−,−}I : Fun(I,V)op × Fun(I,M) −→ M , (D, F) �−→
∫

i∈I
{Di, Fi} . (3.26)

From now on we consider V = Set́ L with the Kan-Quillen model structure, and thus M
a large simplicial model category. The following result is [20, Thms. 3.2, 3.3] (see also [44,
Thm. 11.5.1]).

Theorem 3.27 Let M be a large simplicial model category and I a large category. Suppose
that the projective and injective model structures on Fun(I,M) both exist.

(1) The weighted I-colimit functor (3.25) is a left Quillen functor of two variables [23,
Def. 4.2.1] if its source and target are either endowed with the projective and injective
model structures, respectively, or with the injective and projective model structures,
respectively.

(2) The weighted I-limit functor (3.26) is a right Quillen functor of two variables if its
source and target are either both endowed with the projective model structures, or are
both endowed with the injective model structures.
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Recall that ifM is combinatorial (in L), then the projective and injective model structures
on Fun(I,M) exist and are again combinatorial (see, for instance, [3, Thms. 2.14, 2.16]).
The projective model structure also exists when M is cellular, and is itself cellular [22,
Prop. 12.1.5].

We also define functors

(−) ⊗ptw
I (−) : Fun(Iop, Set́ L) × M −→ Fun(I,M) , (E ⊗ m)(i) :=E(i) ⊗ m ,

M
ptw
I (−, −) : Mop × Fun(I,M)op −→ Fun(Iop, Set́ L) , M

ptw
I (m, F)(i) :=M

(

m, F(i)
)

.

In the original reference [20] the following observation is the crucial ingredient in the
proof of Theorem 3.27:

Proposition 3.28 In the situation of Theorem 3.27(2), with either the projective or injective
model structure on both Fun(I, Set́ L) and Fun(I,M), the functors

(−) ⊗ptw
I (−) : Fun(I, Set́ L) × M −→ Fun(I,M) ,

M
ptw
I (−,−) : Mop × Fun(I,M) −→ Fun(I, Set́ L) ,

{−,−}I : Fun(I, Set́ L)op × Fun(I,M) −→ M ,

form a Quillen adjunction of two variables.

Proof In the projective case the functor

M
ptw
I (−,−) : Mop×Fun(I,M)op −→ Fun(Iop, Set́ L) , M

ptw
I (m, F)(i):=M

(

m, F(i)
)

applies the Set́ L-enrichment of M objectwise. Since pullbacks in functor categories are
computed objectwise, it follows from the properties of this enrichment that Mptw

I (−,−)

satisfies the pullback-product axiom (see [23, Lemma 4.2.2]). One proves the injective case
analogously, using the functor (−) ⊗ptw

I (−) in place ofMptw
I . ��

As before, we let Q : H∞,0 → H∞,0 denote Dugger’s cofibrant replacement functor (see
Definition 3.6). Consider the functors

ReM : Fun(̂Cop,M) −→ Fun(Cop,M) , ReM(̂G)(c) :=Q(−)(c) ⊗
̂Cop ̂G = ∫ X∈̂C QX(c) ⊗ ̂G(X) ,

SM : Fun(Cop,M) −→ Fun(̂Cop,M) , SM(F)(X) :={QX , F}Cop = ∫

c∈C
{

QX(c), Fc
}

.

They form an adjoint pair

ReM : Fun(̂Cop,M) Fun(Cop,M) : SM .⊥ (3.29)

Proposition 3.30 The adjunction (3.29) is a Quillen adjunction with respect to the projective
model structures.

Proof Let X ∈ ̂C, and consider the functor

evX ◦ SM : Fun(Cop,M) −→ M , F �−→
∫

c∈C
{

QX(c), Fc
} = {QX , F}Cop

.

Here we have used the notation from (3.26). By Theorem 3.27 and [23, Rmk. 4.2.3] this
functor is right Quillen, for each X ∈ ̂C. Since fibrations and weak equivalences in the
projective model structure on Fun(̂Cop,M) are defined objectwise, it follows that the functor
SM preserves projective fibrations and trivial fibrations. ��
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We recall some useful technology for computing homotopy limits from [44] (see, in
particular, Chapters 4–6). Let M be a large simplicial model category (enriched, tensored
and cotensored over Set́ L). Let I be a large category and consider functors G : I → Set́ L
and F : I → M. The (two-sided) cosimplicial cobar construction associated to these data is
the cosimplicial object in M whose l-th level reads as

Cl(G, I, F)=
∏

i∈(NJ)l

{Gi0, Fil} ∼=
∏

i0,...,il∈I

{

Gi0⊗(I(i0, i1)×· · ·×I(il−1, il)), Fil
} ∈ M ,

where NI ∈ Set́ L denotes the nerve of I. The (two-sided) cobar construction C(G, I, F) in
M is the totalisation

C(G, I, F) =
∫

l∈´
{

�l , Cl(G, I, F)
}

,

formed inM. If the ambient model categoryM is not clear from context, we will write CM

for the cobar construction in M.

Proposition 3.31 [44, Cor. 5.1.3] The cobar construction is a model for the homotopy limit:
let M be a large simplicial model category with fibrant replacement functor RM, and let
F : I → M a functor as above. Then,

holim
i∈I

M(Fi) � C(∗, I, RMF) .

In particular, if Fi ∈ M is fibrant for each i ∈ I, then

holim
i∈I

M(Fi) � C(∗, I, F) .

Lemma 3.32 LetM be a large simplicial model category, I a large category and F : I → M

a functor. Suppose that the projective model structure on Fun(I,M) exists and that F is
projectively fibrant. Then, the cobar construction C(∗, I, F) ∈ M is fibrant.

Proof Recall the notation from Definition 3.24. By [44, Thm. 6.6.1] there is a canonical
natural isomorphism

C(∗, I, D) ∼=
∫

i∈I
{

N (I/i ), Fi
} = {N (I/(−)), F}I .

By Theorem 3.27, the functor {−,−}: Fun(I, Set́ L)op ×Fun(I,M) → M is a right Quillen
functor in two variables if we endow Fun(I, Set́ ) and Fun(I,M)with their projective model
structures. The claim then follows from the fact that the functor N (I/(−)) : I → Set́ is a
projectively cofibrant object in Fun(I,M) [22, Cor. 14.8.8]. ��
Definition 3.33 Suppose M is left proper, as well as cellular or combinatorial. Let τ be a
Grothendieck coverage on C, and τ̂ the induced Grothendieck coverage of τ -local epimor-
phisms on̂C.

(1) Let S(M, τ ) be the collection of morphisms in Fun(Cop,M) of the form

Q(ČU → Yc) ⊗ptw
Cop m ,

where U = {ci → c}i∈I is a τ -covering of c ∈ C, with associated Čech nerve ČU ∈
H∞,0, and m ∈ M is a cofibrant object in M. Define the left Bousfield localisation

Fun(Cop,M)loc:=LS(M,τ )Fun(C
op,M) .
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(2) Let S(M, τ̂ ) be the collection of morphisms in Fun(̂Cop,M) of the form

(Čπ → ̂YX ) ⊗ptw
Cop m ,

where π : Y → X is a τ -local epimorphism in ̂C, with associated Čech nerve Čπ ∈
̂H∞,0, and m ∈ M is a cofibrant object in M. Define the left Bousfield localisation

Fun(̂Cop,M)loc:=LS(M,̂τ )Fun(̂C
op,M) .

These Bousfield localisations exist by [22, Thm. 4.4.1] and [3, Thm. 4.7]. The following
is a generalisation of [3, Thm. 4.56] to the case where the model categoryM is not monoidal:

Proposition 3.34 In the situation of Definition 3.33 the following statements hold true:

(1) An object F ∈ Fun(Cop,M) is S(M, τ )-local if and only if it is projectively fibrant and,
for each τ -covering U = {ci → c}i∈I , the induced morphism

F(c) −→ holim
k∈´ {Q(ČkU), F}Cop

inM is a weak equivalence (where ČkU is viewed as a simplicially constant presheaf on
C).

(2) An object ̂G ∈ Fun(̂Cop,M) is S(M, τ̂ )-local if and only if it is projectively fibrant and,
for each τ̂ -covering π : Y → X in̂C, the induced morphism

̂G(X) −→ holim
k∈´ {Čkπ, ̂G}̂Cop

in M is a weak equivalence.

Remark 3.35 Suppose that (C, τ ) is such that, for each τ -covering U = {ci → c}i∈I , each
presheaf Ci0···ik from (2.9) is again representable. In that case, the Čech nerve ČU is projec-
tively cofibrant (it is then objectwise a coproduct of representables), and so we can omit the
cofibrant replacement functor Q from Definition 3.33(1) and Proposition 3.34. Furthermore,
the enrichment and the Yoneda Lemma provide a canonical isomorphism

{ČkU, F}Cop =
∏

i0,...,in∈I
{Ci0···in , F}Cop ∼=

∏

i0,...,in∈I
F(Ci0···in ) ,

thus reproducing the more familiar form of the homotopy descent condition. 

Proof of Proposition 3.34 We show Claim (1); the proof of Claim (2) is analogous. By defini-
tion, an object F ∈ Fun(Cop,M) is S(M, τ )-local if and only if it is projectively fibrant and,
for each cofibrant m ∈ M and each τ -covering U = {ci → c}i∈I in C, the morphism

Fun(Cop,M)
(

Q(ČU) ⊗ptw
Cop m, F

) −→ Fun(Cop,M)
(

QYc ⊗ptw
Cop m, F

)

induced by the augmentation ČU → Yc is a weak homotopy equivalence in Set́ (note that
the left-hand arguments in both functors above are cofibrant in Fun(Cop,M), and so the
above simplicially enriched hom spaces indeed compute mapping spaces). By adjointness,
this morphism is isomorphic to the morphism

M
(

m, {Q(ČU), F}Cop) −→ M
(

m, {QYc, F}Cop) � M
(

m, F(c)
)

.

Next, we use the isomorphisms in the homotopy category HoSet́ L,

M
(

m, {Q(ČU), F}Cop) ∼= M
(

m, {Q hocolim
k∈´op

ČkU, F}Cop)
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∼= M
(

m, {hocolim
k∈´op

Q(ČkU), F}Cop)

∼= M
(

m, holim
k∈´ {Q(ČkU), F}Cop)

.

Here we have used that we can commute Q and the homotopy colimit, since both are bar
constructions. The claim now follows from the fact that a morphism f : a → b inM between
fibrant objects is a weak equivalence if and only if, for each cofibrant m ∈ M, the induced
morphism

f ∗ : M(m, b) −→ M(m, a)

is a weak homotopy equivalence; in other words, we use that the functors M(m,−), for
m ∈ M cofibrant, jointly detect weak equivalences between fibrant objects [22, Prop. 9.7.1].

��
Definition 3.36 If (D, τD) is an L-small category with a Grothendieck coverage τD andM a
left proper, L-small, combinatorial or cellular model category, then we call the fibrant objects
of LS(M,τD)Fun(Dop,M) the M-valued (homotopy) sheaves on D.

Theorem 3.37 Let M be a left proper cellular or combinatorial simplicial model category
in the universe L and C a small category. Let τ be a Grothendieck coverage on C, and τ̂ the
induced Grothendieck coverage of τ -local epimorphisms on̂C. The Quillen adjunction (3.29)
descends to a Quillen adjunction

ReM : Fun(̂Cop,M)loc Fun(Cop,M)loc : SM .⊥

Proof By Proposition 3.17, it suffices to show that the right adjoint SM preserves local
objects. To that end, let F ∈ Fun(Cop,M) be S(C, τ )-local, and let π : Y → X be a τ -local
epimorphism in̂C. By Proposition 3.34 we thus need to show that the canonical morphism

(SMF)(X) −→ holim
k∈´ {Čkπ, SMF}̂Cop

is a weak equivalence in M. Since Čkπ is representable in Fun(̂Cop, Set́ S), the Yoneda
Lemma for̂C implies that

{Čkπ, SMF}̂Cop ∼= (SMF)(Čkπ) = {Q(Čkπ), F}Cop
.

The problem is thus equivalent to showing that the canonical morphism

{QX , F}Cop −→ holim
k∈´ {Q(Čkπ), F}Cop

is a weak equivalence in M. Since the functors M(m,−) : M f ib → Set́ L jointly detect
weak equivalences, wherem ranges over all cofibrant objects inM (and whereM f ib ⊂ M is
the full subcategory on the fibrant objects), it suffices to show that, for each cofibrantm ∈ M,
the morphism

M
(

m, {QX , F}Cop) −→ M
(

m, holim
k∈´ {Q(Čkπ), F}Cop)

is a weak homotopy equivalence. Here we have used that F is projectively fibrant, so that the
functor {Q(−), F}Cop

takes values in M f ib, and that the homotopy limit of an objectwise
fibrant diagram is again a fibrant object. Using the simplicial enrichment and the two-variable
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Quillen adjunction from Proposition 3.28, the above problem is further equivalent to showing
that, for each cofibrant m ∈ M, the morphism

Fun(Cop, Set́ L)
(

QX ,M
ptw
Cop (m, F)

) −→ holim
k∈´ Fun(Cop, Set́ L)

(

Q(Čkπ),M
ptw
Cop (m, F)

)

is a weak homotopy equivalence. Note that this morphism is the same as the canonical
morphism

S∞,0
(

M
ptw
Cop (m, F)

)

(X) −→ holim
k∈´ S∞,0

(

M
ptw
Cop (m, F)

)

(Čkπ)

in the homotopy descent condition for the simplicial presheaf

S∞,0
(

M
ptw
Cop (m, F)

) ∈ Fun(̂Cop, Set́ L) .

By Theorem 3.23 it now suffices to show that the simplicial presheaf

M
ptw
Cop (m, F) ∈ Fun(Cop, Set́ L)

is τ -local, for each cofibrant object m ∈ M.
To that end, let U = {ci → c}i∈I be a τ -covering in C. We have to check that the canonical

morphism
M

ptw
Cop (m, F)(c) −→ holim

k∈´ H∞,0

(

QČkU,M
ptw
Cop (m, F)

)

is a weak homotopy equivalence. Again using the two-variable Quillen adjunctions, this is
equivalent to checking that

M
(

m, F(c)
) −→ holim

k∈´ M
(

m, {QČkU, F}Cop) ∼= M
(

m, holim
k∈´ {QČkU, F}Cop)

is a weak homotopy equivalence, for each cofibrant m ∈ M. Again since the functors
M(m,−) jointly detect weak equivalences between fibrant objects in M, this is the case
if and only if

F(c) −→ holim
k∈´ {QČkU, F}Cop

is a weak equivalence inM. However, that is true by the assumption that F is S(M, τ )-local.
��

Finally, we record a generalisation of Proposition 3.12:

Proposition 3.38 In the setting of Theorem 3.30, for each projectively fibrant F ∈
Fun(Cop,M) and any X ∈ ̂C, there is a canonical natural weak equivalence

SM(F)(X) � (hoRanYF)(X) .

Proof We have canonical weak equivalences

SM(F)(X)

=
∫

c∈C
{QX(c), F(c)}

=
∫

c∈C
{

B(∗,C/X ,Y)(c), F(c)}

∼=
∫

c∈C

∫

n∈´

∏

c0,...,cn

{

C(c, c0) ⊗ C(c0, c1) ⊗ · · · ⊗ C(cn−1, cn) ⊗ X(cn) ⊗ �n, F(c)
}

∼=
∫

n∈´

∏

c0,...,cn

{

C(c0, c1) ⊗ · · · ⊗ C(cn−1, cn) ⊗ X(cn) ⊗ �n, F(c0)
}
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∼= CM(∗, (C/X )op, F)

� holim
Yc→X

∈(C/X )op

F(c) .

In the second-to-last line we have used the enriched cobar construction for the simplicially
enriched category M. The final weak equivalence follows from Proposition 3.31. ��

3.3 Sheaves of (∞, n)-Categories

The specific instances of Theorem 3.37 in which we are interested most arise from choosing
the target model category M to be a model for (∞, n)-categories. Various such model cate-
gories exist in the literature, including the model structures for n-fold complete Segal spaces
[2, 9, 41] and �n-spaces [42, 43] (see also [9] for a general characterisation of such models,
as well as [6, 8] for a comparison between the aforementioned two models). Theorem 3.37
applies to both homotopy sheaves of n-fold complete Segal spaces and�n-spaces. Since this
paper is motivated by applications to functorial field theories, where n-fold complete Segal
spaces are the prevalent model for (∞, n)-categories, we will focus on the case of n-fold
complete Segal spaces.

For each n ∈ N0, we consider the category

snSet́ L = Fun(´n,op, Set́ L)

of n-fold simplicial diagrams in large simplicial sets. For fixed n ∈ N, we write
([k0], . . . , [kn−1])=:�k ∈ ´n . The category snSet́ L is simplicial, with simplicial mapping
space

snSet́ L(X , Y ) =
∫

�k∈´n
Set́ L(X �k, Y�k) .

Further, the category snSet́ L is cartesian closed, with internal hom given by

(Y X )�k = (

snSet́ L
snSet́ L (X , Y )

)

�k = snSet́ L(Y´
n

�k ×X , Y ) ∼=
∫

�l∈´n
Set́ L

(

Y´
n

�k (�l)×X�l , Y�l
)

,

where Y´
n : ´n → Set́ L is the Yoneda embedding of ´n . For each n ∈ N, there is a monoidal

adjunction

c• : sn−1Set́ L snSet́ L : Ev[0] ,⊥

where c• is the constant-diagram functor, i.e. (c•X)k0,...,kn−1 = Xk1,...,kn−1 . Therefore, the
category snSet́ L is enriched, tensored, and cotensored over skSet́ for any 0 ≤ k ≤ n.

Moreover, for each k, l ∈ N there is a functor

(−)�(−) : skSet́ L×slSet́ L −→ sk+lSet́ L, (A�B)i0,...,ik+l−1 = Ai0,...,ik−1×Bik ,...,ik+l−1 .

Iterating this, we have a functor

n
∏

i=1

Set́ L −→ snSet́ L , (A0, . . . , An) �−→ A0 � · · · � An−1 ,

which satisfies that Y´
n

�k = �k0 � · · · � �kn−1 and c•X = �0 � X , for each X ∈ sn−1Set́ L.
The category sSet́ L of large bisimplicial sets carries a Reedy model structure, and it is a

well-known fact that this coincides with the injective model structure [22, Thm. 15.8.7]. It is
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a less well-known fact that an analogous identity of the injective and Reedy model structures
holds true for the categories snSet́ L = Fun(´n,op, Set́ L) [7, Prop. 3.15].Whenever we refer
to snSet́ L as amodel category, wewill mean the Reedy (or, equivalently, the injective) model
structure. The model category snSet́ L is cellular, left proper, combinatorial and cartesian
closed, i.e. it is a symmetric monoidal model structure in the sense of [23, Def. 4.2.6] whose
monoidal product agrees with the categorical binary product: this follows readily from the
fact that Set́ L with the Kan-Quillen model structure is cartesian closed [23, Prop. 4.2.8] and
the Reedy model structure on snSet́ L agrees with the injective model structure.

For the reader’s convenience, we briefly recall the presentation of a model category for n-
fold complete Segal spaces, following [25,App.A] (see, in particular, the ‘Lurie-presentation’
in loc. cit.).

For k ∈ N, k ≥ 2, define the k-th spine inclusion

σk : �1 �
�0

· · · �
�0

�1

︸ ︷︷ ︸

k-times

�k

in Set́ L. Localising at maps of this type will implement the Segal conditions.
Let K ∈ Set́ L denote the pushout

�{02} � �{13} �3

�0 K

where the top morphism consists of the inclusions of �1 into �3 as the edge 0 → 2 and
1 → 3, respectively. Let κ denote the collapse map

κ : K → �0 .

Localising at maps of the type κ will implement the completeness conditions below.

Definition 3.39 Let n ∈ N. The model category for (large) n-fold complete Segal spaces is
obtained by left Bousfield localisation of snSet́ L at the following morphisms:

(1) (Segal conditions) For each k ∈ N, i ∈ {0, . . . , n − 1} and each k0, . . . , ki−2, ki , . . . ,
kn−1 ∈ N0, we localise at the morphism

�k0 � · · · � �ki−2 � σk � �ki � · · · � �kn−1 .

(2) (Completeness) For each i ∈ {0, . . . , n − 1} and each k0, . . . , ki−2, ki , . . . , kn−1 ∈ N0,
we localise at the morphism

�k0 � · · · � �ki−2 � κ � �ki � · · · � �kn−1 .

(3) (Essential constancy) For each i ∈ {0, . . . , n−1} and each k0, . . . , ki−2, ki , . . . , kn−1 ∈
N0, we localise at the morphism

�k0 �· · ·��ki−2 ��0��ki �· · ·��kn−1 −→ �k0 �· · ·��ki−2 ��0��0�· · ·��0 .

We denote the resulting model category by CSSn . Fibrant objects in CSSn are called n-fold
complete Segal spaces, or (∞, n)-categories.
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Remark 3.40 Themodel categories CSSn exist and are left proper, cellular and simplicial [25,
Lemma A.6]. In particular, we can apply Theorem 3.37 to presheaves with values in CSSn ,
for each n ∈ N. 

Lemma 3.41 Let n ∈ N, let I be a large category, and let D : I → CSSn be a projectively
fibrant diagram, i.e. Di is an n-fold complete Segal space for every i ∈ J.

(1) The homotopy limit of D can be computed levelwise: for each k ∈ N0, there exist
canonical natural isomorphisms

(

holimCSSn
J (D)

)

k
∼= holimCSSn−1

J (Dk) ,

where for i ∈ J the object Dki = (Di)k is the k-th simplicial level of Di ∈ s(sn−1Set́ L).
(2) The homotopy limit of D can be computed objectwise when viewing the diagram as a

functor D : J × ´n → Set́ L. That is, for any �k ∈ ´n there is an isomorphism (natural
in �k ∈ ´n)

(

holimCSSn
J (D)

)

�k ∼= holimSet́
J (D�k) .

Proof Weuse the explicit model for homotopy limits in simplicially enriched categories from
Proposition 3.31. For the sake of brevity, for l ∈ N0, we set

Yn = Y´
n

(−,0,...,0) : ´ → snSet́ L , Yn[k] = �k � �0 � · · · � �0
︸ ︷︷ ︸

(n−1)-times

.

Since D is objectwise fibrant, a model for the homotopy limit of D is given by the two-sided
cobar construction C(∗, I, D) ∈ CSSn [44, Cor. 5.1.3].

For any n ∈ N0, there are canonical natural isomorphisms of simplicial sets
(

holimCSSn
J (D)

)

m = (

CsnSet́ (∗, J, D)
)

m

= CSS
CSSn−1
n

(

Yn[m],CsnSet́ (∗, J, D)
)

∼=
∫

k∈´
snSet́ sn−1Set́

(

Yn[m],
(

Ck
snSet́ (∗, J, D)

)cn•�k)

∼=
∫

k∈´
snSet́ sn−1Set́ (

Yn[m] ⊗ cn•�k,Ck
snSet́ (∗, J, D)

)

∼=
∫

k∈´
sn−1Set́

sn−1Set́ (

cn−1• �k,
(

Ck
snSet́ (∗, J, D)

)

(m,−,··· ,−)

)

∼=
∫

k∈´
sn−1Set́

sn−1Set́
(

cn−1• �k,
∏

i∈(NJ)k

(Dik)(m,−,··· ,−)

)

∼=
∫

k∈´

(
∏

i∈(NJ)k

(Dik)m
)cn−1• �k

= Csn−1Set́ (∗, J, Dm)

= holimCSSn−1
J (Dm) .

The last identity relies on [44, Cor. 5.1.3] (see also Proposition 3.31), together with the
following facts: the functor D : I → CSSn is objectwise fibrant. In particular, for each i ∈ J,
the object D(i) ∈ Fun(´op, sn−1Set́ L) is fibrant in the Reedy model structure (equivalently,
the injective model structure), where sn−1Set́ L carries the Reedy (equivalently, injective)
model structure. Forgetting the localisations in Definition 3.39 at morphisms which are non-
trivial in the first ´-factor, we further obtain that (Di)m is fibrant in CSSn−1, for each i ∈ I
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and m ∈ ´. Consequently, the functor Dm : ´ → CSSn−1, i �→ Dm(i) = (Di)m is also
fibrant in the projective model structure on Fun(´op,CSSn−1). Thus, the cobar construction
in the second-to-last line indeed models its homotopy limit. Part (2) follows in analogy with
part (1), replacing Yn with Y (i.e. replacing �k � �0 � · · · � �0 by �k0 � · · · � �kn−1 ) and
using that injectively fibrant diagrams are, in particular, projectively fibrant. ��
Definition 3.42 Let C be a small category.

(1) We write
H∞,n :=Fun(Cop,CSSn)

and view this as endowed with the projective model structure. A fibrant object inH∞,n

is called a presheaf of (∞, n)-categories on C.
(2) In the notation of Definition 3.33, we define the left Bousfield localisation

Hloc∞,n :=LS(CSSn ,τ )H∞,n .

A fibrant object in Hloc∞,n is called a sheaf of (∞, n)-categories on (C, τ ).

Proposition 3.43 Let C be a small category. Then H∞,n is a left proper, tractable (large)
simplicial model category. Further, if C is endowed with a Grothendieck pretopology τ , then
Hloc∞,n is a CSSn-model category, and it is symmetric monoidal if H∞,n is so.

Proof The statement about H∞,n is a consequence of [3, Prop. 4.50]. For Hloc∞,n , the claim
follows from [3, Prop. 4.47]. The statement about symmetric monoidal structures is an appli-
cation of [3, Thm. 4.58]. ��

Analogously to Sects. 3.1,H∞,n is symmetric monoidal whenever C has finite products.

Definition 3.44 Let C be a small category. As before, we writêC = Fun(Cop, SetS).

(1) We write
̂H∞,n :=Fun(̂Cop,CSSn)

for the category Fun(̂Cop,CSSn), endowed with the projective model structure. A fibrant
object in ̂H∞,n is called a presheaf of (∞, n)-categories on̂C.

(2) In the notation of Definition 3.33, we define the left Bousfield localisation

̂Hloc∞,n :=LS(CSSn ,̂τ )
̂H∞,n .

A fibrant object in ̂Hloc∞,n is called a sheaf of (∞, n)-categories on (̂C, τ̂ ).

Remark 3.45 Lemma 3.41 implies that an object F ∈ Fun(Cop,CSSn) is S(CSSn, τ )-local
if and only if, for each [�k] ∈ ´n the object Fk0,...,kn−1 ∈ Fun(Cop, Set́ L) is τ -local, and
analogously for (̂C, τ̂ ) in place of (C, τ ). 


In the notation of (3.29), we further write

S∞,n :=SCSSn : H∞,n −→ ̂H∞,n , (S∞,nF)(X) = {QX ,F}Cop
.

We can compute this functor more explicitly as follows: for [�k] ∈ ´n , we have canonical
isomorphisms

(S∞,nF)�k(X) = ({QX ,F}Cop)

�k
∼= snSet́ L

(

�k0 � · · · � �kn−1 , {QX ,F}Cop)
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∼= Fun(Cop, snSet́ L)
(

QX ⊗ (�k0 � · · · � �kn−1),F
)

∼= Fun(Cop, Set́ L)(QX ,Fk0,...,kn−1)

∼= S∞,0(Fk0,...,kn−1)(X) .

We have the following direct corollary of Proposition 3.38:

Proposition 3.46 On any fibrant object F ∈ H∞,n, the functor S∞,n agrees with the homo-
topy right Kan extension of F : Cop → CSSn along the Yoneda embedding,

S∞,nF ∼= hoRanY(F) .

As a direct application of Proposition 3.30, we have:

Proposition 3.47 The functor S∞,n is the right adjoint in a Quillen adjunction

Re∞,n : ̂H∞,n H∞,n : S∞,n .⊥

Moreover, Theorem 3.37 implies the following result:

Corollary 3.48 Let (C, τ ) be a small site. For any n ∈ N, the Quillen adjunction Re∞,n 

S∞,n descends to a Quillen adjunction

Re∞,n : ̂Hloc∞,n Hloc∞,n : S∞,n .⊥

Remark 3.49 The descent results in this subsection also imply corresponding results for strict
presheaves of 1-categories, i.e. functors

F : Cop → CatL ,

from Cop to the 1-category of large categories. Rezk’s classifying diagram functor
Nrel : CatL → CSS1 from large categories to large complete Segal spaces is a fully faithful
embedding of categories which preserves and detects weak equivalences (weak equivalences
in CatL being equivalences of categories) and which preserves exponentials; this is the con-
tent of [41, Thm. 3.7]. Explicitly, if D∼ denotes the maximal subgroupoid of a category D,
we have, for each n ∈ N0,

(NrelD)n = N
(

(D[n])∼
)

.

Now let (C, τ ) be a site. One checks that, given a presheaf F : Cop → CatL and a τ -
covering family U = {ci → c}i∈� such that all Ci0...in are representable (see (2.9) for the
notation), there is an equivalence

H∞,1(QČU, Nrel F) � H∞,1(ČU, Nrel F) � NrelDesc(F;U) ,

where Desc(F;U) is the usual descent category associated to F and the covering family U
(see, for instance, [37, Def. 2.5] or [10, Def. 2.9]). It follows that F is a sheaf of categories
precisely if Nrel F is fibrant in Hloc∞,1. Given a small presheaf X ∈ ̂C, one can check that

H∞,1(QX , Nrel F) ∼= Nrel

(

holimCatL
(

(C/X )op −→ Cop F−→ CatL
)

)

,

in CSS1, where the homotopy limit is computed in the canonical model structure on CatL
(see, for instance, [40]). We define a functor

S1,1 : Fun(Cop,CatL) −→ Fun(̂Cop,CatL) ,
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S1,1(F)(X):=holimCatL
(

(C/X )op −→ Cop F−→ CatL
)

.

Given a τ -local epimorphism π : Y → X , we thus have a commutative diagram

(Nrel F)(X) holim
k∈´

CSS1
(

S∞,1(F)(Čkπ)
)

Nrel
(

F(X)
)

Nrel

(

holim
k∈´

CatL
(

S1,1(X)(Čkπ)
)

)

π∗

Nrelπ
∗

�

Since Nrel reflects weak equivalences, it now follows from Corollary 3.48 that S1,1F
satisfies τ̂ -descent whenever F satisfies τ -descent. 


4 Applications in Geometry and Field Theory

Here we apply the results of Sect. 3 to diffeological vector bundles, gerbes with connection,
2-vector bundles and smooth field theories on background manifolds.

4.1 Strictification of Diffeological Vector Bundles and Descent Along Subductions

Vector bundles form a sheaf of categories on the site of manifolds and surjective submer-
sions. One can show this either by providing an explicit descent construction, or by using a
strictification of vector bundles which describes them in terms of their transition functions.

Diffeological spaces form a popular generalisation of manifolds; their category Dfg sits
in a sequence of canonical fully faithful inclusion functors

Mfd Dfg Sh(Cart, τdgop) PSh(Cart) .

Apart from the first inclusion, these functors each have a left adjoint. Diffeological spaces
have been introduced in [24] and are increasingly used to carry out smooth constructions
in geometry and topology (see, for instance, [28, 36]). Despite this, there is currently no
descent theorem for diffeological vector bundles. That is a large gap in the literature, which
we close here: as the main step, we extend the strictification of vector bundles on manifolds
to diffeological vector bundles. The desired descent property of diffeological vector bundles
then follows readily from Corollary 3.48 and Remark 3.49.

4.1.1 Background on Diffeological Spaces

We start by recalling the category of diffeological spaces, mostly following [5]. As a slight
variation to the standard literature, we define diffeological spaces as concrete sheaves on a site
which differs from the usual choice, but this is just for technical convenience (cf. Remark 4.7).
Throughout this section, we let C be a small category.

Definition 4.1 ([5, Def. 17]) A site (C, τ ) is called subcanonical if every representable
presheaf on C is a sheaf.
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Definition 4.2 ([5, Def. 18]) A site (C, τ ) is concrete if C has a terminal object ∗ ∈ C, (C, τ )

is subcanonical and satisfies the following two additional conditions:

(1) The functor Ev∗ = C(∗,−) : C → SetS is faithful.
(2) Each covering { fi : ci →c}i∈I ∈τ(c) is jointly surjective:wehave

⋃

i∈I ( fi )∗
(

C(∗, ci )
) =

C(∗, c).

Definition 4.3 ([5, Def. 19, Def. 46]) A presheaf X on a concrete site (C, τ ) is called concrete
if for every object c ∈ C the map

Ev∗ : X(c) ∼= ̂C(Yc, X) −→ SetS
(

Yc(∗), X(∗)
)

, ϕ �−→ ϕ|∗
is injective. In this case, we define the subset PlotX (c):=Ev∗(X(c)) ⊂ SetS

(

Yc(∗), X(∗)
)

of
plots of X over c ∈ C.

In other words, a concrete presheaf X has an underlying set X(∗), and, for each c ∈ C,
the set X(c) can canonically be described as a subset of the maps of sets Yc(∗) → X(∗).

Definition 4.4 ([5, Def. 20]) Let (C, τ ) be a concrete site. The categoryDfg(C, τ ) of (small)
(C, τ )-spaces is the full subcategory of ̂C = Fun(Cop, SetS) whose objects are the con-
crete small sheaves on (C, τ ). For X ∈ Dfg(C, τ ), the elements of X(c) are called plots
of X over c. We refer to (Cart, τdgop)-spaces as diffeological spaces, and we abbreviate
Dfg:=Dfg(Cart, τdgop).

We commit an abuse of notation and denote the underlying set of a diffeological space X
also by X ; it will be clear from context whether we are referring only to the underlying set,
or to the underlying set endowed with the structure of a diffeological space.

Example 4.5 The site (Cart, τdgop) from Example 2.4 is concrete: first, note that Cart has a
terminal object ∗ = R

0. Further, the functor Cart(R0,−) : Cart → SetS takes the underlying
set of c ∈ Cart; thus, it is faithful. Since smooth maps to a target manifold form a sheaf
with respect to open coverings, (Cart, τdgop) is subcanonical. Finally, the fact that covering
families in (Cart, τdgop) are jointly surjective is immediate from the definition of τdgop.
Analogously, one checks that the site (Op, τop) from Example 2.5 is concrete. 


The relation between Sects. 3 and Sect. 4 relies on the following observation.

Remark 4.6 The category Dfg(C, τ ), together with the collection of those τ -local epimor-
phisms whose source and target are (C, τ )-spaces, form a site which is contained in the
site (̂C, τ̂ ) as a full subcategory. The τ -local epimorphisms between (C, τ )-spaces are
also called subductions [24]. We denote the site of (C, τ )-spaces with this coverage by
(Dfg(C, τ ), τsubd). 

Remark 4.7 In [24], diffeological spaces are defined as concrete presheaves on (Op, τop),
whereas here we define them on (Cart, τdgop). However, the two categories are equivalent
because the canonical inclusion of (Cart, τdgop) into (Op, τop) is an inclusion of a dense
subsite. For any manifold M , the presheaf M from Example 2.4 is a diffeological space. 

Proposition 4.8 ([5, Section 5.3]) Let (C, τ ) be a concrete site. There exists an adjunction

Dfg : ̂C Dfg(C, τ ) : ι⊥

whose right adjoint is a fully faithful inclusion, i.e. Dfg(C, τ ) ⊂ ̂C is a reflective locali-
sation.
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4.1.2 Strictification and Descent of Diffeological Vector Bundles

We now specialise to the case (C, τ ) = (Cart, τdgop) and to Dfg = Dfg(Cart, τdgop). We
will denote the underlying set Yc(∗) of a cartesian space c ∈ Cart again by c.

Definition 4.9 Let X ∈ Dfg be a diffeological space.

(1) A (complex rank-k) vector bundle on X is a pair (E, π) of a diffeological space E and
a morphism π : E → X in Dfg with the structure of a C-vector space on each fibre
E|x :=π−1({x}), for x ∈ X , satisfying the following condition: for each plot ϕ : c → X
there exists an isomorphism of diffeological spaces

� : c × C
k −→ c ×

X
E

such that prc ◦ � = prc and such that for every y ∈ c the restriction �|y : C
k → E|ϕ(y)

is linear.
(2) Let (E, π) and (E ′, π ′) be vector bundles on X . A morphism (E, π) → (E ′, π ′) is a

morphism � ∈ Dfg(E, E ′) with π ′ ◦ � = π and such that �|x : E|x → E ′|x is a linear
map for every x ∈ X .

This defines a category VBunDfg(X) of diffeological vector bundles on X .

Example 4.10 If M is a smooth manifold, which we view as a diffeological space, then the
category VBunDfg(X) is canonically equivalent to the ordinary category of vector bundles
on M . 


Any morphism f ∈ Dfg(X ′, X) gives rise to a pullback functor

f ∗ : VBunDfg(X) −→ VBunDfg(X
′) , (E, π) �−→ (

X ′ ×
X
E, π ′) ,

where π ′ is the pullback of π along f .

Definition 4.11 We let VBunDfg : Dfgop → CatL denote the pseudo-functor resulting from
the above assignments (where CatL is the 2-category of large categories).

The goal of this subsection is to prove the following theorem:

Theorem 4.12 The pseudo-functor VBunDfg : Dfgop −→ CatL satisfies descent along sub-
ductions of diffeological spaces (see Remark 4.6).

Remark 4.13 We use the following strategy for the proof of Theorem 4.12:

(1) Replace the pseudo-functor VBunDfg by a strictification, i.e. find a (strict) functor

VBunstr : Dfgop → CatL

and an equivalence of pseudo-functors between VBunstr and VBunDfg.

(2) Recall that (Dfg, τsubd) ⊂ (̂Cart, τ̂ ) is a subsite (see Remark 4.6). Show that VBunstr is
in fact a restriction along the inclusion ι : Dfg ↪→ Ĉart of a functor VBunstr : Ĉartop →
CatL.

(3) Show that the functor VBunstr : Ĉartop → CatL satisfies descent with respect to τ̂dgop .
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Theorem 4.12 then readily follows from the equivalences in points (2) and (3).
We will achieve the above goals by means of Remark 3.49: we give a strict functor

VBuntriv : Cartop → CatL

satisfying the following two properties:

• The functor VBuntriv : Cartop → CatL satisfies τdgop-descent.

• Consider the functor VBunstr :=S1,1VBuntriv ∈ Fun(̂Cartop,CatL). Its restriction to

Dfg ⊂ Ĉart is a strictification of VBunDfg (thus yielding point (1) above).

Remark 3.49 then ensures that points (2) and (3) above are satisfied. 

We now carry out the above strategy:

Definition 4.14 We define a strict presheaf VBuntriv of categories on Cart as follows: for
c ∈ Cart, the category VBuntriv(c) has objects (c, n), where n ∈ N0, and a morphism
(c, n) → (c,m) is a smooth function ψ : c → Mat(m×n, C) from c to the vector space of
complexm-by-n matrices; to make clear thatψ is defined over c we also write (c, ψ) instead
of just ψ . A smooth map f : c′ → c acts via

f ∗ : VBuntriv(c) −→ VBuntriv(c
′) , (c, n) �→ (c′, n) , (c, ψ) �→ (c′, ψ ◦ f ) .

Using the functor S1,1 : Fun(Cop,CatL) −→ Fun(̂Cop,CatL) from Remark 3.49 we also
define the strict functor

VBunstr :=(S1,1VBuntriv) ∈ Fun(Cartop,CatL) .

Let H∞,1 denote the model category for presheaves of ∞-categories on the site
(Cart, τdgop) (as in Definition 3.42). As in Remark 3.49, let Nrel : CatL → sSet́ L denote
Rezk’s classifying diagram functor [41, Sec. 3].

Proposition 4.15 Both Nrel ◦ VBuntriv and Nrel ◦ VBunstr are fibrant objects in Hloc∞,1 and

in ̂Hloc∞,1, respectively. Equivalently (by Remark 3.49), VBuntriv satisfies τdgop-descent, and
VBunstr satisfies τ̂dgop-descent.

Proof Weonly need to show thatVBuntriv ∈ Hloc∞,1 is fibrant. ThatVBunstr is fibrant in
̂Hloc∞,1

will then follow from Corollary 3.48. First,VBuntriv is fibrant inH∞,1: for each c ∈ Cart, the
bisimplicial set VBuntriv(c) = Nrel(VBuntriv(c)) is the classification diagram of an ordinary
category and hence a complete Segal space by [41, Prop. 6.1]. In order to show that VBuntriv
is also fibrant in Hloc∞,1, it suffices to show that the presheaf of categories VBuntriv satisfies
descent with respect to τdgop, which is standard: for instance, one can see this by using
that vector bundles glue along isomorphisms over open coverings of manifolds. Thus, given
descent data for VBuntriv with respect to a differentiably good open covering of a cartesian
space c, we obtain a vector bundle on c. This vector bundle is, in general, non-trivial, but
since c ∼= R

n for some n ∈ N0, it is isomorphic to a trivial vector bundle. This provides the
essential surjectivity of the descent functor for vector bundles. Its full faithfulness follows
since morphisms of trivial vector bundles are the same as smooth matrix-valued functions,
which form sheaves of sets with respect to open coverings of manifolds. ��

For the proof of Theorem 4.12 we are thus left to show that VBunstr ∈ Fun(̂Cartop,CatL)

restricts to a strictification of the pseudo-functor VBunDfg on the full subcategory Dfg ⊂
Ĉart. To that end, we first identify a more concrete description of the functor ι∗VBunstr =
ι∗S1,1(VBuntriv), where ι : Dfg ↪→ Ĉart denotes the canonical inclusion: it is the homotopy
right Kan extension of VBuntriv along the inclusion Cart ↪→ Dfg:
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Lemma 4.16 We can compute the values of ι∗VBunstr : Dfgop → CatL as

(ι∗VBunstr )(X) = holimCatL
(

(Cart/X )op Cartop CatL
)

,
pr VBuntriv

Proof This follows directly from Remark 3.49. ��
Remark 4.17 In this proof we first show that each diffeological vector bundle is determined
by its strictified transition data (i.e. matrix-valued functions), and then use that the latter
satisfy descent, using Remark 3.49. Alternatively, we could have shown first an analogue of
Lemma 4.16 for VBunDfg and then compared ι∗VBunDfg and VBunstr on Cart ⊂ Dfg only.
However, the proof of the first step is not significantly less complicated than the proof of
Theorem 4.18 below. Additionally, from the route chosen here it becomes evident how one
can assign a total space to any vector bundle on any diffeological space from its transition
data, as well as that NrelVBunstr is a classifying object in H∞,1 for vector bundles. 


We obtain the following strictification theorem for diffeological vector bundles:

Theorem 4.18 There is an objectwise equivalence of (non-strict) presheaves of categories
on Dfg

A : ι∗VBunstr
∼−→ VBunDfg . (4.19)

Proof The proof Theorem 4.18 consists of several individual steps, whichwe present in detail
in Appendix A: first, we fix an arbitrary diffeological space X and restrict our attention to
the evaluation of (4.19) at X , i.e. to the functor

A|X : ι∗VBunstr (X)
∼−→ VBunDfg(X) .

Using Lemma 4.16 we define the functor A|X on objects and (Definition A.4) and show in
Proposition A.5 that it indeed produces diffeological vector bundles on X . Next, we define
A|X on morphisms (Definition A.7) and show that, for each X ∈ Dfg, it is fully faithful
(Proposition A.8) and essentially surjective A.9. Only then do we let X ∈ Dfg vary and
complete the proof by showing that the functors A|X we constructed for each X ∈ Dfg
assemble into a morphism of pseudo-functors Cartop → CatL. Since we have already shown
that this morphism of pseudo-functors is objectwise an equivalence of categories, we obtain
the desired equivalence result. ��

This completes the proof of Theorem 4.12.

4.2 Descent for the (∞, 2)-Sheaf of Gerbes with Connection

An important example of higher geometric structures consists of (higher) gerbes with con-
nection. The simplicial presheaf of n-gerbes with connection on Cart is obtained by applying
the Dold-Kan correspondence to the chain complex

U(1) �1(−; iR) · · · �n+1(−; iR) ,
d log d d

with the sheaf U(1) of smooth U(1)-valued functions in degree zero. The resulting sim-
plicial presheaf is denoted Bn+1

∇ U(1). It satisfies descent with respect to τdgop , and thus
S∞,0(B

n+1
∇ U(1)) ∈ ̂H∞,0 is a fibrant object. It classifies n-gerbes on objects of̂C.
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However, this only captures invertiblemorphisms of n-gerbeswith connection. At least for
n = 1 there also exists a theory of interesting non-invertible morphisms, due toWaldorf [50].
There, Waldorf showed that the morphisms between two fixed gerbes on a manifold satisfy
descent along surjective submersions. This was later improved upon by Nikolaus-Schweigert
in [39]; they proved that the presheaf of 2-categories which assigns to a manifold its gerbes
and their 1- and 2-morphisms satisfies descent along surjective submersions of manifolds.
Descent properties for gerbes and their non-invertible morphisms on more general spaces are
so far unknown.

However, given our results in Sect. 3, we can establish such results: consider the following
strict presheaf Grb∇

triv of strict 2-categories on Cart: for c ∈ Cart, an object of Grb∇
triv(c) is a

2-form ρ ∈ �2(c; u(1)). A 1-morphism ρ0 → ρ1 consists of a 1-form A ∈ �1(c; u(k)), for
some k ∈ N0. Composition of 1-morphisms is given by A′ ◦ A = A′ ⊗ 1 + 1 ⊗ A, with
unit matrices 1 of the respective dimensions of A and A′. Given a pair A ∈ �2(c; u(k)),
A′ ∈ �2(c; u(k′)) of 1-morphisms ρ0 → ρ1, a 2-morphism A → A′ consists of a smooth,
matrix-valued function ψ : c → Mat(k×k′; C). Vertical composition of 2-morphisms is
given by pointwise matrix multiplication. Note that a 1-morphism A ∈ �1(c; u(k)) is invert-
ible precisely if k = 1 and a 2-morphism is invertible precisely if it takes values in GL(k; C).
Then, Grb∇

triv satisfies descent with respect to τdgop [39, 50].

Remark 4.20 Grb∇
triv(c) as defined above is the most relaxed definition of a 2-category of

gerbes with connection on c. One can restrict attention to parallel 2-morphisms, i.e. satisfying
dψ+(A−A′)ψ = 0, and independently to 1-morphisms satisfying either tr(dA+ 1

2 [A, A]) =
ρ1 − ρ0 (as in [50]) or the fake curvature condition dA+ 1

2 [A, A] = ρ1 − ρ0. These choices
produce various 2-categories of gerbes with connection on c with different properties; our
arguments below apply to each of these cases. 


Applying the (∞, 2)-categorical nerve from [38, Thm. B] objectwise at each c ∈ Cart
produces a fibrant presheaf N2,relGrb

∇
triv ∈ H∞,2. It follows from the descent property of

Grb∇
triv that N2,relGrb

∇
triv is even fibrant in Hloc∞,2, i.e. satisfies descent with respect to τdgop.

By Corollary 3.48, the homotopy right Kan extension S∞,2(N2,relGrb
∇
triv) ∈ ̂Hloc∞,2 is again

fibrant and classifies gerbes with connection and their not necessarily invertible 1- and 2-
morphisms on generic objects in̂C. We thus obtain:

Theorem 4.21 Gerbes with connection and their generic (not necessarily invertible or par-
allel) 2-morphisms form a sheaf of (∞, 2)-categories on the site (̂C, τ̂dgop).

In particular, restricting to objects X ∈ ̂C of the form X = M for some manifold M , we
directly obtain the result of [39] that gerbes with connection form a sheaf of 2-categories on
the site of manifolds and surjective submersions.

Remark 4.22 To conclude this subsection, we remark that since N2,relGrb
∇
triv(c) is a (2, 2)-

category, i.e. it is truncated, for each c ∈ Cart, and since truncatedness is stable under limits,
S∞,2(N2,relGrb

∇
triv) should be a sheaf of (2, 2)-categories as well (see, for instance, [42,

Sec. 11] for truncations of (∞, n)-categories). 


4.3 Descent and Coherence for Smooth Functorial Field Theories

We now apply our findings to smooth functorial field theories (FFTs), a family-version of
topological quantum field theories (TQFTs).
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4.3.1 Background on Presentations of Topological Quantum Field Theories

We briefly recall some well-known background on TQFTs, highlighting only those technical
details which are relevant to this paper. TQFTs were introduced in [1, 47]; for some mod-
ern introductions, we refer the reader to [30, 45]. The formulation of d-dimensional TQFTs
rests on the d-dimensional cobordism category Bordd . Its objects are (d−1)-dimensional
closed, oriented manifolds. Its morphisms are diffeomorphism classes of d-dimensional ori-
ented cobordisms between these. Composition is given by gluing bordisms along the mutual
boundary. The category Bordd is symmetric monoidal under disjoint union of manifolds. If T
is a symmetric monoidal category, a d-dimensional T-valued TQFT is a symmetric monoidal
functor Z : Bordd → T.

If Y is an object in Bordd , then any orientation-preserving diffeomorphism f : Y → Y
induces a morphism C f : Y → Y in Bordd . Isotopic diffeomorphisms induce the same
morphism. Via the TQFT functor Z, the object Z(Y ) ∈ T thus carries an action of the mapping
class group of Y . Let cMfdord−1 denote the groupoid of closed oriented (d−1)-manifolds
and their orientation-preserving diffeomorphisms. We let cMfdord−1/∼ denote the groupoid
with the same objects, but with morphisms given by isotopy classes of diffeomorphisms.
Observe that there are functors cMfdord−1 −→ cMfdord−1/∼ −→ Bordd . If Y0 ∈ cMfdord−1
and MCG(Y0) is its mapping class group, let Y0//MCG(Y0) denote the associated action
groupoid. The inclusion Y0//MCG(Y0) ↪→ cMfdord−1/∼ is an equivalence onto a connected
component, and hence the inclusion

∐

[Y0]∈π0(cMfdord−1)

Y0//MCG(Y0) cMfdord−1

is an equivalence. Consequently, we can recover the values of any TQFT Z on all of
cMfdord−1 from its restrictions to Y0//MCG(Y0), where Y0 ranges over all diffeomorphism
classes of closed, oriented (d−1)-manifolds. Further, considering a generating set of bordisms
between the chosen representatives Y0, we can then recover the full TQFT up to natural
isomorphism from its values on the Y0, the respective mapping class group actions and the
generating bordisms.

4.3.2 Diffeomorphism Actions in Smooth Functorial Field Theories

The picture changes when we pass to smooth FFTs. These differ from TQFTs in several
ways: most importantly, we would like to decorate the manifolds underlying objects and
morphisms in Bordd with additional geometric structure, and we would like to keep track
of how the value of a field theory varies when we vary this additional geometric structure.
In the most common and relevant case the additional structure consists of a smooth map to
a fixed background manifold M . We restrict our attention to this case here. Smooth FFTs
were introduced by Stolz and Teichner in [49]. For background, we refer the reader there;
the specific formalism employed in this paper was developed in [13].

Remark 4.23 One can set up smooth FFTs with geometric structures in a fully general way:
the additional data is modelled by a section of a (higher) sheaf on a site of families of
d-manifolds and embeddings; we refer the reader to [21, 33] for the full framework. 


In this setup, the bordism category Bordd is replaced by a presheaf of symmetric monoidal
categoriesBordMd : Cartop → Cat⊗; this assigns to c ∈ Cart the symmetricmonoidal category
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BordMd (c),whose objects are essentially pairs of a closed, orientedd-manifoldY and a smooth
map f : c × Y → M . Its morphisms (Y0, f0) → (Y1, f1) can be described as bordisms
� : Y0 → Y1, together with a smooth map σ : c × � → M which restricts to f0 and f1 on
the respective incoming and outgoing boundaries of the bordism (for the full details of this
model for BordMd , see [13]). Finally, for any smooth map ϕ : c × � → c × �′ which is a
fibrewise diffeomorphism of bordisms Y0 → Y1 over c, one identifies (�, σ ) and (�′, σ ◦ϕ)

as morphisms inBordMd (c). This defines a strict functor Cartop → CatL. We further enhance
this to a strict functor taking values in the 2-categoryCat⊗L of symmetric monoidal categories:
the symmetric monoidal structure onBordd(c) takes disjoint unions of underlying manifolds
on objects aswell asmorphisms; that is, on objectswe set (Y , f )⊗(Y ′, f ′) = (Y�Y ′, f � f ′),
and onmorphisms [�, σ ]⊗[�′, σ ′] = [���′, σ �σ ′], where [�, σ ] denotes an equivalence
class under the relation of fibrewise diffeomorphism described above. We thereby obtain a
strict functor Bordd : Cartop → Cat⊗L . Let T : Cartop → Cat⊗L be a presheaf of symmetric
monoidal categories on Cart. A smooth d-dimensional FFT on M with values in T is a
morphism of such presheaves Z : BordMd → T.

In this setting, diffeomorphisms ϕ : Y → Y ′ of d-manifolds still induce morphisms in
BordMd (∗), but because of the additional maps to the background space M , isotopic diffeo-
morphisms will, in general, no longer give rise to the same morphisms. Instead, the value of
a smooth FFT on an object (Y , f ) ∈ BordMd (∗) comes endowed with a smooth action of the
full group Diff+(Y ) of orientation-preserving diffeomorphisms of Y . This action will not, in
general, factor through the mapping class group of Y .

Example 4.24 Consider a 2-dimensional smooth FFT on M with values in the higher sheaf
of vector bundles, Z : BordM1 → VBun. Fix Y = S

1. The collection of all objects (S1, f )
in BordMd forms the smooth free loop space LM of M , which carries a canonical smooth
Diff+(S1)-action. The FFT Z contains the data of a smooth, Diff+(S1)-equivariant vector
bundle on LM . An explicit construction of an FFT of this type is presented in [13]. 


In general, FFTs can take values in higher categories; therefore, we study fully coher-
ent equivariant structures (or homotopy fixed points) on sections of higher sheaves under
diffeomorphism actions.

If we aim to reconstruct the values of a smooth FFT on any closed (d−1)-manifold Y
with smooth map f : Y → M , we need to work with the smooth Diff+(Y )-actions rather
than mapping class group actions. This motivates the following consideration: we restrict our
attention to the diffeomorphism class [Y ] of a closed, oriented (d−1)-manifold Y . LetMfdor

denote the groupoid of oriented manifolds and orientation-preserving diffeomorphisms, and
let MY be the connected component of Y in Mfdor. For X , X ′ ∈ Mfdor, we let D(X , X ′)
denote the presheaf on Cart consisting of diffeomorphisms from X to X ′ (this is even a dif-
feological space). Concretely, an element of D(X , X ′)(c) is a smooth map ϕ
 : c× X → X ′
which is a diffeomorphism at each x ∈ c and such that the map of pointwise inverses is
also smooth. We equivalently write this as a morphism ϕ : Yc → D(X , X ′). This estab-
lishes both Mfdor and MY as categories enriched in Ĉart; the enriched mapping objects are

M
̂Cart
Y (Y0, Y1) = D(Y0, Y1). We also use the shorthand notation D(Y ):=D(Y , Y ).

Remark 4.25 One could even considerMfd andMfdor as enriched inDfg; the results in this
section still go through because they only rely on the (pre)sheaf aspects of the diffeological
spaces involved. 


Consider Ĉart-enriched functors P : Mop
Y −→ Ĉart and G : MY −→ Ĉart, as well as

the functors Gn , with Gn(X):=(G(X))n . Setting G0(X):=∗ gives rise to an augmented
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simplicial object

G•+1 ∈ (

CatL(MY , Ĉart)
)´op+ ,

where ´+ is the simplex category ´ with an initial object [−1] adjoined to it.

Example 4.26 In the context of smooth field theories on a manifold M , the relevant choice of
P is M (−), which assigns to Y ′ ∈ MY the mapping presheaf MY ′

. Given two diffeomorphic
manifolds Y0 ∼= Y1 in MY , there is a canonical morphism of presheaves

MY (Y0, Y1) = D(Y0, Y1) −→ Ĉart
(

MY1 , MY0
)

which sends a map ϕ
 : c × Y0 → Y1 to the composition

MY1(c) � f �−→
(

c × Y0 c × c × Y0 c × Y1 M� 1×ϕ
 f
)

∈ MY0(c) .

This makes M (−) into an enriched functor. 

This setup allows us to form, for each n ∈ N0, the enriched two-sided simplicial bar con-

struction [44, Section 9.1], which produces a simplicial object B•
(

Gn,M
op
Y , P

) ∈ Ĉart(´
op).

Explicitly,

Bk
(

Gn,M
op
Y , P

) =
∐

Y0,...,Yk∈MY

P(Y0) × D(Y1, Y0) × · · · × D(Yk, Yk−1) × Gn(Yk) .

We now consider the case of G = D(Y ,−) : MY → Dfg. Define morphisms �n as the
composition

P(Y0) × D(Y , Y0)n+1 P(Y0) × D(Y , Y0) × D(Y , Y0)n

P(Y ) × D(Y , Y )n P(Y0) × D(Y , Y0)2 × D(Y , Y0)n

�n 1×�×1

Ev×δn

where � denotes the diagonal morphism, and where Ev : P(Y0) × D(Y , Y0) → P(Y ) is
defined via the tensor adjunction. The morphism δ acts as

( f , f1, . . . , fn) �−→ ( f −1 f1, f −1
1 f2, . . . , f −1

n−1 fn) .

Let BD(Y ) ⊂ MY denote the full Ĉart-enriched subcategory on the object Y . We call
(

P(Y )//D(Y )
)

•:=B•
(∗, BD(Y )op, P

) ∈ Ĉart(´
op)

the action groupoid of the D(Y )-action via Ev on P(Y ) ∈ Ĉart. We further set

P//MY :=B•
(∗,M

op
Y , P

) ∈ Ĉart(´
op) .

Lemma 4.27 For every n ∈ N0, the morphism

�n : B0
(

D(Y ,−)n+1,M
op
Y , P

) −→ (

P(Y )//D(Y )
)

n

is an augmentation of the simplicial object B•
(

D(Y ,−)n+1,M
op
Y , P

)

in Ĉart.

Proof This follows directly from the compatibility of Ev with compositions. ��
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We further define morphisms �k : Bk(D(Y ,−),M
op
Y , P) −→ (P//MY )k , which arise

from the augmentation D(Y ,−)• → D(Y ,−)0 = ∗ .
Proposition 4.28 Let k ∈ N0.

(1) The morphism

�k : Bk
(

D(Y ,−),M
op
Y , P

) −→ Bk(∗,M
op
Y , P) = (P//MY )k

is an augmentation of the simplicial object Bk
(

D(Y ,−)•+1,M
op
Y , P

)

in Ĉart.
(2) Themorphism�k is a τ̂dgop-local epimorphism, and the simplicial object Bk(D(Y ,−)•+1,

M
op
Y , P) is isomorphic to the Čech nerve of �k .

Proof Part (1) is immediate from the construction of�k . For part (2), we only need to observe
that �k is a coproduct of projections onto a factor in a product and apply Lemma 2.8. ��

For k, l ∈ N0, we introduce the short-hand notation

Cohk,l(Y , P):=Bk
(

D(Y ,−)l+1,M
op
Y , P

) ∈ Ĉart .

Corollary 4.29 We obtain a bisimplicial object in Ĉart which is augmented in each direction,

Coh(Y , P)
(

P(Y )//D(Y )
)

•

(P//MY )•

�•

�• (4.30)

and where the vertical simplicial objects are the Čech nerves of the subductions �k .

Explicitly, diagram (4.30) reads as

.

.

.

· · ·
∐

Y0,Y1∈MY

P(Y0) × D(Y1, Y0) × D(Y , Y1)
2

.

.

.
∐

Y0∈MY

P(Y0) × D(Y , Y0)
2

.

.

.
P(Y ) × D(Y )

· · ·
∐

Y0,Y1∈MY

P(Y0) × D(Y1, Y0) × D(Y , Y1)
∐

Y0∈MY

P(Y0) × D(Y , Y0) P(Y )

· · ·
∐

Y0,Y1∈MY

P(Y0) × D(Y1, Y0)
∐

Y0∈MY

P(Y0)

dhi

dv
i

�1

dv
i

di

dhi

�1

�0

�0

di

Proposition 4.31 The morphisms �• and �• have the following properties:

(1) Each �n induces a weak equivalence inH∞,0:

�n : Coh•,n(Y , P)
∼−→ c•

(

P(Y )//D(Y )
)

n .
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(2) Each �k induces a weak equivalence inHloc∞,0:

�k : Cohk,•(Y , P)
∼−→ c•(P//MY )k .

Proof Ad (1): We claim that the augmented simplicial object

Coh•,n(Y , P) = B•
(

D(Y ,−)n+1,M
op
Y , P

)

P(Y ) × D(Y )n
�n

in H∞,0 admits extra degeneracies. To see this, we define morphisms in Cart

s−1|−1 : P(Y ) × D(Y )n −→
∐

Y0∈MY

P(Y0) × D(Y , Y0)
n+1 ,

(γ, f1, . . . , fn) �−→ (γ, 1Y , f1, . . . , fn) ,

where the image lies in the summand labelled by Y ∈ MY . For k ∈ N0, we set

s−1|k :
∐

Y0,...,Yk∈MY

P(Y0) × D(Y1, Y0) × . . . × D(Yk, Yk−1) × D(Y , Yk)
n+1

−→
∐

Y0,...,Yk+1∈MY

P(Y0) × D(Y1, Y0) × . . . × D(Yk+1, Yk) × D(Y , Yk+1)
n+1 ,

(γ, g0, . . . , gk−1, f0, . . . , fn) �−→ (γ, g0, . . . , gk−1, 1Y , f0, . . . , fn) ,

where the image lies in the component of the coproduct labelled by (Y0, . . . , Yk, Y ). These
morphisms yield the desired extra degeneracies.

Ad (2): This follows from Proposition 4.28 together with Theorem 3.18. ��
Proposition 4.32 With the above notation, the following statements hold true:

(1) We have a weak equivalence inH∞,0:

Q diag(�) : Q ◦ diag
(

Coh(Y , P)
) ∼−→ Q

(

P(Y )//D(Y )
)

.

(2) We have a weak equivalence inHloc∞,0:

Q diag(�) : Q ◦ diag
(

Coh(Y , P)
) ∼−→ Q(P//MY ) .

Proof By Proposition 4.31, the morphism � : Coh(Y , P) → c•(P(Y )//D(Y )) is a levelwise
weak equivalence of simplicial objects in H∞,0. Since the functor diag ∼= |−|: sSet́ L →
Set́ is homotopical (it is left Quillen and all objects in sSet́ are cofibrant), diag(�) is a
weak equivalence inH∞,0. This implies (1), since Q is homotopical.

For claim (2), we observe that we have a commutative diagram

hocolim
k∈´op

H∞,0Q
(

Coh(Y , P)k
)

hocolim
k∈´op

H∞,0Q
(

(P//MY )k
)

Q ◦ diag
(

Coh(Y , P)
)

Q(P//MY )

hocolim Q�k

∼

∼ ∼

Q◦diag(�)

The top morphism is a local weak equivalence by Proposition 4.31, and the vertical
morphisms are projective weak equivalences by Proposition 3.4. It follows that the bottom
morphism is a local weak equivalence. ��
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Definition 4.33 Let n ∈ N0, and let F ∈ H∞,n be a presheaf of (∞, n)-categories on Cart.

(1) We define (∞, n)-categories

F(P)D(Y ):=CCSSn

(∗,´, (S∞,nF)
(

P(Y )//D(Y )
))

,

F(P)
D(Y )
red :={

Q(P(Y )//D(Y )), F
}Cartop

,

where we make use of the simplicial enrichment of CSSn . We call F(P)D(Y ) the (∞, n)-
category of equivariant sections of F over P(Y ) ∈ Ĉart.

(2) We define (∞, n)-categories

F(P)coh :=CCSSn

(∗,´, (S∞,nF)(P//MY )
)

F(P)cohred :=
{

Q(P//MY ), F
}Cartop

,

and we call F(P)coh the (∞, n)-category of coherent sections of F over P .

Note that by Proposition 3.31 F(P)D(Y ) and F(P)coh are models for the homotopy limits

F(P)D(Y ) = holim
k∈´

CSSn (S∞,nF)
(

(P(Y )//D(Y ))k
)

,

F(P)coh = holim
k∈´

CSSn (S∞,nF)
(

(P//MY )k
)

.

ByLemma 3.32 these are indeed both (∞, n)-categories, i.e. fibrant objects inCSSn . The first
homotopy limit describes the (∞, n)-category of homotopy fixed points of the smooth action
of D(Y ) on sections of F over P(Y ). In particular, the homotopy fixed point data depends
smoothly on the diffeomorphisms in D(Y ). The second homotopy limit can be described as
follows: for each manifold Y0 ∈ MY , we can form the (∞, n)-category of sections of F over
P(Y0); it is given by S∞,n(F)(P(Y0)). Given another manifold Y1 ∈ MY , there is a small
presheaf (even a diffeological space) D(Y0, Y1) of diffeomorphisms from Y0 to Y1. We can
pull back sections of F over P(Y1) along any such diffeomorphism, and the resulting section
over P(Y0) should depend smoothly on the diffeomorphism. The homotopy limit Fcoh can
be understood as the (∞, n)-category of families of sections of F(Y0) over P(Y0), for all
Y0 ∈ MY ; these sections further are homotopy coherent with respect to all diffeomorphisms
Y0 → Y1, and their homotopy coherence data depends smoothly on these diffeomorphisms.

After this preparation, we give two different proofs (in Theorems 4.34 and 4.35) that
the (∞, n)-categories of equivariant sections and coherent sections are equivalent. The first
proof relies on the fact that the inclusion BD(Y ) ↪→ MY of groupoid objects in Ĉart is an
equivalence, whereas the second proof relies on the descent results from Sect. 3. Both of
these proofs have different advantages: the first is more slick and less involved. However, the
choice of an inverse equivalence to the inclusion BD(Y ) ↪→ MY is by no means canonical,
thus making the equivalences obtained in this proof less helpful in practice. In the second
proof, the inverse equivalence is obtained as the inverse of a pullback along a τ̂dgop-local
epimorphism. That is, it is given precisely by descent. In many important cases, descent
functors are available, so that the second perspective is more helpful for practical purposes.

Theorem 4.34 Let F ∈ H∞,n projectively fibrant. There are (weakly) inverse weak equiva-
lences

F(P)
D(Y )
red F(P)cohred .∼
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Proof We view the truncations to simplicial levels zero and one of P(Y )//D(Y ) and of
P//MY = B(∗,M

op
Y , P) as strict presheaves of groupoids on Cart. Let us denote these by

Gr(P(Y )//D(Y )) and Gr(B(∗,M
op
Y , P)), respectively. Observe that

P(Y )//D(Y ) = N ◦ Gr
(

P(Y )//D(Y )
)

and P//MY = N ◦ Gr(P//MY ) ,

and that there is a canonical inclusion

ι : Gr(P(Y )//D(Y )) ↪→ Gr(P//MY ) .

Any choice of a family of diffeomorphisms { fY0 : Y0 → Y }Y0∈MY determines a morphism

p : Gr(P//MY ) ↪→ Gr
(

P(Y )//D(Y )
)

,

for which there exist 2-isomorphisms (i.e. natural isomorphisms, coherent overCart) p◦ι = 1
and η : ι ◦ p → 1 of presheaves of groupoids over Cart. In particular, Nη determines a
simplicial homotopy

Nη : (P//MY ) ⊗ �1 −→ P//MY

between the identity and N (p◦ι) inH∞,0. This, in turn, shows that both ι and p are homotopy
equivalences, weakly inverse to each other. Consequently, we obtain a pair of projective weak
equivalences

Q
(

P(Y )//D(Y )
)

Q(P//MY ) .
Qι

∼
Qp

The weak equivalences in the claim are (Qι)∗ and (Qp)∗. ��
Theorem 4.35 For any n ∈ N0 and for any fibrant F ∈ Hloc∞,n there is a canonical zig-zag of
weak equivalences between fibrant objects in CSSn,

F(P)
D(Y )
red F(P)cohred

F(P)D(Y ) HCSSn∞,n

(

Q ◦ diag
(

Coh(Y , P)
)

, F
)

F(P)coh

∼
∼

(Q diag(�))∗
∼

(Q diag(�))∗ ∼

Proof The second and third weak equivalences are direct consequences of Proposition 4.32.
The first and last weak equivalences follow by a direct computation: we have canonical
isomorphisms

F(P)coh = CCSSn

(∗,´, (S∞,nF)(P//MY )•
)

= CCSSn

(∗,´, {Q(P//MY )•,F}Cartop)

∼= {

B(∗,´op, Q(P//MY )•), F
}Cartop

.

Using the Bousfield-Kan map in the first argument of the functor tensor product now induces
a canonical weak equivalence to this object from the object

{Q(P//MY ),F}Cartop = F(P)cohred .

This completes the proof. ��
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Remark 4.36 That (Q diag(�))∗ is a weak equivalence relies on the descent results in Sect. 3;
these entered in the proof of Proposition 4.31 and hence also Proposition 4.32.

Remark 4.37 In the case where F is the sheaf of diffeological vector bundles from Defini-
tion 4.9 the insights from Theorem 4.35 were used in [13] in order to obtain a coherent vector
bundle on P , where Y = S

1 and P = M (−) for some manifold M , from the equivariant
structure of the transgression line bundle of a bundle gerbe with connection. Moreover, this
procedure was also applied to bundles over certain spaces of paths in M , and the coherent
vector bundles thus obtained were subsequently assembled into a smooth open-closed FFT
on M . In this sense, that smooth FFT was built from its values on generating objects by
means of the equivalence of equivariant and coherent sections of a sheaf of higher categories
as explored here. There is also great interest in extended field theories, which are formulated
in the language of n-fold complete Segal spaces [15, 35]. It is with this in mind that we prove
Theorems 4.34 and 4.35 in the setting of (∞, n)-categories. 


4.4 Remarks on Descent for Sheaves of 2-Vector Bundles

In this section we point out potential applications of Corollary 3.48 to the theory of cate-
gorified vector bundles. The gerbes of Sect. 4.2 can be considered as a model for rank-one
2-vector bundles. The theory for 2-vector bundles of higher rank, and more generally for
higher categorifications of vector bundles, is currently only little understood (see below for
references). Thus, this section does not contain formal results, but outlines how the results
of Sect. 3.3 will be applicable to the theory of higher vector bundles. This will be similar to
the ideas in Sects. 4.1 and 4.2. We start by briefly mentioning several models for categorified
vector bundles:

In [39, Sec. 4.3] the authors consider 2-categorical presheaves of Kapranov-Voevodsky 2-
vector bundles on the category of manifolds. They apply the Grothendieck plus-construction
to sheafify these higher presheaves and obtain a 2-categorical sheaf which assigns to each
manifold a 2-category of 2-vector bundles,modelled onKapranov-Voevodsky2-vector spaces
(as defined in [32]). A similar 2-category was considered in [4].

In [29] the authors defined apresheaf of 2-categories on the site ofmanifoldswith surjective
submersions as coverings which assigns to each manifold a 2-category4 built from bimodule
bundles over bundles of super-algebras. The authors then sheafify this presheaf of 2-categories
and propose the resulting sheaf of 2-categories as a model for 2-vector bundles on the site of
manifolds and surjective submersions.

Extending this, one can consider presheaves of (∞, n)-categories on a small category
C which assign to each object higher Morita categories of En-bimodules; for C = Cart
or C = Mfd, these could, for instance, be A-B-bimodules for the E∞-algebras A = C

and B the algebra of smooth functions on the underlying manifold (or derived versions
thereof). Sheafifying these higher presheaves on Cart with respect to differentiably good
open coverings would give viable candidates for generalisations of higher vector bundles.

In each of these cases, one is presented with a sheaf of (∞, n)-categories in the sense
of Sect. 3.3. Then, Corollary 3.48 applies, and we obtain that each such sheaf of (∞, n)-
categories of higher vector bundles on (Cart, τdgop) extends to a sheaf of (∞, n)-categories

on (̂Cart, τ̂ ). The resulting extended higher sheaves are good candidates for a description
of categorified vector bundles on generalised smooth spaces and τ̂dgop-coverings, such as
manifolds and surjective submersions, or diffeological spaces and subductions.

4 We use the terms 2-category and bicategory interchangeably, both referring to the non-strict version.
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5 The Image of Right Kan Extension on Sheaves of Spaces

We now classify those presheaves of ∞-groupoids on ̂C which are extensions of sheaves
of ∞-groupoids on (C, τ ). We achieve this by passing to ∞-categorical language using
quasi-categories (the model for (∞, 1)-categories used in [14, 34]), rather than working
with model-categorical presentations, and prove an enhancement of Theorem 3.23 to an
equivalence of quasi-categories of homotopy-coherent sheaves of ∞-groupoids.

5.1 On a Quasi-categorical Site

Let C be a quasi-category, and let (C, τ ) be a small quasi-categorical Grothendieck site (as
defined in [34, Def. 6.2.2.1], where they are called ‘∞-sites’) with underlying quasi-category
C. We let ̂C∞ = Set́ L(Cop, SS) be the quasi-category of presheaves of small spaces on C.
Let PSh(C) = Set́ XL(Cop, SL) denote the quasi-category of presheaves of large spaces on
C, and let Sh(C, τ ) ⊂ PSh(C) denote the quasi-category of sheaves on C with respect to τ .
This induces the standard reflective localisation

PSh(C) Sh(C, τ ) ,⊥
L

where L is the sheafification functor.

Remark 5.1 In this section all quasi-categories denoted PSh and Sh are categories of functors
taking values in SL, i.e. the quasi-category of large spaces, unless otherwise indicated. 


In this set-up, a morphism f : Y → X in ̂C∞ is a τ -local epimorphism whenever its
sheafification L f : LY → LX is an effective epimorphism in Sh(C, τ ) [34, Lemma 6.2.2.8].
Since effective epimorphisms are stable under pullback and L is left exact, τ -local epimor-
phisms induce a coverage---and hence a Grothendieck topology---on the homotopy category
ĥC∞. Since a Grothendieck topology on ĥC∞ is the same as a Grothendieck topology on
̂C∞ [34, Rmk. 6.2.2.3], we obtain a new quasi-categorical Grothendieck site (̂C∞, τ̂ ), whose
topology is generated by the τ -local epimorphisms in̂C∞. The corresponding quasi-category
Sh(̂C∞, τ̂ ) of sheaves on̂C∞ is the localisation of PSh(̂C∞) at the morphisms

|Č̂Y f | −→ ̂YX ,

where f : Y → X is any τ -local epimorphism,̂Y is the Yoneda embedding of̂C∞, and Č̂Y f

is the Čech nerve of̂Y f : ̂YY → ̂YX . We thus obtain another reflective localisation

PSh(̂C∞) Sh(̂C∞, τ̂ )⊥
̂L

whose left adjoint̂L is left exact. Note that since the Yoneda embedding preserves limits
and̂C∞ is complete, there is a canonical equivalencêYČ f � Č̂Y f . This directly leads to:

Lemma 5.2 A presheaf G ∈ PSh(̂C∞) is τ̂ -local, i.e. it lies in the full sub-quasi-category
Sh(̂C∞, τ̂ ) ⊂ PSh(̂C∞), if and only if G(X) −→ lim

´
G(Č f ) is an equivalence, for every

τ -local epimorphism f : Y → X.
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Let PSh!(̂C∞) = Hom!(̂C
op
∞, SL) denote the full sub-quasi-category of PSh(̂C∞) on those

functors which preserve small limits (equivalently the small-colimit-preserving functors
̂C∞ → SopL ). We also define a quasi-category Sh!(̂C∞, τ̂ ) as the pullback of quasi-categories

Sh!(̂C∞, τ̂ ) Sh(̂C∞, τ̂ )

PSh!(̂C∞) PSh(̂C∞)

That is, Sh!(̂C∞, τ̂ ) ⊂ PSh(̂C∞) is the full sub-quasi-category on those τ̂ -sheaves whose
underlying functor ̂C

op
∞ → SL turns small colimits in ̂C∞ into limits in SL. The functor

Y : C → ̂C∞ induces a functor Cop → ̂C
op
∞, and by a slight abuse of notation we again denote

this functor by Y. As before, we leave the inclusion SS ⊂ SL of the quasi-category of small
spaces into that of large spaces implicit. Observe that the left and right Kan extensions Y!,Y∗
yield functors PSh(̂C∞) → PSh(̂C∞).

Lemma 5.3 Let C be a small quasi-category.

(1) For any A ∈ ̂C∞ ⊂ PSh(C) and G ∈ PSh(̂C∞) there is a natural equivalence

PSh(̂C∞)(Y∗A,G) � G(A) .

Equivalently, the restriction Y∗|̂C∞ agrees witĥY as functorŝC∞ → PSh(̂C∞).

(2) For any A ∈ ̂C∞ ⊂ PSh(C) and G ∈ PSh!(̂C∞) there is a natural equivalence

PSh(̂C∞)(Y!A,G) � G(A) .

Proof Using the equivalence X � colimc∈C/X Yc, for X ∈ ̂C∞, we obtain

̂YA(X) � lim
c∈(C/X )op

̂C∞(Yc, A) � (Y∗A)(X) ,

proving the first equivalence. To see the second equivalence, we use that

PSh(̂C∞)(Y!A,G) � PSh(C)(A,Y∗G) � lim
c∈C/A

PSh(C)(Yc,Y
∗G) � lim

c∈C/A

G(Yc)

� G(

colim
c∈C/A

Yc
) � G(A) .

In the second-to-last step we have used that G turns colimits in̂C∞ into limits in SL. ��
Lemma 5.4 Let D : J → ̂C∞ be any small diagram. There is a canonical equivalence

Y∗(colim̂YD) � Y∗(̂Y(colim D)) .

Proof This follows by a repeated application of the Yoneda Lemma and the fact that colimits
in presheaf categories are computed objectwise. In particular, we have

Y∗(̂Y(colim D))(c) � (̂Y(colim D))(Yc) � ̂C∞(Yc, colim D) � colim(Dc) , and

Y∗(colim̂YD)(c) � (colim̂YD)(Yc) � colim̂C∞(Yc, D) � colim(Dc) ,

which yields the desired equivalence. ��
We then have the following quasi-categorical enhancement of Theorem 3.23. This fully

unveils the importance of the topology induced on̂C∞ by the τ -local epimorphisms.
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Theorem 5.5 Let C be a small quasi-category, and let Y∗ : PSh(C) → PSh(̂C∞) denote the
right Kan extension along Y : Cop → ̂C

op
∞.

(1) The adjunction Y∗ 
 Y∗ induces an equivalence

PSh!(̂C∞) PSh(C) .
Y∗

Y∗

(2) More generally, let τ be a Grothendieck topology on C. The adjunction Y∗ 
 Y∗ restricts
to an equivalence

Sh!(̂C∞, τ̂ ) Sh(C, τ ) .
Y∗

Y∗

Proof Claim (1) is an explicit incidence of a well-known theorem: there is a canonical equiv-
alence Hom(C,D) � Hom!(̂C∞,D) between the quasi-categories of functors from C to
any S-cocomplete quasi-category D and (small-)colimit-preserving functors ̂C∞ → D. For
D = SopL , this equivalence is established by Y∗. In particular, Y∗ is fully faithful even as a
functor PSh(C) → PSh(̂C∞). The adjunction Y∗ : PSh(̂C∞) � PSh(C) : Y∗ restricts to an
adjunction Y∗ : PSh!(̂C∞) � PSh(C) : Y∗, whose right adjoint Y∗ is an equivalence. Thus,
the left adjoint Y∗ is an equivalence as well [14, Prop. 6.1.6].

We now prove (2): first, we show that Y∗ maps Sh(C, τ ) to Sh(̂C∞, τ̂ ), i.e. that it maps
τ -sheaves on C to τ̂ -sheaves on ̂C∞. Let F ∈ Sh(C, τ ), and let f : Y → X be a τ -local
epimorphism in̂C∞. We need to prove that the morphism

Y∗F(X) � PSh(̂C∞)(̂YX ,Y∗F) −→ PSh(̂C∞)
(|Č̂Y f |,Y∗F

) � PSh(̂C∞)
(|̂YČ f |,Y∗F

)

is an equivalence. By Lemma 5.3(1), Lemma 5.4, and because Y∗ is fully faithful, we have
equivalences

PSh(̂C∞)
(|̂YČ f |,Y∗F

) � PSh(C)
(

Y∗|̂YČ f |, F
) � PSh(C)

(

Y∗
̂Y|Č f |, F

)

� PSh(C)
(

Y∗Y∗|Č f |, F) � PSh(̂C∞)
(

Y∗|Č f |,Y∗F
)

� PSh(C)
(|Č f |, F)

.

Using that F is a τ -sheaf and that L is a left exact left adjoint, we then compute

PSh(C)
(|Č f |, F) � PSh(C)

(

L|Č f |, F) � PSh(C)
(

LX , F
) � PSh(C)(X , F) � (Y∗F)(X) .

Thus, Y∗F is a τ̂ -sheaf whenever F is a τ -sheaf. In particular, Y∗ restricts to a fully faithful
functor

Y∗ : Sh(C, τ ) −→ Sh!(̂C∞, τ̂ ) .

Finally, we claim that the functor Y∗ : PSh!(̂C∞) → PSh(C) restricts to a functor
Y∗ : Sh!(̂C∞, τ̂ ) → Sh(C, τ ); by part (1), this restriction is automatically fully faithful. To
that end, let G ∈ Sh!(̂C∞, τ̂ ). We have to show that Y∗G ∈ PSh(C) is τ -local, i.e. that the
presheaf Y∗G is a τ -sheaf. That is the case precisely if

Y∗G(c) � G(Yc) � PSh(C)(Yc,Y
∗G) −→ PSh(C)

(|Čg|,Y∗G)

is an equivalence for every τ -covering g : Y → Yc. (Note that if g is a τ -covering, then
L(|Čg| → Yc) is an equivalence, i.e. g is a τ -local epimorphism.) On the right-hand side, we
have canonical equivalences

PSh(C)
(|Čg|,Y∗G) � PSh(̂C∞)

(

Y!|Čg|,G) � G(|Čg|) � lim
´

G(Čg) � G(Yc) .
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The first equivalence is simply the adjunction Y! 
 Y∗, the second equivalence is
Lemma 5.3(2), which applies since G turns colimits into limits. This property also provides
the third equivalence. The final equivalence arises from Lemma 5.2, as G is a τ̂ -sheaf.

We have thus shown that Y∗ and Y∗ restrict to functors between Sh(C, τ ) and Sh!(̂C∞, τ̂ ).
Since Sh!(̂C∞, τ̂ ) ⊂ PSh!(̂C∞) and Sh(C, τ ) ⊂ PSh(C) are full subcategories, the natural
equivalences Y∗Y∗ → 1 and 1 → Y∗Y∗ from part (1) establish that these restrictions of Y∗
and Y∗ furnish an equivalence as claimed. ��
Corollary 5.6 If τ0 is the trivial topology on C (whose coverings are generated solely by the
identity morphisms), then Sh!(̂C∞, τ̂0) � Sh(C, τ0) � PSh(C) � PSh!(̂C∞).

Proof This follows from Theorem 5.5(1) since pullbacks of equivalences in a quasi-category
are again equivalences. ��
Remark 5.7 In particular, if G ∈ PSh(̂C∞) is colimit-preserving, then it satisfies τ̂0-descent.
One can also see this directly: the τ̂0-local epimorphisms are exactly the effective epimor-
phisms in̂C∞, i.e. those morphisms p : Y → X whose induced morphism |Č p| → X is an
equivalence in̂C∞. Thus, for G ∈ PSh!(C), we have that G(X) → G(|Č p|) � lim´ G(Č p) is
an equivalence, and hence that G satisfies τ̂0-descent. 


We summarise various characterisations of the sheaves in the image of Y∗: Let
Hom!Wτ

(̂C
op
∞, SL) ⊂ PSh!(̂C∞) denote the full sub-quasi-category on those limit-preserving

functors ̂C
op
∞ → SL (equivalently colimit-preserving functors ̂C∞ → SopL ) which send all

morphisms in Wτ to equivalences.

Theorem 5.8 There are equivalences of quasi-categories

Sh!(̂C∞, τ̂ ) Sh(C, τ ) PSh!
(

ShS(C, τ )
)

Hom!Wτ
(̂C

op
∞, SL) .

Y∗

Y∗

̂Y L∗

Proof The first equivalence is Theorem 5.5. The second equivalence follows from [34,
Cor. 4.4.5.16] and [34, Cor. 5.1.6.11] (note that ̂Y : Sh(C, τ ) → PSh!(Sh(C, τ )), with the
codomain restricted to colimit-preserving presheaves, is colimit-preserving).5 The third is an
application of [14, Thm. 7.7.9] (with the class of cofibrations given by all morphisms in̂C∞
and the weak equivalences given by Wτ ). ��

5.2 On a 1-Site

For many geometric applications it is more convenient to work not with ∞-presheaves on a
quasi-category, but only with SetL-valued presheaves on an ordinary category. For instance,
many geometric problems are set on manifolds or diffeological spaces (such as in Sects. 4.1
and 4.3), and it is often more efficient (though less general) to treat these as particular
presheaves of sets. Thus, in this section we prove a version of Theorem 5.2 where C is an
ordinary (1-)category and we replace ̂C∞ by the ordinary category ̂C = Fun(Cop, SetS) of
SetS-valued presheaves on C. The quasi-category of SS-valued presheaves on C is ̂NC∞ =
Set́ L(NC, SS).

5 We thank the anonymous referee for pointing out this argument, which streamlined the proof in an earlier
version.
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We let̂C = Fun(Cop, SetS) denote the category of ordinary, small presheaves on C. LetNC
denote the quasi-category given by the nerve of C. The Yoneda embedding of NC factorises
as

Y : NC N̂C ̂NC∞ ,
NY0 ι (5.9)

where Y0 is the 1-categorical Yoneda embedding of C and ̂NC∞ = Set́ L(NC, SS) is the

quasi-category of small presheaves of spaces on NC. Note that ̂C ↪→ ̂NC∞ is a reflective
localisation with localisation functor π0. As before, we write PSh(NC) = Set́ XL(Cop, SL).

Lemma 5.10 Let F ∈ PSh(NC). There is a natural equivalence Y0∗F � ι∗Y∗F of objects in
PSh(N̂C).

Proof This is a direct application of [16, Lemma 3.13] (noting that N̂C is large and the target
SL is L-cocomplete). ��

Applying the functor ι∗, we obtain a natural equivalence ι∗Y0∗F � ι∗ι∗Y∗F .

Lemma 5.11 For G ∈ PSh!(̂NC∞), there is an equivalence ι∗ι∗G � G.
Proof By Theorem 5.5, there exists F ∈ PSh(NC) and an equivalence Y∗F � G. We have
equivalences

ι∗ι∗G � ι∗ι∗Y∗F � ι∗Y0∗F � (ι ◦ Y0)∗F � Y∗F � G .

The second equivalence is Lemma 5.10 and the second-to-last equivalence is the factorisa-
tion (5.9). ��

In particular, we have that ι∗ι∗Y∗F � Y∗F , for each F ∈ Fun(NCop, SL), by Theorem 5.5.
Combining this with Lemma 5.10, we thus obtain that the canonical morphism

ι∗Y0∗F → Y∗F

is an equivalence, for each F ∈ PSh(NC).

Theorem 5.12 Let X denote the full sub-quasi-category of PSh(N̂C) on those presheaves F
where ι∗F ∈ PSh!(̂NC∞). The functor Y0∗ : PSh(NC) → X is an equivalence with inverse
(Y0)∗.

Proof Combining the observation preceding Theorem 5.12 with Theorem 5.5(1) shows that
Y0∗ takes values inX. SinceY0 is fully faithful, so isY0∗; it remains to check thatY0∗ is essentially
surjective. To that end, let G ∈ X. By Theorem 5.5(1) and the definition of X there exists an
F ∈ PSh(NC) and an equivalence ι∗G = Y∗F . Lemma 5.10 implies that

G � ι∗ι∗G � ι∗Y∗F � Y0∗F .

The first equivalence is (the inverse of) the counit of the adjunction ι∗ 
 ι∗; this is an
equivalence since ι---and therefore ι∗---is fully faithful. ��
Corollary 5.13 The functor ι∗ : X → PSh!(̂NC∞) is an equivalence with inverse ι∗. That is,
presheaves in PSh!(̂NC∞) are fully determined by their restriction to N̂C.

This merely reflects the fact that ̂NC∞ is generated under small colimits by the image of
the inclusion N̂C ↪→ ̂NC∞.
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Theorem 5.14 Let Xτ ⊂ PSh(N̂C) be the full sub-quasi-category on those presheaves X
where ι∗X ∈ Sh!(̂NC∞, τ̂ ). There is a canonical equivalence Sh(C, τ ) � Xτ .

Proof Consider the diagram

Xτ X PSh(N̂C)

Sh!(̂NC∞, τ̂ ) PSh!(̂NC∞) PSh(̂NC∞)

ι∗ ι∗

By definition of X and Xτ and the pasting law for pullbacks, both squares in this diagram
are pullback squares. We also consider the diagram

Sh(C, τ ) PSh(C) PSh(N̂C)

Sh!(̂NC∞, τ̂ ) PSh!(̂NC∞) PSh(̂NC∞)

Y∗ ι∗

It suffices to show that the outer square in this diagram is a pullback. Theorem 5.12
states that the right-hand square in this diagram is a pullback square of quasi-categories.
Additionally, Theorem5.5 implies that the left and centre verticalmorphisms are equivalences
of quasi-categories, so that the left-hand square is a pullback as well. The claim now follows
by the pasting law for pullbacks. ��

This provides a verygeneral perspective on the statement that open coverings and surjective
submersions define the same quasi-categories of sheaves on the categoryMfd of manifolds:

Corollary 5.15 Consider the case C = Mfd. Let τdgop be the topology on Mfd induced by
differentiably good open coverings, τop the topology induced by open coverings and τssub,�
the topology induced by surjective submersions of manifolds and open coverings by disjoint
open subsets (i.e. by connected components). The canonical functors

Sh(NMfd, τssub,�) Sh(NMfd, τop) Sh(NMfd, τdgop)

are equivalences.

Proof It is clear that second inclusion exists. For the first inclusion, we need to check that,
for each F ∈ Sh(NMfd, τssub,�), we also have that F ∈ Sh(NMfd, τop). Note that for
F : NMfdop → SL to satisfy descent with respect to coverings by disjoint open subsets
means precisely that F sends coproducts in Mfd to products in SL. Let U = {Ui ↪→ M}i∈I
be an open covering of a manifold M . Consider the surjective submersion

ČMfdU0 =
∐

i∈I
Ui −→ M .

Its Čech nerve, taken inMfd, reads as

ČMfdUk =
∐

i0,...,ik∈I
Ui0...ik .
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Note that the canonical map Y0M �Y0N −→ Y0M�N is not an isomorphism in M̂fd, since man-
ifolds are allowed to be non-connected. However, for F : Mfdop → SL sending coproducts
in Mfd to products, the canonical morphism

PSh(Mfd)
(

∐

i0,...,ik∈I
YUi0 ...ik

, F
)

−→ PSh(Mfd)(YČMfdUk
, F)

is an equivalence, for each k ∈ N0. The left-hand side are the terms in the descent condition
for F with respect to the open covering U, whereas the right-hand side are the terms in the
descent condition for F with respect to the surjective submersion

∐

i∈I Ui → M . Since
we assumed F to satisfy descent with respect to surjective submersions, the latter descent
condition is satisfied. By the above observation, it thus follows that F ∈ Sh(NMfd, τop).

We are left to check that the inclusions in the claim are in fact essentially surjective. For
the first inclusion, we claim that τ̂ssub,� ⊂ τ̂op . Indeed, let π : Y → X be a τssub,�-local
epimorphism in M̂fd. Therefore, given any morphism f : Y0M → X from a representable
presheaf, there exists either an open cover by disjoint subsets of M and lifts of f to Y over
the patches, or a surjective submersion p : N → M together with a commutative square
commutative square

Y0N Y

Y0M X

f̂

p π

f

in M̂fd. In the first case, there is nothing to prove, since we have already lifted f through
an open covering of M . In the second case, let U = {Ui → M}i∈I be an open covering of
M such that p admits a section si : Ui → N over each patch Ui . This gives, for each i ∈ I ,
a commutative diagram

Y0Ui
Y0N Y

Y0M Y0M X

Y0
si f̂

p π

f

Thus, we have that π ∈ τ̂op . An analogous argument shows that τ̂op ⊂ τ̂dgop . We thus
have canonical inclusions

Sh!(N̂Mfd∞, τ̂dgop) Sh!(N̂Mfd∞, τ̂op) Sh!(N̂Mfd∞, τ̂ssub,�) .

Recalling the definition of Xτ ⊂ PSh(NC) as the preimage under ι∗ of Sh!(̂NC∞, τ̂ ) ⊂
PSh(̂NC∞), we obtain inclusions

Xτdgop Xτop Xτssub,� .

By Theorem 5.14 this is equivalently a chain of inclusions

Sh(NMfd, τdgop) Sh(NMfd, τop) Sh(NMfd, τssub,�) .

This completes the proof. ��
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A Proof of Theorem 4.18

We will make use of the following description of colimits inDfg:

Proposition A.1 Let (C, τ ) be a closed site (cf. Definition 2.3), and let D : J → Dfg(C, τ )

be a small diagram. The colimit of D can be described as follows: its underlying set reads
as

Ev∗
(

colimDfg(C,τ )

J D
) = colimSetS

J (Ev∗ ◦ D) .

A plot of colimDfg(C,τ )

J D is a map of sets ϕ : Yc(∗) → colimSetS
J (Ev∗ ◦ D) such that there

exists a covering { fi : ci → c}i∈I in (C, τ ), a map i �→ ji from I to the objects of J, and a
family of maps {ϕi : Yci (∗) → D( ji )(∗)}i∈I such that the diagram

Yci (∗) D( ji )(∗)

Yc(∗) colimSetS
J (Ev∗ ◦ D)

ϕi

Y fi (∗) (A.2)

in SetS commutes for every i ∈ I , and such that ϕi is a plot of D( ji ) for every i ∈ I .

Proof Let Z(∗):= colimSetS
J (Ev∗◦D). For c ∈ C, let Z(c) denote the set ofmapsϕ : Yc(∗) →

Z(∗) with the above lifting property. We first show that c �→ Z(c) defines a presheaf on C.
Thus, we consider a morphism f ∈ C(c′, c); it induces a map f|∗ : Yc′(∗) → Yc(∗). The
morphism Z( f ) : Z(c) → Z(c′) is given by ϕ �→ ϕ ◦ f|∗. Hence, we need to show that for
any ϕ ∈ Z(c) and f ∈ C(c′, c), the composition ϕ ◦ f|∗ again has the lifting property. This
follows readily from the factorisation property of covering families; see Definition 2.2(1).
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The presheaf Z is concrete since we have constructed the value Z(c) as a subset of
SetS(Yc(∗), Z(∗)) and since constant maps to Z(∗) trivially have the local lifting property.

Next, we show that Z is a sheaf. To that end, suppose that {ci → c}i∈I is a covering family
for c and that we are given morphisms {ϕi : Yci → Z}i∈I such that the diagram

Yci ×
Yc

Yc j Yci

Yc j Z

ϕi

ϕ j

commutes for every i, j ∈ I . Since evaluation at any object of C is a limit-preserving
functor ̂C → SetS, these data induce a family of maps {Yci (∗) → Yc(∗)}i∈I and maps
{ϕi |∗ : Yci (∗) → Z(∗)}i∈I such that the diagram

Yci (∗) ×
Yc(∗)

Yc j (∗) Yci (∗)

Yc j (∗) Z(∗)

ϕi |∗

ϕ j |∗

in SetS commutes for every i, j ∈ I . Since (C, τ ) is a concrete site, the family {Yci (∗) →
Yc(∗)}i∈I is jointly surjective, so that these data determine a unique map ϕ : Yc(∗) → Z(∗)

such that all diagrams

Yci (∗) Yc(∗)

Z(∗)

ϕi |∗
ϕ

commute. We claim that ϕ ∈ Z(c). First, for each i ∈ I , let {ci,k → ci }k∈Ki be a covering
family for ci such that there exist lifts ϕi,k : Yci → D( ji,k) of the morphisms ϕi : Yci → Z as
in (A.2). By the assumption that (C, τ ) is closedwe can choose a covering family {cl → c}l∈L
of c such that each morphism cl → c factors through some morphism ci,k → ci → c. The
compositions cl → ci,k → D( ji,k) then provide the desired lifts of ϕ.

Our next step is to make Z into the vertex of a cocone under the diagram D. Consider
the map ι j : D( j)(∗) → Z(∗) induced by the definition of Z(∗) as the colimit in SetS of
the diagram Ev∗ ◦ D. This map induces a morphism inDfg(C, τ ): explicitly, given any plot
Yc(∗) → D( j)(∗), the composition Yc(∗) → Z(∗) trivially admits a lifting along a covering
family of c to maps to D( j)(∗). Thus, composition by ι j sends plots of D( j) to plots of Z .

Finally, we need to show that Z is a colimit of the diagram D : J → Dfg(C, τ ). To see
this, let {ψ j : D( j) → A} j∈J be a cocone under D in the category Dfg(C, τ ). Evaluating
at ∗ ∈ C, we obtain a cocone ψ j |∗ : D( j)(∗) → A(∗) under the diagram Ev∗ ◦ D in SetS.
By construction, the set Z(∗) presents a colimit of that diagram; hence these data induce a
unique map of sets ψ : Z(∗) → A(∗). Recall that for any pair of objects X , Y ∈ Dfg(C, τ )

the map Ev∗ : Dfg(C, τ )(X , Y ) → SetS(X(∗), Y (∗)), φ �→ φ|∗ is injective. It follows that
if the map ψ gives rise to a morphism of (C, τ )-spaces, then that morphism is the unique
morphism in Dfg(C, τ ) inducing a morphism of cocones under D.

Therefore,we are left to show thatψ : Z(∗) → A(∗)gives rise to amorphism inDfg(C, τ ).
That is equivalent to showing that composition by ψ sends plots of Z to plots of A. Thus,
let ϕ : Yc → Z be an arbitrary morphism. As before, by definition of Z , we find a covering
family { fi : ci → c}i∈I and lifts ϕi : Yci → D( ji ) of ϕ along the morphisms fi as in (A.2).
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We claim that {ψ ji ◦ϕi }i∈I is a compatible family of morphisms Yci → A in̂C. For i, k ∈ I ,
consider the diagram

Yci D( ji )

Yci ×
Yc

Yck Yc Z A

Yck D( jk)

fi

ϕi

ψ ji

ι ji

ϕ ψ

fk

ϕk

ψ jk

ι jk

(A.3)

in ̂C. The left-hand triangle commutes by definition of the pullback. The two central
squares commute by definition of ϕi . We do not yet know whether ψ is actually a morphism
in̂C. However, evaluating the whole diagram at ∗ ∈ C, we obtain a diagram in SetS in which
the two right-hand triangles also commute, since ψ is a morphism of cocones under the
diagram Ev∗ ◦ D in SetS. Thus, we infer that the outer hexagon in (A.3) commutes as maps
on the underlying sets. Recalling that the map which sends morphisms inDfg(C, τ ) to maps
of underlying sets is injective, it thus follows that the outer hexagon is commutative already
as a diagram in Dfg(C, τ ) (i.e. before evaluating at the terminal object).

Consequently, {ψ ji ◦ ϕi }i∈I is indeed a compatible family of morphisms Yci → A. Thus,
as A is a sheaf, it defines a unique morphism � : Yc → A in Dfg(C, τ ). It follows from the
construction of � that Ev∗� = �|∗ = ψ ◦ ϕ|∗; hence, composition with ψ sends plots of Z to
plots of A, so that ψ gives rise to a morphism in Dfg(C, τ ). ��

We start by describing the functor A on objects: recall the computation of the values of
ι∗VBunstr in Lemma 4.16. Consider the category Cart/X , whose objects are plots ϕ ∈ X(c)
for any c ∈ Cart and whose morphisms (ϕ ∈ X(c′)) → (ϕ′ ∈ X(c)) are smooth maps
f : c → c′ such that f ∗ϕ′ = ϕ. Given an object (n, h) ∈ ι∗VBunstr (X) we define a functor
D(n,h) : Cart/X → Dfg, which acts as

(ϕ : c → X) �−→ c × C
n ,

( f : ϕ → ϕ′) �−→ (

( f , h f ) : c × C
n −→ c′ × C

n) .

We then set
E :=colim

Cart/X

Dfg D(n,h)

and denote the canonical morphism D(n,h)(ϕ) → E by ιϕ . The object X ∈ Dfg is a cocone
under D(n,h), which is established by the morphism of diagrams

π̂ : D(n,h) → X , π̂|ϕ : D(n,h)(ϕ) = c × C
n pr−→ c

ϕ−→ X .

We let π : E → X denote the unique morphism induced on the colimit.

Definition A.4 In the above situation, we define the diffeological space over X ,

A(n, h):=(E, π) .
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Lemma A.1 implies that at the level of the underlying sets we have

Ev∗
(

colim
Cart/X

Dfg D(n,h)

) ∼= colim
Cart/X

Dfg (Ev∗ ◦ D(n,h)) =
(

∐

ϕ∈X(c)

c × C
n
)/

∼ ,

where ∼ is the equivalence relation generated by setting (ϕ, y, v) ∼ (ϕ′, y′, v′) if there
exists a morphism f : ϕ → ϕ′ in Cart/X such that h f (ϕ, y, v) = (ϕ′, y′, v′). Here, we use
the convention (ϕ, y, v) ∈ X(c) × c × C

n . The morphism π sends an equivalence class
[ϕ, y, v] to ϕ(y). Since the morphisms h act via linear isomorphisms of vector spaces, the
fibre of π carries a canonical C-vector space structure.

Proposition A.5 For each object (n, h) ∈ ι∗VBunstr (X), the colimit A(n, h) = (E, π) is a
diffeological vector bundle on X,

Proof To see this, let ψ ∈ X(d) be a plot of X over d ∈ Cart. Consider the morphism of
diffeological spaces

�ψ : d × C
n D(n,h)(ψ) d ×X E .

1 prd×ιψ
(A.6)

Note that �ψ is linear on the fibres. We need to show that it is an isomorphism. For
x ∈ X(∗) and c ∈ Cart, let cx : pt → X(∗) denote the constant plot of X with value x . Every
element (y, [ϕ, z, v]) ∈ (d ×X E)(∗) has a unique representative of the form

(

y, [ϕ, z, v]) = (

y, [ψ, y, w]) .

This is established by the pairs (z, hz) and (y, hy) (from the data of (n, h)) associated to the
morphism z : cψ(y) → ϕ and y : cψ(y) → ψ in Cart/X , i.e. to the commutative diagram

d

pt X

c

ψy

z

cψ(y)=cϕ(z)

ϕ

inDfg. The representative is well-defined by the composition properties of the pairs ( f , h)

in the data of E . We now define a map of sets

�ψ : (d ×X E)(∗) −→ d × C
n ,

(

y, [ψ, y, w]) �−→ (y, w) .

We readily see that the map �ψ thus defined is an inverse for �ψ as maps of sets. It remains
to prove that �ψ is a morphism of diffeological spaces; that is, we need to show that for
any plot � : c → d ×X E , the composition �ψ ◦ � : c → c × C

n is a plot. A plot � : c →
d ×X E is equivalently a pair of a smooth map �d : c → d and a plot �E : c → E such
that ψ ◦ �d = π ◦ �E . By Proposition A.1 there exists a covering { fi : ci ↪→ c}i∈I of c
together with morphisms {�i : ci → D(n,h)(ψi )}i∈I in Dfg such that �E ◦ fi = ιψi ◦ �i for
all i ∈ I . Note that ψi : ei → X are plots of X . Using that D(n,h)(ψi ) = ei × C

n , we can
further decompose �i into pairs of smooth maps �i,ei : ci → ei and �i,Cn : ci → C

n . By
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construction, we thus obtain a commutative diagram

ci d ×X D(n,h)(ψi )

c d ×X E

�i

fi 1×ιψi

�

in Dfg for every i ∈ I . Hence,

d

ci c X

ei

ψ�d◦ fi

�i,ei

fi

�d

ψi

commutes as well, for each i ∈ I . Using the notation h f for morphisms as above, we
compute the action of the composition �ψ ◦ � ◦ fi = �ψ ◦ (1× ιψi ) ◦ �i : ci → d × C

n on
yi ∈ ci as

yi �−→�ψ

(

�d ◦ fi (yi ), [ψi , �i,ei (yi ), �i,Cn (yi )]
)

= �ψ

(

�i (yi ), [ψi ◦ �i,ei , yi , h
−1
�i,ei

◦ �i,Cn (yi )]
)

= �ψ

(

�i (yi ), [ψ ◦ �d ◦ fi , yi , h
−1
�i,ei

◦ �i,Cn (yi )]
)

= �ψ

(

�i (yi ), [ψ, �d ◦ fi (yi ), h�d◦ fi ◦ h−1
�i,ei

◦ �i,Cn (yi )]
)

= (

�i (yi ), h�d◦ fi ◦ h−1
�i,ei

◦ �i,Cn (yi )
)

.

Both components of this map are smooth. Thus, each composition (�ψ ◦ �) ◦ fi is smooth.
Since, by construction, these maps agree on intersections ci j , it follows that �ψ ◦ � : c →
d × C

n is smooth. Therefore, �ψ is a morphism of diffeological spaces, and (E, π) is a
diffeological vector bundle on X . ��

We now define A on morphisms: let g : (n0, h0) → (n1, h1) be a morphism in
ι∗VBunstr (X). It gives rise to a morphism of diagrams Dg : D(n0,h0) → D(n1,h1), and hence
induces a morphism

Dg : colim
Cart/X

DfgD(n0,h0) −→ colim
Cart/X

DfgD(n1,h1)

of diffeological spaces. By construction, this map is even a map of diffeological spaces
over X . Since for any plot ϕ : c → X the map gϕ induces a morphism of vector bundles
c×C

n0 → c×C
n1 , the map Dg is linear on each fibre. Therefore, Dg is indeed a morphism

of diffeological vector bundles on X .

Definition A.7 In the above situation, we set

A(g):=Dg : A(n0, h0) → A(n1, h1) .

This completes the construction of the functor A.
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Proposition A.8 For each X ∈ Ĉart, the functor A|X : ι∗VBunstr (X) −→ VBunDfg(X) is
fully faithful.

Proof For (n0, h0), (n1, h1) ∈ ι∗VBunstr (X), we write Ei := colimDfg
Cart/X

D(ni ,hi ), where
i = 0, 1. Recall from (A.6) that for each plot ϕ : c → X we have constructed canonical
trivialisations

�Ei
ϕ : c × C

ni (ϕ)
∼=−→ c ×X Ei .

Thus, given a morphism ξ : E0 → E1 in VBunDfg(X) and a plot ϕ : c → X , we obtain a
morphism

c × C
n0(ϕ) c ×X E0

c × C
n1(ϕ) c ×X E1

�
E0
ϕ

˜ξϕ 1×X ξ

(�
E1
ϕ )−1

which is linear on fibres; hence,˜ξϕ corresponds to a smoothmap˜ξϕ : c → Mat(n1×n0, C).
Observe that for any morphism f : ϕ0 → ϕ1 in Cart/X the diagram

c0 × C
ni (ϕ0) c0 ×X Ei

c1 × C
ni (ϕ1) c1 ×X Ei

�
Ei
ϕ0

f ×1 f ×X1

�
Ei
ϕ1

commutes (in this case, n0(ϕ1) = n0(ϕ0)). This implies that ˜ξ is a morphism
˜ξ : (n0, h0) → (n1, h1) in ι∗VBunstr (X).

The map

˜(−) : VBunDfg(X)(E0, E0) −→ ι∗VBunstr (X)
(

(n0, h0), (n1, h1)
)

, ξ �−→ ˜ξ

is injective: consider all constant plots x : pt → X , for x ∈ X(∗). The set {˜ξx }x∈X(∗) uniquely
determines the value of ξ at every point x ∈ X(∗); hence it fully determines the morphism
ξ .

Furthermore, if g : (n0, h0) → (n1, h1) is a morphism in ι∗VBunstr (X), then, again by
construction of �ϕ from the cocone data, we have that

(

˜(−) ◦ A(g)
)

ϕ
= gϕ

for all plots ϕ : c → X . Hence, the map g �→ A(g) is a right inverse for ˜(−). It follows that
˜(−) is a bijection, and hence that A is fully faithful. ��

Proposition A.9 For each X ∈ Ĉart, the functor A|X : : ι∗VBunstr (X) −→ VBunDfg(X) is
essentially surjective.

Proof Let πF : F → X be a diffeological vector bundle on X . For each plot ϕ : c → X
choose a trivialisation

�ϕ : c × C
n ∼=−→ c ×X F . (A.10)
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Given a morphism f : ϕ0 → ϕ1 in Cart/X , the universal property and the pasting law for
pullbacks determine a canonical isomorphism c0 ×X F ∼= c0 ×c1 (c1 ×X F). This allows us
to define an isomorphism

c0 × C
n(ϕ0) c0 ×X F c0 ×c1 (c1 ×X F)

c0 × C
n(ϕ1) c0 ×c1 (c1 × C

n(ϕ1))

�ϕ0

h f

∼=

f ∗�−1
ϕ1

∼=

The map h f is linear on fibres and hence determines a unique smooth map h f : c0 →
GL(n(ϕ0), C). Since the morphisms labelled ‘∼=’ in the above diagram are chosen as canon-
ical isomorphisms between different representatives for the same limits, the collection of
morphisms h f assembles into an object (n, h) ∈ ι∗VBunstr (X).

We claim that there is an isomorphism A(n, h)
∼=−→ F in VBunDfg(X). By a convenient

abuse of notation, we denote this isomorphism by �. We set

�[ϕ, y, v]:=prF ◦ �ϕ(y, v) ,

where �ϕ was chosen in (A.10), and where prF : c ×X F → F is the projection to F .
This defines a map � : A(n, h) → F , which is linear on fibres. We need to show that it is
smooth. Consider a plot � : c → colimDfg D(n,h) = A(n, h). By Proposition A.1, there exist
a covering { fi : ci ↪→ c}i∈I of c and lifts �i : ci → D(n,h)(ψi ) for some plots ψi : di → X .
Consider the diagram

ci D(n,h)(ψi )

c colimDfg D(n,h) F

�i

fi
ιψi

prF◦�ψi

� �

The left-hand square commutes by definition of �i , and the right-hand triangle commutes
by construction of� and of (n, h). Thus, themap�◦� is locally given by plots prF ◦�ψi ◦�i .
By the sheaf property of diffeological spaces, � ◦ � is a plot of F itself.

Finally, we need to prove that � is an isomorphism. As a map, it has an inverse, which is
given by

�′ : F −→ colimDfg D(n,h) , ζ �−→ [

ψ, y, �−1
ψ (y, ζ )

]

,

where ψ : d → X is some plot and y ∈ d is any point such that ψ(y) = πF (ζ ). It remains
to show that �′ is a morphism of diffeological spaces. To that end, let̂ζ : d → F be a plot.
This induces a plot ψ :=πF ◦̂ζ : d → X . Now, given any y ∈ d , we can write

�′ ◦̂ζ (y) = [

ψ, y, �−1
ψ (y,̂ζ (y))

] = ιψ ◦ �−1
ψ (y,̂ζ (y)) = ιψ ◦ �−1

ψ ◦ (1d ×̂ζ )(y) .

Thus, the composition �′ ◦ ̂ζ factors through a plot of D(n,h)(ψ), so that �′ is a plot by
Proposition A.1. ��
Lemma A.11 A is compatible with pullbacks of vector bundles along morphisms F : X → Y
in Dfg. That is, A : ι∗VBunstr −→ VBunDfg is a morphism of presheaves of categories on
Dfg.
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Proof Let (n, h) ∈ ι∗VBunstr (Y ). As a diffeological space, we have

F∗(A(n, h)
) = F∗(colim

Cart/Y

DfgD(n,h)

) = X ×Y
(

colim
Cart/Y

DfgD(n,h)

) = X ×Y A(n, h) .

We have to compare this to

A(

F∗(n, h)
) = colim

Cart/X

Dfg(DF∗(n,h)

)

.

To that end, we consider the map

�F : A(

F∗(n, h)
) −→ F∗(A(n, h)

)

, [ϕ, z, v] �−→ (

ϕ(z), [F ◦ ϕ, z, v]) ,

where ϕ : c → X is a plot, z ∈ c is some point, and where v ∈ C
n is a vector. We also define

a map

�′
F : F∗(A(n, h)

) −→ A(

F∗(n, h)
)

,
(

x, [F(x), pt, w]) �−→ [x, pt, w] ,
where x ∈ X(∗) is any point in the underlying set of X , w ∈ C

n(F(x)) is a vector, and where
we denote a constant plot pt → X by its value in X(∗). We readily see that �F and �′

F are
mutually inverse maps, fibrewise linear, compatible with morphisms in ι∗VBunstr , and that
the diagram

G∗F∗(A(n, h)
)

(FG)∗
(A(n, h)

)

G∗(AF∗(n,h)

) AG∗F∗(n,h) = A(FG)∗(n,h)

∼=

G∗�F �FG

�G

commutes for every morphism G ∈ Dfg(W , X). It thus remains to show that both �F

and �′
F are morphisms of diffeological spaces.

We start with �F : let � : c → A(F∗(n, h)) be a plot. Let { fi : ci ↪→ c}i∈I , ψi : di → X ,
and �i : ci → DF∗(n,h)(ψi ) be lifting data for � as before. Then, we have a commutative
diagram

ci D(n,h)(ψi ) X ×Y
(

D(n,h)(F ◦ ψi )
)

c AF∗(n,h) X ×Y A(n, h)

�i

fi ιψi

(ψi◦prdi )×Y (1di×Cn )

1X×Y (ιF◦ψi )

� �F

which shows that�F ◦� is smooth (theA(n, h)-valued component factors through D(n,h)

locally).
For �′

F , consider a plot � : c → X ×Y A(n, h). It decomposes into a plot �X : c → X
and a plot �A : c → A(n,h) such that π ◦ �A = F ◦ �X , where π : A(n,h) → Y is the
vector bundle projection. As before, for the plot �A there exists a covering { fi : ci ↪→ c}i∈I ,
plots ψ : di → Y , and lifts �A,i : ci → D(n,h)(ψi ) such that ιψi ◦ �A,i = �A ◦ fi for
each i ∈ I . Using the morphisms h�A,i , it is in fact always possible to choose di = ci and
�A,i : ci → ci × C

n(ψi ) to be a section, i.e. to satisfy prci ◦ �i,A = 1ci . Observe that then
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ψi = F ◦ �X ◦ fi factors through F . We obtain a commutative diagram

ci X ×Y
(

D(n,h)(ψi )
)

D(n,h)(�X ◦ fi )

c X ×Y A(n, h) A(

F∗(n, h)
)

(�X◦ fi )×�A,i

fi 1×ιψi

prci×Cn

ι(�X ◦ fi )

�X×�A �′
F

This shows that �′
F ◦ � is a plot ofA(F∗(n, h)) by Proposition A.1, which completes the

proof. ��
This also completes the proof of Theorem 4.18. ��
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