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Abstract

Suppose that we have a bicomplete closed symmetric monoidal quasi-abelian category £ with
enough flat projectives, such as the category of complete bornological spaces CBorny or the
category of inductive limits of Banach spaces IndBany. Working with monoids in £, we can
generalise and extend the Koszul duality theory of Beilinson, Ginzburg, Soergel. We use an
element-free approach to define the notions of Koszul monoids, and quadratic monoids and
their duals. Schneiders’ embedding of a quasi-abelian category into an abelian category, its
left heart, allows us to prove an equivalence of certain subcategories of the derived categories
of graded modules over Koszul monoids and their duals.
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0 Introduction
0.1 Koszul Duality

Suppose that we have a finite dimensional vector space V over a field k. Then, there exists
the following projective resolution of &

2
c— S(V) @ /\(v) - S(V)®kV — S(V) - k )]

In 1978, Bernstein, Gelfand, and Gelfand [7] showed the following equivalence of bounded
derived categories over the categories of graded S(V) and /\ V* modules.

D’ (grS(V)-Mod) ~ D’ (gr A V*-Mod)

The seminal paper of Beilinson, Ginzburg, and Soergel [4] extends these constructions to
a more general collection of rings known as Koszul rings, of which S(V) and /\ V are toy
examples.

Definition 0.1 [4, Definition 1.1.2] A Koszul ring is a positively graded ring A = P j=0Aj
such that Ag is semisimple and Ao, considered as a graded left A-module, admits a graded
projective resolution

~-~—>P2—>P1—>POH>A0
such that each P is generated by its degree i component, i.e. P/ = APl.i.

These Koszul rings are examples of objects called quadratic rings which, in [4], are
positively graded rings A = € =0 Aj such that Ag is semisimple, and A is generated over
Ao by A with relations of degree two. Quadratic rings were originally referred to by Priddy
in [22] as homogeneous pre-Koszul algebras. Left finite quadratic rings, i.e. those rings A
such that each A; is finitely generated as a left Ag-module, admit dual objects A', called their
quadratic duals. These rings are dual in the sense that '(A') ~ A ~ (‘A)".

Quadratic rings produce projective resolutions called Koszul complexes. A quadratic ring
over a semisimple ring Ap = k is a Koszul ring if and only if its Koszul complex is a
resolution of k. We note that the symmetric and exterior algebras are examples of Koszul
rings. The quadratic dual of S(V) is /\ V* and the complex in Eq. 1 is the Koszul complex
of S(V). We have a slightly weaker equivalence of derived categories for Koszul rings than
in the symmetric/exterior algebra case.
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Theorem 0.2 [4, Theorem 2.12.1] Suppose that A is a left finite Koszul ring. Then, there
exists an equivalence of triangulated categories

D' (grA-Mod) ~ D' (grA'-Mod)

where DV (grA-Mod) and D' (grA'-Mod) denote certain subcategories of the derived cate-
gories of graded A and A' modules.

Several generalisations of this Koszul duality theory exist. For example, the various types
of non-homogeneous, non-quadratic Koszul duality presented by Positselski in [21]. Further,
Koszul duality for wider classes of objects than graded algebras over semisimple rings have
also been discussed. In general these use bar-cobar constructions to establish various kinds
of dualities between objects such as algebraic operads [11], D-modules [14] or dg categories
[13]. The aim of this paper is to generalise the Koszul duality theory of Beilinson, Ginzburg,
and Soergel to certain algebra-like objects in a type of category called a quasi-abelian cate-

gory.

0.2 Quasi-abelian Categories

The theory of quasi-abelian categories was developed by Schneiders [23] with the intention of
developing a cohomological theory of sheaves with values in categories such as the category
of filtered modules, or the category of locally convex topological vector spaces. Quasi-abelian
categories possess enough structure to be able to do homological algebra in them, explained
in Sects.2 and 3. They are additive categories with kernels and cokernels, where we specify
that only certain morphisms are strict.

One of the most important properties of quasi-abelian categories is summarised in the
following result.

Proposition 0.3 [23, c.f. Section 1.2] There exists an abelian category LH(E), the ‘left heart’
of €, and a fully faithful functor

1:&— LHE)
inducing an equivalence of categories

D(I) : D) — D(LH(E))

This means that certain questions about derived quasi-abelian categories can be answered
by considering the analogous theory in the abelian category. In particular it will allow us, in
Sect. 8, to discuss converging spectral sequences in the quasi-abelian setting.

0.3 Koszul Monoids

For the purposes of this paper we will work within a bicomplete closed symmetric monoidal
quasi-abelian category £ with enough flat projectives. We recall the meaning of these words
in Sects. 1 and 3.

The key examples of such categories are the category of complete bornological spaces,
CBorny, and the category of inductive limits of Banach spaces, IndBany. Recent research
by Bambozzi, Ben-Bassat, Kelly, Kremnizer, and Mukherjee (see [1, 5], to name a few) has
considered a theory of derived analytic geometry with the main focus being on objects in these
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categories. Developing the theory of homological algebra within quasi-abelian categories is
extremely vital for this research.

In the BGS setting [4], Koszul rings are only defined when the 0-graded part is semisimple.
As well as generalising their theory to monoids in more general quasi-abelian categories, we
also extend their theory within the category of rings by working with monoids which are
instead pre-Koszul, see Definition 4.4. In Sect. 4, we define the Koszul monoid as follows.

Definition 0.4 A Koszul monoid in £ is a positively graded pre-Koszul monoid A such that
Ap, considered as a graded left A-module, admits a graded projective strict resolution of
A-modules.

o> P2 pl PO g
with each P generated by its degree i component over Ag.

We also prove a sufficient condition for a pre-Koszul monoid A to be Koszul. Namely,
Proposition 0.5 A is a Koszul monoid if and only ifEXt;rA_Mod (Ag, Ag(n)) = Ounlessi = n.

We give several examples of Koszul monoids. In particular, any Koszul ring in the sense of
Definition 0.1 is a Koszul monoid in the category of abelian groups. Moreover, we construct
examples of tensor algebras, and symmetric and exterior examples which are Koszul within
our quasi-abelian categories.

This paper is the starting point of a more general exploration of Koszul duality in quasi-
abelian categories. In particular, future research will develop Koszul duality for objects with
analytic gradings, such as the analytic gradings given for IndBany, in [16].

0.4 Quadratic Monoids and Their Duals

One of the main important features of Koszul rings is that they have a dual ring. Rather than
defining the Koszul dual of a Koszul monoid to be a certain Ext monoid, which in practice
is often hard to write down, we approach the problem of defining a Koszul dual by first
defining quadratic monoids, and then considering their quadratic duals. We note that any
Koszul monoid is quadratic. In Sect. 5, we make the following definition.

Definition 0.6 A is a quadratic monoid with quadratic data (A, R) if it is pre-Koszul, and
there exists a strict graded epimorphism

b/ TA() (Al) — A
such that there exists a strict epimorphism
T4y (A1) ®49 R @4y T4y (A1) — Ker(m)
with R = K> := Ker(A| @4, A1 — A2).

One motivation for studying quadratic monoids is their potential applications in studying
quantum groups. Indeed, Manin proposes in [18] that a quadratic ring could be viewed as a
‘ring of functions on an imaginary space of noncommutative geometry, or quantum space’.
In particular, quadratic monoids in categories such as IndBany could provide us with a way
of discussing certain types of analytic quantum groups.

There are many different ideas of what a dual object in an arbitrary monoidal category
should be. For the purposes of this paper, we want to be able to define dual modules, and
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indeed we do this concretely in Sect. 6. If A is a positively graded monoid in € and M is a left
Ap-module, then we define the left dual Ag-module M* to be M* := Homy njoa (M, Ao).
Moreover, if we impose some extra conditions, making M left dualisable, such as reflexivity
*(M*) >~ M and the existence of well-behaved evaluation and coevaluation morphisms, then
our dual modules are easy to work with. In particular, when A is pre-Koszul, we can make
the following definition.

Definition 0.7 Suppose that A is a left dualisable quadratic monoid (A, R). We say that
a positively graded pre-Koszul monoid A' is the left dual quadratic monoid of A if it
is the quadratic monoid with quadratic data (A%, R*), where R is the kernel of the map
AT ®4y AT — R*.

0.5 Koszul Duality

Suppose that we have a quadratic monoid A with dual A'. In Sect. 7, we write down an explicit
Koszul complex for A

e A®a, F(AY) > A®4, (A > A= 0

We have already noted that any Koszul monoid is quadratic. A weaker converse holds, any
quadratic monoid is Koszul if the above complex is a resolution of Ayp.
We use the Koszul complex in Sect. 8 in our proof of the following theorem.

Theorem 0.8 Suppose that A is a left dualisable Koszul monoid with quadratic dual monoid
A'. Then, there is an equivalence of triangulated categories

D' (grA-Mod) ~ D' (grA’'-Mod)

where DY (grA-Mod) and D' (grA!-Mod) denote certain subcategories of the derived cate-
gories of graded A and A' modules.

We have already developed much of the machinery needed to tackle this theorem, and
the proof follows in much the same way as in [4], with some subtle but important changes.
In particular, we show that certain functors preserve quasi-isomorphisms by embedding the
complexes in question in the left heart of our underlying quasi-abelian category and showing
that certain spectral sequences converge there.

1 Closed Symmetric Monoidal Categories
We refer to [17] for the definition of a closed symmetric monoidal category. We merely note

that a monoidal category consists of enough information to be able to define algebra objects
or, as we will call them, monoids.

1.1 Examples

We state the following key examples of closed symmetric monoidal categories. Suppose that
k is a valued field. See Appendix A for details on the definitions of the categories Bang,

A nA
Banj, and Ban’;".
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Example 1.1 Suppose that R is a Banach ring. The category of Archimedean Banach R-
modules, Ban?}, is closed symmetric monoidal [1, Proposition 3.17]. The monoidal product
is the complete Archimedean projective tensor product, denoted by M®gN. This is the
completion of the R-module M ® g N with respect to the semi-norm given by

X M@xN =inf{2|mi|M|ni|N | x=) mien, Il < OO}
iel iel

The internal hom functor HomBang (M, N) for M,N € Banﬁ is given by the R-module
HomBang (M, N) equipped with the semi-norm given by

| f(m)| N
[flsup = sup —
meM\{0) |mlm

If R is a non-Archimedean Banach ring, we can consider the category Ban’}eA of non-
Archimedean R-modules. This category is also a closed symmetric monoidal category. The
monoidal structure is given by the complete non-Archimedean projective tensor product
defined as the completion of M ® g N with respect to the norm given by

x| M@rN =inf{H‘1€aIX Imilplnily | x= E m; @ ni, |1 < oo}
l
iel

The internal hom is defined as in the Archimedean case.

Proposition 1.2 [1, Proposition 3.12] The category Ban;‘e has all finite limits and colimits.

However, Banﬁ and Ban’}eA do not have infinite limits and colimits, see [5, Lemma A.26],
which will make it difficult to work with them in this paper. We will mainly work with
categories of bornological and IndBanach spaces, see Appendices 1 and 1.

Example 1.3 Consider the category Ban?}. The category of Ind-objects of Banach-modules
IndBan% is closed symmetric monoidal. The monoidal product is given, for M, N in
IndBany, by

lim"M; © “lim"N; = “lm” M; ® N;
iel jer (i,))elxJ

and the internal hom is given by

Hom(“lim ”M;, “lim ”N;) = lim *lim "Hom(M;, N,)
- — — <«— —
iel jeJ iel jeJ

This definition also holds for IndBan’;eA.

Remark We note that the above construction generalises to Ind-objects in any small, closed,
symmetric monoidal quasi-abelian (see Sect.2) category by [23, Proposition 2.1.19].

Definition 1.4 [19, Definition 1.20] Suppose that V, W are bornological vector spaces over
k. A set L of linear maps f : V — W is equibounded if, for each B bounded in V, the set

LB)={f(x)| feL,xe€B}
is bounded in W.
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Example 1.5 Consider the category Born; of bornological k-vector spaces of convex type.
This category is closed symmetric monoidal. Given V, W € Born; we can endow V ®; W
with the ‘projective tensor product bornology’. A basis is given by the absolutely convex
hulls of all subsets of the form

XY ={x®ylxeX,yeY]}

with X (resp. Y) an element of a basis of bounded absolutely convex subsets for the bornol-
ogy on V (resp. W). The internal hom is the vector space Homporn, (V, W) equipped with
the equiboundedness bornology. The closed symmetric monoidal structure on CBorny is
defined slightly differently. Given V, W € CBorn; we define the monoidal product to be the
completion (see [19, Section 1.5.5]) of V ®; W with respect to the projective tensor product
bornology. The internal hom is defined as in Borng.

Proposition 1.6 [1, Lemmas 3.29 and 3.53] The categories IndBanp, IndBan’y' and
CBorny, have all limits and colimits.

1.2 Monoids

Suppose that (C, ®, I) is a monoidal category. We can define a monoid, or algebra object, in
C. We note that a monoid in the monoidal category of abelian groups (Ab, ®z, Z) is a ring.

Definition 1.7 [17, Section VII.3] A (unital associative) monoid (A, i, n) in C consists of:

e Anobject AinC,
e A multiplication morphism 1 : AQ A — A,
e A unit morphismn : I — A.

satisfying the natural associativity and unit conditions.

Example 1.8 In the monoidal category Banﬁ (resp. Ban’l‘eA) a monoid object will be called an
Archimedean (resp. non-Archimedean) Banach R-algebra. It is an object M € Bané (resp.
Ban’,’{‘) along with a multiplication map p : M&®gM — M, where the product is equipped
with the appropriate norm, and a unit map n : R — M. These maps are bounded in the sense
of Definition A.6 and satisfy the associativity and unit conditions stated above.

Example 1.9 A monoid in Borny will be called a bornological k-algebra. It is a k-algebra A
whose underlying vector space is of convex type, with abornology such that multiplication u :
AQ®r A — Aisboundedin V. A monoid in CBorny is a monoid in Born; whose underlying
vector space is complete, and will be called a complete bornological k-algebra. Particular
examples of bornological algebras come from Fréchet algebras and Banach algebras.

Example 1.10 We can also define IndBanach algebras. However, an IndBanach algebra is not
necessarily an inductive system of Banach algebras. Those that are of this form are called
locally multiplicative.

Definition 1.11 [17, Section VIL.3] A morphism f : (A, i, n) — (A’, 1/, n’) of monoids
is a morphism f : A — A’ such that

fopu=po(f®f) and fon=rn'

The following definition uses the ‘left action of a monoid’ from [17, Section VIL.4].
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Definition 1.12 A left module M over a monoid A in C consists of:

e Anobject M €C,
e AmorphismA: AQM — M

satisfying the natural associativity and unit conditions.

Definition 1.13 A morphism of left A-modules g : (M, ) — (M’,1’) is a morphism
g : M — M’ such that

No(ly®g)=goA

1.3 Graded Monoids

Analogously to the definition of a graded ring, we can define graded monoids.

Definition 1.14 A (Z)-graded monoid A in C consists of:

e A family of objects {A;}icz inC,
e A unit morphism n : I — Ay,
e Foralli, j € Z, amultiplication morphism ; j : A; ® Aj — A;y;j,

satisfying the natural associativity and unit conditions.

Remark If C has countable direct sums we can write a graded monoid A as

A=Pa

i€Z
Definition 1.15 A graded morphism f : A — A’ of graded monoids A, A’ consists of a
family of morphisms { fi};cz in C with f; € Hom¢ (A;, A;) satisfying
Jivjowij= ij o(fi ® fj)
fori, j € Z.
Definition 1.16 A left graded A-module M over a graded monoid A in C consists of:

e A family of objects {M;};cz inC,
e Foralli, j € Z, morphisms A; j : A; @ M; — M, ,

satisfying the natural associativity and unit conditions.

Example 1.17 e For a graded monoid A, we see that A is a graded (Ag, Ag)-bimodule with
module actions given by morphisms ;o : A; ® Ap — A; and po,; : Ao ® A; — A;.
e Suppose that M is a graded module over a graded monoid A. Then, for each i, we can
consider M as a graded left A; module with graded module actions given by A; ; :
A; ®M] — M,'+j for each j.

Definition 1.18 A graded morphism g : M — N of graded left A-modules (M;, A;) and
(M!, 1) consists of a family {g; };cz of morphisms in C with g; € Hom¢ (M;, M) satisfying

A jo(la ®gj) =gi+johij

fori, j € Z.
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1.4 Categories of Modules

Suppose we have a bicomplete closed symmetric monoidal category (C, ®, I). Suppose that
A is a monoid in C. We denote the category of left A-modules by A-Mod.

Definition 1.19 Let M| be aright A-module and M, be aleft A-module. Their tensor product
over A, M| @4 M, is defined to be the coequaliser of the two maps

M QARM, =M @ My

given by the module actions of A on M| and M.

If M is a (B, A)-bimodule and M5 is an (A, C)-bimodule, then M| ® 4 M5 is naturally
a (B, C)-bimodule. The actions of B on M and C on M3 induce a morphism

BOIMI QM @C — M1 @ My — M; @4 M>

which coequalizes the two morphisms from B M Q AQ M,  Cto B M1 ® M> ® C,
and hence there exists a morphism

B® (M ®aM)QC — M| Q@4 M

which is the bi-module action. In particular, if A is a commutative monoid and My, M, are
left A-modules we see that M| ® 4 M> is a left A-module.

We can define a map Hom(M;, M) — Hom(A ® M|, M) by applying the internal
hom functor Hom(—, M3) to the module action A ® M; — M;. We can obtain another
map Hom(M;, M>) — Hom(A ® M1, M3) in two stages. First, if we tensor the morphism
id — Hom(A, A) with the identity of Hom(M/, M>), we obtain a map

Hom(M;, M) — Hom(A, A) ® Hom(M;, M>) — Hom(A ® M1, A ® M)
We can then use the module action A ® M, — M5 to obtain a map

Hom(A ® M, A ® M>) — Hom(A ® M, M)

Definition 1.20 For M; and M; left A-modules, the internal hom Homy p10q (M1, M2) is
defined to be the equalizer of the two maps

Hom(M;, M>) Hom(A ® My, M»)

\ /

Hom(A ® M1, A ® M>)

We remark that if A is a commutative monoid, then Homy noq (M1, M2) is a left A-
module. We collect together the following useful facts.

Lemma 1.21 [5, Lemma 2.4] For any left A-module M we have the following isomorphisms
Homy yoq(A M) > M A®sM~M
We have the following extensions of the tensor-hom adjunction. Suppose that A and B

are two monoids in C. Let M be a (B, A)-bimodule, M, be a left A-module, and M3 be a
left B-module.
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Theorem 1.22 The functor My ®4 — : A-Mod — B-Mod is left adjoint to the functor
Homg poa (M1, —) : B-Mod — A-Mod. Hence, there is a natural isomorphism

Homp.pmod (M1 ®4 M2, M3) ~ Homa.Moed (M2, Homg noq (M1, M3))
Proof Follows in a similar way to the proof for rings. O
Corollary 1.23 The above isomorphism lifts to an isomorphism

Homg pjoa (M1 @4 M2, M3) >~ Homy npoq (M2, Homg npoq (M1, M3))

Corollary 1.24 Suppose that M and N are both left A, B modules. Also, suppose that B is a
right A-module. Then, there exist isomorphisms

Homg.poea (B ®4 M, N) >~ Homp . mod(M, N) =~ Homp.Moa (M, Homy yjoq(B, N))
natural in M and N.
Proof We note that, by Theorem 1.22, we have an isomorphism
Homp.mod (B ®4 M, N) = Homa.mod (M, Homg y14q (B, N)) = Homy moed (M, N)
Applying Theorem 1.22 again, we obtain an isomorphism
Homp.mod (M, Homy njoq (B, N)) > Homa.mod(B ®p M, N) >~ Homa.moed (M, N)
O

Proposition 1.25 Suppose that C is in addition an additive category. If A is a commutative
monoid, then A-Mod is a bicomplete closed symmetric monoidal additive category with
monoidal product @ 4 and hom functor Homy njod- The unit object is A.

Proof We can extend the proof of [5, Lemma 2.3]. If C has all limits and colimits then so
does A-Mod since products, equalisers, coproducts, and coequalizers can all be computed
in C. O

Suppose that A is a positively graded monoid in C. We denote by grA-Mod the category
of graded A-modules equipped with graded morphisms. For objects M, N € grA-Mod, we
can define a grading on M ®4 N by

(M®sN)y= P M ®aN;
i+j=n
Similarly, we can define a grading on Homy peq(M, N) by
Hom, njog (M, N), = @D Homy yioq(Mi, N-j)
i+j=n
We will denote the internal hom of graded modules by Homg, s vjoq-
Corollary 1.26 With the conditions of Proposition 1.25, the category grA-Mod is a bicom-

plete closed symmetric monoidal additive category with monoidal product @ 4 and hom
Junctor Homg, s npoq- The unit object is A.

Proof We note that the tensor product ® 4 and HOJgrA-Mod give grA-Mod the structure
of a closed symmetric monoidal category. Since A-Mod is bicomplete, so is grA-Mod as
products, equalisers, coproducts, and coequalizers of graded modules can all be given a
graded structure. O
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2 Quasi-abelian Categories
2.1 Quasi-abelian Categories

Suppose that £ is an additive category with all kernels and cokernels.
Definition 2.1 A morphism f : X — Y in £ is strict if the induced morphism
f: Coim(f) — Im(f)
is an isomorphism.
Definition 2.2 £ is abelian if every morphism is strict.
Remark We note that, for any morphism f : X — Y in &, the canonical morphism
Ker(f) — X (resp. Y — Coker(f))

is a strict monomorphism (resp. strict epimorphism). Moreover, a morphism f is strict if and
only if it can be decomposed as f = m o e where m is a strict monomorphism and e is a
strict epimorphism.

Proposition 2.3 If a strict map f : X — Y is both a monomorphism and an epimorphism,
then it is an isomorphism.

Proof Indeed, since f is a strict map, Coim(f) =~ Im(f). Moreover, as f is a strict
monomorphism, X =~ Ker(Y — Coker(f)) = Im(f) and, as f is a strict epimorphism,
Y ~ Coker(Ker(f) — X) = Coim(f). Therefore, we see that

X ~Im(f) =~ Coim(f)~Y
O

Many of the categories we typically meet are abelian, such as the category of modules over
a ring. However, we wish to be able to deal with certain categories, such as the categories
discussed in Sect. 1, which have a slightly weaker structure than abelian categories. We
introduce the notion of a quasi-abelian category, and state a few results due to Schneiders
[23].

Definition 2.4 £ is quasi-abelian if it satisfies the following two conditions
(QA) In a pullback square

x Iy
} !
x sy

If f is a strict epimorphism, then f” is a strict epimorphism.
(QA*) In a pushout square

—

P

N

/
4

f
f—

f
If f is a strict monomorphism, then f is a strict monomorphism.
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Remark Equivalently, the class of all kernel-cokernel pairs forms a Quillen exact structure
oné&.

Fix a quasi-abelian category £. We state the following propositions about strict morphisms
in quasi-abelian categories.

Proposition 2.5 [23, Proposition 1.1.7] The class of strict epimorphisms (resp. monomor-
phisms) of € is stable under composition.

Proposition 2.6 [23, Proposition 1.1.8] Let
; Y
g
N
X —— 7

be a commutative diagram in £. If h is a strict epimorphism, then g is a strict epimorphism.
Dually, if h is a strict monomorphism, then f is a strict monomorphism.

Corollary 2.7 Any morphism in € with a right inverse is a strict epimorphism. Similarly, any
morphism in € with a left inverse is a strict monomorphism.

Proof Indeed, suppose that g : ¥ — X is a morphism in £ with a right inverse f : X — Y.
Then, these morphisms fit into the following commutative diagram.

Y
2
id
x — %  Lx
Since idy is a strict epimorphism, g is a strict epimorphism by the previous proposition. O

Example 2.8 Suppose that k is a valued field. The category of Banach spaces Bany, is quasi-
abelian [5, Lemma A.30], but isn’t abelian since there exist non-strict morphisms. Consider
the Banach space C[0, 1] of continuous real-valued functions on [0, 1] equipped with the sup-
norm | f|co,1] = Supxefo, 17l f (x)|. Also consider the Banach space L0, 1] of Lebesgue
classes of integrable real-valued functions on [0, 1] equipped with the norm | f{.119,1; =

fol | f(x)] dx. We can see that the image of the inclusion map
12 C[0, 1] — L'[0, 1]
is dense and non-closed, and hence the inclusion map is not strict [8, Page. 83].

Example 2.9 For R an Archimedean (resp. non-Archimedean) Banach ring, the category of
Banach modules over R, Bané (resp. Ban’}{‘), is quasi-abelian [1, Proposition 3.15, 3.18].

Example 2.10 If C is quasi-abelian, then so is IndC. This follows since, for any morphism
f : X — Y in IndC, we have that Ker(f); = Ker(f;) and Coker(f); = Coker(f;). In
particular, for R a Banach ring, the categories IndBanﬁ and IndBan’}eA are quasi-abelian.

Example 2.11 The categories Born; and CBorny, of bornological and complete bornological
spaces respectively are quasi-abelian [2, Lemma 2.19].

There is the concept of exactness in quasi-abelian categories. Namely,
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Definition 2.12 A null sequence in £

xLysz

is strictly exact (resp. coexact) if f (resp. g) is strict and the canonical morphism
Im(f) — Ker(g)
is an isomorphism.

We can extend this definition to define strictly exact complexes of objects in £. We will
say that a chain complex Y, is a strict resolution of X if the complex Y, — X is strictly
exact. We note that, in a quasi-abelian category, we don’t have a well defined notion of how
far away a complex is from being strictly exact, i.e. we have no notion of homology. Indeed,
for a null sequence

xLytz

we could perhaps define homology at Y as Coker(Im(f) — Ker(g)) or Im(Ker(g) —
Coker(f)). However, these candidates are not always isomorphic as not all maps are strict.

Definition 2.13 An additive functor F : £ — F between quasi-abelian categories is left
(resp. right) exact if it transforms any strictly exact (resp. coexact) sequence

0>X—>Y—>Z—->0
of £ into a strictly exact (resp. coexact) sequence
00— F(X)—> F(Y)— F(2)
(resp. F(X) > F(Y) —> F(Z) — 0)
F is exact if it is both left and right exact.
Definition 2.14 An object P in & is projective if
Homg (P, —) : £ — Ab

isexact. Equivalently, P is projective if, for any strictepimorphism f : X — Y, the associated
map

Homg (P, X) - Homg(P,Y)

is surjective. We say that £ has enough projectives if, for any object X of £, there is a strict
epimorphism

P—X
where P is a projective object of £.

Definition 2.15 Suppose that £ is closed symmetric monoidal with monoidal product ® :
E x & — £. Anobject F € £ is flat if the functor

FR-—-:£—> €&

is exact. We say that £ has enough flat projectives if, for any object X of £, there is a strict
epimorphism

P—»X

where P is a flat and projective object of £.
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Lemma 2.16 [1, Lemma 2.21] Suppose that £ is closed symmetric monoidal with enough flat
projectives. Then, any projective object of £ is flat.

Example 2.17 Suppose that k is a non-Archimedean valued field and let V € Bany. Define
the Banach space

co(V) = {(co)vev—(o) | cv €k, lim |cyv| = 0}
veV—{0}
equipped with the norm

[(cv)vev—{o}l = sup |cyv]
veV—{0}
where lim, ey _0) [cyv]| is defined as in [5, Definition A.24]. By [5, Lemma A.38], this Banach
space is projective in Bany. Moreover, there is a strict epimorphism ¢o(V) — V for every
V € Bany. Therefore, Ban; has enough projectives. When k is Archimedean, Bany also has
enough projectives [5, Lemma A.39]. Moreover, in both cases all projectives are flat.

Example 2.18 More generally, we also note that the categories Banﬁ and Ban’}{‘ have enough
projectives and that any projective is flat [6, Lemma 3.42]. Further, if M, N are projective
in Bang (resp. Ban’}QA), then P®g Q is also projective in Ban?} (resp. Ban’I’eA) [3, Lemma
3.35].

Example 2.19 The categories IndBan}‘}, IndBan’I’eA and CBorny, have enough flat projectives
by [1, Lemmas 3.29 and 3.53].

Lemma 2.20 P is a projective object if and only if every strict epimorphism f : X — P in
E splits, i.e. there exists g : P — X such that f o g = idp.

Proof We note that, since P is projective, a strict epimorphism f : X — P induces a
surjection

Homg (P, X) — Homg (P, P)

The preimage of idp under this surjectionis amap g : P — X suchthat go f = idp.
To prove the converse, suppose that we have a strict epimorphism f : X — Y and a
morphism 4 : P — Y. We examine the pullback

PxyX L5 p

Wb
x —L 5y

Since £ is quasi-abelian, f” is a strict epimorphism. Hence, by assumption, f’ splits. So, there
existsamap g : P — P xy X such that f’ o g = idp. Considerthemaph’ o g : P — X.
We see that f o (W' 0 g) = ho f’ o g = h. Therefore, P is projective. m}

We will denote by P the collection of projective objects P such that there is a strict
epimorphism P — X for some object X € £.

Proposition 2.21 Suppose that £ has enough projectives. A morphism f : X — Y in€isa
strict epimorphism if and only if the associated morphism

f' :Homg (P, X) — Homg(P,Y)

is surjective for any P € P.
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Proof The forward direction is clear by definition of a projective object. Conversely, since £
has enough projectives, there is a projective object P and a strict epimorphism g : P — Y.
If f/ is surjective, there exists amap & : P — X such that f/(h) = f oh = g. Then, by
Proposition 2.6, f must be a strict epimorphism. O

The following result is obtained similarly using [1, Lemma 2.27].

Proposition 2.22 Suppose that £ is closed symmetric monoidal with enough flat projectives.
A morphism f : X — Y in £ is a strict epimorphism if and only if the associated morphism

f’ : Homg (P, X) — Homg (P, Y)
is surjective for any P € P.

Definition 2.23 An object [ in £ is injective if
Homg(—, 1) : £ — Ab

is exact. Equivalently, / is injective if, for any strict monomorphism f : X — Y, the
associated map

Homg (Y, 1) - Homg(X, )

is surjective. We say that £ has enough injectives if, for any object X of &, there is a strict
monomorphism

X -1

where [ is an injective object of £.

Example 2.24 Suppose that k is anon-Archimedean field with a non-trivial valuation. Suppose
in addition that k is spherically complete, i.e. the intersection of all disks in any chain is
nonempty. Let V € Bany and define the Banach space

lcyl
eoo(V)={(cv)vev_{0}|cvek, sup —— < 00
vev—{o} |V

equipped with the norm

ey
[(cv)vev—(o})l = sup —
vev—io} vl

By [5, Lemma A.41], £5(V) is injective in Bany. Moreover, if k is any valued field, Bany
has enough injectives [5, Lemma A.42].

Proposition 2.25 Suppose that € is a closed symmetric monoidal quasi-abelian category with
enough flat projectives. Then Homg (—, I) is exact if I is injective.

Proof Suppose that we have a short strictly exact sequence
0->X—>Y—>Z—->0

Itis clear that Homg (—, I) = Homg,p (1, —) is left exact since it has a left adjoint — ® I in
E°P. We see that the sequence

0 — Homg(Z,I) — Homg (Y, I) — Homg (X, I)
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is strictly exact. It remains to show that
Homg (Y, I) — Homg (X, 1)

is a strict epimorphism. By Proposition 2.22 it suffices to show that for all flat projectives P,
the following map is a surjection

Homg (P, Homg (Y, I)) — Homg (P, Homg (X, 1))

Equivalently, by the internal hom adjunction, we can just show that the following map is a
surjection

Homg(P® Y,I) > Homg(P ® X, I)

Since [ is injective, this map is a surjection if P ® X — P ® Y is a strict monomorphism.
The result then follows since P is flat and the map X — Y is a strict monomorphism. O

2.2 The Derived Category

The derived category of a quasi-abelian category can be defined analogously to the abelian
case. Suppose that we have a quasi-abelian category £. We denote the category of cochain
complexes in € by C(€). We note that cohomology is not well defined in C(£). However,
since £ is additive, cones of morphisms are well-defined and we can make the following
definition.

Definition 2.26 A cochain morphism f* : C* — D® in C(£) is a strict quasi-isomorphism
if cone(f*®)* is strictly exact.

Since strict quasi-isomorphisms are stable under cochain homotopy equivalence, we can
define the notion of a strict quasi-isomorphism in the homotopy category K(&). Similarly to
the abelian case, we make the following definition.

Definition 2.27 The derived category D() is the localisation of the homotopy category
K(€) at the class of all strict quasi-isomorphisms.

Remark We remark that, since homotopic maps become equal when strict quasi-isomorphisms
are inverted, the category obtained by inverting strict quasi-isomorphisms in C(£) is equiv-
alent to the derived category D(E). I will call both the derived category D(E).

Example 2.28 The categories IndBan; and CBorny, are tensor derived equivalent [3, c.f.
Proposition 3.16] in the sense that there is an equivalence of derived categories

D(CBorn;) >~ D(IndBany)
which preserves the monoidal structure.

In [23, Section 1.2], Schneiders details an embedding of £ into an abelian category, its
abelianisation, using t-structures. This embedding allows us to do homological algebra in
quasi-abelian categories by working within abelian categories. We summarise his results in
the following proposition.

Proposition 2.29 There exists an abelian category LH(E), the ‘left heart’ of €, and a fully
faithful functor

I1:&— LHE)
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inducing an equivalence of categories
D(I) : D(&) — D(LH(E))
Moreover, I has a left adjoint C : LH(E) — £ with
Col ~idg
We have the following corollary.

Corollary 2.30 [23, Corollary 1.2.27] A sequence
X—>Y—>Z
is strictly exact in & if and only if the sequence
I(X)— 1Y) — 1(2)
is exact in LH(E).

Corollary 2.31 A cochain morphism f* is a strict quasi-isomorphismin & ifand only if I (f*)
is a quasi-isomorphism in LH(E).

Proof Note that f* is a strict quasi-isomorphism if and only if cone(f*®)*® is a strictly exact
complex. By the previous corollary, cone(f*®)® is strictly exact if and only if I (cone(f*))®
is exact in LH(E). Since I preserves cones, this occurs if and only if cone(I(f*®))® is exact
in LH(E), equivalently if and only if 7(f*) is a quasi-isomorphism in LH(E). O

Proposition 2.32 If f : X — Y is a strict map in &, then
Im(1(f)) = I(Im(f)) and Coim(I(f)) = I(Coim(f))
It follows that, for a strict cochain complex (C*®,d®) in &,
H"(I(C*)) ~ Coker(I(Im(d"~")) — I(Ker(d")))

Proof Since I is exact by Corollary 2.30, I preserves kernels and cokernels. Therefore,

Im(I(f)) := Ker(I(Y) — Coker(I1(f)))
~ Ker(I(Y) — I(Coker(f)))
~ [(Ker(Y — Coker(f)))
~ I(Im(f))

The result for the coimage follows similarly. Therefore,

H™(I(C*)) = Coker(Im(I(d"~ ")) — Ker(I(d")))
~ Coker(I(Im(d"~ ")) — I(Ker(d")))

m}
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2.3 Derived Functors

For any category Com(&) consisting of chain complexes, the notation Com*(£) will be
used to denote the subcategories consisting of bounded above (—), bounded below (+), or
bounded (b) chain complexes.

Proposition 2.33 If F : C*(£) — C*(F) maps strict quasi-isomorphisms to strict quasi-
isomorphisms, then it induces a functor D*F : D*(€) — D*(F).

Proof If F maps strict quasi-isomorphisms to strict quasi-isomorphisms, then the induced
functor KF : K*(&) — K*(F) does too. We denote our localisation functor by Q r :
K*(F) — D*(F) and consider the composition @ o KF : K*(£) — D*(F). This maps
strict quasi-isomorphisms to isomorphisms, and hence, by definition of the localisation, this
induces a functor DF : D*(£) — D*(F). O

Proposition 2.34 A functor F : C*(£) — C*(F) maps strict quasi-isomorphisms to strict
quasi-isomorphisms if it preserves strict exactness.

Proof Indeed, suppose we have a strict quasi-isomorphism f* € C*(€). Then, cone(f*)* is
strictly exact. If F preserves strict exactness, then F(cone(f*®)®) =~ cone(F (f*®)*) is strictly
exact, and hence F(f*) is a strict quasi-isomorphism. O

As in the abelian case, we can make the following definition. Let DT (&) be the derived
category of the category of bounded below cochain complexes. Suppose that F : £ — F
is an additive functor, and denote the localisation functors by Qg : K(£) — D(E) and
0r : K(F) — D(F).

Definition 2.35 The right derived functor of F is a pair (RF, €r) consisting of a triangu-
lated functor

RF : DT (&) - DY (F)
and a natural transformation
€r: Qr o KY(F) = RF o Q¢

universal in the sense that, for any triangulated functor G : D™ () — D™ (F), and any natural
transformation € : Qr o KT(F) = G o Qg, there exists a unique natural transformation
n : RF = G such that the diagram

QroK'F

r]oidQS

RF o Q¢ Go Q¢

commutes.
Remark We can define left derived functors similarly.

In [23, Section 1.3], Schneiders gives some conditions for the existence of left and right
derived functors. In particular, if £ has enough injective objects, then any additive functor
F : £ — F is right derivable. We remark that, since any projective object in £ is injective
in £°P, if £ has enough projectives then an additive functor G : £ — F is right derivable.
Hence, if £ has enough projectives the functor Homg (—, Y) : £ :— Ab is right derivable.
As in the abelian case, we can make the following definition.
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Definition 2.36 Suppose that £ has enough projectives. Let X be an objectin £ and P* — X
be a strict projective resolution of X. Then, the i Ext object of X is

Ext. (X, Y) := R'Homg (X, Y) = H' (Homg (P*, Y))
Remark For an explanation as to why this is well defined, see [9, Remark 12.11].

Remark If £ does not have enough projectives, then you can use the Yoneda construction
[24] to construct Ext.

3 Modules in Quasi-abelian Categories

For the remainder of this paper we will fix a bicomplete closed symmetric monoidal quasi-
abelian category £ with enough flat projectives. We remark that the categories CBorny and
IndBan, satisfy these properties.

3.1 Categories of Modules

Recall that the category of left modules over a monoid A is denoted by A-Mod.

Proposition 3.1 [23, Proposition 1.5.1] Suppose that A is a monoidin &, then A-Mod is quasi-
abelian. Moreover, a morphism of A-Mod is strict if and only if it is strict as a morphism of
&, since the forgetful functor A-Mod — & preserves limits and colimits.

Proposition 3.2 [23, c.f. Proposition 1.5.2] The functor A ® — : £ — A-Mod is left adjoint
to the forgetful functor A-Mod — &. For any object X € €&,

Homa.med(A ® X, —) >~ Homg (X, —) ()

Corollary 3.3 P is a (flat) projective object in £ if and only if A ® P is a (flat) projective
object in A-Mod. Moreover, if € has enough (flat) projectives, then so does A-Mod.

Proof By the previous proposition, we see that Homa.nea (A ® P, —) is strictly exact if and
only if Homg (P, —) is. Hence, P is projective in £ if and only if A ® P is. Now, suppose
we have an A-module M. Since £ has enough projectives, there exists a projective object P
in £ and a strict epimorphism

f:P—>M

We note that A ® P is a projective A-module and that, under the isomorphism in Eq.2, f
corresponds to a strict epimorphism f’ : AQ P — M.Hence, A-Mod has enough projectives.
The flatness case follows from noting that A is flat in A-Mod and that the monoidal product
of flat objects is flat. O

We state the following important lemma.

Lemma 3.4 If M and N are projective A-modules and f : M — N is a strict epimorphism,
then Ker(f) is a projective A-module.

Proof We consider the strictly exact sequence

0> Ker(f) > ML NS0
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Since N is a projective A-module, this sequence splits by Lemma 2.20 and hence
M ~Ker(f)® N

Therefore, since Ker(f) is a direct summand of a projective object and N is projective,
Ker( f) is projective. O

3.2 Categories of Graded Modules

Suppose now that A is a graded monoid in €. Since £ has countable colimits we can denote

A as
A=Pa

i€l
Proposition 3.5 The category of graded left A-modules, denoted grA-Mod, is quasi-abelian.

Proof We note easily that grA-Mod has all kernels and cokernels. Since A-Mod is quasi-
abelian, we see that, by working in each degree, the dual axioms in the definition of a
quasi-abelian category are satisfied. O

Lemma 3.6 If a graded left A-module M is projective as an A-module then it is projective
as a graded A-module.

Proof Tt is easy to see that, for a graded morphism N; — N of graded left A-modules, the
induced surjection

Homa.mod (M, N1) — Homa-moed (M, N2)
must be a surjection in grA-Mod. O

Corollary 3.7 If M is a graded projective left A-module, then A @ M is a graded projective
left A-module.

Proof We see from Corollary 3.3 that A ® M is a projective left A-module. The result then
follows from Lemma 3.6. O

Suppose now that A is positively-graded. We note that, if M is a left A-module, then
A ®4, M is aleft A-module with obvious A-action.

Proposition 3.8 Suppose that M is a graded left A-module. There exists amap AQayM — M
which is a strict graded epimorphism.

Proof We note that the graded maps
AQA)OM =AM - M

given by the composition of the action of Ag on A and M and the action of A on M, are equal.
Hence, by the universal property of the coequalizer, there exists a graded map AQa, M — M
such that the following diagram commutes.

ARA)®OM “L A®M — A®s M

~
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We note that the morphism A ® M — M is a strict epimorphism by Corollary 2.7 since it
has a right inverse given by inclusion. Hence, by Proposition 2.6 the map A ® 4y M — M is
a strict epimorphism. O

Proposition 3.9 If M is a projective left Ag-module, then A ® o, M is a projective left A-
module.

Proof We want to show that the functor
Homa-Moed(A ®4, M, —) : A-Mod — Ab
maps strict epimorphisms to surjections. Indeed, by Theorem 1.22,
Homa.Mod (A ®4, M, —) =~ Homyy-Mod (M, Homy ppea (A, —))

Now, by Lemma 1.21, Homy pgoq(A, —) defines an isomorphism. Since M is a projective
Ap-module, we see that the functor must send strict epimorphisms to surjections. O

Remark 1If M is a graded projective left Ap-module, then it is easy to see that A ® 4, M is a
graded projective left A-module with

(A®ay M)y = €D Ai®ay M;j = @ Coeq(A; ® Ag® M; = A; ® M)
i+j=n i+j=n

Lemma 3.10 If Ag-Mod has enough projectives, then the category grA-Mod has enough
projectives.

Proof Suppose that M is a graded left A-module, M = @, _, M;. Consider each component
M, as aleft Ap-module. Then, since Ag-Mod has enough projectives, there exists a projective
left Ag-module P; and an epimorphism P; — M;. We note that A® 4, P; is a projective left A-
module by Proposition 3.9, and there exists a strict epimorphism A® 4, P; — M; given by the
composition of the strict epimorphisms A ®4, P; — P; and P; — M;. Taking the coproduct
of all of these A ®4, P; in the category of graded A-modules gives us a graded projective
A-module @, ., A ® 4, P; along with a strict graded epimorphism @; ., A ®4, Pi — M.

[}

4 Koszul Monoids

For a positively graded monoid A, we let A~ = €D, A;. There is a short strictly exact
sequence

0> Ao A Ag— 0

We can consider A as a graded left A-module with, for each j, the action A; ® Ag — Ag
defined to be the composition

A ®Ag LS Aj <> A — Coker(A~g > A) ~ Ag

Definition 4.1 We will say that a graded left A-module M is generated by its degree i
component over Ay if the map

A®ay M; — M

is a strict epimorphism.
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Definition 4.2 A graded left A-module is called pure of weight n if it is concentrated in
degree n,i.e. M = M,,.

For a graded left A-module M we define the grading shifts by
(Mn))i = My

We can consider Ay to be a pure graded left A-module concentrated in degree O by defining
the action of A; on Ag to be 0 unless i = 0. We remark that for any A-modules M and N
pure of weights m, n respectively, we have that Homgra.Moed (M, N) = O unless m = n.

Proposition 4.3 If M is an A-module generated by its degree i component over Ag and N is
pure of weight n, then

Homgra-Mod(M, N) =0
unlessi =n
Proof We note that, since there is a strict epimorphism A ® 4, M; — M, there is an injection
Homgra-mMod (M, N) < Homgra-Mod (A ® 4, Mi, N)
The result then follows since
Homgra-Mod (A ®4, M;, N) >~ Homgra,-Mod (M, Ny) =0

ifi #n. O

In [4], Koszul duality theory is developed for Ap a semisimple ring. In our category &, it
is difficult to develop a satisfactory analogous definition of a semisimple object. Hence, we

will develop our theory for Ag satisfying the following more general conditions, and call A
a pre-Koszul monoid.

Definition 4.4 We will say that a positively graded monoid A is pre-Koszul if A is injective
as a module over itself, each A; is projective as an Ap-module, and, for any graded A-module
M living only in degrees > i, whenever

HomgrA-Mod (M, Ap(n)) =0
unless n = i, then M is generated by its i’" component over Ay.

Remark We note that our definition of being pre-Koszul differs from that given by Priddy
[22, Section 2].

Proposition 4.5 In the category of rings, if Ag is a semisimple ring then A is pre-Koszul.

Proof Indeed, we note that all Ag-modules are projective and that A is injective over itself.
It therefore suffices to prove the second condition. Suppose that we have a graded A-module
M living only in degrees > i. We will show that if

HomgrA-Mod(Ma Ao(n)) =0

unless n = i, then there exists a surjection A ® 4, M; — M. Choose the least j such that
there exists m; € M; not in the image of the map A;_; ® 4, M; — M. We note that j > i.
We consider M as a pure Ap-module of weight j and consider the simple Ag-submodule
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Aomj of M;. Since pure modules over Ag are semisimple, M; is semisimple, and hence
completely reducible. Therefore, there exists an Ag-submodule N of M; such that

Mj=Aym; ®N
We define an A-module morphism f : M — Ag(j) as follows

Fm) = a ifm=am; € Aym; for somea € Ag

0 otherwise

and extend linearly. Then, we see that this map is graded since f(Mj) C Ao(j). This map
is non-zero which contradicts that

HomgrA-Mod(M, Ao(j) =0

Hence, there exists a surjection A ® 4, M; — M. ]

Remark We note that if A is pre-Koszul in the category of rings, then Ag is not necessar-
ily semisimple. Indeed, not every module over A is guaranteed to be projective. See [12,
Example 4.4] for an example of a ring A such that A is not semisimple but A is pre-Koszul.

Definition 4.6 A Koszul monoid in £ is a positively graded pre-Koszul monoid A such that
Ao, considered as a graded left A-module, admits a graded projective strict resolution of
A-modules.

---—>P2—>P1—>P0—»A0
with each P! generated by its degree i component over Ag.
Remark The condition on P’ says that the diagonal part of the resolution generates the rest.

Example 4.7 We note that in the category of abelian groups, any Koszul ring in the sense of
[4, Definition 1.1.2] is a Koszul monoid.

Example 4.8 Suppose that we have a Koszul algebra R over a field k in the sense of [4,
Definition 1.1.2]. We consider the fine bornology [19, Definition 1.11] on its underlying
vector space such that R becomes a complete bornological ring [19, Example 1.27]. Suppose
further that k is self-injective in CBorng, e.g. k = C, R. Then, R is a Koszul monoid in
CBorn,, since the functor Vect; — CBorny is fully faithful and exact [19, Example 1.77].

We now discuss in what sense a Koszul monoid is ‘as close to being semisimple’ as a
graded monoid can be. For the rest of this section, we fix a positively graded monoid A in £.

Proposition 4.9 Let M € grA-Mod be a projective left Ag-module living only in degrees
> n. Then, M admits a graded projective strict resolution of A-modules

RN Y LN Ly
such that P* lives only in degrees > n +i. So P' = @jer-i P}.

Proof We may assume, without any loss of generality, that n = 0. We consider the module
P’ =A® Ao M. This is a graded projective A-module by Proposition 3.9 and, moreover,
it lives only in positive degree. By Proposition 3.8, there exists a strict graded epimorphism
d’ : P® — M. This fits into a short strictly exact sequence

0 0
0>K'S P S oo
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with KO = Ker(d®), a graded Ag-module, and * : K® — PO the inclusion map, a strict
monomorphism. Since Pé) = Ap ®4, Mo > My we see that in degree 0, d® is a monomor-
phism. Hence, K° lives only in degree > 1.

Wenowlet Pl = A® 40 K 0. Since K9 is the kernel of a strict epimorphism of projective
Ag-modules, it is a projective Ag-module by Lemma 3.4. Hence, P! is a projective A-module
by Proposition 3.9. We note that P! is graded and lives only in degrees > 1. We construct
amap d' : P! — P? as the composition of the map P! — K and the inclusion map
(9. K% — PO This map d! is strict since it a composition of a strict monomorphism and a
strict epimorphism. The sequence

1 0
N IR V)

is strictly exact.
We can continue in this way to construct our desired projective resolution. Indeed, suppose
we have a strictly exact sequence of graded projective A-modules defined up to degree i

.ol 1 0
N N Ny VN

with each P/ living only in degree > j. Suppose also that the sequence is constructed such
that P/ = A®a4, K/~! with K/~ the graded Ag-module Ker(d/~! : P/=! — Im(d/~!) ~
K772y Welet K'+! = Ker(d'+! : P! — Im(d') ~ K'~"), which is a projective Ag-module,
and define PIt! = A ® 40 K ! This is a projective graded A-module living only in degrees
> i + 1. The differential 4! : PiT! — P! is the strict map defined as the composition of
the map PI*! = A ®4, K' — K' and the inclusion K’ — P'. The extended sequence

. di+l 'di dl d()
ptle . pi S PSP M0

is strictly exact. O

Corollary 4.10 If M € grA-Mod is a pure projective left Ag-module of weight n, then M
admits a graded projective strict resolution of A-modules

s>PPspPplo Pl
such that P! lives only in degrees > n +i.

Corollary 4.11 Let M, N € grA-Mod be pure of weights m, n, with M projective as a left
module over Ay. Then,

Extiyep ptoa (M, N) =0
fori >n—m.

Proof Without loss of generality we may assume m = 0. By Corollary 4.10, M admits a
graded projective resolution of A-modules
RN Y LNy Ly

such that each P’ lives only in degrees > i, i.e. Pl = &b
Homgra.Mod (P®, N) which has objects

j=i Pj- We examine the complex

HomgrA-Mod(Pia N) = HomgrA-Mod @ Pl:, N

Jj=i
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Since N is pure of weight n we see that Homgra-moa (6D P;, N,,) = 0fori > n. Hence,

jzi
Exths poa (M, N) =0

fori > n. O

Proposition 4.12 If A is a Koszul monoid then, for any pure left A-module M of weight n,
we have ExtgrA_Mod (Ag, M) = O unless i = n.

Proof Suppose that A is a Koszul monoid. Then, by definition, Ao admits a graded projective
strict resolution of A-modules.

> P25 Pl PO A

with each P! generated by its degree i component over Ag. We see that Ext;r A-Mod (A0, M) is

the i'" cohomology object of the complex Homgya-mod (P°, M). But, since Pl is generated
by its degree i component and M is pure of weight n, so M = M,, we see that all the
terms in the complex Homgra-Mod (P®, M) are zero other than Homgya-Moa (P”, M). Thus,
Exty poa (A0, M) = 0 unless i = n. a]

Lemma 4.13 Suppose that there exists a graded projective strict exact sequence of A-modules
Pig...ﬁPlil)PoﬂMﬁO
such that P' is generated by its degree i component over Ag. Then, if we let
K':=Ker(d' : P! - Im(d"))
we have that
Extyra poa (M, N) = Homgramoa (K, N)
for any pure N € grA-Mod.
Proof By dimension shifting, we see that there is an exact sequence
0 — Hom(Im(d"), N) — Hom(P', N) — Hom(K', N) — Ext (M, N) — 0
Therefore,
EXt;_/i-Mod (M,N) = Coker(HomgrA-Mod(Pi , N) — Homgra-Mod (K 'N))

Now, since P! is generated by its degree i component over Ag and K lives only in degrees
> i + 1, we see that Homgra-Mod(P', N) — Homgra-Mod(K', N) is the zero map, and
hence

Extyra poa (M. N) = Homgramoa (K, N)

m}

Proposition 4.14 If A is a pre-Koszul monoid and EXt;rA-Mod (Ao, Ag(n)) = Ounlessi = n,
then A is Koszul.
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Proof We will construct a projective resolution P* for Ag using a similar method to Propo-
sition 4.9. For A to be Koszul, we want each of our modules P’ to be generated in degree
i over Ag. As before, we can take P® = A. Suppose that the strict resolution in question is
constructed up to degree i

;o d d! d°
PSP S PSS A0

with each P/ a graded projective A-module generated by its degree j component over Ag
and with d/ a strict monomorphism in degree j. We consider K? := Ker(d' : P! = Im(d")).
This is a projective left Ag-module living only in degrees > i + 1. Since P is generated in
degree i and Ag(n) is pure of weight n, we see that by Lemma 4.13,

EXtifA voa (A0, Ao(n)) = Homgea-moa(K', Ao (n))

which, by assumption, is zero for i + 1 # n. Hence, since K ives only in degree >i+1,
K' is generated by its (i 4+ 1)"" component because A is pre-Koszul. We take P'*1 to be the
graded projective A-module A ® 4, K ;. There is clearly a strict epimorphism

A®ay P = A®ay Ao ®ag Kl = A®ag K[\ — P!

1

and therefore Pi*! is generated by its (i + 1)" component. It is simple to check that we have
strict exactness in degree i + 1. O

Proposition 4.15 If A is a pre-Koszul monoid, then it is Koszul if and only ifExt;rA_Mod (Ao, Ao
(n)) =0 unlessi = n.

Proof This is clear from the two propositions above. O

Definition 4.16 If A is a Koszul monoid, we define the Koszul complex to be the sequence
o> P35 p2oopl

constructed in Proposition 4.14. We note that this complex gives a resolution of Ay.

5 Quadratic Monoids

Analogously to quadratic rings, we would like a concept of a quadratic monoid in our category
E.

5.1 The Tensor Monoid

We assert the existence of the tensor monoid using the following theorem.
Theorem 5.1 [17, Theorem VIL.3.2] The forgetful functor Mon(E) — & has a left adjoint.

Definition 5.2 The tensor monoid 7 (A) of a monoid A in £ is the graded monoid

T(A) = é T,(A) = é A®"
n=0 n=0

with multiplication i : T(A) ® T (A) — T (A) determined by the canonical isomorphism
Wi T;(A) ®@Tj(A) — T ;(A)
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The unit is the inclusion
n:To(V) - T(V)

Remark If A is a monoid and M is an (A, A)-bimodule, we can define the tensor module
TAM)=AdMdMRINM)D....

Lemma 5.3 If Tx,(A1) is a pre-Koszul monoid, then it is Koszul.

Proof If T, (A1) is pre-Koszul, then A is projective over Ag and hence Ao admits a pro-
jective resolution P® as a T4,(A1)-module

00— TA()(AI) ® 4o Al — TA()(AI) — Apg—> 0

with each T4,(A;)-module P’ projective and generated in degree i. O

Example 5.4 Suppose that Ry is a semisimple Banach algebra over a non-trivially valued field
k and suppose that Ry is injective over itself as an element of CBorng, for example Ry = C.
Suppose further that R; is a projective Rg-module, e.g. Ry = H©) = {(c))iecc—oy | ci €
C, Zie(C—{O] [lci|| < oo}. Then, we can consider the tensor algebra Tg,(R1) in CBorn;,. We
note that R is also projective as a module in CBorny. To show that Tg,(R1) is pre-Koszul
it suffices to prove the hom condition. Suppose that M = EBkZi “ li_n)ljE J "(M;)y is a graded

Tg,(R1)-module in CBorny living only in degrees > i and that
Homgr 7y (R))-Mod(CBorny) (M, Ro(n)) =0
unless n = i. Then, we see that, identifying CBorny, with the full subcategory of essentially
monomorphic objects in IndBany
€D 1im Homzy, (r,)-Mod(Bang) (M)k, Ro(n)) =0
k>i jeJ
unless n = i. Hence, we see that for each k > i,
1<ir_n Homzy (r)-Mod®any) (M )k, Ro(n)) =0
jed

unless n = i. Since M € CBorng, each of the system morphisms in M are monomorphisms
and, hence, each of the morphisms in the system (Homzy (r,)-ModBany) (M)k, Ro(n))) jes
are epimorphisms. Hence, if the inverse limit of these abelian groups is zero, we see that
each HomTRO(Rl)-Mod(Bank)((Mj)k, Ro(n)) = 0 unless i = n. Since Ry is semisimple, we
therefore can use a similar reasoning to Proposition 4.5, noting that by [5, Lemma A.29] a
strict epimorphism of Banach spaces is equivalently a surjection, to show that for all j € J
there is a strict epimorphism

Try(R1) ®pry (Mj)i — M;

in Tr, (R1)-Mod(Ban,). Hence, we see that, by [1, Proposition 2.10] there is a strict epimor-
phism

TRy (R1) ®ry “Hm™(Mj); = “Lm Ty (R1) ®ry (Mj); — “ lim "M
jel jel j'eJ

in grTg,(R1)-Mod(CBorny).
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If A is positively graded, we can consider A as an (Ag, Ag)-bimodule. There is a canonical
morphism

T TAO (A]) — A
formed by ‘linearly’ extending the multiplication
Wi A?A"l — A

for all i € N. We make the following definition.

Definition 5.5 We say that A is a quadratic monoid with quadratic data (A, R) if A is
pre-Koszul, and there exists a strict graded epimorphism

7w Tag(A) - A
such that there exists a strict epimorphism
Ty (A1) ®ay R @4y Tay(A1) — Ker(m)
with R = K> 1= Ker(A; ®4, A1 — A2).

Remark We see that A >~ Coker(Ker(w) — T4,(A1)) with Ker(;r) generated by R. By some
abuse of notation, we denote this quadratic monoid by

A =Ty (A1)/(R)

We note that A is in some sense generated by A; over A with relations of degree two.

Example 5.6 1f the tensor monoid T4, (A1) is pre-Koszul, then it is quadratic. We may take
R = 0 and see that there clearly exists a strict epimorphism 7 : T4,(A1) — T4,(A1) with
zero kernel.

Lemma 5.7 Let K = Ker(r). Then, K is graded as a left Ag-module by

o
K; = Ker(u; : A, — A))
and there exists a strict epimorphism
i-2
) iy
@A?J Qa4 R Qa4 A?l / — K;
j=0

Moreover, for each i > 0,
A; =~ Coker(K; — AP

We now fix a positively graded pre-Koszul monoid A. We recall that there is a short strictly
exact sequence

0> Asg—>AS Ag—0
Definition 5.8 A is a quotient of T,,(A1) if there exists a strict epimorphism

TAO(AI) —-» A
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Lemma 5.9 If A is a quotient of T4, (A1), then there exists a strict epimorphism
A®p, A1 > Asp
given, in each degree i > 0, by the (Ag, Ao)-bimodule map
Aic1,1 1 Aic1 ®ag A1 = A

Proof 1t suffices to show that A;_j 1 is a strict epimorphism for each i. We see that the
following diagram commutes

Ai—1 ®a, Al

®ayi Wi

A

A

and hence, since y; is a strict epimorphism, A;_j 1 is also a strict epimorphism by Proposi-
tion 2.6. O
Remark We see that A is generated by A over Ag.

Proposition 5.10 Forany pure M € grA-Mod, Exty s vioq(Ao, M) = Homgra-Mod(A~0, M)

Proof We consider the graded projective strict exact sequence of A-modules A — Ay — 0.
We note that A is generated by its degree O component over Ag and A~ = Ker(A — Ap).
Therefore, by Lemma 4.13, we see that

EXtgea pod (A0, M) = Homgra.mod(A~0, N)
O

Corollary 5.11 IfExtérA_Mod(Ao, Ao(n)) = Ounless n = 1, then there exists a strict epimor-
phism A @4, A1 — A~o. Moreover, A is a quotient of Ty, (A1).

Proof Consider Ao (n) as apure graded A-module of weight n. Using the previous proposition,
we note that

EXtérA.Mod(Ao, Ao(n)) = Homgra-Mod (A0, Ao{n))
and hence
HomgrA-Mod(A>0» Ap(n)) =0

unless n = 1. Then, since A is pre-Koszul, A~ is generated by its component in degree 1,
so there exists a strict epimorphism

ARy Al > Aso
Hence, for each i, there exists a strict epimorphism
Ai—1 ®4y A1 — A,
For each i > 0, we can construct a chain of strict epimorphisms
AP = (A1 ®ag A ®ag AV 25 A @AY 2 - L A
and hence there exists a strict epimorphism
Thy(A) — A

m}
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Proposition 5.12 Suppose that A is a quotient of T4, (A1). IfExtérA_Mod(Ao, Ag(n)) =0
unless n = 2, then A is a quadratic monoid.

Proof 1t suffices to show that there is a strict epimorphism
Taog(A1) ®ag R ®4ay Tay(A1) — Ker(rr)

where R = K». Let K = Ker(r). We note that, since the 0" and 1/ components of T4,(A1)
are Ag and Ap respectively, then K only exists in degree > 2. We have a strictly exact
sequence

0= K 5 Tyy(A1)_g > A— Ag — 0

where T4,(A1) is a projective A-module generated by its degree 1 component over Ag. By
Lemma 4.13,

Extgea o (A0, Ao (1)) = Homgramoa (K, Ao (n))

Hence, Homgra-Mod (K, Ag{n)) = O unless n = 2. Since A is pre-Koszul, there exists a strict
epimorphism

AQpy Ky —» K

Since there exists a strict epimorphism 74,(A1) — A and strict epimorphisms are stable
under composition by Proposition 2.5, there is a strict epimorphism

Ty (A1) @4y Ko ®ay Tay(A1) - A®ay K2 @4y A > A®a, Ko - K
where the second step follows by Proposition 3.8. O
The key result of this section is the following.
Corollary 5.13 Any Koszul monoid is quadratic.

Proof Suppose A is a Koszul monoid. Then, by Proposition4.15, Ext;r A-Mod (A0, Ao(n)) =0
unlessn = i. Hence, EXtérA-Mod(AO’ Ao(n)) = Ounlessn = 1. Therefore, by Corollary 5.11,

A is a quotient of T4,(A1). Moreover, since ExtérA_Mod(Ao, Ag(n)) = O unless n = 2, then
by Proposition 5.12, A is a quadratic monoid. O

6 Dual Quadratic Monoids
6.1 Dual Objects

Suppose that A is a positively graded monoid in £ and that M is a left Ag-module. We want
to define the notion of a dual Ag-module, M*. Indeed there are various notions of what a dual
object should be in an arbitrary monoidal category. We make the following definition which
explicitly constructs M* as an Ag-module. Our theory is closely related to the definition
of a dual object from [10, Section 2.10]. Indeed our definition of the dual of a dualisable
Ap-module corresponds exactly to their dual object in the monoidal category Ag-Mod.

Definition 6.1 The left dual Ag-module M* is defined to be
M* = Hoon-Mod(M’ AO)
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If M is instead a right Ag-module, the right dual Ap-module *M is defined to be
*M = HOIrlMod_A0 (M, AO)
Remark We note that Aj = Homy  noa (Ao, Ao) = Ag by Lemma 1.21.

If M is graded, we may define a grading on M* by
(M*); = Homy noa(M—i, Ag) = (M—;)*
By the internal hom adjunction, for any left Ag-module M there is an isomorphism
Homa.Mod (M™ ®4, M, Ag) = Homa,.Mod (M™, Homy  ioa (M, Ao))
= Homy-moea(M*, M)
Definition 6.2 We define the evaluation morphism evys : M*®4,M — Ag to be the image
of idys+ under the isomorphism
Homa-Mod (M*, M™) >~ Homa,-Mod (M™ ®4, M, Ag)

Definition 6.3 We say that an (A, Ag)-bimodule M is left dualisable if *(M*) >~ M and
there exists a coevalution morphism coevy : Ag — M ®4, M* such that the compositions

coevy @ agidm idy®ayevm
-

(M @4y M*) @4y M —> M ®4, (M* @4, M)

and

" idM*®AocoevM evM®A0idM*
—_————  ———

M* ®A() (M ®A0 M*) g (M* ®A0 M) ®A0 M*
are the identity morphisms.

Remark We remark that if M is an (Ao, Ag)-bimodule, then M* and *M are (Ag, Ag)-
bimodules.

Remark We say that an (A, Ag)-bimodule M is right dualisable if (*M)* ~ M and there
exists a coevaluation morphism coevy : Ag — *M @4, M satisfying similar conditions to
above, with the evaluation morphism defined to be evy : M ®4, *M — Ayp.

Example 6.4 We note that when Ag = k is a field, the dualisable modules are precisely the
finite dimensional vector spaces. When Ay is a semisimple ring, the dualisable modules are
precisely the finitely generated ones.

We now prove a few important propositions.

Proposition 6.5 Suppose that M is a left dualisable (Ao, Ao)-bimodule, N is an (Ao, Ag)-
bimodule and N is a left Ag-module, then we have that

MAO.MOd(Nl ®ay M, No) MAO.MOd(NI, M* ®4, N2)

Proof This isomorphism is induced by the isomorphism

ile ®A0 coevy

SN M*
N1~ Ni ®pg Ag ——————> N1 ®4ay M @4y M* — Ny @4, M* 2 M* R4y N2

m}
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Proposition 6.6 For a left dualisable (Ao, Ag)-bimodule M and a left Ag-module N, we
have

M* @4, N x~ Hom,  vjoa(M, N)

Proof Indeed, by Propositions 6.5 and 1.21, and the internal hom adjunction,

@AO-MOd (M7 N) =~ HomAQ-MOd (A07 @Ao-MOd (M7 N))
> Homa \-Mod (A0 ®4, M, N)
>~ Homa,-Mod (Ao, M* @4, N)
~ M* ®ay N
m]

Corollary 6.7 For a right dualisable (Ag, Ao)-bimodule M and a left Ag-module N we have

M ®AO N ~ Hoon-Mod(*M7 N)

Proof Indeed, since * M is a left dualisable (Ag, Ag)-bimodule, applying the previous propo-
sition we obtain

M@y N~ (*M)* Qay N HomAO_Mod(*M, N)

[m}

Corollary 6.8 Suppose that M is a left (Ao, Ao)-bimodule and N is a left dualisable (Ag, Ao)-
bimodule. Then

(M ®py N)* = N*" ®4, M*
Further, if M is left dualisable, then M ® 4, N is left dualisable.
Proof We have that, by Proposition 1.23.
(M ®4, N)* := Homy voa(M @4, N, Ao) = Homy  noa (N, Homy viea (M, Ag))
=~ Homy poa (N, M7)
and since N >~ *(N™) then, by Proposition 6.5,
~ N*®q, M*
Now suppose that M is dualisable. We define the coevaluation
coevpmg N Ao = (M @4y N) @4y (M @4y N)*
as the composition

coevy idy®aqcoevn ®agidy+

Ay ——> M Qa, M* ~M R4 Ao ® 4, M*
—> M ®a, N ®4y N* ®ny M* = (M ®4, N) ®4, (M @4, N)*

We can easily check that this is compatible with the evaluation morphism

CUM® N - (M @4y N)* ®4y (M @4, N) = A
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which can be written as the composition

idyx®evy ®A0 idy
- s

(M ®A0 N)* ®A0 (M ®A0 N) ~ N* ®A0 (M* ®A0 M) ®A0 N
— N*®4y N 25 Ag

O
Proposition 6.9 If M = ,;.; M; is a finite direct sum of left dualisable (Ag, Ao)-bimodules
then
M* ~ P m;
iel
Proof We note that, since the internal hom functor preserves finite coproducts in Agp-Mod,

M* :=Homy  voa (M, Ao) = Homy voa (6D M, Ao)

iel
~ @) Hom,  yioa (M. Ao)
iel
-
iel

[m}

Definition 6.10 Suppose that M is a left dualisable (A, Ap)-bimodule and N is a left Ag-
module. If f : M — N isaleft Ap-module map we define the left dual map /* : N* — M*
to be the map
idy+® * *
« DT NY @ (M @a MY IS (N* @40 M) @4y M

(idN*®A0f)®A0idM* eUN®A0idM*
-

(N*(X)AON)@AO M* M*
We note that this map makes the following diagrams commute
* f*®agidm " coevy %
N* Qs M ———— M* @4, M Ay —————> M Q@ M
lidN*®Aof lgvM lcoevN lf®A0idM*
Ay @i f*
N*®p N — 5 A N @4y N* —05 N @4, M*

Remark We remark that if f is strict, then so is f*, being a composition of strict maps.
We state without proof the following easy propositions.

Proposition 6.11 Suppose that N and M are left dualisable. If f : M — N is a left Ag-
module map, then *(f*) >~ f.

We will call any f satisfying this condition left dualisable. Similarly, any f such that
(*f)* >~ f is right dualisable.

Proposition 6.12 Suppose that f : M — N and g : L — M are left dualisable Ag-module
maps between (Ag, Ag)-bimodules, then (f o g)* = g* o f*.
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Proposition 6.13 Suppose that f : M — N is a left dualisable epimorphism of (Ao, Aog)-
bimodules, then f* : N* — M™* is a monomorphism on right dualisable maps. Similarly, if
f is a monomorphism, then f* is an epimorphism on right dualisable maps.

Proof Suppose that f is an epimorphism, and that we have two right dualisable maps g, g» :
L — N*of (Ag, Ag)-bimodules such that f*og; = f*og,. Then, *(f*og1) = *(f*og2),
andhence *g1o f = *gro f. Since f isan epimorphism, *g; = *g5,andhence g >~ (*g1)* =
(*g2)* =~ g». Therefore, f* is a monomorphism. The other claim follows similarly. O

Proposition 6.14 Suppose that Ay is injective as a module over itself. Suppose that we have
amap f : M — N between a left dualisable (Ao, Ag)-bimodule M and a left Ay-module
N. Then,

Ker(f*) >~ Coker(f)* and XKer(f)* ~ Coker(f™)

Proof Consider the strictly exact sequence

0— Ker(f) > M —f> N — Coker(f) — 0
If we apply the functor Homy  pea(— Ao), which is strictly exact by Proposition 2.25, we
obtain the strictly exact sequence

0 — Coker(f)* — N* EAy VAN Ker(f)* — 0

and so our result follows. O
For the rest of this subsection we will assume that Ay is injective as a module over itself.

Proposition 6.15 If N isinstead aright Ag-module and M is right dualisable, then Ker(* f) =~
*Coker(f) and *Ker(f) ~ Coker(* f).

Corollary 6.16 If f : M — N is a map between left dualisable (Aq, Ag)-bimodules M and
N, then Ker(f) is a left dualisable (Ag, Ag)-bimodule.

Proof We first note that *(Ker( f)*) >~ *Coker(f*) >~ Ker(*(f*)) >~ Ker(f) using Propo-
sitions 6.14 and 6.15. Let K = Ker(f). We define a coevaluation map coevg : Ay —
K ®a, K* as follows. We note that K* =~ Coker(f*) by Proposition 6.15. Denote by ¢ the
inclusion map K < M and by r the cokernel map M* — Coker(f*) ~ K*. Consider the
composition

coevyy idy@aym

Ay ——> M ®4, M* M ® 4, Coker(f™)

We note that the following diagram commutes

y idy®anT
Ao 25 M @4y MF XM @4, Coker(f*)
lcoev/v lf®/‘0id"”* lf@AOid,{*

idy® idN®anTT
N®uy N* Y N @4, M* "N ®,, Coker(f*)
and hence we see that

(f ®ag idg=) o (idy ®a, ) 0 coevy = (idy ®a, ) o (idy @4, f*) o coevy =0

@ Springer



Koszul Monoids in Quasi-abelian Categories Page350f66 50

since 7w o f* = 0. Therefore, by the universal property of the kernel, there exists a map
coevg : Ag — Ker(f)®a,Coker(f*) ~ K ®4, K*

such that (¢t ® 4, idg~+) o coevg = (idy ®a, 7) o coevy . We note that the evaluation map
evk : K* ®4, K — Ap exists and satisfies evg o (7 @4, idkx) = evy o (idpy @4, 1). We
check that this coevaluation is compatible with the evaluation. Indeed,

to(idk ®a, evk) oak i+ k o (coevg ®a, idg)
= (1 ®a, evk) o ag g+ ik o (coevk ®a, idk)
= (idy ®a, evk) o am k*k © (1 @4, idx+) ®a, idk) o (coevk ®a, idk)
and since (t ® 4, idg*) o coevk = (idy ®a, ) o coevy, we have
= (idy ®a, evk) oam k+k © ((idy ®a, ) R4, idk) o (coevy R4, idk)
and since evk o (m ®a, idk) = evy o (idyx @44 L),
= (idy ®a, evy) o ap m+ m o (idy ®a, (idpy+ @4y 1)) o (coevy R4, idk)
= (idy ®4, evy) o ay ,mM+,M © (coevy R4, idy) ot

using the compatibility of evys and coevyy,
=idy ot
=toidg
Therefore, as ¢ is a monomorphism, we get that
(idx ®a, evk) oak g+ k o (coevk ®a, idx) = idg
The other compatibility condition follows similarly. Hence, Ker( f) is left dualisable. O

Corollary 6.17 If f : M — N is a map between left dualisable (Aq, Ag)-bimodules M and
N, then Coker(f) is a left dualisable (Ao, Ag)-bimodule.

Proof This follows using a similar proof to the previous proposition. O

6.2 Dual Quadratic Monoids
Definition 6.18 We will say that a positively graded monoid A is left dualisable if each A;
is a left dualisable (Ag, Ag)-bimodule.

Suppose that A is a left dualisable quadratic monoid with quadratic data (A, R). We note
that R = K> is a left dualisable (Ag, Ag)-bimodule by Corollary 6.16. If we dualise the strict
monomorphism

t: R A1 ®4, A1
we obtain a map
AT ®ay AT >~ (A ®4y A1)" — RY
Definition 6.19 The left orthogonal Ag-submodule R is the kernel of the map
AT @4y AT = R*
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Definition 6.20 Suppose that A is a left dualisable quadratic monoid (A1, R). We say that a
positively graded pre-Koszul monoid A' is the left dual quadratic monoid of A if

A' > Tpy(AD/(R)
where we use the notation of Definition 5.5.

Remark In this paper, we will not explore under which conditions A' exists and is pre-Koszul.
It may be more tempting to define, for a Koszul monoid A, the dual Koszul monoid to be
Al = @AO_MM (Ag, Ap) but we will not explore this approach in this paper.

Spelling this out, there exists a strict epimorphism 7' : Tpo(A]) — A' with a strict
epimorphism

Tay(AT) ®4, RT @4, Tay(A}) — Ker(xr')

Example 6.21 If we once again consider the quadratic tensor monoid T4,(A;), we see that
Rt = Ker(A] ®4, A7 — 0) =~ A} ®4, A]. Therefore,

A' = Coker(Tx,(A}) ®ag R ®aq Tag(A]) = Tay(A) = Ao @ A}

If A is instead a right dualisable quadratic monoid, we can define the right orthogonal
Ag-submodule * R to be the kernel of the map

i RA R4, *A; = *R

The right dual quadratic monoid is then a positively graded pre-Koszul monoid with
presentation

FA = TaCAD/CCR)
Now, suppose that A is a left dualisable quadratic monoid with left dual quadratic monoid
Al
Lemma 6.22 We have -(R*) ~ R.

Proof Indeed,
L(RF) = Ker(*(A}) @4, *(A}) — *(R))
~ Ker(A; ®4, A] — *(R1))
= Ker(A| ®4, A1 = “Ker(A] ®4, AT = RY))

Now, by Proposition 6.15,

>~ Ker(A] ®4, A1 — Coker(R < A| ®4, A1))
~Im(R — A R4 Ar)

~ R
O
Proposition 6.23 '(A!) ~ A.
Proof This follows immediately using that A; is dualisable and Lemma 6.22. O
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Lemma 6.24 A!l ~ A7

Proof We note that K i = 0, and hence the strict epimorphism A} — A!1 is an isomorphism.
O

We have the following results, similar to the ones stated in the previous section.

Lemma 6.25 We let K' = Ker('). Then, K' is graded as a left Ag-module by
K! =Ker((AH)® — A}
and there exists a strict epimorphism
i—2

DAD @4 R ®4 (ADTID 0 K
j=0

Moreover; for eachi > 0,
A}~ Coker(K} — (AH)®")
Proposition 6.26 A' is right dualisable.

Proof We will show that each AE is a right dualisable (Ag, Ag)-bimodule. Indeed, we note
that (AT)®i is right dualisable using Proposition 6.8 and the fact that A is left dualisable.
We can apply Corollary 6.16 to show that R*, being the kernel of right dualisable objects, is
right dualisable. Hence, since A§ is isomorphic to a cokernel of right dualisable objects, it is
right dualisable by Corollary 6.17. O

Proposition 6.27 We have
“(AD = (K}
Proof Indeed, using Proposition 6.15,
*(A}) = *Coker(K; — (A})®")
~ Ker(AY" — *(K}))
~ (K}

Proposition 6.28 Define P; to be the pullback of all the monomorphisms
Ai@/ ®A() R ®A0 A?(i_j_z) s A(]@l
where j ranges from 0 to i — 2. Then, there exists an isomorphism
P~ 1K) = *(A)
foreachi.

Proof There exists a strict epimorphism of right dualisable (A, Ag)-bimodules
i—2
PAN® @4, R @4, (AN 2 — K|
j=0
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Dualising this map we obtain, by Proposition 6.13, a strict monomorphism
“(KH = @AY @4, *(RY) @4, AT
j=0
We know that +(K}) = Ker(A$" — *(K})). Hence,

i—-2
Lkh = Ker(A?" - P A} @4, "(R) @4 A‘?("f‘”)
j=0

To show that P; ~ +(K l') it suffices to show that P; is also the kernel of this map. Now,
since *(R1) ~ Coker(t : R — A; ®4, A1) we see that the map

i—2
Pi— A — DAY @4, *(RY) @4, AT
j=0

is zero since, by definition of the pullback, it factors through A?j ®4y R®4, A?(i_j =2 for
all0<j<i-—2.
Now, suppose that we have an object W such that the map

i—2
W — AP — P AY @4, *(RY) @4, AT
j=0

is zero. We see that, since the composite R — A1 ®4, A1 — A is zero, there exists a map
*(R1) — Aj such that the following diagram commutes

Al @4y A1 — *(RY)
A
and hence the following diagram commutes
A(1®i A‘lg] ®A() *(RL) ®A0 A‘lg(i*jfz)
) iy
AT @4y A2 @4, ATV
The map
W — A‘?i — A<1g>j R4y A2 ® 4, Ai@(iijiz)
is therefore zero since it factors through the zero map
W — A @4, " (RY) @4, A7 /77
Since R = K, = Ker(A; ®4, A1 — A»), there exists a map

W — A% @4, R®a, AZV72
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such that the following diagram commutes

A% 80, R, y A5

w
Hence, since, for each 0 < j < i — 2, all the maps
W — A @4 R@a, AP o 4%

are equal, then by definition of the pullback there exists a map W — P; such that the
following diagram commutes for all0 < j <i — 2,

. o ‘ e -
AP ®ay R®ay AT TP — AP — @AY ®u, *(RY) @4, AT

1 1

Ppe——— W

Hence, P; is a kernel of the map A?i — @;;% Ai@j ®4, *(RY) ®4, A?(i_j_z) so, by the
uniqueness of the kernel

P~ 4K}

7 The Koszul Complex

Suppose that A is a left dualisable quadratic monoid (A1, R). Suppose further that the dual
quadratic monoid exists, and denote it by A'. For each i > 0, we let K’ be the A-module

K'=A®a, *(A)
We note that this module lives only in degree > i.
Proposition 7.1 K is a projective A-module.
Proof We want to show that the functor
Homa . Mod (A ®4, *(A}), —) : A-Mod — Ab

maps strict epimorphisms to surjections. Indeed, we note that Ai. is right dualisable, and
hence (*(Ai.))* ~ Al Therefore, by Theorem 1.22 and Proposition 6.6,

Homa-Mod (A ®4, *(Ai-), —) =~ Homa.mod (4, HLmAO-Mod()’< (A§)®A0’ =)
~ Homa-Mod (A, A} ®4, —)

We note that Ai. ®4, — maps strict epimorphisms to strict epimorphisms since it is right
exact. The claim follows since A is a projective A-module, and therefore Homa-noda (A, —)
maps strict epimorphisms to surjections. O
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We consider the map
1A ®ay A > Al
which is the multiplication map on A'. Dualising, we obtain a map
it T(ALLD = M(AD) ®a M(AD = Ap ®4, F(A))
When tensored with A, this gives a map

ids®ay* #,1

Kt =A@y, *(Al) ——— A®4, A1 @4, *(A})

/1®A0td*<A,_)
1

A®a *(4) =K'
which we will denote by d'*+! : K+! — K. Being a composition of strict maps, it is strict.
We let
Z' =Ker(d : K' — K71
B = Im@*': Kt - K
Lemma7.2 We haved' od'™! = 0.

Proof By Proposition 6.28, we have that *(A;) is isomorphic to the pullback of all the
monomorphisms
A2 @1, R gy AP 5 4
where j ranges from 0 to i — 2. In particular, we can identify the morphism *“5',1
*(A,)) — A1 ®a,*(A}) with the morphism Piy; — Aj ®a, P; induced by the pull-
back. Similarly, the morphism ids, ®4, *“;'—1 | can be identified with the morphism
Al ®ay Pi — A1 ®ay A1 ®4, Pi—1. In particular, using the properties of the pullback,
we note that we have the following commutative diagram.
A®py Piy1 ————— AQ®a, R ®4, Ai@i_l
J,idA@Ao*/‘;'.l
A®ay Al Qa, Pi
J’idA®AoidA1®A0*/‘«;,1'1
A®npy Al ®ag Al ®ag Piml —— A®y, APT!
J’idA®AOM2®A0id*(A! ) lid;,@AO[LQ@AOid?I[_I
A@py Pic) —————————— A®y, AY!
We see that the left vertical morphism is precisely the composition d’ o d*!. Since
R = Ker(u2), then the right vertical morphism is zero. Hence, since the bottom horizontal

morphism is a strict monomorphism, being a pullback of strict monomorphisms, then we see
that d' o d'*! = 0. O

Definition 7.3 The Koszul complex K°® of A is the complex
K*=...A®a, "(A)) = A®4, *(A}) — A

with differentials d’t! : K't! — K defined as above.
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We note that the objects of the Koszul complex are graded with components
Kj = Aj-i ®ay (A}

Each IC". is projective as an A-module and is generated by its degree i component over Ag
since K} = Ap ®a4, *(Al!.) ~ *(Ai). We will show in this section that A is a Koszul monoid
if and only if this complex provides a resolution of Ayp.

Proposition 7.4 For all i > 0, the multiplication map /LE L A;. ®a4, A!1 — Ai‘+1 is a strict
epimorphism.

Proof This follows directly from Lemma 5.9 since A' is a quotient of Tpo(AD). O

Corollary 7.5 The right dual map * 1} | : *(A}, ) — *(Al ®a, A}) > A1 ®a, *(A]) isa
strict monomorphism.

Proof This follows from Proposition 6.13. O

Proposition 7.6 The (i + 1)-th component of the graded map d'+' : KIt! — K is a strict
monomorphism.

Proof We note that
Kﬁii ~ Ap ®a, *(A;-‘rl) = *(A;‘+1)
and
Kiyy =~ Ay ®a4, *(A)
Hence, the map dl’j:ll is equivalent to the map
*uiy o M(Al ) — AL ®a, *(A))
which is a strict monomorphism by the previous corollary. ]
Corollary 7.7 B! | ~*(Al)).

Corollary 7.8 For each i > 0, Z' lives only in degrees > i + 1.

Proof We note that IC; = 0 for j < i, and hence Zj. = 0 for j < i. By Proposition 7.6,
Zl’f = 0, and our result follows. ]

Lemma 7.9 If there exist monomorphisms « - X — Y and ' : Z — Y, along with maps
f:Z— Xandg: X — Z such that the following diagram

XY
fT‘LgL/‘
VA
commutes, then f is an isomorphism.

Proof Indeed we have thatto f = and ' o g = 1. Hence, 1o (f o g) = (' 0 g = ¢ and, since
¢ is a monomorphism, we have that f o g = idy. Similarly ¢ o (go f) = to f = ¢ and,
since ¢’ is a monomorphism, we have that g o f = idy. O

@ Springer



50 Page 42 of66 R. Savage

‘We note that
Zj, =Ker(d],, : A1 ®a, *(4])) > A2 ®4, *(A]_)))

Proposition 7.10 Z!_ | ~ *(A} ).

1
Proof We first note that, since dii 410 dl'_tll = 0 by Proposition 7.2, there exists a map
*(Ai )~ Zf 41 such that the following diagram commutes

Zl, — A1 ®a *(A})

ro

AL

By Proposition 6.28, *(A;‘H) =~ P;11. We will show that there exists a map Zf+1 — Piy1.

We note that, by Corollary 7.5, there exists a strict monomorphism * (Ai.) — Al ®4 " (A§ _D-
The kernel of the map A1 ®4, A1 ®A0*(Ai._1) — Ar ®4, *(Ai._l) is exactly R®A0*(A§_1).
Since the map

Zi = A1 ®ag Al ®ay *(Aj_)) — A2 @, "(A]_)
is exactly the zero map

i
di+1

Z,l:+] — Ay ®A() *(A;) — A2 ®A0 *(A;_l)

then, by the universal property of the kernel, there exists a map Zl’: 41— R®a, *(Ai.il)
such that the following diagram commutes

i
di+l

T = A1 ®4, *(A) — A1 ®ay A1 ®ay "(A]_)) — Ay ®a, *(A]_))

;

R®a, *(Al_))
Using the definition of P; ~ *(Ai.)from Proposition 6.28, we see that, forall0 < j <i-2,
the maps
) . iy "
Zi o AL @ F(A) > AL @4y (AY @4y R@ay ADTI72) o ABEHD

are all equal. Further, using the definition of *(Al!.f 1) = P;_1 and the commutative diagram,
foreach 0 < j <i — 3, the maps

Zi = A1 ®a) Al ®a, "(A]_))
i i3
— A| Qay Al ®a, (A?/ ®a4y R ®4, A?t )
®(i+1)
— Al
are equal to the map

Zi,, = Rouy AZID s AP0+
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Hence, forall 0 < j <i + 1, the maps
Ziyy > A @4y R sy AT s 420

are equal, and thus there exists a map Zl’fﬂ — Py *(Ai'+1)' This clearly makes the
following diagram commute

Zi ) A1 ®ag *(A))
[

(AL

Therefore, by Lemma 7.9, we have an isomorphism Zl‘fH ~ *(A ]

1+1)'

Theorem 7.11 Suppose that A is a left dualisable quadratic monoid (A, R) with dual
quadratic monoid A'. Then, A is a Koszul monoid if and only if its Koszul complex is a
resolution of Ay.

Proof 1f the Koszul complex of A is aresolution of Ag then clearly A is a Koszul monoid since
its Koszul complex consists of projective A-modules K generated by their i’” components.

On the other hand, suppose that A is a Koszul monoid. We need to show that the complex
K* — Ay is strictly exact. We prove this inductively. Indeed, the map K* = A — Ay is the
natural projection map which is a strict epimorphism. Its kernel is isomorphic to A~ which
is isomorphic to the image of the map

K'=A®a, "(A) 2 A®s, Al > A=K

by Lemma 5.9. Now, suppose that the Koszul complex is strictly exact up to degree i. Then,
by Lemma 4.13

Extiyrs oa(A0, Ao(n)) = Homgramod (Z', Ag(n))

By Proposition 4.15, if A is Koszul then Ext;}i_mod(Ao, Ap(n)) = Ounlessi +1 = n.

Therefore, HomgrA.Mod(Zi, Ao(n)) = O unless i + 1 = n. Since A is pre-Koszul, Zl is
generated by its (i + 1)"" component. Therefore, there exists a strict epimorphism

A ®a le: +1 77 z'
Hence, by Propositions 7.7 and 7.10, there is a strict epimorphism

’Ci+1 =A ® a4 *(A§'+1) ~A ® 4o Z::+1 ~A ®4o Bzi+1 A

and the following diagram commutes

Ki+l
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By the universal property of the image B', there exists a unique map B — Z' such that the
following diagram commutes

’Ci+l ; ’Ci

N\

|

Zi

By Proposition 2.6, the map B’ — Z' must be a strict epimorphism. Since d’ o d'*! = 0,
we also know that there is a unique strict monomorphism B* — Z' such that the following
diagram commutes

Zi‘ }ICi

I

By uniqueness, the two maps B’ — Z’ must be the same. Since this map is both a strict
monomorphism and a strict epimorphism, it must be a strict isomorphism by Proposition 2.3.
Therefore B' >~ Z' and we are done. O

Proposition 7.12 If A is a Koszul monoid, then A' is too.

Proof If A is Koszul, then the complex
> A®a, (A = A®a, F(A)) > A= Ag— 0

is strictly exact by Theorem 7.11. Since our differentials are graded, for each j > 0 the
complex

0= *(A) = - > Aj 2 ®4, *(A) > Aj_1 Q4 *(A]) > Aj > 0
is strictly exact. Taking the left dual of this complex we obtain the complex
0 *(AD* <+« (Aj2®a, "(A))* < (Aj_1 ®a, *(A))* < AT <0
Equivalently, since A' is right dualisable, we have the complex
0 A} - Ay ®ay A%y < A} @4y A% < A% <0
which is strictly exact since the dual functor is exact by Proposition 2.25. These sequences
assemble to give the strictly exact sequence

o> A @ A > A @, AT > A A > 0

The objects of the complex are all projective A'-modules and the differentials are A'-module
morphisms. This complex gives the Koszul complex, A' ® Ag AL, of A' and provides a

'Y

resolution of Ag. Hence, A is a Koszul monoid. O

Suppose that A is a monoid in £. The symmetric group %, acts on 7,(A) = A®" by
permutation as follows.

o :T,(A) — T,(A)
A(l) ®A0"'®A0 A(”)_)AU(I) ®A0"'®A0 AU(")
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Let S, (A) be the coequalizer of all the maps o, for o € X,,. Then, the symmetric monoid on
A, S(A), can be defined to be

S(A) = EP $.(4)

n>0

Let /\" A be the coequalizer of all the maps sgn(o)o for o € %,,. Then, the exterior monoid
on A, /\ A, is defined to be

Ad=@DAA

n>0

If A is a monoid and M is an (A, A)-bimodule, we can easily define the symmetric module
Sa(M) by defining S5 (M), to be the coequalizer of all the maps o : Ta (M), = Ta(M),.
We can similarly define the exterior module A 4 M.

Example 7.13 Suppose that £ is enriched over the category of Q-vector spaces and that
T4,(Ay) is a pre-Koszul monoid. Then, we can easily show that there is a map ¢, :
Sao(A1)n — Tay(A1), which is a section of the coequalizer map 7, : T4 (A1), —
S4o(A1)n. Therefore, each S4,(A1), is a projective Ag-module. The hom-condition in the
definition of pre-Koszul follows from the isomorphism

Homgrs, (a))-Mod(M, Ao(n)) =~ Homgrr, (ap)-Moed(Ta,(A1) ®s, (a1) M, Ao(n))

for every Sa,(A1)-module M. Similarly, we can also show that the exterior module A , 0 Al
is pre-Koszul. If A is left dualisable, the quadratic dual of S4, (A1) is /\ A, A1- We consider
the Koszul complex

2
N d? d!
K® == Sag(A1) ®a [\ Al > Sag(AD) ®ay A1 = Sag(A1) » Ag — 0
Ao

where the differentials are given by d Sap (A1) ®4, /\i10 Al — S4,(A1) @4, /\iA_ol Aq
with graded part

i i—1
di:S3 (A @4y \ Al = 84T (AD @4 /\ Al

Ao Ag
given by the composition
i idsi;—i(A])@)AO*Mi'—l,l i—1
. ) -
4. (A ®4, [\ Al Siy (A1) ®4, A1 @24, [\ Al
Ao Ao

Mj—i.]@AOid/\ll'A—OlAl it i—1
s T AD ®ay \ A1

Ao
We then define maps
i i+1
) . i
B2 Sh AN ®ay [\ AL = ST (AD ®a4, [\ Al
Ao Ap

@ Springer



50 Page 46 of 66 R. Savage

for each i, j by

i 1 j-i-1@agid i Al

i
o i -
Si (A ®4, /\ Al > SHTHAD ®a Al @4y [\ Al
Ao Ao
id j_ic1 | ®agtt; i+1
S/,{ (A7) 0L, 1 i+
-0 SJ A ®a, /\A1

Ao
and we can then show that
hlodi+di ohl =iocid+ (j—i)oid=joid

which, since we are working in characteristic 0, defines a homotopy between the cochain
maps id, 0 : IC‘ — IC' It then follows, by [15, Proposition 2.2.39] that IC‘ is exact for each
Jj, and hence IC is exact Since S4,(A1) has a Koszul complex which is a resolutlon of Ao,
it is a Koszul monoid by Proposition 7.11. Similarly, we can show that A\ Ao A1 18 a Koszul
monoid.

8 Our Main Koszul Duality Result

Suppose that A is a left dualisable quadratic monoid, with quadratic dual monoid A'. We
denote by C(grA-Mod) the category of cochain complexes M*® of graded A-modules M' =
@j M}. We can consider M* € C(grA-Mod) and N* € C(grA'-Mod) as modules b, M

and @; N  over A and A' respectively. Define the full subcategories C' (grA-Mod) and
C'(grA-Mod) as follows. .
If M* € C(grA-Mod), with each M = @j M;., then M*® € CT(grA-Mod) if

M; =0fori >»0ori+j<K0
and M* € CY(grA-Mod) if
M} =0fori <Oori+j>0

The following diagram illustrates where the non zero components M ; lie.
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C’ (grA-Mod)

C'(grA-Mod)

We let DT (grA-Mod) and D' (grA-Mod) denote the localisations of the categories
C"(grA-Mod) and C* (grA-Mod) at strict quasi-isomorphisms. Note that these are triangu-
lated subcategories of C(grA-Mod).

Motivated by the Tensor-Hom adjunction for modules, we define functors

F : grA-Mod < grA'-Mod : G
M® — A ®4y M*
Homg, s voa(A: N°) < N*
We will show that these functors descend to triangulated functors
DF : D'(grA-Mod) — D' (grA'-Mod) and DG : D' (grA'-Mod) — D' (grA-Mod)
inducing the following equivalence.

Theorem 8.1 Suppose that A is a left dualisable Koszul monoid with quadratic dual monoid
A'. Then, there is an equivalence of categories

D' (grA-Mod) ~ D' (grA'-Mod)
We prove this Theorem in several parts following closely the proof of [4, Theorem 2.12.1].
Lemma 8.2 There exists a functor CF : C(grA-Mod) — C(grA!-Mod).

Proof Suppose that we have (M*,d};) € C(grA-Mod). We consider A' as a complex
((AH*, ds,) in C(grA'-Mod) and consider

F(M*) = A'®4, M* € A'-Mod
We construct the double complex of A' modules

F(M*)** = AL ®4, M*

@ Springer



50 Page 48 of 66 R. Savage

with objects

FM*) = A} ®4, M'

and graded by
F(M’)i!l = Aj ®a, M}
The differentials are defined as follows. We first note that, since A' is right dualisable,
Aj ®4y M} ~ Homy nioa (*(A)), M5) 3
Hence the j" component of the vertical differential
A1)y Aj ®ag M > Ajyy @ay My,

is (—1)I*/(Di"); where (Di}!); can be defined using Eq.3 and the composition

4! *M}*' 4! i i
(AH-I) — A ®4, (AI) — A1 Qa4 Mj — MjJrl

We also remark that * Ml' | is one of the maps involved in the definition of the differential for
the Koszul complex of A given in Sect.7. The j** component of the horizontal differential

i) 2 A} ®a, M} — A ®a, M;'H
is defined by
@) = idy @ (i)

It is easy to check that this is indeed a double complex. In degree k, we can visualise the
double complex as follows

s AS®ag ML, — A ®a METL — AL ®a, METE — ...

T T T

! j ! i+1 ! i+2
con = Ay ®@pg Mi_, — A; ®@pg M{T, — A; ®@pg M{T — ..

T T T

M, M MH2
T T T
0 0

We see that our double complex is bounded from below since A' is positively graded. We
now consider a kind of ‘twisted’ total complex FM*® with

(FMi= P Ao
i+j=nk=l—j
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and with associated total differential dy, = d;*® + d3°*. We see that this complex is clearly a
complex of A'-modules. We therefore have a functor
CF : C(grA-Mod) — C(grA'-Mod)
M*® — (FM)®

Proposition 8.3 CF induces a functor DF : D¥(grA-Mod) — D' (grA'-Mod).
Proof Suppose that M* € C'(grA-Mod) and consider the functor

CF : C(grA-Mod) — C(grA'-Mod)
M® — (FM)*
defined in the previous Lemma. We now see why we specified the boundedness conditions

on M‘ If n >> 0, then i + j > 0, and hence, since M* € C¥(grA-Mod), we see that
= 0.Now, if n +k <« 0, theni + j + k < 0. Since A' is positively graded, we know

thatl = j 4+ k > 0, and hence i < 0. Therefore, M ; = 0 once again. We see that in both
cases, (FM)] = 0, and hence (FM)*® € ct (grA!-Mod). We can therefore restrict CF to a
functor

CF : C'(grA-Mod) — C'(grA'-Mod)

To show that this functor induces the desired functor, it suffices, by Propositions 2.33 and 2.34,
to show that this functor preserves strict exactness. Indeed, suppose that M*® is a strictly exact
complex. We note that, in each grading j, our double complex F (M ');‘ can be considered

as first quadrant since M ’, = 0 for i < 0. This double complex has strictly exact rows since

M?® is strictly exact and each A; is a flat Ap-module. Under the canonical embedding
I : grA'-Mod — LH(grA'-Mod)

from Proposition 2.29, we note that I (F (M ');‘) is a first quadrant double complex with
exact rows, since, by Corollary 2.30, exactness is preserved by the embedding.

Hence, we see that, in each degree j, associated to our first quadrant double complex
I(F(M*®))$*, there exists a spectral sequence { g ;l]} for r > 0 with first term

e = HiA(FM*)3h

with differentials 7/ d’ l, = Hh I(dp)* i ) Furthermore, by comparing the total complex with
respect to the gradmg (l [) with the twisted total complex with respect to (i, j), we have the
convergence

"ESL = HI(Hy(I(F(M*))3") = H'™ (Tot(I(F(M*))$*)*)
~ H" ™ (1(FM);™)
~ H"(I(FM)})

wheren =i+ j,k =1[1— j.Since I(F(M'));' has exact rows, H,i (I(F(M'));') is the zero
complex. Hence, since I preserves finite products, equivalently finite coproducts, as it is a
right adjoint by Proposition 2.29, then

@ H UFEM}) = H"( D [(FM),:) =H"(I(FM)*) =0

k=l—j k=l—j
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Hence, I(FM)* = I(CF(M*®)) is an exact complex in EH(grA!-Mod). It follows that
CF(M?*) is strictly exact in grA'-Mod by Corollary 2.30. Therefore, the functor CF induces
a functor

DF : D¥(grA-Mod) — D' (grA'-Mod)

Lemma 8.4 There exists a functor CG : C(grA!-Mod) — C(grA-Mod).

Proof Suppose that we have (N°®,dy) € C(grA!-Mod). We consider A as a complex
(A®,d3) in C(grA-Mod) and consider

G(N®) = Hom, .\jeq(A, N®) € A-Mod
We construct the double complex
G(N*)** = Homy, ppoa(Ae. N*)
with objects
G(N*)"! = Homy rjga(A—1, N')
and graded by
G(N*)}' = Homy rioa(A—1. N)
The differentials are defined as follows. We note that, since A is left dualisable
Homy voa(A—1, N}) = A*; @4, N} @
by Proposition 6.6. Hence, the j* component of the vertical differential
(dy"); - Homy noa (A1 N§) — Homy vioq(A—at1), Ny )
is (—1)iti (Df)’[)j where (Df;l)j can be defined, using Eq.4 and the composition

) “T,41+1>®A0"d1v12 ) )
* i * i * i
AL ®ag Nj —————— AL 141y ®ap A1 ®ag Nj = AL, ®a9 Ny

The j* component of the horizontal differential
(dy")j : Homy, vroa(A—1, Nb) — Homy vroq (A1, NiH1)
is defined by the composition

AZHN{MNI}I
- J J
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It is easy to check that this is indeed a double complex. In degree k, we can visualise the
double complex as follows

0 0 0
T T T
N N N2

T T T

...~ Homy, (A1, N';_) » Hom, (A, N7t' ) 5 Hom, (A, NR2 ) » ...

T T T

... > Homy, (A3, N';_,) + Hom,, (A2, N“t')) & Hom, (A2, N'§2,) =+ ...

T T T

We see that our double complex is bounded from above since A is positively graded. We
now consider a kind of ‘twisted’ total complex GN*® with

(GN){= €  Homu yea(As. N%)
itj=nk=1-j
and with associated total differential dg, = dp*® + d3°*. We see that this complex is clearly a
complex of A-modules. We therefore have a functor
CG : C(grA'-Mod) — C(grA-Mod)
N*®* — (GN)*

Proposition 8.5 CG induces a functor DG : pt (grA’-Mod) — DV (grA-Mod).
Proof Suppose that N* € C'(grA'-Mod), and consider the functor

CG : C(grA'-Mod) — C(grA-Mod)
N°®* — (GN)*
defined in the previous Lemma. We now see why we specified the boundedness conditions

on N*. If n « 0, theni + j < 0, and hence, since N® € ct (grA!-Mod), we see that
N;. = 0. Now, if n +k > 0,theni + j + k > 0. Since A is positively graded, we know

that —(j 4+ k) > 0, and hence i > 0. Therefore, N} = 0 once again. We see that in both
cases, (GN); = 0 and therefore, (GN)® € Cct (grA-Mod). We can therefore restrict CG to
a functor

CG : C'(grA'-Mod) — C'(grA-Mod)

To show that this functor induces the desired functor it suffices to show that this functor
preserves strict exactness. Indeed, suppose that N *® is a strictly exact complex. We note that our
double complex G(N*®)*® is third quadrant since N ; = O fori > 0. This double complex has
strictly exact rows since each A_; is a projective Ag-module, and hence Homy | njoq (A1, —)
is an exact functor. Under the canonical embedding

I : grA-Mod — LH(grA-Mod)
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we note that I (G(N ');') is a third quadrant double complex with exact rows.
Hence, we see that, in each degree j, aseomated to our third quadrant double complex
I(G(N ’))" there exists a spectral sequence {!/ E } for » > 0 with first term

"E, = HiI(GWN*)T

with differentials // dy £ l =H} n (dh) ) Furthermore, by comparing the total complex with
respect to the gradmg (1 [) with the total twisted complex with respect to (i, j), we have the
convergence

"ES, = HI(H(I(G(N*)$*) = H' (Tot(1(G(N*))3")*)
~ H" ™ (I(GN); ™)
~ H"(I(GN)})

where n = i 4+ j,k = [ — j. Since I(G(N’));' has exact rows, H;;(I(G(N’));') is the
zero complex. Now, since [ preserves finite products, equivalently finite coproducts, as it is
a right adjoint by Proposition 2.29, then

P H'UGN} = H”( D 1(GN),;> = H"(I(GN)*) =0
k=l—j k=Il—j

Hence, I(GN)* = I(CG(N*)) is an exact complex in £H(grA!-M0d). It follows that
CG(N*) is strictly exact in grA'-Mod by Corollary 2.30. Therefore, the functor CG induces
a functor

DG : D' (grA'-Mod) — D' (grA-Mod)

[m}

We note that, by Corollary 1.24, for any modules M € A-Mod and N € A!-Mod, there
is a chain of isomorphisms

HomA!_Mod(A! ®ao M, N) =~ Homp-moa(M, N) >~ Homa-moea (M, HomAU Mod (4, N))

natural in M and N.

Lemma 8.6 Suppose that M* € C(grA-Mod) and N* € C(grA'-Mod). There is an isomor-
phism

Hom,, \1 vjoa (FM)®, N®) =~ Homgra-Moa (M*, (GN)®)
Proof We note that we have an isomorphism
Hom 1 g (FM)®, N®) >~ Hom,: 3, 4 (M®, (GN)®)
We will show that this isomorphism respects the grading. Since

Homy1 ypoq (FM)}, NI = Homy ypoa( @ Al ®ay M5, ND)
i+j=nk=l—j

~ @ Homa,moa(M:, €D Homy: ypoq(Af. NI
i+j=n k=I—j
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We see thata morphism f* : (FM)" — N" respects the grading if and only if each morphism
M' — Homy i proq (A', N™) >~ N" sends pieces graded in degree j to pieces graded in degree
—j foralli 4+ j = n. Similarly, since

Homamod (M, (GN)}) = Homamoa(M,, €D Homy nea(A—1, N”)))
n—j=i,q=I+j
~ @ Homa,-Mod ( @ A Qa M, ij)
n—j=i qg=Il+j

We see that a morphism g’ : M' — (GN)' respects the grading if and only if each morphism
M! ~ A®4 M' — N" sends pieces graded in degree j to pieces graded in degree — j for
all n = i + j. Therefore, we see that " preserves the grading for all n if and only if g™
preserves the grading for all m. O

Proposition 8.7 The above isomorphisms induce an adjunction
CF : C(grA-Mod) S C(grA'-Mod) : CG
Proof By the previous lemma, it remains to show that the isomorphism

HOIIlgrAz_MOd((FM)', N*) >~ Homgra-Mod(M*, (GN)*®)

respects cochain maps for all M* € C(grA-Mod) and N* € C(grA'-Mod). Indeed, suppose
that there exists an element f°® € HomC(grA!-Mod) ((FM)*, N°®). Let its image be g* €
Homc(gra-Mod) (M *, (GN)*). We need to show that f* commutes with the differentials if and
only if g* does. We note that, by the previous Lemma, f;" induces morphisms M’ fzk — N{.
We consider the following diagram

@i

n—+k
MZy
| - (dpk | .
DBivjmnimi—j A ®a0 Mj — DBy jmnirk=i—j Al ®a0 M;

lfkn lfknﬂ
N/:’ @)k NZ_H

n+k+1
M*k

We easily see that the top square of the diagram commutes. Commutativity of the bottom
square, when composed with the inclusion Mf:k - @D, = k=l—j A} ®ay M } isequivalent
to the commutativity on M ﬁgk of f{ with the differentials. Therefore, f;' commutes with
the differentials for all n, k if and only if the outer square commutes. Similarly, we obtain
the following diagram

dn+k)7
n+k dy )k n+k+1
MZy MZy
lg’lf‘ " lg’jk“
- () i

i i
DBt jmnk, —k=i—j Homp nMoa(A—t, Nj) = DBy jmniks 1, —k=i—j HoOmp voa (A—i, N})

l l

cion T
N{ N{
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We note that the bottom square of this diagram commutes. Commutativity of the top square
when composed with the evaluation morphism @i+j:n+k+] —k=l—j HomAO_Mod (A_y, N;.) —

N} +is equivalent to the commutativity of g" ’,:k with the differentials. Therefore, gflgk com-

mutes with the differentials for all #, k if and only if the outer square commutes.

Hence, we see that commutativity of f;' and g’fk’k with the differentials is equivalent to

commutativity of the following diagram

Mn+k(d1'\'4+k)*k Y iaa!
—k r My
l (dN )k
n n+1
Ny » Ny

Therefore, f;' commutes with the differentials for all n, k if and only if g/" does for all m, I.
O

Consider the counit

g:CFoCG — ldC(gl‘A'-MOd)

of the adjunction. Suppose that N°® € C(grA!-Mod). Then, we may consider the double
complex (F o CG)(N*®)*® with
(FoCG)(N*)" = A @4, CGIN®*)' = A} ®a, €D Homy yea(A. NJ)
p+q=i
and graded by
(Fo CG)(N‘);.’Z =A®s P  Homyynea(A—r. NJ)
prq=i,j=r—q

Since A} is right dualisable, we see that, by Corollary 6.7,

A} ®ay Homy nioa(A—r, Nf') = Homy nioa(*(A)), Homy nioa(A—r, NY))
~ Homy ygoa(A—r ® o *(AD), NJ)
and hence
(FoCOINYY =~ @D Homy niga(A—r ®4, *(A), NI)

ptg=ij=r—q

The horizontal differential is given by
" = iy ®a, (dg),

where (dic)./‘ is the total differential defined in Lemma 8.4. The vertical differential

@h;: €  Homp,mea(A—r ®a, *(A]), N
prq=i,j=r—q

— P Homy woea(A—+1) ®ay “(Aj1 1), NJ)
prq=i,j=r—q

is given by (— )i (Di'l) j where (Df)’[) ;j can be defined by taking the coproduct of the maps

Homy, pea(A—r @4, *(A]), NJ) — Homy nioa (A—(r41) @4y *(Aj41). NJ)
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given by the composition

d!
A1) @y *(Afy) = Ay @4y *(A) —> N
where d° is the differential from the Koszul complex of A. Taking the total complex with
respect to i and j we obtain

(CFoCG)N®] = @ A; ®a4, @ Hom, (A_,, N
i+j=nk=l—j pq=i,j=r—q
= @ @ Homy o (A—r ®4 *(A;), ND)

i+j=nk=l—j p+q=i,j=r—q

with differential given by the total differential.
Lemma 8.8 The counit ¢ is a split strict epimorphism.

Proof 1t is easy to see that the counit is the strict natural transformation with components
ene With

(i (CFoCOINYY = P Aj®a, P  Homyysoa(A—r. NJ) = Nf
i+j=nk=l—j prq=i,j=r—q

given by the composition of the following strict maps

P Aes P Homy mea(A—r NJ) ®a Ao

i+j=nk=l—j ptq=i,j=r—q
id 1 ®anev L
Al ®Ag ! i+
MOy
i+j=nk=Il—j

— N© = NY
where the last map is the one from Proposition 3.8. We consider the map
ons : N®* — (CF o CG)(N®)
given in degree n by the inclusion map
Ni > Ao ®4, Homy  rjeq (Ao, Ny)

! p
- @ A} ®4 @ Homy  voa(A—rs Ng)
i+j=nk=l—j p+q=i,j=r—q

We note that the map ((¢ o o')’y.)x is equivalent to the map

Ny = Ao ®a, Homy  rjoa (Ao, Ni) e—;} Ny
which is the identity map. Hence, € o ¢ = id and so ¢ is a split epimorphism. O
Lemma8.9 Let f* : Y* — X*® be a strict cochain map in a quasi-abelian category E.

Suppose that there exists a strict map g* : X* — Y* such that f* o g* is a strict quasi-
isomorphism. Then, f* is a strict quasi-isomorphism if and only if g* is.
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Proof Consider the triangulated homotopy category K(€) and consider the following exact
triangles in K(&)

xSy cone(g®)® — X°[1]

Y — r X® — cone(f*)* — Y°[1]

o L8 X0 s cone(f* 0 g*)® — X°[1]

X
We note that, by the octahedral axiom for triangulated categories, there exists an exact triangle
cone(g®)® — cone(f® o0 g®)® — cone(f*)* — cone(g®)°*[1] )

in K(€). Hence,

cone(f*)® ~ cone(cone(g®) — cone(f* o g*)®)

Suppose that g* is a strict quasi-isomorphism. Since g® and f*® o g* are both strict quasi-
isomorphisms, cone(g®)® and cone(f®og®)*® are both strictly exact complexes. Hence, since
the cone of a morphism between strictly exact complexes is strictly exact (see [20, Lemma
1.1]), cone(f*)® is strictly exact. Therefore, f® is a strict quasi-isomorphism.

Now, we shift the exact triangle in Eq. 5 to obtain the exact triangle

cone(f®og®)® — cone(f*)* — cone(g®)*[1] — cone(f* o g*)°*[1]

in K(€). Using a similar reasoning to before, if f* is a strict quasi-isomorphism, then
cone(g®)®[1] is strictly exact. Hence, cone(g®)® is strictly exact, and so g° is a strict quasi-
isomorphism. O

Proposition 8.10 There is an equivalence DF o DG — idDT(grA’-Mod)-

Proof Since strict quasi-isomorphisms become isomorphisms in DT (grA'-Mod), it suffices
to prove that, for N® € ct (grA!-Mod), the counit

e+ : (CF o CG)(N®) — N*

is a strict quasi-isomorphism. However, since this map is a split epimorphism, it suffices, by
Lemma 8.9, to show that the map

one : N®* — (CF o CG)(N®)
is a strict quasi-isomorphism. Once again, we consider the canonical embedding
I : grA'-Mod — LH(grA'-Mod)

We note that, by Corollary 2.31, oye is a strict quasi-isomorphism if and only if 7 (oy+) is a
quasi-isomorphism. We want to show that, for each n, I(oy.) induces an isomorphism

H"(I(N*)) ~ H"(I((CF o CG)(N*)))

in cohomology. The image of the first quadrant double complex (F o CG)(N*®)*® under the
embedding is a ﬁrst quadrant double complex / ((F o CG)(N*®))**. We consider the spectral
sequence { E-'} for r > 0, with differentials /d"!, such that

TES" = I((F 0 CGY(N®)'™)
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and the maps ’ d(i)'l are just the vertical differentials 7 (d’'). We also consider
"EY! = HU(I(F 0 CG)(N*))"*)
with differentials /d!"' = H!(I(d,)"-*). We have that
H)\(I((F o CG)(N*))"*) = H], (1 ( P Homy, yga(A @4, *(A), N >))
p+q=i

~ P H(I(Homy, poea(A B4, *(AL), NJ))
ptq=i

Now, since A is Koszul, the complex A @4, * (A!.) is a projective resolution of Ag. Therefore,

B TG ygoa (A0 NDY) i1 =0
0 otherwise
@i I Homy yoa (A0, N i1 =0
0 otherwise
- @p+q:i1(Nj) ifl=0
0 otherwise

The differentials are given by
Il _ @p+q=i 1((‘116)4) it =0
! 0 otherwise
We have the convergence
"Ey! = Hj(H(I(F o CG)(N*))"*)) = H'™(Tot( ((F o CG)(N*))**)*)
~ H"(I((CF o CG)(N*))*)

where n =i + 1.
We may view N*® as a double complex N°*® with

Nil — EBp+q:i le ifl =0
0 otherwise
The horizontal differentials are given by
4l = ®p+q=i (dzlx)/)q if/ =0
0 otherwise
and the vertical differentials are zero. The total complex is
Tot(N**)" = @ N"' = @ N/
i+l=n p+g=n

‘We note that, since N® € CT(grA!-Mod), then N°*°, and he_nce I(N*®®), is a first quadrant
double complex. We construct another spectral sequence {’ Fr’l} for r > 0, with differentials
I Elr’l, such that

"By = 1Ny
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and the maps / 36’1 are just the corresponding differentials of N*®. We have

DB,y I(Ny) if1=0

1l ! ie
E;y =H (I(N” =
! v ( ) :O otherwise

We have the convergence

TEy' = HIT(Tot(1(N)**)") = H"(I(N*))
The map o induces a morphism of double complexes. Hence, we see that, since {’ Frl]} and

{'E ;l]} have the same first page and the differentials on the first page are the same, these
spectral sequences must be equal for » > 1. Hence,

H*(I(N*®)) = H"(I((CF o CG)(N*)*))

and therefore I (oy+) is a quasi-isomorphism. It follows that ¢ is a strict quasi-isomorphism,
and hence so is ¢. m]

‘We now consider the unit
n: idC(grA‘-Mod) — CG o CF

of the adjunction. Suppose that M* is in C(grA-Mod). Then, we may consider the double

complex (G o CF)(M*®)*® with

(G o CF)(M*)"' = Homy voa(A—1, CF(M®)") = Homp vjoa(A—1, @D A'®a4, MJ)
p+Hq=i

and graded by
(G o CF)(M*);' = Homy voa(A—1. CF(M®)})

=Homy moa(An P AL ®a, MY)
pq=i,j=r—q
Since A_; is left dualisable, we see that
il !
(GoCF)(M*)}" = A, @4, ( P A e Mé’)
ptq=i,j=r—q
~ P AT ®a AL ®a, M
prq=i,j=r—q
The horizontal differential is given by
(") =idpr, ®ay (d);
where (d}) j 1s the total differential defined in Lemma 8.2. The vertical differential
(di’l)j : @ AY; ®a, A!, R4y M(f - @ Ai(1+1) ®ag A!r+1 ® 4o M5
ptq=i.j=r—q ptq=i.j=r—q
is given by (—1)’ (Df;l)A,-, where (ij’l)_,' can be defined by taking the coproduct of the maps
dr_ll®AUidM5

Ail ® a9 A!r @4, qu I Ai(l+l) ® 4o A!r+l ® Ao Mff
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where d* is the differential from the Koszul complex of A'. Taking the total complex we
obtain

(CGoCHMN = D B AT @A ®4 M)
i+j=nk=l—j p+q=i,j=r—q

with differential given by the total differential.
Lemma 8.11 The unit n is a split strict monomorphism.

Proof 1t is easy to see that the unit is the strict natural transformation with components
(n'yg)k» With

My M - P P A* ®a AL @, MY = (CG o CFYM®)}
i+j=nk=l—j p+q=i,j=r—q

given in degree n by the inclusion map

- ! P
M} >~ Ao ®a, Ao @4y M} — @ @ A*_[ ®uag A, ®ag My
i+j=nk=l—j p+q=i, j=r—q

We consider the map
pme - (CGoCF)(M®) —> M*

given in degree n by the projection map

GB @ A*; ®a4, A!,®A0 M15’_>A0®A0A0®AOM,:‘:M,:‘
i+j=nk=l—j p+q=i,j=r—q

We note that the map ((p o 1)’ )x is equivalent to the map
M~ Ao ®ay Ao @4y M = M}
which is the identity map. Hence, p o n = id, and so n is a split monomorphism. m}

Proposition 8.12 There is an equivalence idD¢(grA_M0d) — DG o DF.

Proof Since strict quasi-isomorphisms become isomorphisms in D¥ (grA-Mod), it suffices
to prove that for M* € C*(grA-Mod), the unit

nme : M®* — (CG o CF)(M*)

is a strict quasi-isomorphism. However, since this map is a split monomorphism, it suffices,
by Lemma 8.9, to show that the map

pmes : (CGoCF)(M®) - M*®
is a strict quasi-isomorphism. Once again, we consider the canonical embedding
I : grA-Mod — LH(grA-Mod)

We note that, by Corollary 2.31, ppe is a strict quasi-isomorphism if and only if I(ppe) is
a quasi-isomorphism. We want to show that, for each n, I(oj},.) induces an isomorphism

H"(I((CG o CF)(M*))) =~ H"(1(M*))
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in cohomology. The image of the third quadrant double complex (G o CF)(M*®)*® under the
embedding is a third quadrant double complex 1 ((G o CF)(M*®))*®. We consider the spectral
sequence {’ ELN, for r > 0, with differentials /d*! such that

TEL = 1((G o CFY(M*)")
and the maps ’ d(i)’l are just the vertical differentials / (d,’;*l). We also consider
TEY' = HI(I((G o CF)(M*))™*)
with differentials d' = H](I(d:*)). We have that
H.(I1((G o CF)(M*))*) = H! (1( P A A @4, Mé’))
ptq=i

Since I preserves finite coproducts,

~ @B HUI(AL®a, A' @4, ML)
ptq=i

Now, as A' is Koszul, the complex A @4, Alisa projective resolution of Ag. Therefore,

B egmi 1T} o (A0, M) if1=0
0 otherwise
- @p+q:il(Ao®A0M,f) ifl =0
0 otherwise
- @P+q=il(M,f) ifl =0
0 otherwise

The differentials are given by

it = {@M_i I )y ifl=0
0

otherwise
We have the convergence

"Ey! = Hj(H{(I(G o CF)(M*))""*)) = H"(Tot(I((G o CF)(M*))**)*)
= H"(I((CG o CF)(M*))*)

wheren =i + 1.
We may view M*® as a double complex M*® with

Ml — @p+q=i M‘f if/ =0
0 otherwise

The horizontal differentials are given by

dil = :@mqi(df/)q ifl=0

0 otherwise
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and the vertical differentials are zero. The total complex is

Tot(M**)" = @ M = @ M)

i+l=n pH+q=n

We note that, since M® € C¥ (grA-Mod), then M*®, and hence I(M**), is a third quadrant
double complex. We construct another spectral sequence { E } for r > 0, with differentials
dr , such that

7"1 .
TEy = 1(M)™!
and the maps ’ 38 " are just the corresponding differentials of M*®. We have
—i ; M)y ifl=0
TEy' = Bl = iGBW RN
0 otherwise

We have the convergence
10! i+l ee\e\ _ gyn .
Ey = H'™ (Tot(I(M)**)*) = H"(I1(M*))

The map p induces a morphism of double complexes. Hence, we see that, since { fi’l} and
{! Eﬁ’l} have the same first page and the differentials on the first page are the same, these
spectral sequences must be equal for » > 1. Hence,

H*(I(M*)) = H"(1((CG o CF)(M*)*))

and therefore I (py+) is a quasi-isomorphism. It follows that p is a strict quasi-isomorphism,
and hence so is 7. O

Proof of Theorem 8.1 We have seen, by Propositions 8.3 and 8.5, that there exist functors CF
and CG inducing functors

DF : D'(grA-Mod) — D' (grA'-Mod) and DG : D' (grA'-Mod) — D' (grA-Mod)

The functors CF and CG are adjoint, and the unit and counit coming from this adjunction
induce natural isomorphisms

DF 0 DG — idiyt gepttoay a4 idp. (geaztoa) — DG o DF
Hence, there is an equivalence of categories
D' (grA-Mod) ~ D" (grA'-Mod)
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Appendix A: Banach Spaces

Definition A.1 A valued field £ is a field, k, equipped with a multiplicative norm
| — | N k —> RZO
such that, for all A, u € k,

o [A+ul <A+ |ul
e |[A|=0ifandonlyif A =0
e k is complete with respect to the metric defined by the norm.

We say that k is non-Archimedean if |X + p| < max{|A|, ||} and is Archimedean
otherwise.

Definition A.2 A Banach space V is a k-vector space V equipped with a norm
II=1:V —>Rso
such that, for all A € k and v, w € V, we have

o [[Av]| = |A] - [[v]l,
o [[v+wll < [lvll+ [lwll,
e V is a complete metric space with respect to the metric defined by the norm.

We say that V is non-Archimedean if ||v + w|| < max{||v||, ||w||} and is Archimedean
otherwise.

Definition A.3 A linear map f : V — W between Banach spaces is bounded if there exists
a constant C > 0 such that, forallv € V,

[Ifllw =< Cllvllv

We denote the category of Banach spaces, equipped with bounded linear maps as its mor-
phisms, by Ban;. When a distinction is necessary, we will denote the category of Archimedean
(resp. non-Archimedean) Banach spaces over an Archimedean (resp. non-Archimedean) field
k by Ban,? (resp. BanzA).

Definition A.4 A Banach ring is a unital commutative ring R equipped with a norm
|—]:R— Rxp

such that, for all r, s € R,
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e || = 0 precisely if r =0,
o [r+s|<Irl+]sl,

o [rs| =|rl-Isl,

e R is a complete metric space with respect to the metric defined by the norm.

We say R is non-Archimedean if |r +s| < max{|r|, |s|} and is Archimedean otherwise.
Definition A.5 Suppose that R is a Banach ring. A Banach R-module is an R-module M
together with a map

Il =1:M— Rxo
such that, for all » € R, and forallm,n € M,

e ||m|| =0ifand only ift m =0,
o [Im+nl| < ||m|| + |Inll,
o [lrml| < |r| - [Iml],
e M is complete with respect to the metric defined by || — ||.

Definition A.6 A homomorphism f : M — N between Banach R-modules is bounded if
there exists a constant C > 0 such that, forallm € M,

I1Lf(m)lIn < Cllm|lm

The category of Banach modules over an Archimedean (resp. non-Archimedean) Banach
ring R will be denoted Bané (resp. Ban’I‘eA). The morphisms are bounded R-linear maps.

Appendix B: Ind-Objects

Suppose that we are working within a category C. In C we will denote limits by l(in and
colimits by h_1>n

Definition B.1 [1, Definition 2.1] If 7 is a small filtered category, then an Ind-object of C is
afunctor X : I — C. This is denoted by X = (X;)jes-

We denote by IndC the collection of Ind-objects X = (X;);c; with morphisms defined as
follows.

Definition B.2 Suppose that we have two Ind-objects X, Y. Then, the collection of mor-
phisms of inductive systems Hompygc (X, Y) is given by

Hominac (X, ¥) = lim lim Hom(X;, ¥;)
iel jeJ
We consider the Yoneda embedding Y : C — PSh(C). We denote by ll_II)lX i the presheaf
iel
“1i_I>n "Xi — 11_[1)1 Y(Xl)
iel iel
We note that the map
X — “lim"X;
m—y
iel
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induces an equivalence of categories between IndC and the full subcategory of PSh(C)
consisting of presheaves isomorphic to filtrant inductive limits of representable functors. We
will interchange between the notation X and “li_II)l"X ; frequently.

iel

Definition B.3 An object X € IndC is essentially monomorphic if all the morphisms in the
corresponding inductive system “h_l’I)l” X; are monomorphic.
iel

Appendix C: Bornological Spaces

Bornological spaces possess enough structure to consider questions of boundedness, and thus
are an ideal setting for bringing together homological algebra and functional analysis. We
recall the following details, for more see [1] or [19].

Definition C.1 Let X be a set. A bornology on X is a collection B of subsets of X such that

e B covers X, i.e. for every x € X there exists some B € B such that x € B,

e J3is stable under inclusions, i.e. for every inclusion A C B € BB, we have A € B,

e I3 is stable under finite unions, i.e. for each n € N and B;,..., B, € B, we have
U:’:]Bi € B.

The pair (X, B) is called a bornological set, and the elements of B are called bounded
subsets of X. A family of subsets A C B is called a basis for B if, for any B € B, there
exist Ay,..., A, € Asuchthat B C Ay U---U A,. A morphism of bornological sets is
any map which sends bounded subsets to bounded subsets. We remark that the category of
bornological sets is complete and cocomplete.

Suppose that we have a complete non-trivially valued field k.

Definition C.2 A bornological vector space over k is a k-vector space V with a bornology on
the underlying set of V' such that the maps (A, v) — Av and (v, w) — v 4+ w are bounded.

‘We will now detail certain categories of bornological vector spaces. We let k° = {A € k |
|| < 1}. A subset W of a vector space V is convex if, for every v, w € W and t € [0, 1], we
have that (1 — t)v + tw € W, and W is balanced if for every A € k°, A\W C W.

Definition C.3 Let V be a k-vector space. A subset W C V is called absolutely convex (or
a disk) if

e for k Archimedean, W is convex and balanced.
e for k non-Archimedean, W is a k°-submodule of V.

Definition C.4 A bornological vector space is said to be of convex type if it has a basis made
up of absolutely convex subsets. We denote the category of bornological k-vector spaces of
convex type, equipped with bounded linear maps, by Borny.

Definition C.5 A bornological vector space over £ is said to be separated if its only bounded

vector subspace is the trivial subspace {0}. We denote the full subcategory of Borny consisting
of separated bornological k-vector spaces by SBorny.
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Definition C.6 A separated bornological k-vector space V is said to be complete if there
exists a small filtered category /, a functor / — Bany and an isomorphism

V >~ 1limV;
—
iel
for a filtered colimit of Banach spaces over k for which the system morphisms are all injective
and the colimit is calculated in Born,. We denote the full subcategory of Borny consisting
of complete bornological k-vector spaces by CBorny.

Proposition C.7 [1, Proposition 3.60] There is a functor, the dissection functor,

diss : CBorn; — IndBan,
V — “lim”V;
—
iel
which defines an equivalence of CBorny with the full subcategory of essentially monomorphic
objects of IndBany,.

References

1. Bambozzi, F., Ben-Bassat, O.: Dagger geometry as Banach algebraic geometry. J. Number Theory 162,
391462 (2016)
2. Bambozzi, F.,, Ben-Bassat, O., Kremnizer, K.: Stein domains in Banach algebraic geometry. J. Funct.
Anal. 274, 1865-1927 (2018)
3. Bambozzi, F., Kremnizer, K.: On the sheafyness property of spectra of Banach rings (2020). Arxiv e-prints
ArXiv:2009.13926v2
4. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math.
Soc. 9(2), 473-527 (1996)
5. Ben-Bassat, O., Kremnizer, K.: Non-Archimedean analytic geometry as relative algebraic geometry.
Annales de la faculté des sciences de Toulouse Mathématiques, XXV I(1), 49-126 (2017)
6. Ben-Bassat, O., Kremnizer, K.: Fréchet modules and descent (2021). Arxiv e-prints ArXiv:2002.11608v5
7. Bernstein, LN., Gelfand, .M., Gelfand, S.I.: Algebraic bundles over P" and problems of linear algebra.
Funct. Anal. Appl. 12, 212-214 (1978)
8. Bourles, H., Marinescu, B.: Linear Time-Varying Systems: Algebraic-Analytic Approach. Lecture Notes
in Control and Information Sciences, vol. 410. Springer, Berlin (2011)
9. Biihler, T.: Exact categories. Expo. Math. 28, 1-69 (2010)
10. Etingof, P, Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical surveys and monographs,
vol. 205. American Mathematical Society, Providence (2015)
11. Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76(1), 203-272 (1994)
12. Green, E., Reiten, L., Solberg, @.: Dualities on Generalized Koszul Algebras. Memoirs of the American
Mathematical Society, vol. 159. American Mathematical Society, Providence (2002)
13. Holstein, J., Lazarev, A.: Categorical Koszul duality (2021). Arxiv e-prints ArXiv:2006.01705v3
14. Kapranov, M.: On dg-modules over the De Rham complex and the vanishing cycles functor. Lect. Notes
Math. 1479, 57-86 (1991)
15. Kelly, J.: Homotopy in exact categories (2019). Arxiv e-prints ArXiv:1603.06557v3
16. Kremnizer, K., Smith, C.: A Tannakian reconstruction theorem for IndBanach spaces (2017). Arxiv e-
prints ArXiv:1703.05679v3
17. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd
edn. Springer, New York (1998)
18. Manin, Y.I.: Some remarks on Koszul algebras and quantum groups. Annales de I’institut Fourier 37(4),
191-205 (1987)
19. Meyer, R.: Local and Analytic Cyclic Homology. EMS Tracts in Mathematics, vol. 3. European Mathe-
matical Society, Switzerland (2007)
20. Neeman, A.: The derived category of an exact category. J. Algebra 135, 388-394 (1990)
21. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspon-
dence. Memoirs Am. Math. Soc. 212(996), 1 (2011)

@ Springer


http://arxiv.org/abs/2009.13926v2
http://arxiv.org/abs/2002.11608v5
http://arxiv.org/abs/2006.01705v3
http://arxiv.org/abs/1603.06557v3
http://arxiv.org/abs/1703.05679v3

50

Page 66 of 66 R. Savage

22.
23.

24.

Priddy, S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39-60 (1970)

Schneiders, J.-P.: Quasi-abelian categories and sheaves, volume 76 of Mémoires de la Société Mathéma-
tique de France. La Société Mathématique de France, Paris (1999)

Yoneda, N.: On Ext and exact sequences. J. Faculty Sci. Imper. Univ. Tokyo 8, 507-576 (1960)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Koszul Monoids in Quasi-abelian Categories
	Abstract
	0 Introduction
	0.1 Koszul Duality
	0.2 Quasi-abelian Categories
	0.3 Koszul Monoids
	0.4 Quadratic Monoids and Their Duals
	0.5 Koszul Duality

	1 Closed Symmetric Monoidal Categories
	1.1 Examples
	1.2 Monoids
	1.3 Graded Monoids
	1.4 Categories of Modules

	2 Quasi-abelian Categories
	2.1 Quasi-abelian Categories
	2.2 The Derived Category
	2.3 Derived Functors

	3 Modules in Quasi-abelian Categories
	3.1 Categories of Modules
	3.2 Categories of Graded Modules

	4 Koszul Monoids
	5 Quadratic Monoids
	5.1 The Tensor Monoid

	6 Dual Quadratic Monoids
	6.1 Dual Objects
	6.2 Dual Quadratic Monoids

	7 The Koszul Complex
	8 Our Main Koszul Duality Result
	Acknowledgements
	Appendix A: Banach Spaces
	Appendix B: Ind-Objects
	Appendix C: Bornological Spaces
	References




