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Abstract

The normal operation of a device can be charaeteiiz different temporal states. To identify thetses,

we introduce a segmentation algorithm called Gdblab can determine a reasonable number of segments
using our proposed L method. We then use the RRPE&ssification algorithm to describe these states
logical rules. Finally, transitional logic betwetre states is added to create a finite state attamOur
empirical results, on data obtained from the NA®Wtde program, indicate that the Gecko segmentatio
algorithm is comparable to a human expert in idgingy states, and our L method performs better than
existing permutation tests method when determiriveg number of segments to return in segmentation
algorithms. Empirical results have also shown thatoverall system can track normal behavior agteé
anomalies.
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1 Introduction

Expert (knowledge-based) systems are often used to help humans raoditantrol critical systems in
real-time. For example, NASA uses expert systems to movetoous devices on the space shuttle.
However, populating an expert system’s knowledge base by hand is-adireuming process. In this
paper, we investigate machine learning techniques for generating ddgewvthat can monitor the
operation of devices or systems. Specifically, we study methodgefmrating models that can detect

anomalies in time series data.

The normal operation of a device can be characterized in differapbtal states. Segmentation or
clustering techniques can help identify the various states. Howewst,methods directly or indirectly

require a parameter to specify the number of segments/clustérs time series data. The output of



these algorithms is also not in a logical rule format, whiatoremonly used in expert systems for its
ease of comprehension and modification. Furthermore, the relationshgebetvese states needs to be

determined to allow tracking from one state to another and to detect anomalies.

Given a time series depicting a system’s normal operation, siede learn a model that can detect
anomalies and can leasily read and modified by human users. We investigate a few issues in this
paper. First, we want a segmentation algorithm that can dyrigndetermine a reasonable number of
segments, and hence the number of states for our purposes. These staties] frole a device, should
be comparable to those identified by human experts. Second, we wolilil dikaracterize these states
in logical rules so that they can be read and modified with velaase by humans. Third, given the
knowledge of the different states, we wish to describe theae$dtip among them for tracking normal

behavior and detecting anomalies.

To identify states, we introduce Gecko, which is able to segmmeatderies data and determine a
reasonable number of segments (states). Gecko consists of a topattitioning phase to find initial
sub-clusters and a bottom-up phase which merges them back togetheapprbpriate number of
segments is determined by what we call the L method. To cbaracthe states as logical rules, we use
the RIPPER classification rule learning algorithm [1]. Sidid&erent states often overlap in the one-
dimensional input space, additional attributes are derived to help wreamadhe states. To track
normal behavior and detect anomalies, we construct a finite sta@aton (FSA) with the identified

states.

Our main contributions are: (1) we demonstrate a way to perforenseries anomaly detection via
generated states and rules that can easily be understood and mwdHigchans; (2) we introduce an
algorithm named Gecko for segmenting time series data into iampqrhases or states; (3) we propose
the L method for dynamically finding a reasonable number of clusters—the L metetkeial enough to
be used with either hierarchical clustering or segmentationitligs [2]; (4) we integrate RIPPER and
state transition logic to generate a complete anomaly detesststem; (5) our empirical evaluations,
with data from NASA, indicate that Gecko performs comparably @it ASA expert and the overall

system can track normal behavior and detect anomalies.

The next section gives an overview of related work. Section 3 provides adletgilanation of our

system, which includes the components: Gecko (clustering), RIPRER generation), and state



transition logic. Section 4 contains experimental evaluations afoitmponent algorithms as well as the

overall anomaly detection system, and Section 5 summarizes our study

2 Related Work

2.1 Clustering Algorithms

Clustering algorithms take spatial data (2 or more dimensionspasand return a set of clusters such
that all points in a cluster are similar to each other andndiissito points in other clusters. There are
four main categories of clustering algorithms: partitioning,anadrical, density-based, and grid-based.
Partitioning algorithms, for examplke-means, and PAM [3], iteratively refine a setkaflusters and do
not scale well for larger data sets. Density-based algasjtbrg., DBSCAN [4] and DENCLUE [5], are
able to efficiently produce clusters of arbitrary shape and are also able te haisdl. If the density of a
region is above a specified threshold, it is assigned to a clogherwise it is considered to be noise.
However, sharp spikes in time series data are sometimes impfaédures and could be incorrectly
determined to be noise by a density-based clustering algorithmrart¢hieal algorithms can be
agglomerative and/or divisive. The agglomerative (bottom-up) apprepehatedly merges two clusters,
while the divisive (top-down) approach repeatedly splits a clustetwd. ROCK [6] and Chameleon
[7] are hierarchical algorithms that differ mostly in themitarity functions, which favor spherical and
non-spherical clusters (respectively). Grid-based algorithms, asicWaveCluster [8], reduce the
clustering space into a grid of cells which enables efficiargtering of very large datasets. This is
useful for clustering a large amount of very concentrated data, bfwrmane-dimensional time series
data. Existing clustering algorithms are not designed to chisterseries data. Our Gecko algorithm is
similar to a hierarchical clustering algorithm that is dbleluster time series data by adding constraints
to the merging and splitting of clusters. The main constraint attdedir Gecko algorithm is that
clusters must be divided cleanly along the time dimension, which ntake&ecko behave like a

segmentation algorithm.

2.2 Segmentation Algorithms

Segmentation algorithms usually take time series data as amgltproduce a Piecewise Linear
Representation (PLR) as output. PLR is a set of consecutivedgments that tightly fit the original

data points. Segmentation algorithms are somewhat related to clusteoiridpaig in that each segment



can be thought of as a cluster. However, due to their linear retatse bias, segmentation algorithms
are more effective at producing fine grain partitioning, rathen thasmaller set of segments that

represent natural clusters.

There are three common approaches to time series segmerfatidfirgt, in the Sliding Window
approach, a segment is grown until the error of the line is abopedfied threshold, then a new
segment is started. Second, in the Top-down approach, the entiretiesasrecursively split until the
desired number of segments is reached, or an error thresholdhnededdird, the Bottom-up approach
starts off withn/2 segments, the 2 most similar adjacent segments are dipgaiteed until either the
desired number of segments, or an error threshold is reached. dihg slindow approach creates
poorest linear approximations but runs the quickest. Top-Down segmermi@aes the best PLR but
runs much slower than the other two methods. Bottom-up segmentatites ¢d?P&&s that are nearly as
good as those of the top-down method, but has a much smaller time céynghexi top-down

segmentation.

2.3 Determining the Number of Segments/Clusters

Five common approaches to estimating the dimension of a model (stioh msmber of clusters or
segments) are: cross-validation, penalized likelihood estimatiomupsion tests, resampling, and

finding the knee of an error curve.

Cross-validation techniques create models that attempt to fitlatee as accurately as possible.
Monte Carlo cross-validation [10] has been successfully used to prevenditting (too many
clusters/segments). Penalized likelihood estimation also agamind a model that fits the data as
accurately as possible, but also attempts to minimize the cotypdéxhe model. Specific methods to
penalize models based on their complexity are: MML [11], MDL [B [13], AIC, and SIC [14].
Permutation tests [15] are able to prevent segmentation algofithnm&reating a PLR that over-fits the
data. Resampling [16] and Consensus Clustering [17] attempt to fimdrteet number of clusters by
repeatedly clustering samples of the data set, and determiniigaatumber of clusters the clusterings

of the various samples are the most “stable.”

Locating the “knee” of an error curve, in order to determine an appt@pnanber of clusters or
segments, is well known, but it is not a particularly well-studiegthod. There are methods that

statistically evaluate each point in the error curve, and use thetpat either minimizes or maximizes



some function as the number of clusters/segments to return. Suetdmetclude the Gap statistic [18]
and prediction strength [18]. The knee of a curve is loosely definge g®int of maximum curvature.
The knee in a “# of clusters vs. classification error” graph cansed to determine the number of

clusters to return. Various methods to find the knee of a curve are:

The largest magnitude difference between two points.

The largest ratio difference between two points [20].

The first data point with a second derivative above some threshold value [21].
The data point with the largest second derivative [22].

The point on the curve that is furthest from a line fitted to the entire curve.

Our L-method, which finds the boundary between the pair of straightthaesnost closely fit
the curve.

This list is ordered from the methods that locate the knee lptaltiie methods that locate the knee
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globally by considering more points of the curve. The first two methods use onlysanglef adjacent
points to determine where the knee is. The third and fourth methodswas=shan one pair of points,
but still only consider local trends in the graph. The last twdodst consider all data points at the
same time. Local methods may work well for smooth, monotonicallgasog/decreasing curves.
However, they are very sensitive to outliers and local trends, whagtnot be globally significant. The
fifth method takes every point into account, but only works well for smaothtjnuous functions, and
not curves where the knee is a sharp jump. Our L Method considexira to keep local trends or
outliers from preventing the true knee to be located, and is abledt&rfees that exist as sharp jumps in

the curve.

2.4 Anomaly Detection

Nearly all of the work in time series anomaly detection satie models that are not easily readable and
hence cannot be modified by a human for tuning purposes. Examples inskidef aormal sequences
[23] and adaptive resonance theory [24]. However, Langley et al. [25] pr@posethod that uses
process models to model a time series and predict future datse fitoteess models are concise and are
easily read and modified by humans, but their generation requiresgtarano be set by a human that

must have knowledge of the underlying processes that produce the time series.



3 Approach

The input to our overall anomaly detection system is “normal” sevees data (like the graph at the top
left corner of Figure 1).
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Figure 1. Main steps in time series anomaly detection.

The output of the overall system is a set of rules that implestate transition logic on an expert
system, and are able to determine if other time series gigsadeviate significantly from the learned
signature. Any deviation from the learned “normal” model is considerée an anomaly. The overall
architecture of the anomaly detection system, depicted in Figuoenkjsts of three components:
segmentation, rule generation (characterization), and stateirarlegic. The segmentation phase is
performed by our newly-developed segmentation algorithm “Gecko,” whiadesgyned to identify
distinct states (or clusters) in a time series. Nextsrale created for each state by the RIPPER
algorithm [1]. Finally, rules are added for the transitions beitwsates to create a finite state

automaton. The three steps in our approach are detailed in the next three subsections.

3.1 Gecko — Identifying States

While segmentation algorithms typically create only a fimedr approximation of time series data,
Gecko divides a time series into a smaller number of segnierttare analogous to clusters or states in

the time series. This number of clusters is determined automatically bygaoini¢hah.



Phase 1: The Gecko Algorithm (overview
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Figure 2. Overview of the Gecko Algorithm.

small sub-clusters. The second phase repeatedly merges theostosimilar clusters. Phase 3

determines the number of clusters to return.

3.1.1 Phase1: Create Sub-Clusters

In the first phase, many small sub-clusters are created leylendithat is very similar to the one used by
Chameleon [7], with the exception that Gecko forces cluster boundari®s non-overlapping in the

time dimension. The sub-clusters are created by initially npdaall of the data points in a cluster, and
repeatedly splitting the largest cluster until all of the telissare too small to be split again without

violating the minimum possible cluster sge

To determine how to split the largest clustek;reearest neighbor graph is built in which each node
in the graph is a time series data point (measurements taketina¢-interval), and each edge is the
similarity between two data points. Only the slopes of the otigadaes (original sensor readings) are
used to determine similarity, and not the original values themselysmg only the slope will tend to
produce sub-clusters that have constant slope, which produces sub-chatare tas close to straight
lines as possible. THenearest neighbor graph is constructed by creating an edge froyvevieix to

each of itk nearest (most similar) neighbors. The parametemot an input parameter. It is derived



from s (smallest possible cluster size), and is defined to Be Pue to the importance of time, tke
nearest points in the graph are ki points on each size of a point according to the time axis. By usi
this graph the similarity between groups of points (clustersheattetermined by computing the edge
cut (sum of the edges) between the two groups. Similarity betivee points is defined to be
In(1.0Mdistancet+1), wheredistance is the Euclidean distance (or any other distance method) between the
two points. However any reasonable inverse mapping between distansendadty can be used. If

the graph is split where the edge-cut is the smallest, thetwthanewly separated clusters will be

dissimilar to each other and have high internal similarity.

Since all boundaries between clusters are cut cleanly by theatim with no overlap, the typically
NP-hard problem of graph bisection is trivialized, and the optimalcumirpartitioning of a cluster can
be quickly determined in fewer thatusterSze-1 edge-cut checks (wheodkusterSze is the number of
data points contained in the cluster). There is no need for heurlsticsuse all possible edge-cut

possibilities can be quickly computed with efficient data structures.

3.1.2 Phase2: Repeatedly Merge Clusters

In phase 2, the most similar pair of adjacent (in time) clugaepeatedly merged until only one cluster
remains. To determine which adjacent pair of clusters are tis¢ similar, representative points are
generated for each cluster and the two adjacent clusters with the clpsestméative points are merged.
A single representative point is able to accurately represeng point in a cluster because each cluster
is internally homogeneous. The representative point of a clusterinomtaslope value for every
dimension in the time series data other than time. Clusteritigebslope values causes the time series
to be divided into flat regions. Segmentation also relies exclyswveslope: if a minimum-error line

(segment) is well fitted to a set of points, it means that the segment hasstecdrstope.

If raw slope values are used in the representative points that asimana cluster, then the
Euclidean distance between a pair of representative points witle stape values 100 and 101
(distance = 101-100=1) would be the same as the distance betweerofarppresentative points with
slope values 0 and 1 (distance = 1-0=1). Differences in slopegé¢hatar zero need to be emphasized,
because the same absolute change in slope can triple a smalbutlbe an insignificant increase for a

large value. Relative differences between slopes cannot be easuhe percentage increase because



in the preceding example, the percentage increase from 0 to 1 fmaddeGecko uses representative

values of slopes to determine the “distance” between two slopes by using the equation:

Representative Slope{:ln(SIOpeﬂ) if slope=0
—In(-slope+1) if lope<0
This equation emphasizes changes of slopes near zero and detreastsct of changes in slope
when the slope values are large. Whenever a slope value is sqtmnmeghreésentative slope value
(approximately) doubles. In the preceding example of comparing 2qgjaitasters with slopes {100,
101} and {0, 1} the representative values of their slopes are {4.615, 4.625} and {0, 0.693}. This

accurately reflects the relative difference between raw slopes and nbtsthata difference.

3.1.3 Phase 3: Determine the Best Clustering Level

Evaluation Graphs. The information required to determine an appropriate number of clustensisisg

to return is contained in an evaluation graph that is created byutermg/segmentation algorithm.
The evaluation graph is a two-dimensional plot whereddes is the number of clusters, and yha&xis

is a measure of the quality or error of a clustering consisfinglusters. Some approaches use similar
graphs, but they are often generated by re-running the entire iclgsbersegmentation algorithm for
every value on the&-axis. Since hierarchical algorithms repeatedly split orgmer pair of clusters,
many sets of clusters containing ‘1’ the number of clustersin the finest-grain clustering’ clusters can

be produced in only a single run of the algorithm.

They-axis values in the evaluation graph can be any evaluation metticasudistance, similarity,
error, or quality. These metrics can be computed globally or fyree@lobal measurements compute
the evaluation metric based on the entire set of clusters. A eomerample is the average of all the
pairwise distances between points in each cluster. Most globlaiaBua metrics are computed in
O(N?) time. Thus, in many cases, it takes longer to evaluate & siegbf clusters than it takes to create
them. The alternative is to use greedy measurements. Thay grethod works in hierarchical
algorithms by evaluating only the two clusters that are involvelderctirrent merge or split, rather than

the entire data set.



Many “external’ evaluation methods attempt to determine a reasomafshber of clusters by
evaluating the output of an arbitrary clustering algorithm. Eaclua&an method has its own notion of
cluster similarity. Most external methods use distance functibas are heavily biased towards
spherical clusters. Such methods would be unsuitable for a clustégmithm that has a different
notion of cluster distance/similarity. For example, Chameleon aisesnplex similarity function that
can produce interesting non-spherical clusters, and even clusters witisters. Therefore, the
L Method is integrated into the clustering algorithm and the mes#a in the evaluation graph is the

same metric used in the clustering algorithm.
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Figure 3. A sample evaluation graph.

An example of an evaluation graph produced by Gecko is shown in Figuree3-aXis values are
the distances between the two clusters that are most samilatusters. The curve in Figure 3 has three
distinctive areas: a rather flat region to the right, a syxatpping region to the left, and a curved

transition area in the middle.

In Figure 3, starting from the right, where the merging procegibeat the initial fine grain
clustering, there are many very similar clusters to be merged and the trendesitoi the left in a rather
straight line for some time. In this region, many clustersanédar to each other and should be merged.
Another distinctive area of the graph is on the far left side evtier merge distances grow very rapidly
(moving right to left). This rapid increase in merge distameégate that very dissimilar clusters are
being merged together, and that the quality of the clustering sryeg poor because clusters are no
longer internally homogeneous. If the best available remaining m&gébecoming increasingly poor,
it means that too many merges have already been performed. sénabée number of clusters is

therefore in the curved area, or the “knee” of the graph. This kgemns between the low distance



merges that form a nearly straight line on the right side of the graph, and thg qaoddsing region on
the left side. Clusterings in this knee region contain a balancustiers that are both internally

homogeneous, and also dissimilar to each other.

Locating the exact location of the knee, and along with it the numbsusiérs, seems problematic
when the knee is a smooth curve. In such an instance, the knee could beraromthis smooth curve,
and thus the number of clusters to be returned seems imprecise.arSeghluation graph is often
created for time series data because a time seriesasti@uous function and a set of well-separated
clusters usually does not exist in the time series. In sudnues, there is no single correct answer and
all of the values along the knee region are likely to be reasoaateates of the number of clusters.

Thus, an ambiguous knee indicates that there is most likely a range of acceptabis.answ

Finding the Knee via the L Method. In order to determine the location of the transition area or knee of
the evaluation graph, we take advantage of a property that exiseseevaluatiographs. The regions
to both the right and the left of the knee (see Figure 4) are afffmoximately linear. If a line is fitted
to the right side and another line is fitted to the left side, themtersection of the two lines will be in
the same region as the knee. The value ofxtheis at the knee can then be used as the number of

clusters to return. Figure 4 depicts an example.
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Figure 4. Finding the number of clusters using the L Method.

To create these two lines that intersect at the knee, wéindlthe pair of lines that most closely fit
the curve. Figure 5 shows all possible pairs of best-fit linea fmaph that contains seven data points

(eight clusters were repeatedly merged into a single cjugkach line must contain at least two points,



and must start at either end of the data. Both lines togetherabwéthe data points, so if one line is
small, the other is large to cover the rest of the remainirggmtants. The lines cover sequential sets of
points, so the total number of line pairsisnOfinitialClusters — 4. Of the four possible line pairs in

Figure 5, the third pair fits the data points with the smallest amount of error.
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Figure 5. All four possible pairs of best-fit lines for a small evaluation graph

Consider a ‘# of clusters vs. evaluation metric' graph with valuéiseo@axis up tax=b. Thex-axis
varies from 2 tdb, hence there ark-1 data points in the graph. Lkt andR; be the left and right
sequences of data points partitioned=t; that is,L; has points withx=2..c, andR. has points with
x=c+1...b, wherec=3...b-2. Equation 1 defines the total root mean squared BWSE; when the

partition ofL; andR; is atx=c,

RMSE, = g_1XRMSE(LC) + E“ixRMSE(RC) [1]

whereRMSE(L,) is the root mean squared error of the best-fit line for the seque points irL; (and
similarly for R;). The weights are proportional to the length§ofc-1) andR; (b-c). We seek the value
of ¢, ¢®, such thaRMSE. is minimized, that is

cr=argmin, RMSE, [2]

where location of the knee =&tc”" is used as the number of clusters to returhe L method can be
implemented with a linear time complexity [26] and runs in leas 0.01 seconds for evaluation graphs

containing fewer than 10,000 points.

The L method is general and has no parameters. The number of pongstla x-axis of the
evaluation graph is not a parameter. It is a result of theedlugtalgorithm used to generate those
points. The maximum x value in the evaluation graph is either the mwhbkisters at the initial fine
grain clustering in a bottom-up algorithm, or the number of clustettsei final clustering in a top-down

algorithm.



Refinements for Segmentation Algorithms. Evaluation graphs for segmentation algorithms can often
be very jumpy and contain a number of points that do not smoothly fit the. clihis is common for
non-greedy algorithms that look several merges ahead and may madmiagly poor merge to be able
to make a very good merge at the next step. These stray pamtprevent the L Method from
accurately locating the knee. However, because they do not usuallycocsecutively, the curve can
be smoothed by only using the highest valued point of every consecutiwvehpaircomputing the best-

fit lines of the curve.

Another potential problem is that sometimes the evaluation grapmeath a maximum (moving
from right to left) and then start to decrease. This can beisdégure 4, where the distance between
the closest segments reaches a maximuxaat This can prevent an “L” shaped curve from existing in
the evaluation graph. The data points to the left of the maximum {hleeworst’ merge) can be
ignored. This occurs in some algorithms that have distance fundianbdcome undefined when the

remaining clusters are extremely dissimilar to each other.

3.2 RIPPER — Rule Generation

We have adapted RIPPER [1] to generate human readable rulekatstterize the states identified by
the Gecko algorithm. The RIPPER algorithm is based on the Incremental Reducderining (IREP)
[27] over-fit-and-prune strategy. The IREP algorithm is a 2sc@proach, where the data set must first
be divided into two subsets. The first subset contains examples ofadsewhose characteristics are
desired (the positive example set) and the other subset contamiballdata samples (the negative

example set). Our implementation of RIPPER acts as an outer loop for the IRE&haifection.

The input to RIPPER is the data produced by Gecko which containsedriaes data classified into
c* states. RIPPER will execute the IREP algorittirtimes, once for each state. At each execution of
IREP, a different state is considered to be the positive exasepland the rest of the states form the
negative example set. This creates a set of rules for eaeh $tatlescribe the relationship among these

states, state transition logic is identified as discussed in the followitgrsec



3.3 State Transition Logic

The upper right-hand quadrant of Figure 1 depicts a simplified ssausitton diagram for a time series
containing just three states. The state transition logic isrided by three rules for each state
corresponding to each of the three possible state transition conditions on each input data point:

+ IF input matches current state THEN remain in current state.

« IF input matches the next state THEN transition to the next state.
« IF input matches neither the current state nor the next state THEN transitioarioraaly state.

The antecedent condition for each state is obtained from the RIRREReneration process. The
state transition logic simply needs to glue together the propecetdgnts to formulate the above three

transition rules for each state.

Before an anomaly state is entered, one of two additional critersd be satisfied: either (1) the
number of consecutively observed anomalous values must exceed a dplrsiold; or (2) the total
number of anomalous values observed has exceeded another threshold. Thusamusiwomdition is
not annunciated unless the observed values have been improper for someflenmggth Similar logic is
provided for the transition from a normal state to its normal ssoce® prevent premature state

transitions.

This simple sequential model will get “stuck” in a statetimisses a state transition due to an
anomaly. The first anomaly is correctly identified, but no fututa dan be tracked because the state
machine is stuck in an old state. A solution we have found that perfegihss to use a non-
deterministic state machine model rather than a determimsiitel. When an anomaly is detected, we
create several state machines, each starting in a difigegat All of the state machines run in parallel
until they converge to a single state. This method allows thensye recover from a short sequence of
anomalous data and to determine the current state of the input flatatale machine contains many
states and running individual state machines for each state scimopt, states can be searched starting
with ones near where the anomaly was detected and increasing therrairstates to search if the state

machines continue to get “stuck”. In our tests, the correct state is determinedickly.

4 Empirical Evaluation
The goal of this evaluation is to demonstrate the ability of trek@algorithm to identify states (or

clusters) in real time series data, and also to show that our overall sysiatis detect anomalies. The



data used to evaluate Gecko and the overall anomaly detection sgstdintime series data sets

obtained from NASA. The data sets are signatures of a valve from the space shuttle.
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Figure 6. A data set after being clustered by Gecko (16 clusters).

Each data set contains between 1,000 and 20,000 equally spaced measuresuenetstofThese 10
data sets contain signatures of valves that are operating nqramallglso signatures of valves that have
been damaged. The current method used to test these valves reduiraamaexpert to compare a
valve’s signature to a known normal signature, and determine if harey significant variation. We
would like to demonstrate that Gecko is able to identify importantesfetates in a time series, and that

our anomaly detection system is able to determine if a valve is operating normally

4.1 Determining the Number of Segments with the L Method

Procedures and Criteria The experimental procedure for evaluating the L method in segnoentati
algorithms consists of running two different segmentation algoritimseven different data sets and
determining if a ‘reasonable’ number of segments is suggestedebly method. This number of
segments suggested will then be compared to the ‘correct’ numisegofents, and also the number
suggested by the existing permutation tests method [15]. The peamutsts algorithm attempts to
prevent segmentation algorithms from creating a PLR that ageth data by comparing the relative
change in approximation error to the relative change of a ‘randora’geries. If the relative change in
error begins to be similar between the time series and a randerseries as more segments are added,

it means that extra segments are fitting noise and not any underlying strn¢hed¢ime series.
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Figure 7. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in segmentation algorithms.

The time series data sets used to evaluate the L method fanchieal segmentation algorithms are
a combination of both real and synthetic data. The seven time datéesets used for this evaluation

(shown in Figure 7) are:

A synthetic data set consisting of 20 straight line segments (2,000 pts).
The same as #1, but with a moderate amount of random noise added (2,000 pts, not in Figure 7).

The same as #1, but with a substantial amount of random noise added (2,000 pts).
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An ECG of a pregnant woman from the Time Series Data Minirapige [28]. It contains a

recurring pattern (a heart beat) that is repeated 13 times (2,500 pts).

5. Measurements from a sensor in an industrial dryer (from the $enes Data Mining Archive
[28]. The time series appears similar to random walk data (876 pts).

6. A data set depicting sunspot activity over time (from the Tier@eS Data Mining Archive [28].

This time series contains 22 roughly evenly spaced sunspot cycleyendie intensity of each

cycle can vary significantly (2,900 pts).

7. Atime series of a space shuttle valve energizing and de-energizing (1,000 pts).

The synthetic data sets have a single correct value féhe real sets have no single correct answer,
but rather a range of reasonable values. A PLA is consideresbfiaale” if no adjacent segments are
nearly identical to each other and all segments are intelrm@aitygeneous (segments have small error).
The “reasonable range” for the number of segments for a da@ndet segmentation algorithm is
obtained by running the algorithm with various valuek @fontrols the number of segments returned),

and determining the range of values that produce a 'reasonable’APtiAgle 'reasonable range' cannot



be used for all of the segmentation algorithms because one vakith&drproduces a reasonable set of

segments for one algorithm may produce a poor set of segments for another on the ssghe data

The segmentation algorithms used in this evaluation were Gecko amnhgit segmentation
(BUS). BUS (bottom-up segmentation) is a hierarchical algorithan initially creates many small
segments and repeatedly joins adjacent segments together. pgdoifecally, BUS evaluates every pair
of adjacent segments and merges the pair that causes thessimaliease in error when they are merged
together. BUS was tested with the L method using two differdnesan they-axis of the evaluation
graph. The two variants are named BUS-greedy and BUS-global. BUBfgngaxis in the evaluation
graph is the increase in error of the two most similar segwamtn they are merged, and BUS-global’s
y-axis is the error of the entire linear approximation when ther& segments (absolute error). The

existing ‘permutation tests’ method was also evaluated using BUS.

Both Gecko and BUS made use of an initial top-down pass to creatgtididine-grain segments.
The minimum size of each initial segment generated in the top dasswwas 10. For the permutation
test algorithm,p was set to 0.05, and 1,000 permutations were created. To determineowsiep t
creating more segments, the paramptsets the percentage of permutated time series that musa have
relative reduction (betwedrl andk segments) in linear approximation quality larger than the ofigina

time series to returk segments [15].

Results and Analysis. A summary of the results of the L method’s and permutation edsitgy to
automatically determine the number of segments to return fromesggtion algorithms is contained in
Table 1. For both Gecko and BUS, the ‘reasonable’ range of correeeranis listed. These ranges
may vary between the two algorithms because BUS and Gecko do rg# sagments in exactly the
same sequence. However, BUS-greedy, BUS-global, and permutat®altgsbduce identical PLRs
for k segments, and therefore have identical ‘reasonable’ answerdirstlieree data sets are synthetic
and have a single correct answer, but the other data sets hage @fédreasonable” answers. Data set
#5 is similar to random walk data, and any number of segments sesssedable because there was no

underlying structure in the time series.



Gecko Bottom-up Segmentation
Gecko BUS- greedy | BUS- global BUeSrmutatiovr\:/
w/ L method w/ L method | w/ L method| P
Tests
Reasonable Nurmber Reasonable | Number of Num of
of Number of
Data Set # of # of segments segments
segments segments found
segments segments found found
found

1 20 20 20 20 20 25

2 20 20 20 20 20 34

3 20 N/A 20 20 19 25

4 42-123 92 42-123 46 106 2

5 ? 32 ? 14 39 15

6 44-57 45 45-53 48 39 6

7 9-20 17 14-21 9 13 65

Reasonable-
Range 50f5 50f 6 30f6 0of 6
Matches

Table 1. Results of using the L method with three hierarchical segmentanh algorithms.
The L method worked very well for both BUS-greedy and Gecko. It atyr&lentified a

number of segments for BUS-greedy that was within the reasoraadge in 5 out of the 6 applicable
data sets. Gecko, which also uses a greedy evaluation metrics@suslope rather than segment error),
had the L method suggest a number of segments within the reasaraggefor all 5 applicable data
sets. Gecko was unable to correctly segment data set #3 @idlmat'N/A” in Table 1) because it
contained too much noise. In all but one test case (10 of 11), the L me#sodble to correctly
determine that the three synthetic data sets contained ekaetlyy segments. BUS-global did not
perform quite as well. The L method was only able to returnsanadle number of segments for BUS-

global in half of its test cases, however all of its incorrect answers voseeto being correct.

Permutation tests did not perform well and never determined a réésonenber of segments.
The reason that permutation tests did poorly varied depending on thetdafdasa set #1 is synthetic
and contains no noise, which allows a PLR to approximate it with Wrtmaro error. However,
measuring a relative increase in error when the error is zearcauses unexpected results because
relative increases are either very large or undefined whemrtirdseat or near zero. For data set #4 and

#6, the relative change in approximation error is rather constaatdtegs of the nhumber of segments.



On data set #4, the PLR between 2 and 3 segments has nearlyat&m® change in error, which causes
permutation tests to incorrectly assume that the data has beefittedeand stop producing segments
prematurely. An example of far too many segments being returredsosn data set #7, where the
relative error of the time series never falls below theiwearror of the permutations until far too many

segments are produced.

Some of the evaluation graphs used by the L method for Gecko, BUS-gameldBUS-global

are shown in Figure 8. The lower left portion of Figure 8 contain& thethod’s evaluation graph for
Gecko on data set #1, the noise-free synthetic data setx-abie is the number of segments, andythe

axis is Gecko’s evaluation metricasegments (distance between two closest adjacent segments when
there arex segments). The evaluation graph is created right to leéigmsesits are merged together. In
this case, the correct number of segments is easily detertoyrib@ L method because there is a very
large jump ax=20. In the lower right corner of Figure 8, the range of correevenssies between the

two long lines. The range is larger than for data set #1 bettaisegments have less ‘separation’ and
there is no sharp knee. Instead, there is a range of good ansvesveveli the L method suggests a

number of segmetns that just misses the reasonable range.

BUS, (greedy) - data set #4 5 Gecko - data set #6
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Figure 8. The reasonable range for the number of segments and the numberugated by the L
method. (axes:x=# of segmentsy=evaluation metric —short dashed line=# of segments determined
by the L method,long solid lines=the boundaries of the reasonable range for the # of segments.

In the evaluation graph at the upper-left of Figure 8(data set #4gBk#sly), the L method
returned a number of segments that was at the low end of the tdasmrge. Remember, that for

segmentation algorithms, all data ponits to the left of the daté wah the maximum value are ignored



(discussed in the last section of 3.1). The best number of segmels At 42 segments each heart
beat contains approximately 3 segments. If there are fewer4kasegments, they are no longer
homogeneous. However, PLAs with significantly more segments (up to ak23}till reasonable

because each new segment still significantly reduces the etdmwever, if there are more than

approximately 123 segments, adjacent segments start to become too simdhardthea

The evaluation graph shown in the upper-right portion of Figure 8 alsdétsr* PLRs when
the number of segments is near the low end of the reasonable femgedegments). This is common
because the best set of segments is often the minimal sgfneésts that adequately represents the data.
Even though there is apparently no significant knee in this evaluaaph,gt good number of segments
can still be found by the L method. This is because the knee found byrté#hod does not necessarily
have to be the point of maxium curvature. It may also be the lodadtareen the two regions that have
relatively steady trends. Thus, the L method is able to detetherlecation where there is a significant
change in the evaluation graph and it becomes ervat®4]. In this case it indicates that too many

segments have been merged together and the distance function is no longer asnedll-defi

The poorer performance of BUS-global (compared to Gecko and BUS-pigeliye to a lack of
prominence in the knee of the curve compared to greedy methods (seeidgbivgraph in Figure 8).
Greedy evaluation metrics increase more sharply at the knee gtbbal metrics have larger more
ambiguous knees in their evaluation graph. A potential problem occursmdrerthan one knee exists
in the evaluation graph. This is typically not a problem if one knsegnificantly more prominent than
the others. If there are two equally prominent knees, the L methidlg to return a number of
segments that falls somewhere between those two knees. abcegable if all of the values between
the two knees are reasonable. If not, a poor number of segmemsosaillikely be returned by the L

method.

The L method took less than 0.01 seconds to determine the number of segreeaty test case,
while the segmentation algorithms took 9-30 seconds to execute. frtethbd never required more
than 0.1% of the total execution time to determine the number of segmdn stark contrast,
permutation tests required up to 5 hours because each permutation ofjitted tme series had to be

segmented.



4.2 ldentifying States with Gecko

Procedures and Criteria. The quality of the segments produced by Gecko and an existing algorithm
will be evaluating by having a domain expert blindly evaluate the owafjpaach algorithm. A high
guality set of segments has each segment corresponding to an mhpb#ese or state in the time series.
The experimental procedure is as follows: Gecko and an exidgagtlam, bottom-up segmentation
(BUS), segment the 10 data sets. Without knowing which output is flieichvalgorithm, a NASA
valve expert will then rate the quality of each set of segnfemts 1 to 10. The number of segments
returned by BUS is set to be the same number that Gecko retunadly, Ehe valve expert is asked to

go over all of the Gecko data sets that he rated in the second step, and explain his evakckmwas&

run with the default parameter for each data set: minimum clustesl gsiz S ze=10.
Results and Analysis.

Table 2 contains the scores for Gecko and BUS given by the domain. eggeko’s average score was
9.5, while the bottom-up segmentation algorithm’s average score wad.8nl Gecko often receives a
perfect score (which signifies a set of segments as godtedsutnan expert’'s) even though it returns
more segments than what the human expert previously considered to hae#iienumber. For
example, Gecko produced nearly twice as many segments as the éxpeerfor data set 5 (13 vs. 7),
and Gecko still got a perfect rating. This suggests that ih@ften a range of “very good” numbers of

segments to return, rather than a single correct number.

Table 2. Quality of segments produced by Gecko and BUS.

Data Set | 1 2 31|45 6 718 9 | 10 | Avg

Gecko 10| 10| 9| 10| 10, 10 8 9 g 1p95

BUS 2 3 3 3 3 3 8 5 7 6| 4.3

The final part of Gecko’s evaluation was a discussion with the N&Sg#neer about why he gave
each score. According to the engineer, BUS divides regions of high slope intonypsegeents. BUS
merges segments together by keeping the root-mean squared dtrerbefst-fit lines to a minimum.
This method measures error vertically, and as a consequence hbmesd nearly vertical may seem

visually to be a nearly perfect fit, but the vertical distances from the pointslinglean be very large.



4.3 Overall System (FSA)

Procedures and Criteria. In order to test whether the anomaly detection system worksctgrwve
performed three kinds of tests: (1) Self-tracking: Use 90%efiaita points to create rules, and then
use 100% of the data fed into the expert system to see if teetrstasitions occur correctly, without
detecting any anomalies. (2) Normal operation: Use all of a nwahae’s data to learn its signature,
and then monitor another valve that is also operating normally. Tégessteuld also not trigger any
anomalies. (3) Detecting anomalies: Use all of a properlyifumog valve’s data to learn its normal
signature, and then take signatures of valves that are damagedg alghtun them through the anomaly

detection system. The damaged valves should trigger anomalies.

Self-tracking Results The baseline test of the anomaly detection system is motl@imodel with 90%
of the data, and seeing if 100% of the data can be tracked with@driniggan anomaly. The results of
this test are shown in Table 3. An error point in Table 3 is any poantis unexpected in the state
transition logic. This means that the point is neither in the mustate or the following state. Time
series data often contains noise and minor variations. For th@reasmalies must not be triggered
by only a single data point that does not agree with the model cahtarnthe FSA. By using a
threshold counter, an anomaly will only be reported after a certaibbaruof consecutive error points.
The last column in Table 3 shows what the minimum consecutive kreshbld CE) must be set to for
the anomaly detection system to not report an anomaly. A valuendhisilast column means that the

anomaly detection system will correctly not report an anomaly as |00g adl.

Table 3. Self-tracking of a time series.

Data Set 1112|3456 |7|8]|9]|10|Avg
Error Pts (%) |1.1/0.8/0.7|/0.5/0.0{0.4/0.3/0.2{0.4|1.1} 0.6

Min. Error
Threshold

221} 1| 0| 1| 1 14 1 2p4.0

In this experiment, both the “consecutive transitio€TY and the “consecutive error'CE)
thresholds were set to zero. This causes every possibleratetitidn to be made and every error point
to trigger an anomaly. This enabled easy computation of the number of error pointset Datatser 10
performs poorly in this test because the FSA transitions preryahear the end of its signature and
starts reporting many anomalies, the results for this datarseedanproved by increasir@r to prevent

it from transitioning too early on a single spurious data point.



Normal Operation Results. This test is to show that the anomaly detection system’s noddéeke
normal signature is general enough to recognize that an untrainedl ion@aseries contains no
anomalies. In this test, the anomaly detection system trainedasedd., and then tested on data set 2.
Both of these data sets are of normally operating valves thaircamteor (but visible) differences. The
“consecutive transition” thresholdCT) parameter was set to 2, and the “consecutive error” threshold
(CE) was set to 10 (minimum possible cluster sikesterSze=10). This means that two consecutive
points believed to be in the next state are needed to perforne arategition and ten consecutive points

believed to be errors are needed to declare that the time series contains anomalie

The system was able to successfully transition through thes stétbout detecting any anomalies.
Of 979 data points, 61 (2.6%) were error points—they were not believed to belong to thestateenbr
to be transition points belonging to the following state. However, siramnsecutive number of errors

greater thailCE was never encountered, an anomaly was never triggered.

Detecting Anomalies Results.This final test is to show that our system is capable ottiegewhen a
time series differs significantly from the learned modelthis test, two data sets containing time series
signatures of valves operating normally (data sets 1 and 2) wedetaislevelop the normal models.

Each normal model was then run against the remaining anomalous data sets (8atd 8gts

For each of the 16 tests, the anomaly detection system cordetdymined that the signatures
contained anomalies. Additionally, the system was able to informstreof the state number where the
signature differs from the model. Thus, the system does not onla g@&/no answer to whether a time
series contains anomalies, but it is also able to explain to énemhere the anomaly occurred. Also,
because the rules generated by RIPPER are in a human-readaiale fbe user can look at the rule for

the state where the error occurred and understand exactly why the system repatenhtaly.

5 Concluding Remarks

We have detailed our approach to time series anomaly detectioncbyetiag and characterizing the
states of a time series, and performing transition logic betwesse states to construct a finite state
automaton. This finite state automaton can be run on an expert systtmsed to track normal
behavior and detect anomalies. The proposed Gecko segmentation algodtsigned to cluster time
series data (finds a small number of segments mapping to unique phases rathgnéhappaoximation

of many segments), and uses our proposed L method to determine a reasondi¢r of segments



efficiently. The rules generated for each state by the RRP&Eorithm can beasily understood and
modified by humans. (Moreover, the generated rules can be in a format used by thexXp€it system

shell at ICS, which is our collaborator on this NASA project.)

Our empirical evaluations have shown that the L method used by the &lgckithm returns a
number of segments that is similar to the number that is geddrgta human expert. When the human
expert was asked to rate Gecko’s output with a score from 1-10, @askgiven perfect ratings on 6 of
10 data sets. A perfect rating signifies that the set of segmentsstars] produced by Gecko is equally
as good as that of the human expert. For comparison, the bottom-up sggmexigorithm was also
tested, and was only given an average rating of 4.3. The overall gnd@battion system was able to
detect anomalies in every signature that was from a ‘damagéd, and was also able to monitor a

second normal valve without detecting any anomalies.

Future work will evaluate our approach with more datasets from NABArk is currently being
done to learn a normal model from multiple data sets by using Dgn@imie Warping (DTW).
Multiple time series will be warped together into a singteetiseries which will them be clustered by
Gecko. After the merged time series is clustered by Geckaglulseer membership of the points in
every normal time series can be determined and fed into the RIBBBrithm to generate rules. We
have also continued to study how the L method performs with other hiegdrchistering algorithms
and different data sets [2]. To dynamically set the thresholdsingée state transition logic, we can
investigate holding out part of the training data and find thresholdgpteaént errors on the unseen

portion of the data.
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