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Abstract Meeting scheduling (MS) represents an important

real-world group decision application that denotes one of the

actual combinatorial problems. Solving this problem consists

of scheduling all the meetings while satisfying all the con-

straints related to both the users and the meetings. However,

given human nature, the solution is usually delineated by the

encountering of conflicting preferences. Most of existing re-

search efforts allow the relaxation of the users’ preferences

in order to reach an agreement between all the participants,

which is not always possible. In addition, they do not deal

with the achievement of any level of local consistency to

enhance the efficiency of the solving process, and finally,

they do not address the real difficulty of distributed systems,

which is the complexity of message passing operations.

Here we propose a new approach to facilitate and stream-

line the scheduling meetings process in any organization.

This approach is based on the distributed reinforcement of
arc consistency model, which takes into account the difficul-

ties mentioned above. The present work focuses mainly on

satisfying meetings hosts’ preferences as much as possible,

while taking into consideration all users’ availability. The un-

derlying selfish protocol is able to efficiently reach the best

solution for the host of the meeting (according to the prede-

fined criteria) whenever possible. This process is achieved

with the minimal number of exchanged messages and while
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retaining as much of the privacy of the involved users as possi-

ble. An experimental comparative analysis divulges that our

approach is scalable and worthwhile especially for strong

constraints.
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distributed constraint satisfaction problems . Local

consistency enforcement . Multi-agent system

1. Introduction

In daily life, meeting scheduling (MS) is a pre-eminent and

typical group decision support problem. It can be described

by the process of scheduling events (meetings) involving in-

dividual constraints, i.e., private preferences over alternative

mutual decisions. These constraints are crucially related to

the availabilities and preferences of the users who should

participate in the meetings. The MS problem is naturally

distributed and cannot be solved by a centralized approach.

Solving it involves determining the date, the time, place and

the duration of meetings1 that must be held among several

users, depending on their available times, calendar, and pref-

erences. Moreover, each meeting has a priority that indicates

its degree of importance. Therefore, solving an MS problem

means to find an optimal solution (satisfying some predefined

optimality criteria) whenever possible. Various optimality

criteria have been suggested in game theory, economics

and voting theory. Thus, the solver process should seek for

a compromise among different human users’ requirements

1 To simplify the problem, in the rest of this paper, we use the term date
to define the date, time and duration of a meeting, while for the place
we assume that all participants are in the same city.
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regarding both the potential meetings’ times and meetings’

priorities.

Many significant research efforts dealing with the MS

problem have been proposed in the literature; among them,

[1, 5, 7, 11, 12, 13, 20, 22] will be outlined in the next section.

The basic common points stressed in the majority of works

in the literature are:

– The relaxation of any of the users’ constraints, even non-

availability constraints, to achieve agreement between all

of the agents and consequently to solve the problem. How-

ever, in the real world problems, it is not always possible

to relax the constraints of users. For example, if a user has

to travel for business, then such a constraint would oblige

him/her to cancel the trip in order to attend the meeting,

which may not be always possible.

– None of these works has considered the high complexity

of message passing operations in real distributed systems.

– Only the authors in [10, 11] have dealt with the use of

some inferred knowledge to maintain the coherence be-

tween meetings in order to steer the selection of the next

proposal; none of the other efforts tried to maintain any

level of consistency [14] during the negotiation process

despite the pre-eminent role of filtering techniques in solv-

ing NP-Complete problems. These techniques allow the

simplification of any constraint problems by eliminating

values or a combination of values that cannot be involved

in any solution. Integrating the enforcement of local con-

sistency within the search process is worthwhile for prun-

ing inconsistent values, and consequently saving much

fruitless exploration of the search tree, especially on hard

and large problems leading to an enhancement of the solv-

ing process.

We have learned from all the previous work and focused

our research essentially on a new multi-agent MS approach

that closely reflects real applications while improving the

process of scheduling meetings. The proposed protocol is

based on a distributed reinforcement for arc consistency
(DRAC) approach [2]. This approach is an asynchronous

agent-based approach to enforce arc consistency on any bi-

nary constraint network. Note that several levels of local

consistency [14] exist in the literature (node, arc, path, k-

consistency). Nevertheless, arc consistency (AC) is the most

used one due to its low cost.2

The basic idea of this work is to benefit from the main goal

of DRAC in order to reduce the complexity of the meeting-

scheduling problem solving process. Thus, the meeting-

scheduling problem is contemplated as a set of distributed re-

active self-interested agents in communication; each of them

2 Higher levels of local consistency are more costly and some of them
may change the structure of the constraint network.

acts on behalf of one user, and maintains its personal infor-

mation in private. All the agents cooperate and negotiate by

exchanging only relevant information. Their decisions are

based only on current available local knowledge and without

necessarily having any global view. Thus the final result, i.e.,

the scheduling of the meetings maintained by agents, is ob-

tained as a consequence of the agents’ interactions. In such a

manner, all of the agents act in parallel and asynchronously

via the sending of asynchronous point-to-point messages.

This paper significantly extends our previous work [3].

In this work, we propose to formalize the MS problem

as a valued constraint satisfaction problem (VCSP) [17] in

which each user maintains two kinds of constraints: hard

and soft constraints related to themselves, in addition to

the other strong constraints defining the problem. The hard

constraints (which can never be violated) represent the non-

availability of the user, while the soft constraints (which can

be violated) represent the preference calendar of a user. Fur-

thermore, each new scheduled event is considered as a hard

constraint.

This paper is organized as follows. In Section 2, we outline

some of the related works. In Section 3, we give the proposed

formalization for the MS problem. In Section 4, we present

the DRAC model adapted to the MS problem. In Section 5,

we describe the global MS dynamic. In Section 6, we discuss

the termination and complexity properties. In Section 7, we

give the experimental results. Finally, Section 8 concludes

the paper.

2. Related works

Among the research studies dealing with solving MS prob-

lems are those based on CSP (constraint satisfaction prob-

lem) formalism [15]. The underlying problem is formalized

as centralized CSP in which all the users’ information is cen-

tralized in the same process [1, 5]. These works are essentially

focused on over-constraint CSPs.

However, recent researchers have argued that the best way

to solve MS problems is to use an agent-based approach. The

main reason is that agents can accomplish their tasks through

cooperation while allowing the users to keep their privacies.

A mechanism design approach based on multi-agent system

(MAS) to solve MS problems was reported first by Ephrati

et al. [7]. The authors defined two paradigms of MS scenar-

ios, open scheduling systems and closed scheduling systems.

In our work we focus on the second type,3 in which the

participants belong to a same body, e.g., an organization or

3 Indeed, the proposed approach can be applied also to an open schedul-
ing system, where all participants do agree to attend any meeting if the
time is possible.
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a company. The authors proposed three scheduling mecha-

nisms for the closed system, which differ in the information

type that each user has to reveal about his individual pref-

erences. They tried to approximate the optimal utilitarian

choice while avoiding manipulability by using the Clark Tax

method [8]. Garrido and Sycara [12] reported another MAS

work that focused on using distributed autonomous and in-

dependent agents to solve the problem. Each agent has its

individual goal, to schedule the meeting while maximizing

its individual preferences. This work is based on the com-

munication protocol presented in [18] where in agents are

capable of negotiating and relaxing their constraints in order

to reach an agreement on a schedule with high joint utility.

Sen et al. [20] have proposed another technique based on

how an application domain for intelligent surrogate agents

can be analyzed, understood and represented in order to make

these agents able to carry out tasks on behalf of human users,

taking into account their environment. Their prior work has

focused on agents adapting to environmental changes [21],

but in [20] their efforts were directed towards the integra-

tion of user preferences. Often users’ preferences are mu-

tually conflicting, so the authors used techniques from vot-

ing theory to formally represent and reason with conflicting

preferences.

Three other multi-agent approaches to MS problems, us-

ing the Partial CSP formalism introduced by [9], appear in

the literature. The first work proposed by [13] offered a new

approach to MS problems using fuzzy constraints. The un-

derlying protocol is called the selfish protocol, in which each

user tries to maximize his/her preferences during the negoti-

ation process. The second, in [22], used the distributed val-
ued constraint satisfaction problem (DVCSP) formalism to

model the MS problem. This approach is used in our exper-

imental evaluation.

The third work, based on multi-agent systems and us-

ing fuzzy constraints to express users’ preferences, was pre-

sented by Franzin et al. [11]. This meeting scheduling system

was based on an existing system that includes hard constraints

[10]. The authors proposed, in their work, to integrate prefer-

ences to their system and focused on observing the behavior

of this new system under several conditions [11]. Their main

objective was to evaluate the relations among solution qual-

ity, efficiency and privacy. The correlated protocol is based on

inferring some new knowledge during the solving process,

which may clash with the desires of agents to keep their

information private. Two basic global optimization criteria,

considered in this work were fuzzy optimality and Pareto op-

timality. However, in this protocol the number of exchanged

messages increases with the size of the problem (number of

possible proposals and users). In addition, in the worst case

each agent has to reveal all its proposals in order to reach

optimality.

3. Proposed MS problem formalization

We propose to formalize the MS problem as a VCSP (val-

ued constraint satisfaction problem) [14]. Therefore, we first

present the CSP formalism followed by VCSP formalism

and then we give our proposed formalization for the MS

problem.

A CSP [15] is a triplet (X , D, C) composed of a fi-

nite set of n variables X = {X1, . . . , Xn}, each of which

takes values in an associated finite domain D = {D1, . . . ,

Dn} and a set of e constraints among these variables C =
{Ci j , . . . }; Ci j is a binary constraint between Xi and X j .

The constraints restrict the values the variable can simulta-

neously take. Solving a CSP consists of finding one or all-

complete assignments of values to variables satisfying all the

constraints.

This formalism is generalized to the over-constrained

problems by giving a weight or a valuation to each

constraint reflecting the importance of satisfying it.

A VCSP [17] is a quintuple (X , D, C , S, ϕ)

where (X , D, C) is a classical CSP formalism, S =
(E, ⊗, φ) is a valuation structure and ϕ: C→ E. E is the

set of possible valuations; φ is a total order on E; ⊥ ∈ E cor-

responds to the maximal satisfaction, and ⊗ is an aggregation

operator used to aggregate valuation.

Assume that A is an assignment of all the variables of the

problem. The valuation of A is defined by:

ϕ(A) = ⊗c∈Cϕ(A, c) where:

ϕ(A, c) =
{⊥ If c is satisfied byA

ϕ(c) Otherwise

We have used the VCSP formalization to define the MS prob-

lem by (X , D, C , S, ϕ), in which:

– X ={. . . , Xi
k , . . . , X j

h , . . . }, where Xi
k is the date requested

by user useri for the meeting mi
k .

– D ={. . . , Di
k , . . . , D j

h , . . . }, where Di
k is the set of possible

dates for the meeting mi
k .

– C is the set of all the constraints of the problem. We divide

set C into two types of constraints: constraints related to

the users and constraints related to the meetings. For the

former, we can consider:� Hard constraints: CH related to the non-availability of

the users,� Soft constraints: CS related to the preferences of the

users.

With regard to the second type of constraints, it represents

all the allDiff constraints [19] existing between each pair of

meetings sharing at least one of the same participants.

Springer



146 Appl Intell (2006) 24: 143–154

User 1 Global Calendar
M Tu W TH F 

1 0.2 0.8 0.14 

2 0.5 0.75 0.26 

3 0.23 0.23 0.62 

4 0.44 0.65 

5 0.65 0.35 0.33 0.48 

6 0.52 0.48 0.28 0.29 0.69 

7 0.86 0.88 

8 0.9 0.74 

User 2 Global Calendar
M Tu W TH F 

1 0.23 0.26 0.15 

2 0.45 0.43 0.68 

3 0.68 0.58 0.52 0.95 

4 0.12 0.55 0.14 0.36 0.86 

5 0.39 

6 0.48 

7 0.98 0.15 0.23 0.2 

8 0.72 0.26 0.14 0.22 

Fig. 1 “Examples of the
calenders of two users”

It is noteworthy that for this type all the constraints are

considered as hard constraints.

– S is the valuation structure where ⊗ corresponds to +,

and φ defines the operator more than “>”. This operator

is used to set a total order among the obtained solutions

in the problem.

For each hard constraint cH ∈ CH , we associate a weight

⊥, for each soft constraint cS ∈ CS we associate a weight4

W i
kl ∈ E , and to each meeting mi

k we associated a weight5

wi
k ∈ E (E = [0..1]).

To illustrate this formalization more clearly, let us con-

sider the following example formed by 2 users, each en-

trusted with the task of scheduling one meeting. Assume

that both meetings require the participation of all the

users. Figure 1 illustrates the preferences of each user.

The underlying MS formalization (X , D, C , S, ϕ) is as

follows:

– X = {X1
1, X2

1},

– D = {D1
1, D2

1}, Di
k is represented by the gray boxes in

Fig. 1, i.e., possible times for the underlying meeting.

– C = CH ∪ CS where:� C H is represented by the black boxes in Fig. 1. and

all the allDiff constraints existing between each pair of

meetings (X1
1 �= X2

1).� C S is represented by the white boxes in Fig. 1.

The number inside the boxes indicates the degree of prefer-

ences of each user for each time in their calendar.

4 It represents the degree of preference of the agent Ai for having the
meeting mi

k at the date dkl .
5 This weight defines the priority/importance of mi

k .

4. DRAC model adapted to the MS problem

The DRAC model uses two kinds of agents: Constraint agents

and an Interface agent. Each has its own knowledge (static

and dynamic), a local behavior to satisfy, and a mailbox to

store incoming messages. The agents communicate by ex-

changing asynchronous point-to-point messages. An agent

can send a message to another only if it knows the other be-

longs to its acquaintances. For transmission between agents,

we assume that the messages are received in a finite deliv-

ery time and in the same order they are sent. Messages sent

from several agents to a single one may be received in any

order.

The Interface agent is an intermediate interface between

all the Constraint agents. It is added in order to create the

agents and, most importantly, to inform the users of the result.

This model can be “well” adapted to the MS problem. In

this problem, each Constraint agent can be considered as a

User agent Ai . A User agent must maintain the concerned

user’s calendars for his/her availability, preferences and the

already planned meetings.

The acquaintances of an agent consist of all of the agents

that must be present in the same meeting, called Participant

agents (represented as Part(mi
k)). Accordingly, in our system

an agent is considered as a Proposer agent when it has a

meeting to schedule. It can be also considered as a Participant

agent if it is a participant in another meeting proposed by

another agent of the system. Each scheduled meeting that has

been registered (represented as CalendarAi ) is considered as

a new constraint. Therefore it must be added to the set of hard

constraints maintained by the corresponding agents.

Each agent Ai maintains a VCSPAi for which the vari-

ables X Ai∈X represent the meetings dates to found for its

user’s set of meetings (represented as MeetingsAi ), while the

constraints C Ai ∈ C(C Ai = C Ai
H ∪ C Ai

S ∪ C Ai
allDiff) repre-

sent the non-availability, the preferences of the corresponding
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user, the timetabling of this user and the constraints relating

to each pair of its meetings.

Thus in the proposed model, the aforementioned con-

straints represent the intra-agent constraints for Ai while the

inter-agent constraints are represented by a set of strong con-

straints, i.e., equality constraints. An equality constraint ex-

ists between agents Ai and A j if and only if at least one

meeting mi
k (resp. m j

h) exists, such that A j ∈ Part(mi
k) (resp.

Ai ∈ Part(m j
h)). It is noteworthy that the inter-agent con-

straints are dynamic because the participants and their num-

ber in a meeting differ from one meeting to another.

Each attendant has a set of meeting preferences for each

particular meeting. The local goal is to schedule meetings

such that all its hard constraints CH are satisfied while try-

ing to maximize the proposer’s preferences (selfish protocol)

using formula 1.

Max
∑

k∈{1...|meetings(Ai )|}
W i

kl
(1)

The global goal is to schedule the maximum of users meet-

ings satisfying all the inter-agent constraints.

In this paper, we consider the MS problem from stand-

point of the host of each meeting (who can be the director

of the company, the manager of the department, etc.). In our

scenario, we will adopt the natural, innately fair and self

centered behavior of a human being, since the knowledge

of a user is self centered knowledge. Hence, each agent in

the meeting scheduling process tries to satisfy its local goal

while maximizing its preferences (selfish protocol).

The adopted criteria for an MS solver should guarantee

some common attributes for both the resulting decision and

the scheduling process itself. Furthermore, in order to ensure

such features for the solver and the outcomes, the proposed

system should be able to extract the truthful preferences [7]

and availabilities of the users.

In the present work, the optimal solution is based on self-

centered initiator preferences. Overbidding the preferences

for any time cannot change the outcome; therefore the dom-

inant strategy for every agent is to reveal its utility values

truthfully. Obviously, the optimality criteria may differ from

one scenario to another according to the measures adopted by

the system designer, e.g., a pure utilitarian approach [7], the

Nash approach [16], and others, while the global proposed

dynamic remains the same for any chosen measurement. In

the case of a global measurement, e.g., maximizing the sum-

mation of the participants’ utilities, we propose as stated in

[7] to use convenience points to express preferences over

alternative times for every proposed new meeting. In addi-

tion, we propose to embed the Clark Tax mechanism [8] to

force the users to truly express their preferences towards the

meeting’s importance and users’ possible timings. As for the

non-availability of the participant, we assume that the users

will reveal their real availability if necessary.

Hence, each participant in a meeting will get a total num-

ber of convenience points to spread among its availability-

times according to its preferences and this for each new

meeting added to the system. The Tax can be computed

on the number of convenience points given for the next

meeting.

5. Global MS Dynamic

The global objective of the proposed approach is to schedule

all meetings while maximizing the hosts’ local preferences.

In addition, we focused on minimizing the total number of

exchanged messages. The multi-agent meeting scheduling

negotiation protocol is divided into two steps as follows:

– The first step uses the basic idea of the DRAC approach,

which consists in transforming the original MS problem

into another equivalent MS’. This step is needed to rein-

force some level of local consistency [14] (node and arc

consistency) in the initial problem.

– The second step solves the obtained MS problem while

maintaining arc-consistency and this is accomplished via

interactions and negotiations between Participant agents

and the Proposer agent. Each Proposer agent searches for

the best solution for its meetings that, on the one hand,

fulfils the condition given in the previous section, and on

the other, satisfies all hard constraints.

When a user wants to host a meeting, he has to run the Inter-

face agent, which will activate the corresponding Proposer

agent and make it interact with all of the Participant agents

(Fig. 2). More than one Proposer agent can be activated at the

same time, in the case of multiple users who want to schedule

their meetings.

Each activated Proposer agent must first reduce the time

slots of the corresponding meetings according to its hard

Fig. 2 “Start process executed by each Proposer agent Ai ”.

Springer



148 Appl Intell (2006) 24: 143–154

Fig. 3 “Main procedures
executed by each agent Ai ”

constraints, constraints defining the non-availability of the

user. This process can be viewed as a local reinforcement

of node consistency and aims to reduce the meetings’ slot

times by eliminating the dates upon which the meeting

cannot be held (Fig. 2, lines 1 and 2). In other words,

a meeting cannot be held on a date defined as a non-

available date for the user or already planned for another

meeting.

If the time slots for a meeting become empty after reduc-

tion that indicates that the corresponding user is not available

for all of the proposed dates of this meeting, the times of this

meeting must then be changed (Fig. 2 line 5). Otherwise, the

Proposer agent must send the obtained reduced time slots for

all of the meetings to be scheduled to all of the Participant

agents (Fig. 2 line 7).

Each Participant agent that receives this message starts

first by eliminating both the non-viable dates from the re-

ceived time slots of the meetings (dates that correspond to its

non-availability), and all the dates taken by already sched-

uled meetings (Fig. 3 lines 1 and 2). After that, it returns the

obtained time slots to the sender agent (Fig. 3 line 3). At first,

the Proposer agent collects all the received reduced slot times

(Fig. 3 line 4), then, begins by scheduling its meetings. It

tries to first find the proposal that maximizes its preferences

(Fig. 3 lines 6 and 9) and then sends it to the concerned ac-

quaintances. If the Proposer agent cannot find a solution to

this problem, then it changes the time slots of this meeting

(Fig. 3 line 8).

Each agent that receives this proposal must first check if

it has, meanwhile, accepted another proposal for the same
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date. In the negative case, the agent will first update its hard

constraints by adding the new proposal (Fig. 3 line 16), then

update the dates of its not-yet-scheduled-meetings by elimi-

nating the dates that correspond to the same date of the just

scheduled meeting, in order to maintain the arc-consistency.

Finally it informs the Proposer agent of its agreement

(Fig. 3 line 18).

However, if the agent has another meeting already sched-

uled at the same time as the proposed meeting, it must send

a negative answer to the Proposer agent and ask it to change

its proposal (Fig. 3 line 14). Accordingly, each agent that has

proposed a meeting and received at least one negative answer

must change its proposal (Fig. 3 line 21). Consequently, this

agent must decrease its degree of preferences (Fig. 3 line

22) and the same process is repeated until an agreement is

reached among all of the participants. If after testing all of the

solutions no agreement is reached, then the Proposer agent

is obliged to inform the participants of the meeting cancella-

tion.

The aforementioned dynamic resumes running until

the system reaches its stable equilibrium state. This

state can be defined as the satisfaction of all agents in

the system. The satisfaction of an agent is defined as

the scheduling of all its meetings or the cancellation

of the ones that cannot be held at that time.

We should emphasize the fact that in this paper we assume

on the one hand that each newly scheduled meeting will be

considered as a hard constraint, and on the other hand, each

agent performs a selfish protocol. This choice is used in order

to avoid dynamic changes and especially to escape from an

infinite processing loop. This work can be considered as the

first version of the proposed approach. The integration of the

dynamic process was presented in [4] where the proposed

protocol focused on maximizing the utility of all the agents

of the system.

6. Discussions

6.1. Termination

The dynamic of the MSRAC approach ends when the sys-

tem reaches its stable equilibrium state. In real application,

this state will be temporary, and the whole system will restart

with new sets of meetings to schedule. However, at the stable

equilibrium state all the agents are satisfied; that satisfaction

is defined for each agent by two aspects, the completion of

scheduling all its current meetings, and the acquisition of all

the confirmations from all the other Proposer agents. How-

ever, this approach is guaranteed to find a useful solution, i.e.,

the best one for the Proposer, if it exists. The host of each

meeting will check all possible dates from the most preferred

to the less preferred one to schedule its meeting. Neverthe-

less, to prove the termination of this approach we have to

prove that the underlying protocol never goes into an infinite

loop while scheduling a meeting.

Let’s assume that this approach goes into an infinite loop

while scheduling a meeting. To schedule a meeting Xi
l all

the participants will cooperate together to find the best date

for this meeting. The system will go into an infinite loop

while scheduling Xi
l if and only if the Participant agents

reprocess the checked dates (cycle) when no solution is

found. However, the number of possible meeting dates is

discrete and finite. Moreover, every unsuccessfully checked

date is removed from the system to avoid returning to it

later. The system will stop when a “good” date is found or

when all possible dates for Xi
l are processed and no possi-

ble solution has been found. Hence our assumption is not

true.

We have to note that the satisfaction state of all the agents

in a distributed system can be achieved by taking snapshots

of the system, using the well-known algorithm of Chandy-

Lamport [6]. Termination occurs when all agents are waiting

for a message and there is no message in the transmis-

sion channels. The cost of the termination process can be

mitigated by combining snapshot messages with our proto-

col messages.

6.2. Complexity

Let us consider an MS problem implying n for total num-

ber of users, d for the maximal number of possible dates per

meeting, |CH | = cH for the maximum number of preferred

dates per user and |CS| = cS for the maximum number of

non-available dates per user. The total number of agents in

this system is n the same as the total number of users. Sup-

pose that each meeting involves n attendees and each user

has m already scheduled meetings in his/her calendar. Let’s

compute the complexity of scheduling an another meeting

into the existing schedule of each agent.

The solving process of the proposed scenario is divided

into two steps. In the first step, the pruning step, the initia-

tor agent will perform O((cH + m)d) operations to filter the

time slots of the new event. Then, this agent will transmit

the obtained set of possible remaining dates to the (n − 1)

attendees to carry out the same process. The time complexity

of this step, in the worst case, is O(nd(cH + m)).

For the second step, the initiator agent will first de-

termine the intersection of the sets of the received times,

leading to (n−1)d2 operations, then choose one proposal

among d dates,6 according to the proposed optimal crite-

ria; this process requires O(cSdlog(d)) operations. The agent

will send its proposal to the attendees to check it. Each

6 In the worst case, we assume that no possible date is removed from
the initial set.
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attendee will perform O(m) operations to check if it has

received in the meanwhile another proposal for the same

date. The same process resumes until exhausting all possi-

ble dates, leading to O(dnm) operations in the worst case.

Then the total temporal complexity of the second step is

O((n − 1)d2 + cSdlog(d) + dnm).

Finally, the temporal complexity for each event to

schedule is, O(nd(cH + m) + nd2 + cSdlog(d) + dnm) in the

worst case.

The spatial complexity for all the agents is O(n(cS + cH +
d + m)) in the worst case, where (cS + cH + d + m) is the

total size of the initial calendar for each agent.

7. Experimental comparative evaluations

To evaluate the proposed approach, we have developed the

multi-agent dynamic with Actalk, an object oriented con-

current programming language using the Smalltalk-80 envi-

ronment. In our experiment, we generated random meeting

scheduling problems varying from simple to hard problems.

The parameters used for a meeting problem are: n agents in

the system, m meetings per agent, p participants in a meet-

ing, D global calendar, cH number of hard constraints per

agent,cS number of initial soft constraints per agent, d max-

imal possible dates per event, W i
kl weights for the soft con-

straints, and wi
k weights of the meetings (the weight of each

hard constraint is equal to 1).

In order to compare our approach with that reported in

[22], we used the same parameters to run both algorithms

on randomly generated examples. We must note that the ap-

proach in [22] presents some restrictions on, first, the handle

of the hard constraints (i.e., all the constraints could be re-

laxed by this approach), and second, the discrimination be-

tween meetings. This approach processes all the proposed

meetings with the same importance independently of neither

the Proposer nor the attendants. However in the real world,

all meetings are not equivalent. For this reason we have in-

cluded the notion of meeting priority in our formalization by

associating a weight wi
k to reflect its greatness. Our approach

tries then, in its solving process, to first schedule the most

important meeting maintained by each agent, unlike the ap-

proach in [22]. In that manner, we attempt to describe ideally

the real world meeting scheduling problems. Therefore two

kinds of experimentation are given in this section.

For the first kind, we assume that for each generated prob-

lem, we have only soft constraints. We carried out the two

approaches on the same meeting instances with: n = 10, m ∈
{3, 4, 5}, p = 7, cS ∈ {20, 40, 60}; W i

kl ∈ [0..1], wi
k ∈ [0..1]

were randomly chosen (10 instances are generated for each

< m; cS >). The initial calendar in each problem is equal

to 60.

Table 1 “Ratio of mean results of the CPU time for meeting problem
without hard constraints (10 instances were generated for each <m;
cS>)”.

<3; 20> <4; 20> <5; 20> <3; 40> <4; 40>

Ratio CPU 0.75 0.73 1.01 1.60 2.46

<5; 40> <3; 60> <4; 60> <5; 60>

Ratio CPU 4.15 3.99 5.88 7.77

Table 1 shows the obtained mean results for the ratio

of CPU time of the approach in [22] divided by the CPU

time of ours. In order to analyze these results, let us con-

sider the two cases <3; 20> and <4; 20>. At first glance,

it seems that the approach in [22] is better than our ap-

proach, given that it requires less CPU time in these two

cases. However, this can be justified by the fact that for this

kind of problem the constraints are few, so the approach in

[22] can rapidly find a solution for each meeting without re-

laxing many constraints, causing few iterations on the same

meeting.

In our approach, on the other hand, we try to find the so-

lution that maximizes the user’s preferences (not the “first”

solution). Therefore we must check all the possible dates for

each meeting. In addition, in our approach we try to max-

imize each user’s preference for the most important meet-

ings. In all the other cases, the approach in [22] takes more

time than our approach as both the number of constraints

and the number of meetings grows. Furthermore, in our ap-

proach each agent tries to perform all its meetings in parallel

while for the approach in [22], it is done in a sequential

manner.

As the number of meeting constraints grows, so does the

probability of getting the same dates for the meetings. There-

fore, the number of relaxed constraints by the approach in

[22], increases. This leads to additional iterations for the same

meeting and hence an increase in the CPU time.

As for the second kind of experimentation, i.e., to ap-

praise the greatness of the reinforcement of local consis-

tency in the solving process, we have chosen to measure

the percentage of reduction made by the first step of our ap-

proach. For this purpose, examples including hard constraints

were randomly generated with n = 10, m = 3, p ∈ {7, 5, 3},
cH ∈ {20, 30, 40, 50} and d ∈ {66%, 50%, 33%, 16%} cor-

responding respectively to each cH . For each pair < p, cH >,

10 instances were generated; we then ran each instance

10 times and measured the average of the achieved re-

sults. These results are expressed in terms of four criteria:

(i) the CPU time spent by each of the two approaches, (ii)
the percentage of scheduled meetings, (iii) the percentage

of reduced soft constraints performed by the first step of the
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proposed approach and (iv) the required number of messages

passed.

We have introduced some modifications to the approach in

[22] to make it worthwhile for both hard and soft constraints.

These two approaches were carried out on the same meeting

examples. Figures 4 and 5 show the achieved mean results

of both approaches in term of CPU time and the percentage

of scheduled meetings.

These results show that our approach requires less CPU

time than approach [22]. For example in the case of 7

participants and 50 hard constraints, the problem is over-

constrained and thus no meetings can be planned, i.e.,

no agreement can be reached between all the attendants.

Therefore, our approach can discover merely the absence

of solution from the first step, and before starting the solving

process.

In case of 7 participants and 20 hard constraints, only a

few meetings can be planned. Table 2 shows that the percent-

age of pruned dates from possible ones is high (= 96, 42%).

Therefore, our approach is able to schedule the possible
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Table 2 “Mean results in term of the percentage of reduced time slots”.

<3; 20> <3; 30> <3; 40> <3; 50>

% CH Reduction 80.83 94.5 98.5 99.67

<5; 20> <5; 30> <5; 40> <5; 50>

% CH Reduction 91.75 98.67 99.83 100

<7; 20> <7; 30> <7; 40> <7; 50>

% CH Reduction 96.42 99.22 99.83 100

meetings in considerably less CPU time than approach [22],

i.e., the approach in [22] requires about four times the time

needed by our approach. This result can be elucidated by the

fact that the first step is useful in order to discard the dates that

cannot be in any solution and consequently avoid exploiting

them in the solving process, leading to decreased CPU time

consumption.

Nevertheless, for the percentage of the meetings sched-

uled, the approach in [22] planned, for some cases, more

meetings than our approach. This is because for our approach

we tried to plan the most important meeting first. For exam-

ple, in the case <7; 20> the 30% of the meetings scheduled

by the approach in [22] may or may not contain the most

important meetings in the problem. Meanwhile, with our ap-

proach we are sure that the 13.33% of the meetings scheduled

are the most important because they were first chosen to be

processed using their weights.

As for the number of exchanged messages needed to reach

an agreement among all the users, Fig. 6 shows that the pro-

posed approach requires many fewer exchanged messages

than the Tsuruta approach [22]. This number increases with

the number of participants in the meeting, even if the problem

has no solution, i.e., there is no possible time at which all the

participants can meet. However, with the proposed approach,

the percentage of reduced values increases with both the num-

ber of participants and the number of hard constraints, con-

sequently the number of exchanged messages decreases.

We can conclude that our approach is a scalable approach

that outperforms the approach proposed in [22] and this

is especially true when the number of meetings increases.

One must note also that our approach seems to be more

appropriate to real-world applications by dealing especially

with strong constraints (i.e., inequality) and by bringing for-

ward consideration of discrimination among the proposed

meetings. In addition, the first step of the proposed approach

can fulfill a premature detection of the impossibility of reach-

ing any agreement between all the participants; it does this

by maintaining arc-consistency.

8. Conclusion

The objective of this paper is to propose a new approach for

meeting scheduling (MS) problems that reflects real-world

applications. To fulfill such condition, we have considered,

in our model, two kinds of constraints to model the users’

requirements: hard constraints to model the non-availability

of a user and soft constraints to define his/her preferences.

The underlying multi-agent architecture associates an

agent with each user and makes the agents interact by sending

asynchronous point-to-point messages containing only rele-

vant information to keep, as much as possible, their privacy.

The basic idea of this approach consists of two steps: the
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first reduces the initial problem by reinforcing some level of

local consistency (node and arc consistency); and the second

step solves the resulting meeting scheduling problem with a

minimum number of exchanged messages.

This approach was implemented with Actalk under the

Smalltalk-80 environment and compared with an existing ap-

proach in literature [22] on randomly generated instances, in

mean of CPU time, percentage of scheduled meetings and the

number of exchanged messages. The obtained results show

that our approach is scalable and worthwhile for process-

ing strong constraints. In addition, they show the importance

of the first, i.e., the reduction step. Other experiments were

made to measure the percentage of non-viable values dis-

carded from the meetings’ calendars. The obtained results

showed that this process is appropriate for reducing the MS

problem, and consequently the search space, without loss of

solutions.

In future work, we will try to improve this approach by

allowing a more relaxed system. Then, we will try to imple-

ment the improved approach on a multi-processor platform

using real data.
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