Generalizing Predicates with String Arguments

Ilyas Cicekli ! Nihan Kesim Cicekli 2

L Dept. of Computer Engineering, Bilkent University, Ankara, TURKEY
(ilyas@cs.bilkent.edu.tr)

2 Dept. of Computer Engineering, METU, Ankara, TURKEY
(nihan@ceng.metu.edu.tr)

Abstract. The least general generalization (LGG) of strings may cause an over-
generalization in the generalization process of the clauses of predicates with string
arguments. We propose a specific generalization (SG) for strings to reduce over-
generalization. SGs of strings are used in the generalization of a set of strings
representing the arguments of a set of positive examples of a predicate with string
arguments. In order to create a SG of two strings, first, a unique match sequence
between these strings is found. A unique match sequence of two strings consists of
similarities and differences to represent similar parts and differing parts between
those strings. The differences in the unique match sequence are replaced to create
a SG of those strings. In the generalization process, a coverage algorithm based on
SGs of strings or learning heuristics based on match sequences are used.

Keywords: inductive logic programming, machine learning, string generalization

1. Introduction

One of the main issues in Inductive Logic Programming (ILP) is the
induction of predicate definitions from only positive examples. However
learning from only positive examples may cause over-generalization
because there are no restrictions imposed by negative examples. Many
researchers have worked on the ILP systems which can learn from pos-
itive examples [5, 7, 9, 14, 3]. Some of them use statistical techniques
to overcome this over-generalization problem. Muggleton [7] showed
that logic programs are learnable with low expected error from positive
examples within a Bayesian framework.

Predicates with string arguments naturally occur in many problem
domains. The ILP techniques presented in this paper can be used in
the induction of predicates with string arguments from only positive
examples. For example, translation rules between two natural languages
can be a predicate with two string arguments, and some of ILP tech-
niques discussed here are successfully used in the learning process of
the translation rules from given translation examples [1, 2, 4].

The proposed learning process for the predicates with string ar-
guments assumes that only positive examples are available, and the
predicate append which is assumed to be in background knowledge can
appear in the body of the induced predicates. We also present a learning

% © 2005 Kluwer Academic Publishers. Printed in the Netherlands.

APIN903-04.tex; 2/11/2005; 9:43; p.1

2 Cicekli & Cicekli

heuristic based on match sequences, and this learning heuristic is used
in the induction of a recursive predicate in a special form.

In the proposed framework, the generalization of two strings depends
on the unique match sequence between those two strings. The unique
match sequence represents similarities and differences between a pair
of strings. A similarity is a common substring of two strings, and a
difference represents differing parts between two strings.

From a given set of positive examples for a predicate with string
arguments, some of the current ILP systems learn over-generalized rules
or do not perform any generalization at all. Let us assume that, we
want to learn predicate p from the following positive examples given as
Prolog clauses. Here, we assume that lists represent string arguments.

p(la,b], [x,y]).
p(lc,d,bl, [z,w,y]).

Although these two clauses have a common property, this property will
not be captured by most of the current ILP systems. This common
property is that the first arguments end with atom b, and the second
arguments end with atom y. For example, the GOLEM system [7],
which is one of ILP systems and uses only Plotkin’s RLGG schema [12],
generalizes these clauses with the following clause

p([A,BIC], [D,EIF]).

without capturing that common property. This clause is an over gener-
alization, and it accepts any lists whose lengths are more than one for
both arguments. For the same positive examples, the Progol system [9]
does not perform any generalization, and it returns the given posi-
tive examples as result. On the other hand, our proposed mechanism
generalizes these clauses with the following clause.

p(L1,L2) :- append(X,[b],L1), append(Y, [y],L2).

This generalized clause means that any list ending with atom b can be
the first argument of the induced predicate p, and a list ending with
atom y can be the second argument. Here, we assume that the predicate
append is known as background knowledge, and it can be used in the
body of the induced predicate.

The rest of the paper is organized as follows. In Section 2, we ex-
plain how a unique match sequence, which represents similarities and
differences in a pair of strings, can be found. In Section 3, we propose
a specific generalization (SG) for two strings, which is created from the
unique match sequence of those strings. A generalization of predicates
is explained in Section 4. In Section 5, we describe a learning heuristic

APIN903-04.tex; 2/11/2005; 9:43; p.2

Generalizing Predicates with String Arguments 3

based on SGs of strings to generalize positive examples of recursive
predicates with string arguments in a certain form, and the usage of
this learning heuristic in the induction of translation templates in an
example-based machine translation system. Section 6 explains how ex-
tra background knowledge can be used in the learning process by giving
an application in grammar learning domain. Finally, we conclude the
paper with pointers for further research.

2. Unique Match Sequence

In this section, we give a formal definition of a match sequence and a
unique match sequence between two strings. Let us assume that every
string is a sequence of symbols in a finite alphabet. Before the definition
of the match sequence, we need to define similarity and difference first.

Definition 1 - Similarity. A similarity between «; and as, where ag
and a9 are two strings, is a string 3 such that it satisfies the following
conditions:

i a1 = aq,18012 and ag = a1 Bag 2.

ii. If both of a11 and a1 are not empty, their last symbols cannot be
the same symbol.

iii. If both of a1 2 and g2 are not empty, their first symbols cannot
be the same symbol.

iv. The similarity 8 cannot be an empty string unless both a; and as
are empty.

Definition 2 - Difference. A difference between two strings ag
and a9 is a pair of two strings (01, 52), and it satisfies the following
conditions:

i o =a1161012 and ag = az 1509 2.

ii. Either both of a1 and ag; must be empty, or both of them must
be non-empty. In the latter case, their last symbols must be same.

iii. Either both of a2 and as 2 must be empty, or both of them must
be non-empty. In the latter case, their first symbols must be same.

iv. The same symbol cannot occur in both (31 and (s, and at least one
of them is not empty.

APIN903-04.tex; 2/11/2005; 9:43; p.3

4 Cicekli & Cicekli

According to these definitions, a similarity represents a similar part
between two strings, and a difference represents a pair of differing parts
between two strings. For example, cd represents a similarity between
the strings abed and fed, and (ab,f) represents a difference between
them.

Definition 3 - Match Sequence. A match sequence between two
strings a1 and a9 is a sequence P;...P,, where each P; is a similarity S;
or a difference D; = (D; 1, D;2) and n > 1, and this sequence satisfies
the following conditions:

i. If we define two constituent functions as follows:

= S; if P; is a similarity 5;
Hl = D; if P is a difference (D; 1, D; 2)

.o — S; if P; is a similarity 5;
w27\ Do if P; is a difference (D; 1, D;9)
then a1 = Cl,l...C’nJ and o = Cl’Q...Cn’Q.

ii. A similarity cannot follow another similarity, and a difference can-
not follow another difference in a match sequence.

The conditions for the match sequence guarantee that there will be
at least one match sequence for any given two strings. But they do
not guarantee that there will be at most one match sequence for any
given two strings. This means that there can be more than one match
sequence for any given two strings. For example, the strings abc and
dbe f in Table I have only one match sequence (a, d)b(c, e f) because both
of those strings contain only one common substring. On the other hand,
the strings abc and dbebf have two match sequences, because common
substring b occurs once in the first string, and it occurs twice in the
second string. The number of match sequences between two strings
depends on both the number of the common parts and the positions
of the common parts in those strings. For illustration purposes, Table I
gives the match sequences for some string pairs. The first two columns
show the pair of the strings that are compared, and the third column
is the set of all possible match sequences between them.

Definition 4 - Unique Match Sequence. A unique match sequence
(UMS) between two strings a; and ag is a match sequence between oy
and asg such that the following conditions must be satisfied:

i. If a symbol occurs in a similarity, it cannot occur in any difference.

ii. If a symbol occurs in the first constituent of a difference, it cannot
occur in the second constituent of any difference.

APIN903-04.tex; 2/11/2005; 9:43; p.4

Generalizing Predicates with String Arguments 5

Table I. Match Sequence Examples
o 3 MSs(a, B)

€ € {6} The match sequence of two empty strings is a sequence

of a single similarity which is an empty string

a a {a} The match sequence of two identical strings is a sequence

of a single similarity which is equal to that string

a b {(a,b)} The match sequence of two completely different strings
is a sequence of a single difference

abc dbef | {(a,d)b(c,ef)}

ab abe {ab(e,)}

abc dbebf | {(a,d)b(c,ebf), (a,dbe)b(c, f)}}

abe bdb {
ab ba {
abebd | ebfbg | {

Any given two strings will have either only one unique match se-
quence or they will not have a unique match sequence at all. The condi-
tions (i) and (ii) above guarantee its uniqueness when a unique match
sequence exists for a pair of strings. Although the same symbol can
appear in more than one similarity according to the conditions above,
the following facts about unique match sequences can be observed:

— If a symbol appears in both a; and a9, it must appear n times,
where n > 1, in both of those strings. Otherwise, they cannot have
a unique match sequence. For example, the strings bc and bd have a
unique match sequence b(c,d) because the symbol b occurs exactly
once in both of the strings. On the other hand, the strings bc and
bdb cannot have a unique match sequence because the symbol b
occurs only once in the first string and it occurs twice in the second
one. This means that the symbol b must end up in a similarity and
a difference of a match sequence of those strings, but this violates
the condition (i) of the unique match sequence.

— If a symbol appears n times in both a; and as where n > 1, its

ith occurrence in aq and its i*" occurrence in oy must end up in
the same similarity of their unique match sequence. For example,
the strings bbchb and bbdb have a unique match sequence bb(c,d)b
where the first and second occurrences of the symbol b in those
strings end up in the first similarity, and its third occurrences end

up in the second similarity.

APIN903-04.tex; 2/11/2005; 9:43; p.5

6

Cicekli & Cicekli

— If two symbols a and b appear in both a; and as, and the "

occurrence of a appears before the j% occurrence of b in «;, the
it" occurrence of a must appear before the j¢* occurrence of b in av
too. Otherwise, those strings cannot have a unique match sequence.
For example, the strings bdc and bec have a unique match sequence
b(d,e)c because the symbol b occurs before the symbol ¢ in both
of those strings. On the other hand, the strings bdc and ceb cannot
have a unique match sequence because the symbol b occurs before
the symbol c in the first string, and it occurs after the symbol ¢ in
the second string.

Some more examples for unique match sequences:

1.

The unique match sequence of two empty strings is a sequence of
a single similarity which is an empty string.

. The unique match sequence of two identical strings is a sequence of

a single similarity which is equal to that string. For example, the
unique match sequence of ab and ab is ab.

. The unique match sequence of two totally different strings is a

sequence of a single difference. For example, the unique match
sequence of ab and ¢ is (ab, c).

. The unique match sequence of abcb and dbebf is (a,d)b(c, e)b(e, f).

. There is no unique match sequence for abc and bdb because b

appears once in abc but it occurs twice in bdb.

. There is no unique match sequence for ab and ba because a appears

before b in ab but a appears after b in ba.

. The unique match sequence of abcadb and eabfagbh is

(e,e)ab(c, f)a(d, g)b(e, h).

3. Specific Generalization of Strings

The specific generalization of two strings is a generalized string that is
a string of symbols and variables. The variables in generalized strings
represent possible ground strings, and same variables represent the
same ground strings.

The definition of the match sequence (and the unique match se-

quence) will be extended for generalized strings by assuming each vari-
able as a new symbol. Before the unique match sequence of two gener-
alized strings is found, all variables in one of the strings are renamed so

APIN903-04.tex; 2/11/2005; 9:43; p.6

Generalizing Predicates with String Arguments 7

that the strings do not contain the same variables. Then each variable is
treated as a new symbol in the creation of the unique match sequence.
Because of this renaming operation, a variable cannot appear in the
similarity of a unique match sequence of two generalized strings. For
example, the unique match sequence of aXbcYd and efbcZ will be
(aX,ef)bc(Yd, Z).

Each string (ground or generalized string) represents a set of ground
strings (strings without variables). For example, the generalized string
Xa represents the set of all ground strings ending with the symbol a.
We say that the ground string function GS(«) represents the set of all
ground strings that are covered by the string «. If a is a ground string,
GS(a)is {a}. The GS function creates following relations among strings:

— The string [is more general than the string « if GS(a) C GS(3).
— The string « is more specific than the string 5 if GS(a) C GS(B).
— The string « is equal to the string g if GS(a) = GS(B)

For example, GS(bXa) is the set of all ground strings starting with b
and ending with a, and GS(Xa) is the set of all ground strings ending
with a. Since GS(bXa) C GS(Xa), the string bXa is more specific
than the string Xa, and Xa is more general than bXa. The strings
XY and Z are equal because GS(XY') = GS(Z) where both GS(XY")
and GS(Z) represent the set of all possible ground strings. On the other
hand, there is no specificity relation between strings Xa and bY because
GS(Xa) ¢ GS(bY), or GS(bY) ¢ GS(Xa), or GS(Xa) # GS(bY).

A generalized string is obtained from an instance of a unique match
sequence in which all differences are replaced with variables, and the
same differences are replaced with the same variables. An instance of
a unique match sequence is obtained by dividing differences in that
unique match sequences by sequences of differences. For example, the
instance (b,d)(c,e)a(c,e) is obtained from the unique match sequence
(be,de)a(c,e) by dividing the difference (bc,de). Although a difference
cannot follow another difference in a match sequence, a difference can
follow another difference in an instance of that match sequence. When
an instance of a unique match sequence is generalized instead of that
unique match sequence we may get a more specific generalized string.
When the unique match sequence (be,de)a(c,e) is generalized, we get
XaY as a generalized string. On the other hand, when its instance
(b,d)(c,e)a(c,e) is generalized, we get XYaY as a generalized string.
The string XYaY is more specific than the string XaY.

In order to find the specific generalization of two strings, first the
most specific instance of their unique match sequence is found. The

APIN903-04.tex; 2/11/2005; 9:43; p.7

8 Cicekli & Cicekli

most specific instance of a unique match sequence is one of its instances
such that the most specific string is obtained when that instance is
generalized. A match sequence may not have a unique most specific
instance. In that case, we will be conservative and we will find a spe-
cific instance but it may not be the most specific one. As a result,
we may not find the most specific generalization but we will find a
specific one in that case. For example, (b,d)(c,e)a(c,e) is the most
specific instance of the match sequence (bc,de)a(c,e). On the other
hand, the match sequence (cd,fe)a(c,e)a(d,f) has two specific instances
(c,e)(d, f)(e,e)a(c,e)a(d, f) and (e, f)(c, e)(d, €)a(e, e)a(d, f), and none
of these instances is more specific than the other one. To avoid this kind
of ambiguity, we select an instance that is more general than both of the
specific instances. In this case, the match sequence (cd,fe)a(c,e)a(d,f)
will be the specific instance of itself.

In order to find a specific instance of a unique match sequence, the
differences in that match sequence are replaced by sequences of differ-
ences. The replacement of a difference should not lead to an ambiguity,
and that replacement should be the most useful one. In Section 3.1,
we discuss how to handle this ambiguity problem and how to select
the best difference replacement. We describe the algorithm that finds
a specific instance of a unique match sequence in Section 3.2.

3.1. SEPARABLE DIFFERENCES

In order to avoid the ambiguity, a difference is broken up into a sequence
of differences by another difference, and this break-up operation should
satisfy the conditions given in the following definition.

Definition 5 - Separable Difference. A difference (A, B) is sepa-
rable by a difference (a, 3) iff the following conditions are satisfied:

i. « occurs n times in A where n > 0, and any symbol of a does not
occur in other parts of A. In other words, A = ajaas...aa,+1, and
each a; does not contain any symbol of a.

ii. [occurs n times in B where n > 0, and any symbol of 5 does not
occur in other parts of B. In other words, B = b13bs...8b,+1, and
each b; does not contain any symbol of (.

iii. If a is empty, each b; cannot be empty unless a; is empty.
iv. If B is empty, each a; cannot be empty unless b; is empty.

The difference (A, B) is separated into a sequence of differences in
the form (a1, b1) (e, B)(ag,b2)....(a, B)(an+1, bpt1) where we drop (a;, b;)

APIN903-04.tex; 2/11/2005; 9:43; p.8

Generalizing Predicates with String Arguments 9

from the sequence if both a; and b; are empty. We say that the difference
(A, B) is separable by the difference (o, 3) with factor n.

The purpose of the conditions (iii) and (iv) above is to eliminate a
possible ambiguity. If we do not impose the restriction (iii), we could get
a difference sequence (e, 3)(a;, €) as a part of a match sequence instance.
But, since this difference sequence can also be rewritten as (a;, €)(e, 3),
this will cause an ambiguity. A similar discussion also applies to the
condition (iv).

For example, the difference (cac, dbd) is separable by the difference
(¢,d) into the difference sequence (c,d)(a,b)(c,d). In this case, the
separation factor is 2. On the other hand, the difference (cac,db) is
not separable by the difference (c,d) because ¢ appears twice in cac
but d appears only once in db. The difference (ab, fg) is separable by
the difference (¢, d) into itself with factor 0 because ¢ does not occur in
ab, and d does not occur in fg. The difference (a, b) cannot be separable
by the difference (a, €) because the condition (iv) will be violated. If we
try to separate (a,b) with (a,€), we will cause an ambiguity by getting
two difference sequences (a,€)(e,b) and (e, b)(a, €).

A match sequence (or an instance of a match sequence) may contain
more than one difference. To be able to separate a difference in the
match sequence by the difference D, all of the differences in that match
sequence must be separable by that difference D. If the differences in a
match sequence are (A1, By), ..., (Am, Bi), they are separable by a non-
empty difference (o,) iff each (A;, B;) is separable by («, 3) with the
factor n; where n; > 0. In this case, we say that (A, B1), ..., (Am, Bm)
is separable by (a,3) with the factor n where n = >/ n,. If all the
differences in a match sequence are separable by a difference, we create
an instance of that match sequence by separating all the differences
by that difference. For example, the differences in the match sequence
(a,b)g(ad,bf) are separable by the difference (a,b) with the factor 2
into the differences in the instance (a,b)g(a,b)(d,).

A match sequence can be separable by more than one difference. We
want to find the separation difference which lead to the most specific
instance of that match sequence. Among all separation differences for
a match sequence, the one that leads to the most specific instance
without ambiguity is selected, and it is called the most useful separation
difference.

We say that a difference D is a useful separation difference for a
match sequence (or an instance of match sequence) if all the differences
in that match sequence are separable by D, and the total number of
differences which occur more than once is increased after the separation.
For example, the difference (a,) is a useful separation difference for the
match sequence (ac, bde)g(a,b) because the instance (a,b)(c, de)g(a,b)

APIN903-04.tex; 2/11/2005; 9:43; p.9

10 Cicekli & Cicekli

is the result of the separation of this match sequence by the difference
(a,b), and the total number of differences which occur more than once is
increased from 0 to 2 as a result of this separation. But, the difference
(a,bd) is not a useful separation difference for this match sequence,
because the separation by that difference does not lead to any increase
in the total number of differences which occur more than once.

Definition 6 - Most Useful Separation Difference. We say that
a useful separation difference D for a match sequence is the most
useful separation difference for that match sequence iff the following
conditions hold:

i. The differences of this match sequence are separable by the useful
separation difference D with the factor n.

ii. There is no other useful separation difference Dy that can separate
the differences of this match sequence with the factor m such that
m > n.

iii. If there is another useful separation difference Do that can sep-
arate the differences of this match sequence with the factor n,
the differences in the resulting instance after the separation of the
differences in the match sequence by D must still be separable by
Dy with factor n.

It is possible that there can be many useful separation differences for
a match sequence, but there might not be the most useful separation
difference for that match sequence. The last condition above is used
to avoid ambiguous separations of the differences. That condition also
prefers the longest one when there are two useful differences with the
same separation factor. For example, the most useful separation dif-
ference for the match sequence (cac, bdb)g(cf,bg) is (c,b) with factor
3. The most useful separation difference for (abab, cdc) is (ab, c) with
factor 2 because two other useful separation differences (a, c) and (b, c)
with factor 2 do not satisfy the last condition above. On the other hand,
there is no most useful separation difference for (ab, c)g(ab, c) because
neither (a,c) nor (b, c) with factor 2 satisfy the last condition.

3.2. FINDING SPECIFIC INSTANCE AND SPECIFIC GENERALIZATION

A specific instance STofUMS(aq,a2) of a unique match sequence
UMS(aq,az) is found by the algorithm in Figurel. If a unique most
specific instance for a match sequence is available, the algorithm in
Figure1 will find it. If there is no unique most specific instance, we
do not favor one instance over another instance because we do not use

APIN903-04.tex; 2/11/2005; 9:43; p.10

Generalizing Predicates with String Arguments 11

— SlofUMS (a1,) «— UMS(aq,a2)

— while (there is a most useful separation difference D for
SIofUMS (a1,) with factor n where n > 2) do

o Separate all the differences in STofUMS(aq,as) by the most
useful separation difference D to get a new instance, and put
the result into STofUM S (a1, a2).

Figure 1. Specific Instance Algorithm

any statistical technique in this process. The algorithm stops when
it detects an ambiguity among useful separation differences with a
maximum separation factor. In those cases, we accept a less specific
generalization to avoid ambiguity.

At each iteration of the specific instance algorithm in Figurel, a
most useful separation difference with a maximum separation factor is
used to separate the differences in the current specific instance. For ex-
ample, the match sequence (abc, de)g(a, d)g(afec, de) has two useful sep-
aration differences. The first one is (a, d) with separation factor 3, and
the second one is (¢, e) with separation factor 2. Since the first one is the
most useful one, the match sequence is separated by the first separation
difference, and we get the instance (a,d)(bc,e)g(a,d)g(a,d)(fc,e). At
the next iteration, this instance is separated with the difference (c,e),
and the instance (a,d)(b,€)(c,e)g(a,d)g(a,d)(f,€)(c,e) is found. Since
there is no more useful separation difference for this instance, it will be
the specific instance of the match sequence (abe, de)g(a,d)g(afc,de).

After a specific instance of the unique match sequence for oy and as
is found, all differences are replaced with variables in order to create
the specific generalization SG(a1, ag) for those strings. The algorithm
in Figure 2 finds a specific generalization of two strings a; and ao.
Some examples of SGs of strings are:

1. UM S(abed, ecfg) is (ab,e)c(d, fg). Since a specific instance of this
match sequence is itself, two differences in this unique match se-
quence are replaced with two new variables to create the SG of

those strings. Thus, SG(abed, ecfg) is XcY.

2. UM S(abedeaf, gbchegf) is (a,g)bc(d,h)e(a,g)f. Since a specific
instance of this match sequence is itself, SG(abedeaf, gbchegf) is
XbcYeX f. In this example, the same differences are replaced with
the same variable.

APIN903-04.tex; 2/11/2005; 9:43; p.11

12 Cicekli & Clicekli

— Find the unique match sequence UM S(a1,a2) of aq and ao. If
UMS (a1, az) does not ezist, these strings are not generalized, and
we say that SG(a1,ag) does not exist for these strings.

— Find a specific instance SIofUMS (a1, a2) of UM S(ay, az).

— Replace all differences in this specific instance STofUMS(aq, a2)
with new variables, and replace the same differences with the same
variables in order to create SG(a1,az).

Figure 2. Specific Generalization Algorithm

3. UM S(cac, fbadf) is (c, fb)a(c,df). Since this match sequence has
two separable differences, we find a specific instance of this match
sequence, and this instance is (¢, f)(e, b)a(e, d)(c, f), and
SG(cac, fbadf) is XYaZX.

4. The SG of two strings without any common symbols will be a single
variable.

4. Generalization of Predicates

In this section, we present a generalization algorithm for the pred-
icates with string arguments. This generalization algorithm induces
the predicate from its given positive examples, and it is a coverage
algorithm based on the specific generalization of strings. The cover-
age algorithm induces a set of predicate definitions, which covers all
given positive examples. Each predicate definition in the induced set
covers some of the given positive examples, and the predicate append
, which is assumed to be in the background knowledge, can appear in
the body of the definition of that predicate. In our notation, although
we represent the predicate definitions using generalized strings, the
usage of a generalized string means that the predicate append is used
in the body of the definition of the induced predicate. For example, a
learned predicate definition p(Xa) in our notation can be represented
as p(L) :- append(X, [a]l,L) in Prolog notation. In the rest of this
section, the generalization of single-arity predicates is discussed and
then the discussion is extended for multiple-arity predicates.

APIN903-04.tex; 2/11/2005; 9:43; p.12

Generalizing Predicates with String Arguments 13

4.1. GENERALIZATION OF SINGLE-ARITY PREDICATES

Two clauses of a single arity predicate p are generalized by using the
SG of their arguments. The SG of two strings exists only if they have a
unique match sequence. If they do not have a unique match sequence,
they do not have a SG, and we do not generalize those clauses. Let us
assume that p(a;) and p(ag) are two clauses of the single-arity predicate
p where each a; can be a ground string or a generalized string. p(q;) is
a positive example of p if «; is a ground string. p(«a;) is a generalization
of the other clauses of p if «; is a generalized string. The strings «; and
a9 cannot contain the same variable if both of them are generalized
strings.

The generalization GEN (a1, a2) of the arguments of two clauses
p(aq) and p(az) of a single-arity predicate p is defined as follows:

SG(a1,az) If SG(ay,a) exists, and
GEN(aj,a9) = it is not a single variable
none Otherwise

According to the definition of GEN, two clauses are generalized only
if their arguments have a SG and that SG is not a single variable.
When the SG of their arguments is a single variable, two clauses are
not generalized to avoid the over-generalization of the predicate.

Let us assume that S = {a1, a9, ..., a, } is a set of the arguments of
the positive examples of a single-arity predicate p. The generalization
algorithm that finds the generalization set GEN(S) for a given set of
strings S is given in Figure3. The generalized strings in the found set
GEN(S) are the arguments of the generalized clauses of the single-
arity predicate p. Initially, GEN(S) is assumed to be S, and at each
iteration of the algorithm a new generalization set is created from the
old generalization set by finding the generalization of all string pairs in
the old set. The algorithm uses a coverage function EG. The coverage
function EG for a string represents the set of the positive examples
whose arguments are covered by that string. EG(«) is {i} if « is the
argument of the positive example F;. If av is a generalized string, EG(«)
is the set of the numbers of the positive examples whose arguments in
GS(a). If there are two different generalized strings which cover the
same positive examples, the most specific one is kept and the other one
is deleted from the set. If all positives examples covered by a string are
also covered by some other strings in the generalization set, that string
is also deleted from the set. The following two examples in this section
demonstrate the details of the generalization algorithm.

Example 1 - Postfix a:
Let us assume that the following clauses are given as positive exam-

APIN903-04.tex; 2/11/2005; 9:43; p.13

14 Cicekli & Cicekli

— GEN(S) « S.

— while (there are two strings oy and as in GEN(S) such that
GEN (a1,a) exists) do

e OLDGEN(S) — GEN(S)

o For every pair of two distinct strings a1 and a9
in OLDGEN(S) such that GEN(oi,a2) exists, add
GEN (a1, a2) into GEN(S). (where a1 # ag).

e Drop each string G; from GEN(S) if there exists another
string G in GEN(S) such that EG(G;) = EG(G;), and G
is a most general form of G; (where G; # G;). So, if two
strings cover the same positive examples, we keep only the
most specific one.

e Drop each string G; from GEN(S) if there exists another
string Gj in GEN(S) such that EG(G;) C EG(Gj) (where
G, # Gj).

e Drop each G; from GEN(S) if for all k in EG(G;) there
ezists another G such that k is also in EG(G;) (where G; #
Gj). This means that every positive example covered by the
generalized string G; is also covered by another generalized
string.

Figure 3. Generalization Algorithm for a Set of Strings

ples of the single-arity predicate p that represents strings ending with
substring a.

p(ba) .
p(cda).
p(a).
p(aa).
p(faga).

add W -

The set of the arguments of the positive examples is S = {ba, cda, a, aa, faga},
GEN(S) is computed as follows by the algorithm in Figure 3:

— Initially, GEN(S) = S = {ba,cda,a,aa, faga}. The following
table shows the current content of GEN(S) together with EG
function values for each string in GEN(S) and the examples used
in the generalization of that string.

APIN903-04.tex; 2/11/2005; 9:43; p.14

Generalizing Predicates with String Arguments 15

GEN(S)|ba cda a aa faga
EG {1} {2} {3} {4} {5}
ExzUsed ({1} {2} {3} {4} {5}

— For every pair of strings with a generalization, we add their gen-
eralization into GEN(S). The SG of all pairs of ba, cda, and a is
Xa, and the SG of aa and faga is XaYa. Now, GEN(S) will be
as follows.

GEN(S)|Xa XaYa ba cda a aa faga
EG {1,2,3,4,5} {45} {1} {2} {3} {4} {5}
ExUsed |{1,2,3} {4,5} {1} {2} {3} {4} {5}

— Since EG(ba), EG(cda), EG(a), EG(aa), EG(faga), and EG(XaY a)
are subsets of EG(Xa), we drop ba, cda, a, aa, faga, and XaYa
from GEN(S). So, GEN(S) will be:

GEN(S)|Xa
EG 1,2,3,4,5)
ExUsed |{1,2,3}

— Since there is no pair of strings in GEN(S) with a generalization,
we are done. Thus, the generalized clause of this predicate will be.

p(Xa).

Example 2 - Postfiz a or b:

Let us assume that the following clauses are given as positive exam-
ples of the single-arity predicate p that represents strings ending with
substring a or b.

p(ca).
p(aa).
p(da).
p(fa).
p(gb).
p(bb) .
p(cb).

~NOo O WN e

— Initially, GEN(S) = {ca, aa,da, fa, gb, bb, cb}. The following table
shows the current content of GEN(S) together with FG function
values for each string in GEN(S).

GEN(S)|ca aa da fa gb bb cb
EG {1} {2} {3} {4} {5} {6} {7}
ExUsed [{1} {2} {3} {4} {5} {6} {7}

APIN903-04.tex; 2/11/2005; 9:43; p.15

16 Cicekli & Cicekli

— For every pair of strings with a generalization, we add their gen-
eralization into GEN(S). Since the SG of all pairs of ca, da, and
fa is Xa, the SG of ca and c¢b is ¢X, and the SG of gb and ¢b is
Xb, GEN(S) will be as follows.

GEN(S)|Xa cX Xb ca aa da fa gb bb cb

EG {1,2,3,4} {1,7} {5,6,7} {1} {2} {3} {4} {5} {6} {7}

EaUsed [{1,3,4} {1,7} {5,7} {1} {2} {3} {4} {5} {6} {7}

— Since EG(ca), EG(aa), EG(da), EG(fa), EG(gb), EG(bb), and
EG(cb) are subsets of other sets of EG function in the table above,
we drop ca, da, aa, fa, ga, bb, and ¢b from GEN(S). So, GEN(S)
will be:

GEN(S)|Xa cX Xb
EG 1,2,3,41 {17} 15.6,7)
ExUsed |{1,3,4} {1,7} {5,7}

— Since all members of EG(cX) are covered by other sets of EG
function in the table above, we drop ¢X from GEN(S). Thus
GEN(S) will be:

GEN(S)[Xa Xb
EG 1,2,3,4] 15,6,7}
ExUsed |{1,3,4} {5,7}

— Since there is no pair of strings in GEN(S) with a generalization,
we are done. Thus, the generalized clauses of this predicate will
be.

p(Xa).
p(XDb).

4.2. GENERALIZATION OF MULTIPLE-ARITY PREDICATES

The multiple-arity predicates are generalized in a similar fashion as
single-arity predicates. Although the unique match sequences for the
argument pairs are found separately, the generalization is performed
for all arguments at the same time after the unique match sequences
are combined as a single unique match sequence. With small changes in
the definition of GEN function, the generalization algorithm given in
Figure 3 for the single arity predicates is also used for the multiple-arity
predicates.

The generalization GEN ((a, ...,), (51, ..., Bn)) of the arguments
of two clauses p(ay, ..., ap,) and p(fB, ..., By) of an n-arity predicate p is
found as follows:

APIN903-04.tex; 2/11/2005; 9:43; p.16

Generalizing Predicates with String Arguments 17

— First, for each pair of a;; and f3;, the unique match sequence UM S(«;, ;)

is found. If a unique match sequence exists for each pair, the unique
match sequence UM S((aq, ..., an), (B1, ..., Bn)) for all arguments is
defined as UM S(ay,p1) & ... : UMS(ap, B,) assuming that the
symbol ‘:” is a new symbol. The new symbol ‘" is treated as a
similarity in the match sequence to mark argument boundaries.
If UMS(a;,3;) does not exist for the " pair of the arguments,
we say that the unique match sequence between (s, ...,a;,) and
(B, ..., Bn) does not exist. In this case, these two clauses are not
generalized.

— To find SG((a1,...,an), (B1,..., Bn)), we find a specific instance
SITofUMS (a1, .y o), (B1y -y Bn)) of UM S (01, ..oy), (By vy Br))-
Then we replace all variables in this specific instance to create SG
for these arguments.

— Thus, the generalization GEN ((a1, ..., &), (B1, ..., Bn)) for the ar-
guments (aq, ..., @y), and (51, ..., Bn) is SG((a1, ...y an)y (B1y ooy Bn))
it SG((a1,...,a),(B1,-..,0n)) exists, and it is not in the most
general string X7 : ... : X,, where each X, is a different variable.
Otherwise, the clauses do not have a generalization.

Let us assume that we have a set of positive examples of an n-arity
predicate p, and S = {a11 : ... @ Qigp, .y Qn oo D Qupp} IS the
set of the arguments of these positive examples. The generalization
set GEN(S) for S is found by using the generalization algorithm in
Figure 3.

Example 3 - Substring:
Let us assume that the following clauses are given as positive examples
of the binary predicate p that represents the substring relation.

1. p(a,bac).
2. p(d,fde).

— Initially, GEN(S) = {a : bac,d : fde}. The following table shows
the current content of GEN(S) together with EG function val-
ues for each string in GEN(S), and the examples used in the
generalization of that string.

GEN(S)|a:bac d: fde
EG {1} {2}
ExzUsed ({1} {2}

— For every pair of strings with a generalization, we add their gen-
eralization into GEN(S). Since the SG of a : bac and d : fde is
X :YXZ, GEN(S) will be as follows.

APIN903-04.tex; 2/11/2005; 9:43; p.17

18 Cicekli & Cicekli

GEN(S)|X :YXZ a:bac d: fde

EG {1,2} {1} {2}
ExUsed |{1,2} {1} {2}

— Since EG(a : bac) and EG(d : fde) are subsets of EG(X : Y XZ)
in the table above, we drop a : bac, and d : fde from GEN(S). So,
GEN(S) will be:
GEN(S)[X :YXZ
EG {1,2}
ExUsed |{1,2}

— Since there is no pair of strings in GEN(S) with a generalization,
we are done. Thus the generalized clauses of this predicate will be.

p(X,YXZ).

5. A Learning Heuristic Based on SGs of Strings

In this section, we describe a learning heuristic that is used in the
induction of a 2-arity recursive predicate whose structure is known
before the learning phase. It is also assumed that the alphabet of strings
in the first argument position is different from the alphabet of strings in
the second argument position. During the generalization process from
the given set of positive examples, some additional heuristics are used
in addition to the generalization methods used in the generalization
process described in the previous section. The learned predicate is a
recursive procedure. That is, the body of the learned predicate may
contain recursive calls to itself and calls to the predicate append. In
addition to the generalized clauses whose bodies contain recursive calls
to this predicate, the ground unit clauses are also learned during the
generalization process.

In Section 5.1, this learning heuristic is described. The structure of
the 2-arity recursive predicate induced by this learning heuristic is very
similar to the structure of translation templates used in an example-
based machine translation system. In Section 5.2, we describe how to
use this learning heuristic in a real-life example based on a machine
translation system.

APIN903-04.tex; 2/11/2005; 9:43; p.18

Generalizing Predicates with String Arguments 19
5.1. LEARNING HEURISTIC

The predicate which is learned by the learning heuristic described in
this section is a 2-arity recursive predicate and it is assumed that its
structure is known before the learning phase. A given positive example
of this 2-arity recursive predicate is p(a, 3) where « is a string of an
alphabet A and (8 is a string of an alphabet B. A learned predicate
definition can be in a unit clause, or an if-then rule in the following
form:

p(T%,T") if p(X1,Y1) and ... and p(X,, Yy)

where n > 1, T is a string of symbols in the alphabet A and variables
X1, ..., Xp; T? is a string of symbols in the alphabet B and variables
Y1,...,Yy,; and both 7% and T° must contain at least one symbol. For
example, if the alphabet A = {a,b,c,d,e, f,g,h} and the alphabet
B = {t,u,v,w,x,y,z}, the following rules can be definitions of the
learned predicate.

p(abe, utv)

p(alec, qu) if p(Xl, Yl)

p(aX10Xac, YouvYy) if p(X1, Y1) and p(Xa,Ys)
p(aX1X2b, YouY1) if p(X1,Y1) and p(X2,Y2)

A generalized clause is a generalization of a set of positive examples,
where certain components are generalized by replacing them with vari-
ables and establishing bindings between these variables. For example, in
the second example above, abX;c represents all strings starting with ab
and ending with ¢ where X; represents a non-empty string on the alpha-
bet A, and uY7 represents all strings starting with u where Y7 represents
a non-empty string on the alphabet B. The generalized clause says that
a string of the alphabet A in the form of abX;c corresponds to a string
of the alphabet B in the form of uY; given that X; corresponds to Yi. If
we know that the correspondence p(de, vyz) exists, the correspondence
p(abdec, uvyz) can be inferred from the generalized clause.

A unique match sequence between the arguments of two examples
p(a, B1) and p(az, B2) is a pair of two unique match sequences M¢ : M
where M® is the unique match sequence of a; and a, and M? is the
unique match sequence of 3; and (5. After the unique match sequence
M® : MY is found, the learning heuristic is applied to this unique
match sequence in order to find a generalized clause for the examples by
replacing differences with variables in an instance of this unique match
sequence, and establishing bindings between the variables. In addition
to a generalized clause, the learning heuristic can also infer unit clauses.
Of course, if there is no unique match sequence for the arguments of

APIN903-04.tex; 2/11/2005; 9:43; p.19

20 Cicekli & Cicekli

the examples, the learning heuristic cannot be applied to them. The
learning heuristic also requires extra conditions on the instance of the
unique match sequence which is used in the learning process. The
learning heuristic can infer new clauses from an instance MI¢ : MI®
of the unique match sequence M® : M? of the examples p(ay, 32) and
p(ag, B2), if this instance satisfies the following conditions:

1. Both MI® and MI° must contain at least one similarity and one
difference.

2. Both MT® and MI® cannot contain a difference with an empty
constituent.

3. Both MI® and MI® must contain n differences where n > 1. In
other words, they must contain equal number of differences.

4. Each difference in MI®* must correspond to a difference in MI?,
and a difference cannot correspond to more than one difference on
the other side. Thus, we will have n corresponding differences.

If there is just one difference on both sides, they should correspond
to each other (i.e. the fourth condition is trivially satisfied). But, if
there is more than one difference on both sides, we need to look at
previously learned unit clauses to determine the corresponding differ-
ences. For example, if there are two differences D and D§ in M“, and
two differences DY and DY in M?’; we cannot determine whether D¢
corresponds to D} or DY without using prior knowledge. Now, let us
assume that the correspondence between the differences D§ and DY has
been learned earlier. In this case D must correspond to DS. In general,
if the n—1 corresponding differences have been learned earlier, the last
two differences must correspond to each other.

We say that the corresponding difference between the differences
D® = (D$,D$) and D* = (D% Db) has been learned, if the following
two unit clauses have been learned earlier.

p(Df, DY)

p(D3, D8)

Now, let us assume that the differences in M* are DY,....,D2 and the
differences in M are D},....,Db where D¢ corresponds to D?. In this
case, the first n—1 corresponding differences have been learned earlier,
and the correspondence between the differences D¢ and DP is being
inferred now. The learning heuristic replaces each D{ with the variable
X, to create a specific generalization SG® from M?, and each Df with
the variable Y; to create a specific generalization SG® from M?. Then,
the following generalized clause is induced by the learning heuristic.

APIN903-04.tex; 2/11/2005; 9:43; p.20

Generalizing Predicates with String Arguments 21

p(SG®, SG?) if p(X1,Y1) and ... and p(X,,,Y;)

In addition, the following two unit clauses are learned from the inferred

correspondence between the difference Dy, = (Dy |, Dy, 5) and Db =
(l)szlygz)'

p(gL,l’D%,l)
p(%,27 Dn,2)

Example 4 - Learning from Unique Match Sequences with Single Dif-
ferences:

Let us assume that
p(abe, vwzryz)
p(abef, turyz)

are two positive examples. The unique match sequence for the argu-
ments of these examples will be

ab(c,ef) : (vw,tu) zyz.

Since the unique match sequence is an instance that satisfies the
four conditions, the following clauses can be learned from that unique
match sequence.

p(ab X1,Y1 zyz) if p(X1,Y7)
p(c, vw)
plef,tu)

where abX; is the SG of abc and abef, and Yizyz is the SG of vwzayz
and tuxyz.

Example 5 - Learning from Unique Match Sequences with Multiple
Differences:

Let us assume that

p(bac, vwzy)
p(daef, tuxz)

are two positive examples. The unique match sequence for the argu-
ments of these examples will be

(b,d)a(c,ef) = (vw,tu)z(y,z).

This unique match sequence satisfies the first three conditions be-
cause it has two differences on both sides. But we do not know whether

APIN903-04.tex; 2/11/2005; 9:43; p.21

22 Cicekli & Clicekli

it satisfies the fourth condition. We cannot know whether the difference
(b,d) on the left hand side corresponds to the difference (vw,tu) or to
the difference (y, z) on the right hand side without using prior knowl-
edge. Let us assume that the clauses in Example 4 have been learned
earlier. Since we have learned that the difference (¢, ef) corresponds to
the difference (vw,tu) in Example 4, the difference (b, d) must corre-
spond to the difference (y,z). Thus, all difference correspondings are
found in our unique match sequence. The learning heuristic infers the
following generalized clause by generalizing the given examples, and
the next two unit clauses from the corresponding difference between
(b,d) and (y, 2).

p(X1aXa,YoxYy) if p(X1,Y1) and p(Xz,Y2)
p(b,y)
p(d, 2)

where X1aX5 is the SG of bac and daef, and YoxY] is the SG of vwzxy
and tuxz.

5.2. APPLICATION TO EXAMPLE-BASED MACHINE TRANSLATION

The learning heuristic described in Section 5 can be used in the learning
of translation templates from a given bilingual corpus for two natural
languages. In fact, it is successfully used as a part of the learning module
of an Example-Based Machine Translation System (EBMT) between
English and Turkish, and the details of this EBMT system can be
found in [1, 2, 4]. In the case of EBMT, the positive examples are the
given translation examples, and the generalized clauses are the induced
translation templates.

In order to learn translation templates, the learning heuristic should
be applied to every pair of translation examples in the system. The
translation examples are treated as atomic translation templates. In
fact, the learning procedure starts from these examples. Learning should
continue until no more new templates can be learned from the atomic
translation templates. The learned translation templates can be used
in the translation of other sentences in both directions.

The learning heuristic can work on the surface level representation of
sentences. However, in order to generate useful templates, it is helpful
to use the lexical representation. In this case, the set of all root words,
prefixes, and suffixes in a natural language are treated as the alphabet
of that language for our purposes. Thus, a natural language is treated as
the set of all meaningful strings on that alphabet. Normally, the given
translation examples should be sentences of two natural languages, but
they can also be phrases in those languages. Of course, morphological

APIN903-04.tex; 2/11/2005; 9:43; p.22

Generalizing Predicates with String Arguments 23

analyzers will be needed for both languages to compose the lexical
forms of sentences.

An example-based machine translation system using this learning
heuristic has two major parts: the learning module and the translation
module. The learning module infers the translation templates from a
given set of translation examples using the learning heuristic and the
generalization algorithm described in this paper. A confidence factor
can also be assigned to each translation template to indicate how good
that translation template is. In order to assign these confidence factors
[11], statistical techniques based on the information available in the
sets of translation examples are used.

The translation module takes a sentence in the source language and
produces a set of translation results in the target language. In order
to translate a sentence from one language to another, first the lexical
representation of the sentence is created using a morphological analyzer
of the source language. Using the learned translation templates, possi-
ble translations of this sentence are found. The translation results are
sorted with respect to the computed confidence factors of the results.
At the end, we hope that the top results contain good translations and
the correct translation is among them. After solutions are converted
into surface level representations by using the morphological analyzer
of the target language, a human expert can choose the correct solution
by just looking at the top results, or the solution with the highest
confidence factor can be given as the result of the translation.

Example 6. Learning Between English and Turkish Sentences

In order to explain the behavior of our learning heuristic on the actual
natural language sentences, we give a simple learning example for trans-
lating sentences between English and Turkish. Assume that we have the
translation examples tt (I will drink water, su igecegim) and tt (I
will drink tea, gay igecegim) between English and Turkish. Their
lexical representations are tt(I will drink water, su ig+FUT+1SG)
and tt(I will drink tea, gay ig¢+FUT+1SG) where +FUT and +1SG
denote future tense and first singular agreement morphemes in Turk-
ish, respectively. For these two examples, the unique match sequence
will be 'T will drink (water,tea) : (su,gay) ig¢+FUT+1SG’. From
this match sequence the learning heuristic learns the following three
templates by creating SGs of the given sentences.

tt(I will drink X, Y7 ig+FUT+18G) if tt(X,Y7)
tt (water,su)
tt(tea,gay)

APIN903-04.tex; 2/11/2005; 9:43; p.23

24 Cicekli & Cicekli

In this example, we not only learn the general pattern in the first clause
between English and Turkish, but also learn that water corresponds to
su in Turkish, and tea corresponds to cgay.

The learned translation templates can be used in translations in
both directions. For example, if the correspondence tt (orange juice,
portakal suyu) has been learned earlier, the sentence I will drink
orange juice can be translated into the Turkish sentence Portakal
suyu igecegim using the learned translation templates.

6. Learning with Background Knowledge

In this section, we present an extension to our learning algorithm to
demonstrate how the background knowledge can be used during learn-
ing. Here, we assume that we have single-arity predicates b1,b2,...,bn
as background knowledge in addition to the predicate append. These
predicates may appear in the bodies of the induced clauses.

In the last step of the specific generalization algorithm in Figure 2,
the differences are replaced with variables. In this extension, we re-
place the differences with typed variables. The type of a variable is a
background predicate. A difference (D;, D2) is replaced with a typed
variable X% if the goals bi(D;) and bi(Dy) are finitely provable with
respect to the given definition of the background predicate bi.

Let us assume that the following clauses are given as background
knowledge.

bil(a).
bil(c).

The difference (a,c) in the match sequence f(a,c)g is replaced with
the typed variable X?!, and the specific generalization fX®'¢ is found
for this match sequence. The generalized string fX?'¢ with a typed
variable X?! is more specific than the generalized string fXg¢ with an
untyped variable X because the set of ground strings represented by
the first one is a subset the set of ground strings represented by the
second one.

Since we can have typed variables in the generalized strings in addi-
tion to untyped variables, the matching algorithm should also deal with
these typed variables. The match algorithm treats the variables with
same types as same tokens. For example, the match sequence of the
generalized strings aX®! and bY?! will be (a,c)Z%" where X*' and Y*!
are treated as the same token (a similarity) and they are represented by
a new typed variable Z%' in the match sequence. Thus, typed variables
can be part of similarities in the match sequence. As a result, we can

APIN903-04.tex; 2/11/2005; 9:43; p.24

Generalizing Predicates with String Arguments 25

get a generalized string that may only contain variables and at least
one of these variables is a typed variable.

Example 7. Grammar Learning

Now, we will use this extension in an example that learns a simple
grammar from the given English sentences. A similar example is also
used by Muggleton in his Progol system [9]. In fact, our background
predicates may correspond to his background single-arity predicates
with positive mode declarations.

Let us assume that the following four predicates are given as back-
ground knowledge.

tverb(hits). np(a man). np(a cat).

tverb(walks) . np(the man). np(the cat).

tverb(takes) . np(a dog) . np(a boy).
np(the dog). np(the boy).

iverb(sleeps). np(a house). np(a room).

iverb(walks) . np(the house). np(the room)
np(a ball). np(a picnic).

prep(at). np(the ball).

prep(to).

prep(in).

In this example, we use a finite set of clauses to represent the predicate
np for simplicity purposes, but it could be defined using some auxiliary
predicates. Now let us also assume that we have the following clauses
representing simple English sentences as positive examples.

1. s(a man sleeps).

2. s(the boy sleeps).

3. s(the dog walks).

4. s(a boy walks).

5. s(a man walks a dog).

6. s(the boy walks the cat).

7. s(the man hits the ball).

8. s(a boy hits a dog).

9. s(the man hits the ball at the house).
10. s(a boy hits a dog at a picnic).

11. s(the man takes the ball to the house).
12. s(a boy takes a dog to a room).

Initially, the generalization set for the arguments will contain the argu-
ments of all positive examples of the predicate s. After the first pass of
the learning algorithm, the following generalized strings will be in the
generalization set.

APIN903-04.tex; 2/11/2005; 9:43; p.25

26 Cicekli & Cicekli

a. X" sleeps from examples 1 & 2
b. X" walks from examples 3 & 4
c. X™ yalks Y™ from examples 5 & 6
d. X™ hits Y™ from examples 7 & 8
e. X" hits Y™ at 2™ from examples 9 & 10
f. X" takes Y™ to Z™ from examples 11 & 12

The second pass of the learning algorithm will induce the following
generalized strings from the generalized strings above.

Xnp yiverb from generalized strings a & b
Xnp ytverb znp from generalized strings ¢ & d
Xnp ytverb znp yprep [P from generalized strings e & f

Thus, the learned clauses will contain the following three clauses.

s(XY)
if np(X) and verb(Y)
s(XYZ)
if np(X) and tverb(Y) and np(2)
s(XYZVW)
if np(X) and tverb(Y) and np(Z) and prep(V) and np(W)

Since these three clauses cover all 12 examples, the learned clause set
can only contain these three clauses.

7. Conclusion

In this paper, we introduced an ILP technique which is based on SGs of
strings to reduce over-generalization problem in the learning process of
predicates with string arguments. The over-generalization can be a seri-
ous problem when the learning is done from only positive examples. For
example, just using Plotkin’s RLGGs [13] for the predicates with string
arguments will not be acceptable because of this over-generalization
problem. The learning technique described in this paper does not cause
over-generalization and still performs good generalizations from the
given positive examples.

We believe that humans learn general sentence patterns using simi-
larities and differences between many different example sentences that
they are exposed to. This observation led us to the idea that general
sentence patterns can be taught to a computer using learning heuristics
based on similarities and differences in sentence pairs. In this sense,
our learning technique is close to how humans learn languages from

APIN903-04.tex; 2/11/2005; 9:43; p.26

Generalizing Predicates with String Arguments 27

examples. In this paper, we tried to extend the usage of similarities
and differences between strings in the generalization process of strings.
The ILP technique described in this paper can be used for the
induction of predicates whose bodies may contain calls to predicate
append which is the only predicate in background knowledge. Later,
we described an extension to our learning process so that single-arity
background predicates can be used in the learning process. We are
also investigating other learning techniques, so that the bodies of the
induced predicates may refer to multiple-arity predicates in the back-
ground knowledge. Here, we also described a learning heuristic to be
used in the induction of a recursive predicate in a certain form. In
general, if the pattern of a predicate is known, the special learning
heuristics based on the match sequences can be developed to be used
in the induction process of that predicate. We believe that the learning
heuristics based on match sequences are very useful techniques in the
generalization of predicates with string arguments. We are investigat-
ing other learning techniques in which the user tells the system which
predicates are given as background knowledge, and the learning process
can use the given predicates in the body of the induced predicates.

References

1. Cicekli, I., and Giivenir, H. A., Learning Translation Templates from Bilingual
Translation Examples, in: Recent Advances in Ezample-Based Machine Trans-
lation, Carl, M., and Way, A. (eds.), The Kluwer Academic Publishers, Boston,
2003, pp: 255-286.

2. Cicekli, I., and Giivenir, H. A., Learning Translation Templates from Bilingual
Translation Examples, Applied Intelligence, Vol. 15, No. 1, (2001).

3. Dzeroski, S., Cussens, J., and Manandhar, S., An Introduction to Induc-
tive Logic Programming and Learning Language in Logic, Lecture Notes in
Artificial Intelligence 1925, Springer-Verlag, 2000, pp: 3-35.

4. Giivenir, H. A, and Cicekli, I., Learning Translation Templates from Examples,
in: Information Systems, Vol. 23, No. 6, 1998, pp: 353-363

5. Mooney, R. J., and Califf M.E., Induction of First-Order decision Lists: Results
on Learning The Past Tense of English Verbs, Journal of Artificial Intelligence
Research, 3, 1995, pp:1-24.

6. Mooney, R. J., Inductive Logic Programming for Natural Language Process-
ing, in: Proceedings of the 6th International Workshop on Inductive Logic
Programming, S. Muggleton (ed.), Springer-Verlag, Berlin, 1997, pp:3-21.

7. Muggleton, S., Learning from Positive Data, in: Machine Learning, 2001.

8. Muggleton, S., Inductive Logic Programming: issues, results and the challenge
of Learning Language in Logic, Artificial Intelligence 114(1-2), 1999, pp:283-
296.

9. Muggleton, S., Inverse Entailment and Progol, in: New Generation Computing,
Vol 13, 1995, pp:245-286.

APIN903-04.tex; 2/11/2005; 9:43; p.27

28

10.

11.

12.

13.

14.

Cicekli & Cicekli

Muggleton, S., and Feng, C., Efficient Induction of Logic Programs, in: Induc-
tive Logic Programming, S. Muggleton (ed.), Academic Press, London, 1992,
pp:281-298.

Oz, Z., and Cicekli, I., Ordering Translation Templates by Assigning Confi-
dence Factors, in: Lecture Notes in Computer Science 1529, Springer Verlag,
1998, pp:51-61.

Plotkin, G. D.,; A Note on Inductive Generalisation, Machine Intelligence 5,
M. Meltzer and D. Michie (eds.), Elsevier North-Holland, New York, 1970,
pp:153-163.

Plotkin, G. D., Automatic Methods of Inductive Inference, Ph.D. Thesis,
Edinburgh University, Edinburgh, 1971.

Quinlan, J. R.; and Cameron, R. M.,, Induction of Logic Programs: Foild and
Related Systems, in: New Generation Computing, Vol 13, 1995, pp:287-312.

APIN903-04.tex; 2/11/2005; 9:43; p.28

