
Appl Intell (2008) 28: 139–152
DOI 10.1007/s10489-007-0047-1

Achieving self-healing in service delivery software systems
by means of case-based reasoning

Stefania Montani · Cosimo Anglano

Received: 7 December 2006 / Accepted: 6 April 2007 / Published online: 1 June 2007
© Springer Science+Business Media, LLC 2007

Abstract Self-healing, i.e. the capability of a system to au-
tonomously detect failures and recover from them, is a very
attractive property that may enable large-scale software sys-
tems, aimed at delivering services on a 24/7 fashion, to meet
their goals with little or no human intervention. Achieving
self-healing requires the elicitation and maintenance of do-
main knowledge in the form of 〈service failure diagnosis, re-
pair plan〉 patterns, a task which can be overwhelming. Case-
Based Reasoning (CBR) is a lazy learning paradigm that
largely reduces this kind of knowledge acquisition bottle-
neck. Moreover, the application of CBR for failure diagno-
sis and remediation in software systems appears to be very
suitable, as in this domain most errors are re-occurrences of
known problems. In this paper, we describe a CBR approach
for providing large-scale, distributed software systems with
self-healing capabilities, and demonstrate the practical ap-
plicability of our methodology by means of some experi-
mental results on a real world application.

1 Introduction

The inherent complexity, heterogeneity, and dynamism of
today’s large-scale networked applications and services
makes inappropriate, if not impossible, the traditional
human-centered approach to system administration [1]. As a
result, the attention of the industrial and academic commu-
nities has been driven towards novel solutions allowing the

S. Montani (�) · C. Anglano
Dipartimento di Informatica, Università del Piemonte Orientale,
Alessandria, Italy
e-mail: stefania.montani@unipmn.it

C. Anglano
e-mail: cosimo.anglano@unipmn.it

design and the implementation of self-managing computer
systems.

The Autonomic Computing paradigm [1, 2], inspired by
the human autonomic nervous system, has been recently
proposed as an approach for the development of computer
and software systems and applications that can manage
themselves in accordance with high-level guidance from hu-
mans. An Autonomic Computing Systems (ACS) is com-
posed of (one or more) managed elements, whose behavior
is controlled by an autonomic manager, which applies suit-
able policies in order to automate the process of system man-
agement. In particular, in order to be able to self-manage, an
ACS needs to exhibit the so called Self-* properties:

• Self-configuration, that is the ability of the ACS to
(re)configure itself to react to varying and unpredictable
conditions in its operational environment;

• Self-optimization, that is the ability of the ACS to detect
and to optimize suboptimal behaviors;

• Self-protection, that is the ability of the ACS to protect
itself from both external and internal attacks;

• Self-healing, that is the ability of the ACS to detect prob-
lems and/or failures and to recover from them.

Self-healing, in particular, is extremely attractive for large-
scale software systems, comprising a suite of applica-
tions and the computation/communication infrastructure on
which they are executed, aimed at delivering services on a
24/7 basis (henceforth referred to as Service Delivery Sys-
tems (SDS)), as for instance those described in [3, 4]. The
very large size of SDS (that may typically include from
hundreds to thousands of machines), and the adoption of
customized application software and middleware, makes
service failures (i.e., failures in delivering their intended
services) relatively frequent, because of the occurrence of

140 S. Montani, C. Anglano

one or more faults in the applications they use, in the soft-
ware/hardware infrastructure exploited to execute these ap-
plications, or in both. Devising suitable self-healing solu-
tions, able to properly address all these faulty scenarios, is
a very relevant objective, that is giving birth to a significant
number of scientific investigations [5–10].

According to the Autonomic Computing paradigm, a
self-healing system must be able to:

1. monitor its own behavior in order to detect service deliv-
ery failures;

2. analyze these failures in order to diagnose the faults caus-
ing them;

3. plan proper fault remediation strategies, and
4. execute these plans in order to restore the normal behav-

ior of the system.

These four steps give birth to the so-called self-healing cy-
cle, that is continuously performed by the autonomic man-
ager controlling a managed element.

An existing SDS (i.e., the managed element in the Au-
tonomic Computing terminology) may be rendered able to
self-heal by integrating it with a self-healing infrastructure
(i.e., the autonomic manager) which, as shown in Fig. 1,
controls its behavior by logically or physically “surround-
ing” it with a closed control loop. In particular, the analyze
and plan activities (grouped by the self-healing engine box
in the figure) constitute the core phases of the process.

There are two possibilities for achieving such a closed-
loop control. The first one consists of engineering the self-
healing behavior directly into the components of the system,
for instance by using an environment like Autonomia [11],
that provides the necessary mechanisms and tools to perform
the integration. The second alternative, known in the litera-
ture as externalization [8], consists instead of using a self-
healing infrastructure totally external to the software system
that interfaces with it. Externalization is particularly suited
for retrofitting self-healing capabilities into existing systems
since, being the self-healing infrastructure external to the

Fig. 1 A self-healing software system

system itself, it requires little or no modifications to existing
applications. Moreover, and perhaps more importantly, ex-
ternalization allows the development of generic self-healing
infrastructures that can be used with any SDS, provided that
suitable interfacing mechanisms are available. Therefore, in
this paper we will follow this second approach.

Providing an SDS with self-healing capabilities requires
the availability of specific knowledge (see Fig. 1) about the
〈service failure diagnosis, repair plan〉 patterns that may ap-
ply to the system at hand. Formalizing this kind of knowl-
edge, for instance by means of rules or models, is a dif-
ficult and time consuming task, and a periodic revision of
the knowledge base is required to always keep it up to date.
These requirements are clearly in conflict with the goal of
making the system as much as possible independent of hu-
man intervention.

The Case-Based Reasoning (CBR) methodology [12] is
known to be well suited for those domains where formal-
ized and widely recognized background knowledge is not
available. CBR is a problem solving paradigm that utilizes
the specific knowledge of previously experienced situations,
called cases. It basically operates by retrieving past cases
that are similar to the current one and by reusing past suc-
cessful solutions after, if necessary, revising (i.e., adapting)
them; the current case can then be retained and put into the
system knowledge base, called the case library or case base.
The retrieve, reuse-revise and retain procedures are known
as the steps of the CBR cycle [12] (see top part of Fig. 2 in
Sect. 3 for an implementation).

CBR thus allows one to build a knowledge base of past
cases, which represent an “implicit” form of knowledge, that
can be reused in present problems. By the term “implicit”
knowledge we refer to an unstructured, operative type of
knowledge, which directly stores the 〈problem, solution〉
patterns that have occurred in time “as they are”, without any
effort in the direction of extracting generalized or more ab-
stract information (e.g., of eliciting rules or models, referred
to as “explicit” or “structured” knowledge henceforth) from
them.

Representing a real-world situation as a case is often
straightforward: given a set of meaningful features for the
application domain, it is sufficient to identify the value
they assume in the situation at hand; typically, a case also
stores information about the solution applied and, some-
times, about the outcome obtained. Due to the simplicity
of this process, in many real world examples the knowl-
edge acquisition bottleneck can be significantly reduced in
comparison with the exploitation of other reasoning method-
ologies. New knowledge is also automatically stored in the
case base during the normal working process; as the case
library grows, more and more representative examples are
collected, and it becomes easier to find a proper solution to a
new problem by means of this paradigm. Furthermore, CBR

Achieving self-healing in service delivery software systems by means of case-based reasoning 141

seems particularly suited for failure diagnosis and remedi-
ation in software systems, in general, and in SDS in par-
ticular, as in this domain most errors are re-occurrences of
known problems [6, 7, 13]; the methodology also provides
a unique framework in which failure diagnosis and remedi-
ation are performed jointly.

In this paper we describe a CBR approach to support
self-healing in (possibly large and distributed) SDS, in
which case-based retrieval supports service failure diagno-
sis, while the reuse-revise step supports remediation. Case-
based learning takes place to derive general knowledge from
the case library content, and to control the case library
growth. This contribution extends the ideas described in [5,
14], and further tests them by means of a thorough experi-
mental evaluation, that has been carried out on a testbed im-
plemented by means of Cavy, a tool we developed in order
to support the deployment and operation of testbeds tailored
to self-healing infrastructures, which will be introduced later
in the paper.

The rest of the paper is organized as follows. In Section 2
we present related work about self-healing achievements in
software systems. Section 3 details the CBR approach to
self-healing, while Section 4 provides some experimental
results, obtained on a testbed built using Cavy. Finally, Sec-
tion 5 concludes the paper and outlines future research work.

2 Related work

Various approaches to fault diagnosis and remediation have
been proposed in the literature. Sterrit [10] describes an ap-
proach to fault diagnosis based on event correlation, where
various symptoms of system malfunctions (represented by
alarms triggered by the various system components that
are collected during the monitoring phase) are correlated
in order to determine the (set of) fault(s) that have oc-
curred. An alternative approach is proposed by Garlan and
Schmerl [8], where fault diagnosis is performed by means
of a suitable set of models. Joshi et al. [15] use Bayesian es-
timation and Markov decision processes to probabilistically
diagnose faults, and use the results to generate recovery ac-
tions. Littman [9] proposes cost-sensitive fault remediation,
a planning-based technique aimed at determining the most
cost-effective system reconfiguration able to bring the sys-
tem back to full functionality. Planning is also the basis for
the fault remediation strategy proposed by Arshad [6]. Other
very interesting applications of model-based diagnosis to
automated software debugging and hardware design are de-
scribed in [16–18]. Finally, in the same area we also mention
the WS-DIAMOND project (http://wsdiamond.di.unito.it),
where model-based diagnosis, planning and configuration
techniques are resorted to in order to handle self-healing for
Web services.

However, the main drawback of these approaches is that
they require the availability of formalized and widely recog-
nized background knowledge (i.e., structured knowledge)
about the structure and/or the behavior of the system. For
instance, planning-based techniques require a description of
the domain, the states, and the correct configurations of the
system, while event correlation and model-based diagnosis
require the availability of a model describing how the vari-
ous system components interact with each other. Despite the
fact that structured knowledge may sometimes be available
in practice, this is not always the case. Moreover, unfortu-
nately, as we already observed, a significant effort is usually
required to build, maintain, and use structured knowledge,
with the consequence that its applicability to large-size sys-
tems, exhibiting complex behaviors and interactions among
their components, may be problematic, at least in some sit-
uations.

CBR appears to be a suitable methodology for reduc-
ing the knowledge elicitation bottleneck, and its exploitation
would enable one to be as general as possible, and to face
also situations in which structured knowledge cannot be eas-
ily relied upon. Nevertheless, to the best of our knowledge,
the only investigation in this direction has been published
in [7], where a case-based retrieval system for discovering
software problems without requiring human intervention is
presented. This work, however, is quite limited, as it con-
sists of a pure retrieval systems, in which the other steps of
the CBR cycle are ignored, and problem solution is not pro-
vided. Case-based retrieval has also been resorted to in [19]
for fault prediction (but not for fault remediation).

Another drawback of the literature approaches is their
“fault orientation”, that is they are triggered by individ-
ual component faults. Consequently, they attempt to cor-
rect a fault as soon as it is diagnosed (preventive main-
tenance [20]), even if it is not (yet) causing any service
disruption because it is dormant [20], or it has been masked
by the fault-tolerance techniques embedded into the system.
Devising a repair plan for a fault that can be masked by
the system is a waste of resources, and the same holds true
for a dormant fault that, when it occurs, can be masked as
well. Furthermore, from the perspective of service delivery,
a dormant or masked fault has little or no importance un-
til it causes a service failure (i.e., it becomes active [20]).
While pro-active repair of dormant faults can be important
in physical systems, for software systems it is much less im-
portant, as an unnoticed bug or a misconfiguration (which
are, by definition, dormant faults) may never turn into an
active fault causing a service failure. For instance, an un-
noticed bug may be corrected as a side effect of a software
update performed to fix another problem. Moreover, the cor-
rection of dormant or masked faults requires the availability
of a model of the system, which brings us back to the prob-
lem of acquiring structured knowledge mentioned before. In

142 S. Montani, C. Anglano

our approach, self-healing will thus be activated just by ser-
vice failures.

Finally, the proposals discussed before typically either
address fault diagnosis or fault remediation, but they do not
address both issues at the same time. Our work therefore ap-
pears to be a significant contribution in the recent literature
panorama.

3 A CBR approach to self-healing

As anticipated in the Introduction, our self-healing approach
is based on externalization, by which the SDS that has to
be made able to self-heal is surrounded by an external self-
healing infrastructure, carrying out the four steps of the self-
healing cycle. More specifically, we propose a self-healing
architecture (schematically depicted in Fig. 2), in which the
SDS (i.e., the managed element) is treated as a “black box”,
surrounded by a set of external modules that form a closed-
loop controlling the “health” of the system itself, and per-
forming proper repair actions in case of service failures.
As indicated in Fig. 2, our architecture relies on a CBR-
based self-healing engine. The choice of CBR is motivated
by the observation that the CBR cycle fits very well into the
self-healing cycle, since it naturally covers the analysis and
planning phases by means of the retrieval and reuse-revise
steps, respectively; moreover, the knowledge used by the au-
tonomic manager is contained in the case base, properly
maintained by applying the retain step policies. As shown

in Fig. 2, the CBR-based self-healing engine has an internal
structure made up of three modules, each one implementing
a step of the CBR cycle, namely:

• the Retrieve module, which retrieves past cases similar to
the query one, thus implicitly providing a set of possible
diagnoses for the current problem;

• the Reuse-revise module, which establishes what is (are)
the candidate(s) solution(s) to the input problem, given
the list of retrieved ones;

• the Retain module, which defines some policies about
the opportunity of maintaining the current 〈problem,

solution〉 pattern in the case base, possibly after a proper
summarization strategy has been applied.

The other two phases of the autonomic cycle (i.e., monitor-
ing and execution) are covered by a few additional specific
modules (see Fig. 2), namely:

• the Monitoring module, which detects a service failure by
properly probing the services provided by the SDS;

• the Case Preparation module, which collects the set of
lower level symptoms (i.e., faults) that may have led to the
detected service failure, and maps them to the case struc-
ture. In this way, it properly defines a new case, which can
be used as a query case by the CBR self-healing engine;

• the Service Restoration module, that converts the solu-
tion(s) into a (set of) repair plan(s);

• the Repair module, which finally executes the repair plan
corresponding to the selected solution, by using suitable
application-specific mechanisms.

Fig. 2 CBR approach to
self-healing

Achieving self-healing in service delivery software systems by means of case-based reasoning 143

As shown in Fig. 2, the external modules can be classified
either into application-specific, i.e., that must be tailored
to the specific characteristics of the SDS, or application-
agnostic. While the monitoring and repair activities re-
quire the availability and usage either of knowledge and
mechanisms provided by the running system or of adapted
third-party components [21] (hence their classification as
application-specific), the problem resolution activity (per-
formed by the CBR modules) does not rely upon any partic-
ular system feature (although an adaptation strategy in the
revise phase could require specific domain knowledge). The
Case Preparation and the Service Restoration modules do
not fall in just one of the two categories, since they act as an
interface between the two layers.

In the remainder of this Section we will discuss the
methodological choices taken in the design of our CBR-
based self-healing infrastructure (i.e., the application-agnos-
tic part), after a discussion of the hypotheses on which this
design is based. The presentation of the application-specific
modules is instead postponed until Sect. 4, where also an ex-
ample is used to illustrate how the whole self-healing cycle
described in Fig. 2 operates in a real case.

3.1 Assumptions

In this work we focus on SDS systems which verify the fol-
lowing assumptions:

• Assumption 1: the application of a (possibly incorrect)
solution generates neither a new fault, nor a change in
the system inner state (e.g., a change in some parame-
ter configuration). Therefore, it is never required to com-
pletely revise the right repair action to deal with a new
and/or unpredicted situation, introduced by an incorrect
action already taken by mistake; it is also not required to
explicitly “undo” the incorrect action itself. On the other
hand, the same fault might generate different service fail-
ures (which rely on the same resource, made unavailable
by the fault itself);

• Assumption 2: explicit time deadlines for producing the
case solution are not fixed;

• Assumption 3: cases do not exhibit multiple solutions
(i.e., the case solution is always univocally defined). Nev-
ertheless, observe that our adaptation strategy would eas-
ily cope with an extension removing this assumption (see
Section 3.2.2);

• Assumption 4: transient faults (i.e., faults that appear
only once, and never again) do not take place; in fact,
it seems to us a minor and reasonable simplification to
ignore faults which, by definition, do not show up again
after the first time;

• Assumption 5: intermittent faults (i.e., faults that appear
and disappear in a totally unpredictable fashion) will not
take place as well; this is a strong assumption, on the

other hand, but intermittent faults represent a very com-
plex problem, which is still seen as an open research is-
sue in the literature: therefore, by now we will not try
to cope with a problem for which a recognized solu-
tion/management strategy has not been indicated yet.

The class of applications for which these assumptions hold,
although not including all the possible SDS systems, is still
large enough to include many real world examples of Web-
based applications used to deliver a variety of services ac-
cessible through the Internet. Therefore, our approach can
be profitably used “as is” for a reasonably large class of rel-
evant applications. Relaxing some of these assumptions to
broaden the class of targeted SDS will be part of our future
work.

3.2 Methodological choices in the CBR system

As depicted in Fig. 2, our CBR-based self-healing engine in-
cludes three components, each one performing one or more
steps of the CBR cycle. The development of these compo-
nents required us to take a few methodological decisions,
that are discussed below.

3.2.1 Case representation and retrieval

In SDS, each case represents a service failure episode,
whose features are the corresponding symptoms (i.e., faults)
discovered by the Case Preparation module. On the other
hand, the case solution is composed by the restoration pro-
cedure applied in that situation.

In order to retrieve the most similar (i.e., less distant)
cases with respect to the input one, a measure of distance
in the features space has to be provided. Generally speak-
ing, the distance between two cases can be computed as
a (weighted) average of the normalized distances between
their various features (where weights can be properly set to
state that some features are more “important” for retrieval
relatively to the others). The simplest approach requires to
set all the weights to 1 (as we did in our experiments),
but more discriminating weighting policies can be used as
well [22], and will be part of our future investigation.

Various metrics can be relied upon to calculate the dis-
tance; we are currently using the heterogeneous euclidean-
overlap metric (HEOM) [23], a distance metric able to treat
both symbolic and numeric variables, and to cope with the
problem of missing data. If f is a feature, HEOM is defined
as follows:

HEOM =
√∑

f

df (x, y)2

where df (x, y) = 1, if x or y are missing; df (x, y) =
overlap(x, y) if f is a symbolic feature, (i.e., 0 if x = y,
1 otherwise); df (x, y) = |x−y|

rangef
if f is a linear feature.

144 S. Montani, C. Anglano

In case of symbolic features, the overlap function can be
generalized with the use of a similarity table.

3.2.2 Reuse-revise

We have currently adopted a very simple form of adapta-
tion, which requires to exploit all the pertinent past solutions
(i.e., remediation strategies) for a given case, by applying
all of them in sequence, until the service is restored (and all
the remaining unapplied solutions can then be discarded).
This policy also fits the not infrequent situation in which
the query case is a combination of two or more past ones
(i.e., two different service failures have taken place simulta-
neously, or the same service failure has been caused by two
faults, whose symptoms are described as feature values).

The order in which solutions should be applied, and the
possible need to “undo” the effect of an already tested repair
plan before applying another, are application-dependent as-
pects, that should be provided as an initial guideline by the
human experts. As a default, we simply order the retrieved
cases on the basis of their distance from the input case, and
we reuse up to all the solutions, without revising them. Ac-
tually, the application of one solution after the other (with no
“undo” mechanisms) can be seen as a very simple revision
strategy, which is indeed suitable for applications which fit
Assumption 1 in Sect. 3.1, i.e., for which no side-effect is
foreseen after the implementation of a non-working solu-
tion. How to deal with situations in which such hypothesis
does not hold will be object of our future investigation.

On the other hand, if a certain case admits multiple solu-
tions (see Assumption 3 in Sect. 3.1) for the service failure
it embeds, then this adaptation strategy allows one to solve
the problem by means of the first (i.e., less distant case’s)
pertinent retrieved solution, among the existing alternative
ones.

Finally, observe that, if the system cannot retrieve any
useful solution from its case base, the situation is handled by
asking a direct intervention by human experts (see however
the discussion in Sect. 3.2.3), a possibility we are allowed to
take because we have not fixed a time deadline to repair the
service failure (see Assumption 2 in Sect. 3.1).

3.2.3 Retain and case-based learning

In order to behave as a system really able to self-heal, our
infrastructure must be able to work as much as possible in
an autonomous way, i.e., without human intervention. How-
ever, this can happen only if a case base containing enough
instances of solved cases is available, but in general this does
not hold true when the system is initially put into operation.
We therefore envision a bootstrap phase, enabling the col-
lection of the initial cases, during which the problem solu-
tion is provided by humans.

Background knowledge is needed also when the case
base does not contain examples similar to the query case
(due to the presence of competence gaps within the case
base itself). In this situation, human intervention could be
required on the fly.

However, it is worth noting that:

1. competence gaps tend to be reduced while the system
is being used, since CBR is a lazy learning paradigm
which automatically collects new knowledge in an im-
plicit form;

2. if a reasonable amount of explicit knowledge is available
in the beginning, it might be somehow integrated with the
CBR system (especially in the revision phase), in order
to improve the remediation strategies definition (see also
Sect. 5).

As far as more and more cases are stored in the case
base, it may be needed to properly summarize the collected
cases, to control the case base growth. In particular, we have
adopted a strategy that derives suitable “prototypes” (see for
instance [24, 25]), able to summarize the information carried
by the ground cases they represent, that are stored in place
of the cases themselves.

Prototypes are a generalization from single to clustered
typical cases. The main purposes of such a generalization
knowledge are to:

• structure the case base;
• decrease the storage amount by erasing redundant cases;
• guide and speed-up the retrieval process.

In particular, the periodic reorganization of the case base
to learn or update the prototype definitions, by taking into
account the new acquired cases, automatically allows one to
delete the redundant or useless ground cases. An evaluation
of each newly acquired case is therefore not needed with this
strategy.

Moreover, as observed in the Introduction, in domains
with rather weak domain theories (like the SDS one), CBR
can provide an easy way of acquiring knowledge. Any-
way, gathering new cases may implicitly improve the sys-
tem competence, but does not elicit the intrinsic knowledge
of the stored cases. To learn the structured knowledge con-
tained in cases, a generalization step is required. At least in
domains where experts use to reason by exploiting prototyp-
ical and exceptional cases, the creation of prototypes seems
to be an adequate learning technique. In these domains, pro-
totypes can be seen as a form of knowledge that fills the gap
between specific cases and general rules.

To some extend, it is thus possible that generalized (i.e.,
structured) knowledge about the system is learnt from the
case base: in the applications where this goal is reached, it
will be obviously possible to take advantage of the newly
elicited knowledge (e.g., in the form of prototypes) through

Achieving self-healing in service delivery software systems by means of case-based reasoning 145

other reasoning techniques (e.g., rule-based reasoning or
model-based reasoning), or to move in the direction of defin-
ing a multi-modal reasoning system, in which CBR will be
just one of the methodologies relied upon (see also Sect. 5).

Finally, prototypes can at least partly help to solve the
adaptation problem. The idea to cope with the adaptation
task by generalizing, works for diagnostic tasks where ab-
stracted typical cases represent diagnoses, and additional
specific features of former single cases can be neglected.
On such generalized cases the definition of an adaptation
strategy becomes easier, since the specific details of ground
cases leave space to a more general kind of knowledge. If a
hierarchy of abstracted cases exists, adaptation can be seen
as a top down search to find the most specific case that fits
for the current problem. We will investigate this strategy in
a deeper fashion in the future.

How prototypes can be extracted in a concrete situation
is described in Sect. 4.

4 Experimental results

In order to validate our approach, as well as to test its ef-
fectiveness in providing self-healing behavior in SDSs, we
implemented a prototype of the CBR-based self-healing en-
gine (using Java as the programming language and MySQL
to store the case base), and interfaced it with an SDS testbed.
This testbed was deployed and operated by means of Cavy,
a software system we designed and implemented as part of
our self-healing project (see Sect. 4.1), and included a real
distributed application delivering an EBay-like auction ser-
vice. The resulting self-healing SDS was used to perform
an extensive experimentation, in which service failures were
caused (by injecting individual components with faults), de-
tected, diagnosed and repaired autonomously. Our results in-
dicate that the CBR-based self-healing engine we developed
is able to provide suitable repair plans for the detected fail-
ures, and that the self-healing infrastructure built (by means
of Cavy) after the architecture depicted in Fig. 2 can be ef-
fectively used to concretely implement the externalized ap-
proach to self-healing.

4.1 The Cavy tool

Cavy is a software system allowing the configuration, de-
ployment, and operation of Service Delivery testbeds com-
prising a set of machines on which the various components
of the applications delivering the services are executed. Cavy
adds to these machines and application processes a set of
modules that (a) inject individual testbed components with
faults, (b) diagnose the resulting service failures, (c) interact
with a self-healing engine in order to obtain a repair plan fix-
ing these failures, and (d) perform the corresponding repair

Fig. 3 The architecture of Cavy

actions. More precisely, as schematically depicted in Fig. 3,
in addition to the various machines (depicted as boxes) and
the processes of the application delivering the services (de-
picted as circles labeled with AP), Cavy’s architecture en-
compasses a set of Fault Managers (one for each machine
of the testbed, and represented as rhomboids labeled as
FM), a Fault Injector, a Service Monitor, a Fault Diagnoser,
a Fault Repairer, and an Integrator. A Cavy testbed is driven
by the Fault Injector, that at random points in time injects
one (several) machine(s)/application process(es) with a (set
of) fault(s). These faults usually induce the inability of the
application to deliver one (or more) services in its intended
fashion, that is they cause a service failure. The Service
Monitor module continuously monitors the services deliv-
ered by the application, and in case of failures triggers the
operation of the other modules of the testbed in order to ob-
tain a (set of) solution(s) from the self-healing engine.

Let us explain in more detail the operations performed by
each testbed component, and how these components interact
among them.

4.1.1 The fault managers

The basic components of a Cavy testbed are the Fault Man-
agers, that are executed on all the machines of the testbed.
Each Fault Manager is in charge of injecting the machine on
which it runs (and/or the application component(s) running
on that machine) with faults, as well as of repairing them.

146 S. Montani, C. Anglano

Fault injection is performed by using user-level scripts (pos-
sibly requiring the superuser privileges) that induce faults
by performing actions like machine reboots, network inter-
face card disconnections, disk or file systems disconnec-
tions, file deletion/corruption, modifications to configuration
files to emulate errors due to human operators, and suspen-
sions/terminations of processes to emulate software crashes.

Each Fault Manager holds a database containing, for each
fault, a textual description (e.g., network interface down or
Web server crash) and the names of the scripts or executable
programs that will cause and fix the fault. Cavy supports ex-
ecutable programs or scripts in any language directly exe-
cutable on the machine on which the Fault Managers are run.
For instance, a Unix machine can be injected with a fault
like “disconnect the machine from the network” by execut-
ing the ‘ifconfig eth0 down’ command, that can be contained
into a shell script, while the corresponding repair action cor-
responds to the execution of the ‘ifconfig eth0 up’ command.
More complex fault or repair actions can be specified using
a mix of executable programs and shell scripts.

Each Fault Manager continuously waits for a command
to be sent either by the Fault Injector, the Fault Repairer,
or the Fault Diagnoser. When a fail command is received
from the Fault Injector, the Fault Manager searches its data-
base for the specified fault, and executes the correspond-
ing fault script. Analogously, when a repair command is
received from the Fault Repairer, the Fault Manager finds
in its database the name of the script fixing the specified
fault, and executes it. This functionality of the Fault Man-
ager thus corresponds to the one of the Repair module in our
self-healing conceptual architecture (see Fig. 2). Finally, the
Fault Manager can also be queried by the Fault Diagnoser
for the list of active faults (i.e., faults that still have to be
repaired).

4.1.2 The fault injector

As already anticipated, the operations of the testbed are
driven by the Fault Injector that has the purpose of inject-
ing the components of the testbed with faults. The Fault In-
jector uses a database containing information on the vari-
ous faults it can produce, initialized at startup time by sep-
arately querying the various Fault Managers of the testbed.
The Fault Injector operates as follows: (a) it randomly se-
lects one of the faults in its database, (b) sends the cor-
responding fault command to the proper Fault Manager,
(c) waits for a random amount of time (chosen according
to a user-specified distribution) before injecting the ma-
chine/application at hand with the next one. If the multi-
failure mode of operation is used, the Fault Injector injects
the machine/application with the next fault immediately af-
ter the waiting time expires. If, conversely, the single-failure
mode is chosen, the Fault Injector after waking up waits un-
til the current service failure has been fixed.

4.1.3 The service monitor

The Service Monitor (corresponding to the Monitoring mod-
ule of our self-healing conceptual architecture depicted in
Fig. 2) continuously monitors the SDS in order to iden-
tify possible failures in the delivery of services. The Ser-
vice Monitor runs asynchronously with respect to the other
modules of the testbed, and polls (at a user-defined fixed fre-
quency) the various services delivered by the application run
on the testbed. When a failure is detected, the Service Mon-
itor sends a notification message (containing the identity of
the detected failure) to the Fault Diagnoser, and suspends
itself until the failure has been fixed (see later sections).

The Service Monitor consists of a generic engine, that
does not depend on the specific application being monitored,
on which suitable methods aimed at testing the specific ap-
plication services can be plugged in. Therefore, only these
plugins need to be provided for a particular application run
on the testbed.

4.1.4 The fault diagnoser

The Fault Diagnoser is the component of Cavy which is
in charge of identifying the faults that have given rise to a
specific service failure. As discussed before, the Fault Diag-
noser is triggered by a message sent by the Service Monitor.
Upon receiving this message, the Fault Diagnoser queries all
the Fault Managers of the testbed for the list of active faults
(that represent the symptoms of the detected failure), assem-
bles a message containing this list, and sends it to the Inte-
grator. The Fault Diagnoser corresponds to the application-
specific part of the Case Preparation module of our self-
healing conceptual architecture of Fig. 2.

4.1.5 The integrator

The Integrator is the Cavy module that corresponds to the
application-agnostic parts of both the Case Preparation and
Service Restoration modules of our self-healing architec-
ture. In particular, it interfaces the Fault Diagnoser with the
self-healing engine by receiving the list of diagnosed faults
and by assembling from it the case (corresponding to the
detected service failure) that is given as input to the self-
healing engine. Furthermore, it interfaces the self-healing
engine with the Fault Repairer by receiving from the for-
mer a list of solution cases (sorted in increasing order with
respect to the distance from the input case), and by preparing
and sending to the latter, for each of them, the correspond-
ing repair plan (consisting of the set of faults that must be
repaired in order to fix the detected service failure).

Achieving self-healing in service delivery software systems by means of case-based reasoning 147

4.1.6 The fault repairer

The Fault Repairer is the component of Cavy that is in
charge of carrying out the (set of) repair plan(s) devised by
the self-healing engine, and corresponds to the application-
specific part of the Service Restoration module of our self-
healing architecture. The Fault Repairer executes the above
plans in sequence (recall that they are sorted according to
their distance from the input case) by sending the corre-
sponding repair commands to the proper Fault Managers.
As already observed, the Fault Managers are in charge of
implementing the repair plan by converting it into the proper
(application-specific) script commands. After each plan has
been executed, the Fault Repairer tests the failed service in
order to check whether it has been fixed or not. If the out-
come is positive, it informs the Integrator, that retains the
solution for the input case, while if it is negative the next
plan in the sequence is executed.

4.2 The experimental testbed

In order to experiment with our self-healing methodology,
we have concretely implemented the self-healing architec-
ture of Fig. 2 by realizing a prototype CBR-based self-
healing engine (called CaBaReT), and by coupling it with a
Cavy-based testbed. CaBaReT consists of a Java-based front
end, that interfaces itself with a relational DBMS (MySQL
in the current implementation) managing the case base.
Upon receiving a case corresponding to a service failure
coming from an external source (the Cavy’s Integrator mod-
ule, in our case), CaBaReT sorts the cases in its case base
according to their distance from the input case, and sends
their solutions to an external module (again, the Integrator).
We have used Cavy and CaBaReT to build a self-healing
version of Rubis [26], an application delivering an auction
service (modeled after EBay). Among the various configu-
ration options Rubis allows one to choose, we picked the
two-tier PHP-based one. The first tier consists of a machine,
running an Apache Web server, providing a portal service
using which customers may interact with the auction sys-
tem (to perform actions like registering, selling items and
bidding for them). The second tier consists instead of a ma-
chine, running a MySQL DBMS, that stores all the infor-
mation concerning users, items, and bids (in three separate
tables, named after the kind of information they store). Both
the machines we used for our testbed were equipped with In-
tel Pentium IV processors and 512 MB of RAM, and ran the
Linux operating system. It is worth to point out that Rubis,
in spite of its apparently simple architecture, can be consid-
ered representative of a wide class of Web-based applica-
tions used to deliver a variety of services accessible through
the Internet, that verify the assumptions in Sect. 3.1. There-
fore, the results we obtained in our experiments with Rubis

should hold also for the entire class of applications it repre-
sents.

In order to implement the Monitoring module of our pro-
totype self-healing architecture, we wrote a set of plugins,
using the C++ language and the cURL libraries [27], that test
the various services delivered by Rubis. More specifically,
the services we took into account are: Register (register a
user), Browse (register an item before selling it, or browse
items—by category or by region), Sell (sell an item), and
Home (go to the initial Rubis page).

The Register activity requires to access the User table,
while Browse requires to read/write the Item table, and Sell
requires to access the Bid table. On the other hand, Home
generates a static page, which does not need to access the
database. Home is therefore a simpler request, while all the
other services can be grouped in a single category (that we
will call Cat1 in the experiments) characterized by the need
to interact both with the Web server and the DBMS.

In this scenario, the following reasons for the occurrence
of a service failure can be identified:

• Apache configuration problems took place (e.g., the
wrong Web server port has been set, or the wrong permis-
sions have been assigned to the documents directories);

• Apache network problems took place (i.e., the network
connection of the machine on which Apache is running is
down);

• it is necessary to restart Apache (since the Web server is
down, or some configuration change has been operated);

• MySQL configuration problems took place (e.g., the
wrong MySQL port has been set);

• MySQL network problems took place (i.e., the network
connection of the machine running MySQL is down);

• it is necessary to restart MySQL (since the DBMS is
down, or some configuration change has been operated);

• the sufficient privileges to access a database table (namely
User or Item or Bid) have not been granted to the user.

Globally, we have thus identified 6 faults, plus 3 permis-
sion problems on specific database tables, that may affect
the Rubis services. Therefore, we have built a case base in
CaBaReT, implemented as a single DMBS table (but more
complex database structures, such as a different table for
every category of cases, sharing common features, could
be easily adopted in case of need), where every case is de-
scribed by the following features:

• Failure (a symbolic feature describing the observed ser-
vice failure);

• User (a boolean feature stating whether the permissions
to access the User table have not been correctly granted);

• Item (as above, for the Item table);
• Bid (as above, for the Bid table);
• Apache Cf (a boolean feature, explaining whether any

configuration mistake for the Web server has been intro-
duced);

148 S. Montani, C. Anglano

• Apache Net (a boolean feature, stating whether the
Apache network is down);

• Apache (a boolean feature, stating whether Apache is
down);

• MySQL Cf (as for Apache Cf, but referring to the data-
base);

• MySQL Net (as for Apache Net);
• MySQL (as for Apache);
• Solution (a symbolic feature, that will not be used to cal-

culate case distance, explaining the repair plan - still not
in terms of the script to be executed, since this transla-
tion will be operated by the Integrator and by the proper
Fault Manager after the CBR self-healing architecture has
provided its answer).

Referring to the Rubis application, and to this case struc-
ture, in the next Section we will describe our experimental
results.

4.3 Experiments

In this section, we will describe the initial phase of our ex-
periments in a step by step fashion; this will allow us to il-
lustrate how the conceptual self-healing cycle presented in
Fig. 2 operates. We will then summarize the results of our
additional tests, and draw some conclusions.

We started by building an initial case base (bootstrap
phase), in which four specific cases (reported in Table 1)
where inserted by a human expert.

The system was then put into operation, and a new case
was generated, due to the injection of the Rubis application

with a fault. In particular, the Fault Injector randomly se-
lected an Apache configuration problem, and sent the corre-
sponding fail command to the Fault Manager running on the
Apache machine, that injected it with the fault by using the
corresponding script. After a short while, the Service Moni-
tor of the Cavy testbed identified the Sell service failure, and
triggered the Fault Diagnoser, that probed the Fault Man-
agers of the two testbed machines and sent the list of faults
it found to the Integrator. The Integrator then assembled the
case reported in Table 2, and sent it to CaBaReT. Upon re-
ceiving this input case, CaBaReT computed the distances
between it and all the cases in the case base, by means of
the Retrieve module, as discussed in Sect. 3.2. The result-
ing distances, computed by giving equal weights to all the
features, are reported in Table 3.

The less distant cases with respect with the new one are
the third and the fourth (corresponding to Sell and Home ser-
vice failures respectively). The Reuse-revise module applied
both solutions, in the retrieval order. In particular the solu-
tion to the third case was useless, but the one to the fourth
case (i.e., Fix Apache Config), implemented by the Apache
Fault Manager, driven by the Integrator and by the Fault Re-
pairer, fixed the new case problem. Observe that, despite the
fact that the service failure experienced in the new case was
different from some of the ones already stored in the table,
by retrieving the most similar cases and by applying their so-
lutions it was possible to correctly solve the case itself (in ac-
cordance with the second part of Assumption 1 in Sect. 3.1).
The new case was then kept by the Retain module (actually,

Table 1 Contents of the case base in the beginning

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL Sol.

Cf Net Cf Net

Register no no no no no no no no yes Restart

MySql

Browse no no no no no yes no no no Restart

Apache

Sell no no no no no no no yes no Bring

Db

Net up

Home no no yes yes no no no no no Fix

Apache

Config

Table 2 The first automatically generated case

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL

Cf Net Cf Net

Sell no no no yes no no no no no

Achieving self-healing in service delivery software systems by means of case-based reasoning 149

Table 3 Distances between the first service failure and the four cases in the case base

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL All

Cf Net Cf Net

1 0 0 0 1 0 0 0 0 1 3/10

1 0 0 0 1 0 1 0 0 0 3/10

0 0 0 0 1 0 0 0 1 0 2/10

1 0 0 1 0 0 0 0 0 0 2/10

Table 4 The second automatically generated case

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL

Cf Net Cf Net

Sell no no no no no yes no yes no

Table 5 Distances between the second service failure and the five cases in the case base

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL All

Cf Net Cf Net

1 0 0 0 0 0 1 0 1 1 4/10

1 0 0 0 0 0 0 0 1 0 2/10

0 0 0 0 0 0 1 0 0 0 1/10

1 0 0 1 1 0 1 0 1 0 5/10

0 0 0 0 1 0 1 0 1 0 3/10

Table 6 The third automatically generated case

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL

Cf Net Cf Net

Browse no yes no no no no no no no

we initially applied a policy following which all new solved
cases were retained).

The second failure that was generated in our experiment
regarded again the Sell service, but this time it resulted
from the simultaneous generation of two individual faults
(namely, Apache and MySQL Net), that gave rise to the case
reported in Table 4. As for the first service failure, the self-
healing engine computed the distances of this case with re-
spect to the cases in the case base (that now included also
the first case, which had been retained), that are reported in
Table 5. As a consequence of the fact that two distinct faults
had been registered simultaneously in the input case, the ap-
plication of the solutions of both the third and the second
cases (which are the most similar ones) was required in or-
der to fix the problem.

As a further step, the case in Table 6 was generated, and
this time none of the existing cases (including the two newly
solved and retained ones) proved to be able to fix the prob-

lem; human intervention was required, by manually editing
the solution of the new case, i.e., to correct the permissions
for the Item table.

The experiments continued in this fashion for about 3
days, and required only a few additional manual interven-
tions (less than 10). At the end, 1016 cases were generated,
most of which including multiple service failures, and all
were automatically solved by CaBaReT.

At this point of the experiment, we evaluated the possi-
bility of reducing the memory occupancy of the case base,
by understanding if some more general knowledge could be
learnt from the acquired cases, enabling the deletion of some
very specific cases, adequately described by such a higher
level information.

In particular, we applied the C4.5 algorithm [28] to learn
a decision tree that, after we labeled all the database cases
with their solution (same solution = same class), was able to
select the most important features characterizing a class (i.e.,

150 S. Montani, C. Anglano

Table 7 Contents of the prototypes case base

Failure User Item Bid Apache Apache Apache MySQL MySQL MySQL Sol.

Cf Net Cf Net

NULL NULL NULL NULL yes no no no no no Fix

Apache

Config

NULL NULL NULL NULL no yes no no no no Bring

Apache

Net Up

NULL NULL NULL NULL no no yes no no no Restart

Apache

Cat1 NULL NULL NULL no no no yes no no Fix

MySQL

Config

Cat1 NULL NULL NULL no no no no yes no Bring

Db

Net Up

Cat1 NULL NULL NULL no no no no no yes Restart

MySql

Register yes NULL NULL no no no no no no Fix

User

Perm.

Browse NULL yes NULL no no no no no no Fix

Item

Perm.

Sell NULL NULL yes no no no no no no Fix

Bid

Perm.

a prototype, see Sect. 3.2.3). More specifically, we used C4.5
release 8, available in source form from [29], that was com-
piled for a Linux platform. In order to use it for our purposes,
we prepared a data file (using the format prescribed by C4.5)
from a dump of the case base contents and containing the
1016 input cases, and ran C4.5 against it. The time taken
by C4.5 to complete its execution on a machine equipped
with a 1.7 GHz Intel M processor and running Linux was 19
seconds. At the end of its execution, C4.5 generated a tree
having size 333, that was reduced to 74 after the C4.5 prun-
ing operation was performed. The results produced by C4.5
indicated that the order of importance of the various features
for classification was (in a decreasing fashion) MySQL Cf,
MySQL Net, MySQL, Apache, Apache Cf, and Apache
Net, while features User, Item, and Bid proved to be unim-
portant, except for very specific situations (see below).

Furthermore, the analysis of the pruned tree revealed us
that those cases characterized by the simultaneous presence
of multiple faults could be solved by applying, one after the
other, the solutions of the individual faults. This corresponds
to say that, in practice, the most complex cases are just a

linear combinations of the simplest ones, whose solutions
in turn can be mapped in a 1:1 way to the corresponding
individual faults.

The results of this generalization procedure and of these
considerations, expressed in the form of a database of pro-
totypes, are listed in Table 7. Each of the 9 prototypes sum-
marizes a set of ground cases, sharing the same values in
a significant set of features (i.e., some faults/permissions
strongly characterizing a specific solution). The values of
the features considered as irrelevant for classification by
C4.5 were set to NULL in the prototypes.

As it can be observed from the table, each of the Apache-
related faults can independently cause each of the service
failures, while the MySQL related ones can also indepen-
dently cause each of the service failures in Cat1. Moreover,
Register is affected by the User permission feature, while
Browse is affected by the Item permission feature and Sell is
affected by the Bid permission one.

In order to assess the ability of the above prototypes to
correctly identify proper solutions to the occurred service
failures, we performed a set of experiments in which more

Achieving self-healing in service delivery software systems by means of case-based reasoning 151

than 100 new failures were induced in the system and had
to be solved by CaBaReT using a case base containing only
the prototypes and not performing any retain. In all these
experiments CaBaReT was able to provide a working repair
plan, consisting of the sequential application of one or more
solutions to individual faults, without requiring any human
intervention. In the worst case, all 9 cases were retrieved,
the first 8 solutions were applied without completely solv-
ing the problem, and only the 9th one finally proved to be
the required one. The approach of retrieving all cases and
of applying all solutions was feasible, since retrieval time
was very low for the prototypes database (thanks to its lim-
ited size), and in the Rubis application the adoption of a
wrong solution did not alter the system state (as prescribed
by Assumption 1 in Sect. 3.1). In the future, we will work at
more complex solution adaptation and combination strate-
gies, that might be more suitable for applications for which
this simplification does not hold.

5 Conclusions and future work

In this paper we have presented a CBR approach for the
achievement of self-healing in SDS that, unlike alternative
solutions, avoids unnecessary repair actions. The repair pro-
cedure is indeed triggered by service failures rather than by
individual component faults. Moreover, it does not require
the availability of structured knowledge, such as models of
the system behavior, thus easing its applicability to large-
scale, complex software systems.

The suitability of this approach has been demonstrated
by some tests conducted on Rubis, an on-line auction ser-
vice application, running on a distributed architecture. For
this purpose, we developed a proof-of-concept implementa-
tion of our CBR-based self-healing engine, and interfaced it
with an ad hoc testbed we built using Cavy, a tool support-
ing the deployment and operation of testbeds tailored to self-
healing infrastructures. Cavy allows to easily define testbeds
with various characteristics. The results we obtained were
quite encouraging, and showed both the feasibility of our
approach, and its effectiveness in providing self-healing in
real-world applications. It is worth to point out that the ap-
plication we used can be considered as representative of a
wide class of Web-based applications exploited to deliver a
variety of services accessible through the Internet. There-
fore, our results should hold also for the entire class of ap-
plications that Rubis represents (i.e., that satisfy the assump-
tions in Sect. 3.1).

In the future we plan to exploit Cavy for verifying our
CBR approach to self-healing on additional real world ap-
plications. In particular, we plan to test the applicability of
the current implementation to classes of problems that do
not satisfy all the assumptions in Sect. 3.1, for instance in

situations in which the application of an incorrect solution
introduces new faults, or somehow modifies the system in-
ner state, so that a proper “undo” policy, or solution selection
mechanism, must be devised.

We will also analyze the possibility of resorting to proto-
types to cope with the adaptation task by generalizing; such
a policy may lead to the definition of a more suitable adapta-
tion strategy with respect to the currently implemented one,
for complex examples that do not fit all our working hy-
potheses (see Sect. 3.1).

Moreover, we also plan to test the advantages of our
approach in applications in which some formalized back-
ground knowledge is or becomes available. Actually, CBR
can be easily combined with other knowledge sources and
with other reasoning paradigms, and is particularly well
suited for integration with rule-based or model-based sys-
tems [30]. The interest in multi-modal approaches involving
CBR is recently increasing through different application ar-
eas [31, 32], from planning [33] to classification [34] and to
diagnosis [35], and from legal [36, 37] to medical decision
support [24, 38, 39]. Our goal will be to demonstrate the fur-
ther advantages of relying on two different methodologies,
by tightly coupling them, or alternatively by just switching
between one and the other, when the aim is to provide a
software system with autonomic diagnosis and remediation
capabilities.

References

1. Ganek AG, Corbi TA (2003) The dawning of the autonomic com-
puting era. IBM Syst J 42(1):5–18

2. Kephart JO, Chess DM (2003) The vision of autonomic comput-
ing. IEEE Comput 36:41–50

3. Brewer E (2001) Lessons from giant-scale services. IEEE Internet
Comput 5(4):46–55

4. Oppenheimer D, Patterson D (2002) Architecture and dependabil-
ity of large-scale Internet services. IEEE Internet Comput 41–49

5. Anglano C, Montani S (2005) Achieving self-healing in auto-
nomic software systems: a case-based reasoning approach. In:
Czap H, Unland R, Branki C, Tianfield H (eds) Proceedings of
the international conference on self-organization and adaptation of
multi-agent and grid systems (SOAS), Glasgow, December 2005,
IOS, Amsterdam, pp 267–281

6. Arshad N, Heimbigner D, Wolf A (2004) A planning based ap-
proach to failure recovery in distributed systems. In: Proceed-
ings of 2nd ACM workshop on self-healing systems (WOSS ’04),
Newport Beach, CA, USA, October 2004. ACM, New York

7. Brodie M, Ma S, Lohman G, Syeda-Mahmood T, Mignet L,
Modani N, Champlin J, Sohn P (2005) Quickly finding known
software problems via automated symptom matching. In: Proceed-
ings of the 2nd international conference on autonomic computing,
Seattle, WA, USA, June 2005

8. Garlan D, Schmerl B (2002) Model-based adaptation for self-
healing systems. In: Proceedings of 1st ACM workshop on self-
healing systems (WOSS ’02), Charleston, SC, USA, November
2002. ACM, New York

9. Littman M, Nguyen T, Hirsh H (2003) Cost-sensitive fault re-
mediation for autonomic computing. In: Proceedings of IJCAI

152 S. Montani, C. Anglano

workshop on AI and autonomic computing: developing a research
agenda for self-managing computer systems, Acapulco, Mexico,
August 2003

10. Sterrit R (2004) Autonomic networks: engineering the self-healing
property. Eng Appl Artif Intell 17:727–739

11. Dong X, Hariri S, Xue L, Chen H, Zhang M, Pavuluri S, Rao
S (2003) Autonomia: an autonomic computing environment. In:
Proceedings of the 2003 international conference on performance,
computing, and communications. IEEE Computer Society, Los
Alamitos

12. Aamodt A, Plaza E (1994) Case-based reasoning: foundational is-
sues, methodological variations and systems approaches. AI Com-
mun 7:39–59

13. Oppenheimer D, Ganapathi A, Patterson D (2003) Why do Inter-
net services fail, and what can be done about it? In: Proceedings
of 4th usenix symposium on Internet technologies and systems
(USITS ’03), Seattle, WA, USA, March 2003

14. Montani S, Anglano C (2006) Case-based reasoning for au-
tonomous service failure diagnosis and remediation in software
systems. In: Roth-Berghofer T.R. et al (eds) Proceedings of the
European conference on case-based reasoning (ECCBR) 2006.
Lecture notes in artificial intelligence, vol 4106. Springer, Berlin,
pp 489–503

15. Joshi KR, Hiltunen MA, Sanders WH, Schlichting RD (2005)
Automatic model-driver recovery in distributed systems. In: Pro-
ceedings of 24th IEEE symposium on reliable distributed systems
(SRDS 05). IEEE, New York

16. Console L, Friedrich G, Theseider-Dupre D (1993) Model-based
diagnosis meets error diagnosis in logic programming. In: Pro-
ceedings of the IJCAI, Chambery, France, pp 1494–1499

17. Wotawa F (2002) On the relationship between model-based de-
bugging and program slicing. Artif Intell 135:125–143

18. Friedrich G, Stumptner M, Wotawa F (1999) Model-based diag-
nosis of hardware design. Artif Intell 111:3–39

19. Koshgoftaar TM, Seliya N, Sunsaresh N (2006) An empirical
study of predicting software faults with case-based reasoning. Soft
Qual J 14:85–111

20. Avizienis A, Laprie J, Randell B, Landwehr C (2004) Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans Dependable Secur Comput 1(1):11–33

21. Kaiser G, Parekh J, Gross P, Valetto G (2003) Kenesthetics ex-
treme an external infrastructure for monitoring distributed legacy
systems. In: Proceedings of 5th IEEE international active middle-
ware workshop, Seattle, WA, USA, June 2003. IEEE Computer
Society, Los Alamitos

22. Nunez H, Sanchez-Marre M (2004) Instance-based learning tech-
niques of unsupervised features weighting do not perform so
badly! In: Lopez de Mantaras R, Saitta L (eds) Proceedings of
the European conference on artificial intelligence (ECAI). IOS,
Amsterdam, pp 102–108

23. Wilson DR, Martinez TR (1997) Improved heterogeneous dis-
tance functions. J Artif Intell Res 6:1–34

24. Schmidt R, Montani S, Bellazzi R, Portinale L, Gierl L (2001)
Case-based reasoning for medical knowledge-based systems. Int J
Med Inf 64(2-3):355–367

25. Gierl L, Stengel-Rutkowski S (1994) Integrating consultation and
semi-automatic knowledge acquisition in a prototype-based archi-
tecture: Experiences with dysmorphic syndromes. Artif Intell Med
6:29–49

26. The Rubis Project Home Page. http://rubis.objectweb.org
27. The cURL and libcurl Home Page. http://curl.haxx.se
28. Quinlan JR (1993) C4.5: Programs for machine learning. Morgan,

San Mateo
29. The C4.5 Distribution Page. http://www2.cs.uregina.ca/~dbd/

cs831/notes/ml/dtrees/c4.5/c4.5r8.tar.gz
30. Hammond KJ (1989) Case-based planning: viewing planning as a

memory task. Academic, New York
31. Aha D, Daniels J (eds) (1998) Proceedings of the AAAI workshop

on CBR integrations. AAAI, Menlo Park
32. Freuder E (ed) (1998) Proceedings of the AAAI spring symposium

on multi-modal reasoning. AAAI, Menlo Park
33. Bonissone PP, Dutta S (1990) Integrating case-based and rule-

based reasoning: the possibilistic connection. In: Proceedings of
6th conference on uncertainty in artificial intelligence, Cambridge,
MA, USA, July 1990

34. Surma J, Vanhoof K (1995) Integration rules and cases for the
classification task. In: Veloso M, Aamodt A (eds) Proceedings of
the 1st international conference on case-based reasoning, Lecture
notes in computer science, vol 1010. Sesimbra, Portugal, October
1995. Springer, Berlin, pp 325–334

35. Macchion D, Vo D (1993) A hybrid knowledge-based system
for technical diagnosis learning and assistance. In: Wess S, Al-
thoff K, Richter M (eds) Proceedings of the 1st European work-
shop on case-based reasoning, Kaiserslautern, Germany, Novem-
ber 1993. Lecture notes in computer science, vol 837. Springer,
Berlin, pp 301–312

36. Branting LK, Porter BW (1991) Rules and precedents as com-
plementary warrants. In: Proceedings of 9th national conference
on artificial intelligence, Anaheim, CA, USA, July 1991. AAAI,
Menlo Park

37. Rissland E, Skalak D (1989) Combining case-based and rule-
based reasoning: a heuristic approach. In: Sridharan NS (ed) Pro-
ceedings of 11th international joint conference on artificial intelli-
gence, pp 524–530

38. Bichindaritz I, Kansu E, Sullivan K (1998) Case-based reasoning
in care-partner: Gathering evidence for evidence-based medical
practice. In: Smyth B, Cunningham P (eds) Proceedings 4th Euro-
pean workshop on case-based reasoning, Dublin, Ireland, Septem-
ber 1998. Lecture notes in computer science, vol 1488. Springer,
Berlin, pp 334–345

39. Xu LD (1996) An integrated rule- and case-based approach to
AIDS initial assessment. Int J Biomed Comput 40:197–207

	Achieving self-healing in service delivery software systems by means of case-based reasoning
	Abstract
	Introduction
	Related work
	A CBR approach to self-healing
	Assumptions
	Methodological choices in the CBR system
	Case representation and retrieval
	Reuse-revise
	Retain and case-based learning

	Experimental results
	The Cavy tool
	The fault managers
	The fault injector
	The service monitor
	The fault diagnoser
	The integrator
	The fault repairer

	The experimental testbed
	Experiments

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

