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Abstract

Mining generalized association rules among items in the presence of taxonomies has

been recognized as an important model for data mining. Earlier work on mining

generalized association rules, however, required the taxonomies to be static, ignoring

the fact that the taxonomies of items cannot necessarily be kept unchanged. For

instance, some items may be reclassified from one hierarchy tree to another for more

suitable classification, abandoned from the taxonomies if they will no longer be

produced, or added into the taxonomies as new items. Additionally, the analysts might

have to dynamically adjust the taxonomies from different viewpoints so as to discover

more informative rules. Under these circumstances, effectively updating the

discovered generalized association rules is a crucial task. In this paper, we examine

this problem and propose two novel algorithms, called Diff_ET and Diff_ET2, to

update the discovered frequent itemsets. Empirical evaluation shows that the proposed

algorithms are very effective and have good linear scale-up characteristics.
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1. Introduction

Mining association rules from large databases of business data, such as

transaction records, comprises a popular topic within the area of data mining [1][2].

An association rule is an expression of the form X  Y, where X and Y are sets of

items. Such a rule reveals that transactions in the database containing items in X tend

to also contain items in Y, and the probability, measured as the fraction of transactions

that contain X also contain Y, is called the confidence of the rule. The support of the

rule is the fraction of the transactions that contain all items in both X and Y. For an

association rule to be valid, the rule should satisfy a user-specified minimum support,

called ms, and minimum confidence, called mc, respectively. The problem of mining

association rules is to discover all association rules that satisfy ms and mc.

In many applications, there are explicit or implicit taxonomies (hierarchies) over

the items, so it may be more useful to find associations at different levels of the

taxonomies than only at the primitive concept level [13][21]. For example, consider

the taxonomies of items in Figure 1.

PDA EPSON EPL

MITAC Mio ACER NDesktop PC

PC

IBM TP

Systemax VGateway GE

Figure 1. Example of taxonomies.

It is likely that the association rule,

Systemax V  EPSON EPL (Support 30%, Confidence 60%),
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does not hold when the minimum support is set to 40%, but the following

association rule may be valid,

Desktop PC  EPSON EPL.

To the best of our knowledge, all work to date on mining generalized association

rules required the taxonomies to be static. However, the taxonomies of items may

change as time passes [7], and thus some items will be reclassified from one

classification tree to another. For example, IBM TP could be reclassified from PC

(Personal Computer) to MC (Mobile Computer) group. Some trees of the taxonomies

will be merged together or be split into smaller trees if the items on the trees cannot

meet the demands of a new classification. Items will also be abandoned if those items

are no longer produced, and new items would be added into the taxonomies. In

addition to taxonomies evolution arisen from application background change, the

analysts might also like to adjust the taxonomies from different viewpoints to discover

more informative rules [11][12]. For example, the analysts would like to add an

additional level, say “Product Vendor”, into the taxonomies to discover rules that

exploit associations involving such a concept. Under these circumstances, it is

important to find a new method to effectively update the discovered generalized

association rules.

In this paper, we introduce the problem of updating the discovered generalized

association rules under evolving taxonomies. We give a formal problem description

and clarify the situations for a taxonomy update in Section 2.

A simple way to deal with this problem is to adopt one of the mining methods to

re-scan the whole database from scratch to reflect the most recent associations. This

approach, however, has the following disadvantages:

(1) It is not cost-effective because the discovered frequent itemsets are not reused.



4

(2) The process of generating frequent itemsets is very time-consuming.

To be more realistic and cost-effective, it is better to perform the association

mining algorithms to generate the initial association rules, and when updates to the

taxonomies occur, apply an updating method to re-build the discovered rules. The

challenge becomes that of developing an efficient updating algorithm to facilitate the

overall mining process. This problem is nontrivial because updates to the taxonomies

not only can reshape the concept hierarchy and the form of generalized items, but also

may invalidate some of the discovered association rules, thus turning previous weak

rules into strong ones, and generating important new rules.

In this paper, we propose two algorithms, called Diff_ET and Diff_ET2

(Differentiating Evolving Taxonomies), for mining the generalized frequent itemsets.

These algorithms are capable of effectively reducing the number of candidate sets and

database re-scanning, and so they can update the generalized association rules

efficiently. A detailed description of the algorithms is given in Section 3.

In Section 4, we evaluate the performance of the proposed algorithms with two

leading generalized associations mining algorithms, Cumulate and Stratify [21], using

synthetic data. A brief description of previous related work is presented in Section 5.

Finally, we summarize our work and propose future investigations in Section 6.

2. Update of Generalized Association Rules

2.1. Problem description

Let I {i1, i2, …, ip} be a set of items and DB {t1, t2, …, tn} be a set of

transactions, where each transaction tiTID, Ahas a unique identifier TID and a set

of items A (A  I). Assume that a set of taxonomy of items, T, is available and is

denoted as a set of hierarchies (trees) on I J, where J {j1, j2, …, jq} represents the
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set of generalized items derived from I. A generalized association rule is an

implication of the form A  B, where A, B I J, A B , and no item in B is an

ancestor of any item in A.

Given a user-specified ms and mc, the problem of mining generalized association

rules is to discover all generalized association rules whose support and confidence

levels are larger than the specified thresholds. In the literature [13][21], this problem

is usually reduced to the problem of finding all frequent itemsets for a given minimum

support.

After an initial discovery of all the generalized association rules in DB, let L be

the set of all generalized frequent itemsets with respect to ms. As time passes, some

update activities may occur to the taxonomies due to various reasons [11][7]. Let

Tdenote the updated taxonomies. The problem of updating discovered generalized

association rules in DB is to find the set of frequent itemsets Lwith respect to the

refined taxonomies T.

2.2 Types of taxonomy updates

Intuitionally, the taxonomy evolution and its effect on previously discovered

frequent itemsets are more complex than those for data updates because the taxonomy

evolution induces item rearrangement in the taxonomies; and once an item, primitive

or generalized, is reclassified into another category, all of its ancestor (generalized

items) in the old as well as the new taxonomies are affected. In this subsection, we

describe different situations for taxonomy evolution, and clarify the essence of

frequent itemset updates for each type of taxonomy evolution.

According to our observation, there are four basic types of item updates that will

cause taxonomy evolution:



6

(1) Item insertion: New items are added to the taxonomies.

(2) Item deletion: Obsolete items are pruned from the taxonomies.

(3) Item renaming: Items are renamed for certain reasons, such as error correction,

product promotion, etc.

(4) Item reclassification: Items are reclassified into different categories.

Note that hereafter the term“item”refers to a primitive or a generalized item. In

the following, we elaborate each type of evolutions further using the example

transactions in Table 1.

Table 1. Example of a database (DB)

1

5
4
3
2

IBM TP, MITAC Mio, ACER N, EPSON EPL

TID Purchased Items

ACER N
Gateway GE, EPSON EPL
EPSON EPL
IBM TP, Systemax V, EPSON EPL

Type 1: Item insertion. There are different strategies to handle this type of update

operation, depending on whether the inserted item is a primitive or a generalized item.

When the new inserted item is primitive, the support of any itemset consisting of

that item is zero, so there is no need to perform association update with respect to the

new inserted item until some new transactions consisting of it are added into the

source data. On the other hand, if the new item represents a generalization, then only

after the new generalization has incurred some item reclassification, will the insertion

affect the previously discovered associations.

Example 1. Figure 2 shows this type of taxonomy evolution. In Figure 2(a), a new

primitive item “Sony VAIO”is inserted into the generalized item “PC”. Because the

new item “Sony VAIO”does not appear in the original transactions, and so is not in

the original set of frequent itemsets, we do not have to process it until there is an
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incremental database update. Next, we consider the case of a new generalization

insertion. In Figure 2(b), a generalized item“Desktop PC”is inserted as a child of the

generalized item“PC”, anditems“Gateway GE” and “Systemax V” arereclassified to

the new generalization “Desktop PC”. Since items “Gateway GE” and “Systemax V” 

already exist in the original database, we must process them to update the generalized

frequent itemsets. For illustration, Tables 2(a) and 2(b) show the corresponding

extended database before and after the insertion of the generalized item“Desktop PC”, 

respectively. Let ms 40% 2 transactions). The original set of frequent itemsets L

and the new set of frequent itemsets Lare shown in Table 3. Comparing Lwith L,

we can observe two new frequent itemsets, {Desktop PC} and {EPSON EPL,

Desktop PC}.

PC

IBM
TP

Gateway
GE

Systemax
V

PDA

MITAC
Mio

ACER
N

EPSON EPL

Sony
VAIO

PDA EPSON EPL

MITAC Mio ACER NDesktop PC

PC

IBM TP

Systemax VGateway GE

(a) (b)

Figure 2. Example of taxonomy evolution caused by item insertion. The inserted
new item is: (a) primitive; (b) generalized.

Table 2. Original and updated extended databases derived from Table 1 and
Figure 2(b).

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC, Dsektop PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC, Dsektop PC

(a) (b)
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Table 3. Original set of frequent itemsets L for ED and the new
set of frequent itemsets Lfor UE in Table 2.

L Count L Count
EPSON EPL

PDA
ACER N

PC
IBM TP

EPSON EPL, PC
EPSON EPL, IBM TP

4
2
2
3
2
3
2

EPSON EPL
PDA

ACER N
PC

IBM TP
Desktop PC

EPSON EPL, PC
EPSON EPL, IBM TP

EPSON EPL, Desktop PC

4
2
2
3
2
2
3
2
2

Type 2: Item deletion. Similar to the insertion case in Figure 2(b), the removal of a

primitive item or generalization would lead to item reclassification, and we shall

conduct item support recounting.

Example 2. Figure 3 shows this type of taxonomy evolution, where Figure 3(a) shows

that the primitive item “Gateway GE” is deleted from its top generalized item

“Desktop PC”;and Figure 3(b) shows the generalized item “Desktop PC”is deleted

from its top generalized item “PC”, and items “Gateway GE”and “Systemax V”are

reclassified to “PC”. For illustration, Tables 4(a) and 4(b) show the corresponding

extended database before and after the deletion of the primitive item “Gateway GE”,

respectively. Let ms 40% 2 transactions). From Table 4, the original set of frequent

itemsets L and the new set of frequent itemsets Lare shown in Table 5. Comparing

Lwith L, we can observe that two old frequent itemsets, {Desktop PC} and {EPSON

EPL, Desktop PC}, become infrequent, and the support counts of {PC} and {EPSON

EPL, PC} are changed from 3 to 2. Note that “Gateway GE”is not a candidate since it

is not in the new taxonomies. Next, let us consider the deletion of a generalized item

from the taxonomies, where Tables 6(a) and 6(b) show the corresponding extended
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database before and after the deletion of the generalized item “Desktop PC”,

respectively. The original set of frequent itemsets L and the new set of frequent

itemsets Lare shown in Table 7. Comparing Lwith L, we observe that two old

frequent itemsets, {Desktop PC} and {EPSON EPL, Desktop PC}, have been

discarded from L.

PDA EPSON EPL

MITAC Mio ACER NDesktop PC

PC

IBM TP

Systemax VGateway GE

PC

IBM
TP

Systemax
VGateway

GE

Desktop PC

PDA

MITAC
Mio

ACER N

EPSON EPL

(a) (b)

Figure 3. Example of a taxonomy evolution caused by item deletion: (a)
primitive; (b) generalized.

Table 4. Original and updated extended databases derived from Table 1 and
Figure 3(a).

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC, Dsektop PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC, Dsektop PC

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC, Desktop PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

(a) (b)

Table 5. Original set of frequent itemsets L for ED and the new
set of frequent itemsets Lfor UE in Table 4.

L Count L Count
EPSON EPL

PDA
ACER N

PC
IBM TP

Desktop PC
EPSON EPL, PC

EPSON EPL, IBM TP
EPSON EPL, Desktop PC

4
2
2
3
2
2
3
2
2

EPSON EPL
PDA

ACER N
PC

IBM TP
EPSON EPL, PC

EPSON EPL, IBM TP

4
2
2
2
2
2
2
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Table 6. Original and updated extended databases derived from Table 1 and
Figure 3(b).

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC, Dsektop PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC, Dsektop PC

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC

(a) (b)

Table 7. Original set of frequent itemsets L for ED and the new
set of frequent itemsets Lfor UE in Table 6.

L Count L Count
EPSON EPL

PDA
ACER N

PC
IBM TP

Desktop PC
EPSON EPL, PC

EPSON EPL, IBM TP
EPSON EPL, Desktop PC

4
2
2
3
2
2
3
2
2

EPSON EPL
PDA

ACER N
PC

IBM TP
EPSON EPL, PC

EPSON EPL, IBM TP

4
2
2
3
2
3
2

Type 3: Item renaming. Items are renamed for many reasons such as error correction,

product promotion, or other reasons, such as changing a name just for good luck.

When items are renamed, we do not have to process the database since the processing

codes of the renamed items are the same. Instead, we just replace the discovered

frequent itemsets and the association rules with the new names.

Example 3. Figure 4 shows this type of taxonomy evolution, where the generalized

item“Desktop PC”is renamed to“Desktop PC Pro”, and the primitive item“MITAC

Mio”is renamed to“MITAC Mio Pro”.
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PC

Desktop PC
Pro

IBM
TP

EPSON EPLPDA

MITAC
Mio Pro

ACER
N

PC

Desktop PC IBM
TP

EPSON EPLPDA

MITAC
Mio

ACER
N

Gateway GE Systemax V
Gateway GE Systemax V

Figure 4. Example of a taxonomy evolution caused by item renaming.

Type 4: Item reclassification. Among all types of taxonomy updates this is the most

profound operation. Once an item, primitive or generalized, is reclassified into

another category, all of its ancestor (generalized items) in the old as well as the new

taxonomies are affected. That is, the supports of these affected generalized items must

be recounted, as do the frequent itemsets containing any one of the affected

generalized items.

Example 4. In Figure 5, the a reclassified item “IBM TP” will change the support 

counts of the generalized items “PC”, “Desktop PC”, and “MC”, andalso affect the

support counts of any itemsets containing “PC”, “Desktop PC”, or “MC”.Tables 8(a)

and 8(b) show the corresponding extended database before and after the classification

of item “IBM TP”. Let ms 40% 2 transactions). The original set of frequent

itemsets L and the new set of frequent itemsets Lare shown in Table 9. We observe

that there are four new frequent itemsets, {MC}, {Desktop PC}, {EPSON EPL, MC},

and {EPSON EPL, Desktop PC}, added into L, and {PC} and {EPSON EPL, PC}

are discarded from L.
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Systemax
V

PC

IBM
TP

Gateway
GE

EPSON EPL

ACER
N

PDA

MITAC
Mio

EPSON EPLDesktop PC

Systemax
V

Gateway
GE

IBM
TP

ACER
N

PDA

MITAC
Mio

MC

Figure 5. Example of a taxonomy evolution caused by item reclassification.

Table 8. Original and updated extended databases derived from Table 1 and
Figure 5.

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

PC, PDA
PC

PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

PC

1

5
4
3
2

TID Primitive Items Generalized Items

Original Extended Database (ED)

MC, PDA
MC, Dsektop PC

MC, PDA

IBM TP, MITAC Mio, ACER N, EPSON EPL
IBM TP, Systemax V, EPSON EPL
EPSON EPL
Gateway GE, EPSON EPL
ACER N

Dsektop PC

(a) (b)

Table 9. Original set of frequent itemsets L for ED and the new set
of frequent itemsets Lfor UE in Table 8.

L Count L Count
EPSON EPL

PDA
ACER N

PC
IBM TP

EPSON EPL, PC
EPSON EPL, IBM TP

4
2
2
3
2
3
2

EPSON EPL
PDA

ACER N
MC

IBM TP
Desktop PC

EPSON EPL, MC
EPSON EPL, IBM TP

EPSON EPL, Desktop PC

4
2
2
3
2
2
2
2
2

Note that the basic taxonomy update operations are not commutative; different

orders of updates will result in different taxonomy and not all permutations of a given

set of updates are feasible. For example, consider the taxonomy in Figure 2. To

transfer the taxonomy in (a) into (b), the feasible order is first inserting the new

generalization“Desktop PC”and then reclassifying“Gateway GE”and“Systemax V”

to“Desktop PC”.

In this paper, we assume that there are no transaction updates and no ms changes
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to the original database; and so according to the above discussions, we only need to

consider the taxonomy evolution caused by insertion of generalized items, deletion of

items, and reclassification of primitive or generalized items.

3. The Proposed Algorithms

In this section, we look at algorithms for updating discovered frequent itemsets

under taxonomy evolution. We first introduce the basic concept, and then describe the

details of our two algorithms.

3.1. Algorithm basics

Let ED denote the extended version of DB by adding, in taxonomies T, the

ancestors of each primitive item to each transaction, and UE denote another extension

of DB by adding generalized items in the updated taxonomies T. A straightforward

way to find updated generalized frequent itemsets would be to run any of the current

algorithms for finding generalized frequent itemsets, such as Cumulate and Stratify

[21], on the updated extended transactions UE. This simple approach, however,

ignores the fact that many discovered frequent itemsets are not affected by a

taxonomy evolution. Recounting the supports of these unaffected itemsets should be

avoided.

Thus, a better approach is to differentiate the unaffected itemsets from the

affected ones, and then use them to reduce the work spent on support counting of

itemsets. To this end, we must first identify the so called affected primitive items,

affected generalizations, and affected transactions, as discussed below. To facilitate

the discussion, we introduce the notations summarized in Table 10.



14

Table 10. Symbol table.

Symbol Definition Symbol Definition
DB Original database 

kC Affected itemsets in Ck

t Transaction of DB
kL Frequent k-itemsets in ED

T Old item taxonomies
kL Frequent k-itemsets in UE

T New item taxonomies  Affected transactions in ED
ED Extension of DB with generalized

items in T
 Affected transactions in UE

UE Extension of DB with generalized
items in T

A Support count of an itemset A in 

ms Minimum support setting
A Support count of an itemset A in 

kC Candidate k-itemsets
A Support count of an itemset A in ED


kC Unaffected frequent itemsets in

CkLk
A Support count of an itemset A in UE


kC Unaffected infrequent itemsets in

Ck－Lk

Definition 1. An affected primitive item is a leaf item whose ancestor set changes with

respect to a taxonomy evolution.

Figure 6 shows the procedure for identifying the set of affected primitive items.

1. Let P bethe set of primitive items in TT;
2. for each item aP do
3. if the ancestors of a in T is different from the ancestors of a in Tthen
4. Add a to the set of affected primitive items AP;
5. end for
6. return (AP);

Figure 6. Procedure iden_AP(T, T)

Definition 2. A generalized item is called an affected generalization if its descendent

primitive item set changes with respect to a taxonomy evolution.

Figure 7 shows the procedure for identifying the set of affected generalizations.

1. Let G bethe set of generalized items in TT;
2. for each item aG do
3. if the descendent primitive items of a in T is different from the descendent

primitive items of a in Tthen
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4. Add a to the set of affected items AG;
5. end for
6. return (AG);

Figure 7. Procedure iden_AG(T, T)

For example, consider Figure 5. The generalized items “Desktop PC”,“PC” and 

“MC”are affected generalizations since their support counts will be changed by the

affected primitive item “IBM TP”after the taxonomy evolution. In Figure 2(b), only

“Desktop PC” is a newborn affected generalization; “PC” and “PDA”are not affected

because the support counts of “PC” come from the three unchanged descendent

primitive items “IBM TP”, “Systemax V” and “Gateway GE”, and “PDA” from two 

unchanged descendent primitive items, “MITAC Mio” and “ACER N”.

Definition 3. For a given itemset A, we say A is an affected itemset if it contains at

least one affected generalization.

Definition 4. A transaction is called an affected transaction if it contains at least one

of the affected primitive items with respect to a taxonomy evolution.

Figure 8 shows the procedure for identifying affected transactions.

1. for each transaction t ED or t UE do
2. if any item at AP then /* AP: the set of affected primitive items */
3. Mark t as an affected transaction;
4. end for

Figure 8. Procedure iden_AT(ED, UE, AP)

Example 5. Let us consider Figure 5. In Table 8, Transactions 1 and 2 are affected

transactions since they contain affected primitive item “IBM TP”. The other

transactions are not affected because they do contain no affected primitive items.

Accordingly, there are three observations, as follows.
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Observation 1. The supports of all primitive items in T do not change with respect to

a taxonomy evolution.

Observation 2. The supports of unaffected itemsets do not change with respect to a

taxonomy evolution.

Observation 3. The transactions containing no affected generalization do not affect

the supports of itemsets.

After clarifying the algorithm basics, we will elaborate on how to facilitate the

support counting in the mining process. We observe that there are four different cases

in dealing with the support counting of an itemset A.

(1) If A is an unaffected itemset and is frequent in ED, then it is also frequent in UE.

(2) If A is an unaffected itemset and is infrequent in ED, then it is also infrequent in

UE.

(3) If A is an affected itemset and is frequent in ED, then it may be either frequent or

infrequent in UE.

(4) If A is an affected itemset and is infrequent in ED, then it may be either frequent

or infrequent in UE.

These four cases are depicted in Figure 9. Note that only Cases 3 and 4 need

further database rescanning to determine the support counts of A.
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Case 1

Case 2

Case 4

Case 3

ED UEAffected
Infrequent
Itemsets

Affected
Frequent
Itemsets

Unaffected
Frequent
Itemsets

Unaffected
Infrequent
Itemsets

Infrequent
Itemsets

Frequent
Itemsets

Figure 9. Four cases arising from the taxonomy evolution.

3.3. Algorithm Diff_ET

Based on the aforementioned concepts with the level-wise approach widely used

in most efficient algorithms to generate all frequent k-itemsets, we propose an

algorithm called Diff_ET, which processes only the updated extended database UE.

The main process of Diff_ET is presented as follows.

First, add generalized items in the new item taxonomy Tinto the original

database DB to form UE and identify affected generalizations for dividing candidate

itemsets. Next, let candidate 1-itemsets 1C be the set of items in the new item

taxonomies T. That is, all items in Tare candidate 1-itemsets. Then load the

original frequent 1-itemsets L1 and divide 1C into three subsets: 
1C , 

1C , and 
1C .


1C consists of unaffected 1-itemsets in L1, and 

1C contains affected 1-itemsets, and


1C is composed of unaffected 1-itemsets not in L1, where 

1C is for Case 1, 
1C for

Cases 3 and 4, and 
1C for Case 2. According to Case 2, 

1C is infrequent; therefore,


1C is pruned. Then compute the support counts of each 1-itemset in 

1C over only

transactions that contain affected items in UE. After this, we create new frequent

1-itemsets 1Lby combining 
1C and those itemsets being frequent in 

1C . The next

cycle is that we generate candidates 2-itemsets C2 from 1Land repeat the same
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procedure until no frequent k-itemsets kLare created.

The Diff_ET algorithm is shown in Figure 10.

Input: (1) DB: the database; (2) the minimum support setting ms; (3) T: the old
item taxonomies; (4) T: the new item taxonomies; (5) L: the set of original
frequent itemsets.
Output: L: the set of new frequent itemsets with respect to T.
Steps:
1. Add generalized items in Tinto the original database DB to form UE;
2. AG iden_AG(T, T); /* Identifing affected items */
3. k 
4. repeat
5. if k then Generate 1C from T;
6. elsekC apriori-gen( 1kL );
7. Delete any candidate in kC that consists of an item and its ancestor;
8. Load original frequent itemsets kL ;
9. Divide kC into three subsets: 

kC , 
kC , and 

kC ; /* 
kC consists of

unaffected itemsets in kL , and 
kC contains affected itemsets, and


kC contains unaffected itemsets not in kL */

10. Count the occurrences of each itemset A in 
kC over UE;

11.
kL{A 

kC supUE(A) ms} 
kC ;

12. until kL
13. LUk kL;

Figure 10. Algorithm Diff_ET.

3.3.1. An example for Diff_ET

Consider the taxonomies in Figure 11, where item “A” stands for “PC”, “B” for 

“Gateway GE”, “C” for “Systemax V”, “D” for “IBM TP” “E” for “PDA”, “F” for 

“MITAC Mio”, “G” for “ACER N”, “H” for “EPSON EPL”, “I” for “Desktop PC”,

“J” for “MC” and“K” for “ASUS P2X”. Let ms 25% 2 transactions). Tables 11 and

12 show the summary of candidates, counts and frequent itemsets in ED and UE,

respectively.

The Diff_ET algorithm first divides all items in C1 into three subsets: one
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consists of unaffected 1-itemsets 
1C {D, E, G, H} in L1; the second contains

affected generalized 1-itemsets 
1C {I, J}, where “I” and “J” are new generalized 

items; and the third consists of unaffected 1-itemsets 
1C {B, C, F} not in L1. Since

all 1-itemsets in 
1C are frequent and do not change their supports in UE, we do not

need to process them; we only have to process generalized 1-itemsets {I, J}.

According to Case 2, 
1C is infrequent and so is pruned directly. Next, UE is scanned

for {I, J}. After comparing the supports of {I} and {J} to ms, the new set of frequent

1-itemsets 1Lis {D, E, G, H, I, J}.

Next, we use 1Lto generate candidate 2-itemsets 2C , obtaining 2C {DE, DG,

DH, DI, EH, EI, GH, GI, HI, HJ, IJ}. However, only {DI}, {EI}, {GI}, {HI}, {HJ},

and {IJ} undergo support counting, because the others are composed of unaffected

items. Note that 2-itemsets {AD, EG} in ED and {DJ, EG, EJ, GJ} in UE are deleted

due to the existence of an item-ancestor relationship. After that, the procedure of

generating frequent 2-itemsets is the same as that for generating 1L. The new set of

frequent 2-itemsets 2Lis {DH, HI, HJ}.

Finally, we use the same approach to generate 3L, obtaining 3L. The overall

process of running this example using Diff_ET is illustrated in Figure 12.
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Figure 11. Example of mining generalized association rules caused by item
reclassification.

Table 11. Summary for candidates, counts and frequent itemsets generated
from ED.

C1 Counts L1 C2 Counts L2 C3 & L3

A
B
C
D
E
F
G
H

3
1
1
2
2
1
2
4

A
D
E
G
H

AE
AG
AH
DE
DG
DH
EH
GH

1
1
3
1
1
2
1
1

AH
DH



Table 12. Summary for candidates, counts and frequent itemsets generated from
UE.

C1 Counts 1L C2 Counts 2L C3 Counts 3L

B
C
D
E
F
G
H
I
J

1
1
2
2
1
2
4
2
3

D
E
G
H
I
J

DE
DG
DH
DI
EH
EI
GH
GI
HI
HJ
IJ

1
1
2
1
1
0
1
0
2
2
1

DH
HI
HJ

HIJ 0 
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Figure 12. Illustration of algorithm Diff_ET.
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3.4. Algorithm Diff_ET2

We also propose another algorithm called Diff_ET2, which simultaneously

processes both the original extended database ED and the updated extended database

UE. As stated previously, only Cases 3 and 4 need further database rescanning to

determine the support counts of itemset A. For Case 3, we have to rescan the affected

transactions in ED and UE, to decide whether A is frequent or not. As for Case 4, the

following lemma provides an effective pruning strategy to reduce the number of

candidate itemsets and so avoid unnecessarily database rescans.

Lemma 1. If an affected itemset A L (frequent itemsets in ED) and A A , then A

L(frequent itemsets in UE).

Proof. If A L, then A |ED| ms. Note that |UE| |ED| and || ||. Hence,

A A + ( A A ) |ED| ms |UE| ms. Thus, A L.

Thus in Case 4, we scan the affected transactions,  in ED and in UE,

respectively, to count the occurrences of A. If the support counts of A in are

greater than those in , then we have to scan UE to decide whether A is

frequent or not.

Example 6. Consider Figure 13. Let ms 60% (3 transactions). Then item “I”is not

frequent in ED. Hence, {I} are not available in L. From  and , we have {I} 1,

{I}0 and {I} {I} 1, i.e., {I} {I} , “I” is infrequent in UE according to

Lemma 1. Therefore, we do not need to scan the transactions in UE to determine

whether item “I” is frequent or not. This reduces the number of candidates before

scanning UE .
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Figure 13. Example of mining generalized association rules caused by item
reclassification.

Based on the aforementioned concept, the main process of Diff_ET2 is presented

as follows.

First, add all generalized items in the old and new item taxonomies T and Tinto

the original database DB to form ED and UE, respectively, and identify affected

primitive items and affected generalizations. We identify affected primitive items for

affected transactions. Next, let the set of candidate 1-itemsets 1C be the set of items

in the new item taxonomies T, i.e. all items in Tare candidate 1-itemsets. Then

load the original frequent 1-itemsets L1 and divide 1C into the three subsets of 
1C ,


1C , and 

1C ; where 
1C consists of unaffected 1-itemsets in L1, 

1C contains

affected 1-itemsets, and 
1C contains unaffected 1-itemsets not in L1. According to

Case 2, 
1C is infrequent, so 

1C is pruned directly. After dividing 1C , we first

compute the support counts of each 1-itemset A in 
1C over the affected transactions

of  and ; letting the values be A and A, respectively. Then, for each

1-itemset A that is in L1 and 
1C , i.e., A  

1C  1L , calculate the support count A

 A  A A. According to Lemma 1, for any candidate A  1L and AA , count

A over the transactions in UE -and add the support counts to A. Finally, we

create the new set of frequent 1-itemsets 1Lby combining 
1C and those itemsets
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which are frequent in 
1C . For the next cycle we generate candidates 2-itemsets C2

from 1Land repeat the same procedure for generating 1Luntil no frequent

k-itemsets kLare created.

The Diff_ET2 algorithm is shown in Figure 14.

Input: (1) DB: the database; (2) the minimum support setting ms; (3) T: the old
item taxonomies; (4) T: the new item taxonomies; (5) L: the set of original
frequent itemsets.
Output: L: the set of new frequent itemsets with respect to T.
Steps:
1. Add generalized items in T into the original database DB to form ED;
2. Add generalized items in Tinto the original database DB to form UE;
3. AP iden_AP(T, T); /* Identifing affected items */
4. AG iden_AG(T, T); /* Identifing affected generalizations */
5. Call iden_AT(ED, UE, AP); /* Identifing affected transactions */
6. k 
7. repeat
8. if k then Generate 1C fromT;
9. elsekC apriori-gen( 1kL );
10. Delete any candidate in kC that consists of an item and its ancestor;
11. Load original frequent itemsets kL ;
12. Divide kC into three subsets: 

kC , 
kC , and 

kC ; /* 
kC consists of

unaffected itemsets in kL , and 
kC contains affected itemsets, and


kC contains unaffected itemsets not in kL */

13. Count the occurrences of each itemset A in 
kC over ;

14. Count the occurrences of each itemset A in 
kC over ;

15. for each itemset A  
kC  kL do /* Case 3 */

16. Calculate A A  A A;
17. for each itemset A  kL and AA do /* Case 4 & Lemma 1 */
18. Count the occurrences of A over UE -;
19. Add the count into A;
20. end for
21.

kL{A 
kC supUE(A) ms} 

kC ;
22. until kL
23. LUk kL;

Figure 14. Algorithm Diff_ET2.
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3.4.1. An example for Diff_ET2

Consider Figure 13 and let ms 60% 3 transactions). The set of frequent

itemsets L {A, D, E, H, AE, AH, DH, EH, AEH}. Note that item “K” is not 

interesting and is deleted from the old taxonomy; therefore, we do not add its

ancestors to UE.

The Diff_ET2 algorithm first divides all 1-itemsets in C1 into three subsets: one

consists of unaffected 1-itemsets 
1C {D, E, H} in L1; the second contains affected

generalized 1-itemsets 
1C {A, I}, where “A” is frequent in L1, while“I”is not; and

the third consists of unaffected 1-itemsets 
1C {B, C, F, G} not in L1. Since

1-itemsets in 
1C are frequent and do not change their supports in UE, we do not

need to process them; we only need to process generalized 1-itemsets {A, I}.

According to Case 2, 
1C is infrequent and pruned directly. Next, Transaction 1 in

ED and UE is scanned since the transaction is affected by item “L”. We then subtract

the support counts of item “A” in and add their support counts in . For example,

we have {A} {A}  {A} {A} . Because {I} {I} 1, i.e.,

{I} {I} , item “I” is infrequent in UE according to Lemma 1. Therefore, we do not

need to scan the transactions in UE to determine whether item “I” is frequent or 

not After comparing the supports of “A” to ms, the new set of frequent 1-itemsets 1L

is {A, D, E, H}.

Next, we use 1Lto generate candidate 2-itemsets 2C , obtaining 2C {AE, AH,

DE, DH, EH}. However, only {AE} and {AH} undergo support counting, because the

others are composed of unaffected items. Note that 2-itemset {AD} in ED and in UE

is deleted due to the existence of an item-ancestor relationship. After that, the
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procedure of generating frequent 2-itemsets is the same as that for generating 1L. The

new set of frequent 2-itemsets 2Lis {AH, DH, EH}. Finally, we use the same

approach to generate 3L, obtaining 3L.

4. Performance Evaluation

In order to examine the performance of Diff_ET and Diff_ET2, we conducted

experiments to compare them with Cumulate and Stratify, using the synthetic dataset

generated by the IBM data generator [2], and Microsoft foodmart2000 database

(Foodmart for short), a sample supermarket data warehouse provided in MS SQL

2000. The data for Foodmart is drawn from sales_fact_1997, sales_fact_1998 and

sales_fact_dec_1998 in foodmart2000. The corresponding item taxonomy consists of

three levels: There are 1560 primitive items in the first level (product), 110

generalized items in the second level (product_subcategory), and 47 generalized items

in the top level (product_category). The comparisons were evaluated according to

certain aspects, including the differences in minimum supports, transaction sizes and

evolution degree. Here, the evolution degree is measured by the fraction of

generalized items that contain affected generalized items. In the implementation of

each algorithm, we also used two different support counting strategies: one with the

horizontal counting [1][2][3][18] and the other with the vertical intersection [19][24].

For the horizontal counting, the algorithms are denoted as Cumulate(H), Stratify(H),

Diff_ET(H), and Diff_ET2(H). For the vertical intersection counting, they are denoted

as Cumulate(V), Stratify(V), Diff_ET(V), and Diff_ET2(V). The parameter settings

are shown in Table 13. All experiments were performed on an Intel Pentium-IV

2.80GHz with 2GB RAM, running on Windows 2000. Note that in some figures,
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vertical scales are in logarithmic representation for better resolution.

Table 13. Default parameter settings for synthetic data generation.

Default valueParameter
Synth1 Foodmart

|DB| Number of original transactions 177783 62568
|t| Average size of transactions 16 12
N Number of items 231 1717
R Number of groups 30 47
L Number of levels 3 3
F Fanout 5 14

Minimum supports: We first compared the performance of these four algorithms

with varying minimum supports at constant evolution degree 7.9% for Synth1 and

2.5% for Foodmart, and the number of transactions, fanout and groups are set to

default values. The experimental results are shown in Figures 15 and 16 for dataset

Synth1 and Foodmart, respectively. In Figure 15, at ms 0.5%, Diff_ET(V) performs

101% and 416% faster than Cumulate(V) and Stratify(V), respectively, while

Diff_ET(H) performs 257% and 358% faster than Cumulate(H) and Stratify(H),

respectively. In Figure 16, at ms 0.075%, Diff_ET(V) and Diff_ET2(V) perform

41% faster than Cumulate(V), and overwhelms Stratify since Stratify took too much

time in finding top itemsets, while Diff_ET(H) and Diff_ET2(H) perform 44% and

55% faster than Cumulate(H), respectively. Among our algorithms, Diff_ET(V) and

Diff_ET2(V) perform better than Diff_ET(H) and Diff_ET2(H). The performance

difference between Diff_ET and Diff_ET2 is not significant.
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Figure 15. Performance comparison of Diff_ET, Diff_ET2, Cumulate, and
Stratify for different ms over Synth1.
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Figure 16. Performance comparison of Diff_ET, Diff_ET2, Cumulate, and
Stratify for different ms over Foodmart.

Transaction sizes: We then compared the four algorithms under varying transaction

sizes at ms 1.0% with constant affected item percent 7.9% for Synth1 and at ms

0.1% with affected item percent 2.5% for Foodmart. The other parameters are set to

default values. Since Stratify exhibits poor performance at ms 0.1% for Foodmart as

shown in Figure 16, we only compare our algorithms with Cumulate. The results are

depicted in Figures 17 and 18 for Synth1 and Foodmart, respectively. It can be seen
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that all algorithms exhibit linear scalability. In Figure 17, the vertical version of our

algorithms performs better than the vertical version of Cumulate and Stratify, and

Diff_ET2(H) performs better than Stratify(V) under 100,000 transactions. In Figure

18, Diff_ET and Diff_ET2(V) overwhelm Cumulate(V), and Diff_ET(H) and

Diff_ET2(H) perform better than Cumulate(H), while Diff_ET2(H) beats Cumulate(V)

over 40,000 transactions.
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Figure 17. Performance comparison of Diff_ET, Diff_ET2, Cumulate, and
Stratify different transactions over Synth1.
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Evolution degree: Finally, we compared the algorithms under varying degrees of

evolution with ms 1.0% for Synth1 and with ms 0.1% for Foodmart. The other

parameters were set to default values. Since Stratify presents poor performance at ms

0.1% for Foodmart, we only compare our algorithms with Cumulate. Intuitively,

with more affected primitive items, there should be more affected transactions; with

more affected generalizations, there should be more affected itemsets. In the

experiments, the affected primitive items and affected generalizations were

reclassified randomly with some new groups, and the results are depicted in Figures

19 and 20 for Synth1 and Foodmart, respectively. As the results show, our algorithms

are greatly affected by the degree of evolution, whereas Cumulate and Stratify exhibit

steady performance. In Figure 19, Diff_ET(V) beats Cumulate under 55% of

evolution and Diff_ET2(V) only under 25%, while Diff_ET(H) and Diff_ET2(H)

perform almost the same under 3%. In Figure 20, Diff_ET2(V) performs better than

Cumulate(V) under 31% of evolution, while Diff_ET2(H) performs better than
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Cumulate(H) under 31% of evolution. In both figures, Diff_ET(V) and Diff_ET2(V)

exhibit better performance than Diff_ET(H) and Diff_ET2(H). Note that Diff_ET

overwhelms Diff_ET2 most of the time since Diff_ET2 needs to scan ED and UE

simultaneously, and the advantage of Lemma 1 for Diff_ET2 disappears when the

number of affected transactions increases.
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Figure 19. Performance comparison of Diff_ET, Diff_ET2, Cumulate, and
Stratify for different degrees of evolution over Synth1.
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5. Related Work

The problem of mining association rules in the presence of taxonomy

information was addressed first by Han et al. [13] and Srikant et al. [21],

independently. In [21], the problem was referred to mining generalized association

rules, aiming to find associations among items at any level of the taxonomies under

the minimum support and minimum confidence constraints. In [13], the problem

mentioned was somewhat different from that considered in [21] because they

generalized the uniform minimum support constraint to a form of assignment

according to level, i.e., items at the same level received the same minimum support.

The objective was to develop mining associations level-by-level in a fixed hierarchy.

That is, only associations among items on the same level were examined

progressively from the top level to the bottom.

The problem of updating association rules incrementally was first addressed by

Cheung et al. [4]. They developed the essence of updating the discovered association

rules when new transaction records are added into the database over time, and they

proposed an algorithm called FUP (Fast UPdate). They further examined the

maintenance of multi-level association rules [5], extending the model to incorporate

the situations of deletion and modification [6]. Their approaches [5][6], however, did

not consider the generalized items, and hence could not discover generalized

association rules.

Subsequently, a number of techniques have been proposed to improve the

efficiency of incremental mining algorithms [14][15][20][22], although all of them

were confined to mining associations between primitive items. The problem of

maintaining generalized associations incrementally has been recently investigated

[23], wherein the model of generalized associations was extended to that with
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non-uniform minimum support.

In summary, all work on mining generalized association rules required the

taxonomies to be static and ignored the fact that taxonomies of items may change over

time or be adjusted by the analysts [11][7]. This paper is the first, to our knowledge, to

propose methods for solving this problem.

6. Discussions and Conclusions

In this paper we have investigated the problem of updating generalized

association rules under evolving taxonomies. We presented two algorithms, Diff_ET

and Diff_ET2, for updating generalized frequent itemsets. Empirical evaluation

showed that both algorithms are effective and have good linear scale-up characteristic.

Before we come to an end, we like to point out that our algorithms can be applied

to some extensions of the problem concerned in this paper. Firstly, though we have

assumed, for simplicity, the item taxonomy is arranged as hierarchy tree, the proposed

algorithms indeed can handle the taxonomy organized as directed acyclic graph or

lattice. Secondly, the proposed algorithms can be applied to other types of data

sources not in transactional format. As founded in [9], the process of discovering

knowledge from databases or data warehouses usually involves some preliminary

steps including relevant data extraction, cleansing, and transformation to prepare the

data workable for applying the appropriate mining algorithms or tools. In this context,

our algorithms can be applied to update previously discovered patterns once the

relevant data have been prepared in transactional format.

Although our work in this study has advanced the research into efficient

association rules maintenance, there are many unexplored issues deserved further

investigation. For example, the study can be extended to a more general model that
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incorporates incremental database updates and fuzzy taxonomic structure. Another

important direction is on embedding the frequent pattern maintenance scheme into a

data mining platform. An example is on-line discovery of multi-dimensional

association rules from databases or data warehouses [15]. The realization of such

systems heavily depends on an auxiliary repository depicting to some extent the

statistics of the patterns to be mined. Previous work toward this avenue includes J.

Han on utilizing OLAP cube to create an OLAP-like mining environment [10][15],

iceberg cube [8], OLAM cube [16], and materialized data mining views [7], etc.

Efficiently maintaining this auxiliary repository with respect to data source update

and/or taxonomic structure (or more general, schema) evolution then become another

important research issues.
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