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Rainfall-runoff modeling of flash floods in the absence of rainfall
forecasts: the case of “Cévenol flash floods”

Mohamed Toukourou · Anne Johannet ·
Gérard Dreyfus · Pierre-Alain Ayral

Abstract “Cévenol flash floods” are famous in the field of
hydrology, because they are archetypical of flash floods that
occur in populated areas, thereby causing heavy damages
and casualties. As a consequence, their prediction has be-
come a stimulating challenge to designers of mathematical
models, whether physics based or machine learning based.
Because current, state-of-the-art hydrological models have
difficulty performing forecasts in the absence of rainfall pre-
visions, new approaches are necessary. In the present pa-
per, we show that an appropriate model selection method-
ology, applied to neural network models, provides reliable
two-hour ahead flood forecasts.

Keywords Flood forecasting · Rainfall-runoff relation ·
Neural networks · Dynamic system · Generalization

1 Introduction

The prediction of flash floods in populated areas is a ma-
jor challenge for early flood warning systems. For the wa-
tershed under consideration in the present paper, current
physics-based models have difficulties performing accurate
real-time forecasting in the absence of accurate rainfall fore-
casts. Therefore, machine-learning models based on past
flash flood measurements in the same watershed are attrac-
tive alternatives.

After a presentation of the “Cévenol flash floods” whose
prediction is investigated in the present paper, the current
physics-based methods are described cursorily, and a short
presentation of past attempts at forecasting flash floods with
neural networks is provided. In the subsequent section, two
candidate models for nonlinear dynamic process forecasting
are presented: recurrent neural networks and feedforward
neural networks with time delays; it is shown that, given the
specific features of flash flood forecasting in the absence of
rainfall predictions, the latter models are more appropriate.
The contents and structure of the database is described, and
a useful typology of the flood events present therein is pro-
vided.

The subsequent section describes the model design
methodology, with emphasis on variable and model selec-
tion by leave-one-sequence-out cross-validation, training
and regularization, and independent testing. In the final sec-
tion, the results are described, and we show that satisfactory
two-hour ahead predictions are feasible, thereby opening the
way to issuing reliable population warnings in real time.

2 Flood forecasting

Flood forecasting involves essentially finding an appropriate
relation between rainfalls (past and present) and future river
runoff. For heterogeneous watersheds, this is a very difficult
task, for various reasons. First, the rainfall-runoff relation
depends on the season due to evaporation and evapotran-
spiration (consumption and evaporation of water by vege-
tation) [1], which may lead to significant spatial variations
of the initial water storage [2]. Moreover, the watershed re-
sponse also depends on soil moisture and land use. As a
consequence, the rainfall-runoff relation is nonlinear, and it
depends on variables that are difficult to measure and/or to
estimate [2–4].



2.1 Flash floods of Gardon d’Anduze

The Experimental Digital Watershed (EDW) program1 was
initiated by the French Ministry of Environment
(MEEDADT) in order to compare the real-time perfor-
mances of different forecasting models on a few test wa-
tersheds. Three EDW test sites were proposed: the Meuse
and the Marne watersheds for slow floods and “water table”
floods respectively, and the Gardon watershed at Anduze for
flash floods. Flash floods are floods that exhibit a sharp flow
peak occurring on a very short time scale (less than 4–6
hours in the case of the Gardon watershed) after a very in-
tense rainfall. The prediction of the latter flood type is still an
open issue, because of its complexity, which is due mainly
to the spatial heterogeneity of the rainfall and of the soil
moisture [2, 4]. In the absence of accurate measurements
of these important variables, it is very difficult for physical
models to predict accurately the evolution of the water levels
or flows.

In view of the damages caused by flash floods in pop-
ulated areas (over 100 fatalities over the past two decades
in the southeast of France, and 1.2 billion € of economical
damages for the sole event of 9th September 2002 [7, 8]),
predictive methods that do not require the accurate knowl-
edge of the above factors are potentially very useful.

The Gardon catchment exhibits the typical behavior that
the present article aims at modeling: floods are very irregular
and may rise up to several meters in a few hours. In addition,
it is vulnerable: a population lives and works in this basin,
which explains the huge damage costs and loss of human
lives.

The Gardon d’Anduze catchment, sub-catchment of the
Gardon catchment (Rhône river tributary) is located in the
southeast of France as shown in Fig. 1, in the Cévennes
mountainous area. The basin area is 546 km2, the catch-
ment is mountainous with large mean slopes (40%) and
high soil infiltration capacity, which explains the velocity of
the floods. The basin contains three main geological units:
schists (60%), granite (30%) and limestone (10%), which
accounts for the heterogeneity of soil moisture and perme-
ability.

The Anduze catchment is subjected to very intense storms
delivering huge amounts of water: for example, a 600 mm
rainfall was recorded in the Anduze rain gauge in less than 12
hours in 2002.2 These storms occur most frequently during
autumn when the Mediterranean Sea is almost warm.

Rainfalls and flows were measured both for very intense
and for “moderate” flood events, over a period of thirteen

1French acronym: BVNE for Bassin Versant Numérique Expérimental.
2For comparison purposes, 600 mm is approximately the mean yearly
rainfall in Paris (France).

years. Spatially distributed rainfall measurements were pro-
vided by six rain gauges. The list of recorded flash flood
events for the Gardon watershed at Anduze is reported in
Table 1.

Usually the flow is not measured directly: it is derived
from the water level by means of a “rating curve”. The rating
curve must be derived carefully; it depends on the section of
the river, on the roughness of the waterbed, on its slope, and
it may vary in time due to local changes in the waterbed dur-
ing floods. In the present study, water levels were forecasted
and subsequently converted to discharges using the rating
curve. The discharge is the physical value characterizing the
river state, while the level is location-specific.

As an additional difficulty, various sensor failures may
affect the accuracy of the measurements.

At present, measurements of the Gardon d’Anduze catch-
ment are sampled with a five-minute sampling rate and
transmitted to the local Flood Forecasting Service which an-
alyzes the incoming data.

2.2 Hydrological methods for flood forecasting

One can distinguish between simulations, where the flow
at time t is computed from rainfalls at the same time t or
earlier, and forecasts, where the flow is computed ahead of
time. Since water flow is due solely to rainfalls, flow fore-
casting requires either rain forecasts, or ad hoc assumptions
on future rains, such as null or constant rainfall. The last two
assumptions are not satisfactory in the case of flash flood
as investigated here, because rainfalls are highly variable in
time. Furthermore, these assumptions cannot take into ac-
count the spatial variability of rainfalls. Rainfall predictions
in the area under investigation are not accurate enough, be-
cause the rain generation process itself is not yet clearly
understood: it is still a difficult task to forecast accurately
when or where the storm will be stabilized, even for recent
meteorological models (such as AROME [5]), due to the
“backward regenerative system” that feeds the storm with
the water of the Mediterranean sea [6]. Hydrological mod-
els may belong to one of three categories: (i) physical mod-
els, (ii) conceptual models and (iii) statistical models. Some
models implement a combination of these approaches. The
first two families of models will be presented briefly, be-
fore describing neural network based statistical models in
detail.

2.2.1 Physical modeling

Physical modeling aims at modeling the physical phenom-
ena that result in flash floods. In the case of the catchment
under investigation, the heterogeneity of rainfalls and the be-
havior of the rainfall-soil couple are the main factors that ac-
count for the phenomena: physics-based models must take



Fig. 1 The Gardon d’Anduze watershed and its location in France. Discharges are measured in Anduze and cumulated rainfalls are measured by
six rain gauges distributed over the watershed in order to obtain information about the spatial variability of rain

them into account. For example, the model that is used in
the “Experimental Digital Watershed” project, and applied
to the Anduze catchment [2], estimates, at each time step
(hourly), the spatial distribution of the soil water content
(with three parameters). In a subsequent step, for six ap-
propriately defined hydrological meshes, two elements of
the global discharge are estimated at the pixel resolution
of the “Digital Terrain Model”: the subsurface lateral flow
(water flowing underground laterally in the first few me-
ters of soil and drained by the river network) and the sat-
urated area runoff (water that flows on the surface because
the soil is already saturated due to previous rainfall, thus
unable to absorb additional water). Then a geomorpholog-

ical approach allows an estimation of the time necessary
for underground or surface water to reach the river at any
location. Six sub-catchments are thus defined, where dis-
charge measurements are performed (one measurement sta-
tion per catchment), three physical parameters are required
to compute the total runoff for each sub-catchment, so that
finally eighteen parameters are defined; two additional pa-
rameters, accounting for evapotranspiration and for water
transfer, are required. The accurate estimation of those phys-
ical quantities is a major difficulty of that approach, be-
cause the inverse problem does not have a unique solu-
tion.



Table 1 List of available events
between 1994 and 2007 on the
Gardon d’Anduze catchment
(from EDW database). Events
are identified by a number, and
each row of the table reports the
date of the event, its duration,
the cumulated rainfalls over the
duration of the event (averaged
over the 6 rain gauges), the
maximum peak discharge
(averaged over half an hour), the
maximum water level at the
Anduze gauge station and the
mean discharge over the
duration of the event. The most
intense event is number 19,
whose prediction is one of the
objectives of the present work

No. Date Duration Cumulated Maximum Maximum water Mean flow

(hours) rainfall (cm) discharge (m3/s) level (m) (m3/s)

1 11/21–24/1994 35 18.9 491 3.71 181

3 10/4–5/1995 54 32 975 5.34 175

4 10/13–14/1995 92 19 864 5 108

8 11/10–12/1996 82 16 268 2.71 33

13 9/28–29/2000 46 18 800 4.80 74

19 9/9/2002 29 41 2742 9.71 511

22 9/24–25/2006 23 6 186 2.24 21

23 10/19–20/2006 55 20 1436 6.61 181

24 11/17/2006 34 6 275 2.75 65

25 11/20–23/2007 70 12 264 2.69 139

107 11/5–7/1997 74 27 624 4.20 225

108 11/26–27/1997 66 11 244 2.58 117

109 12/18–19/1997 104 38 985 5.37 327

117 10/20–21/1999 34 12 473 3.64 212

120 11/12–14/2000 71 13 279 2.77 110

2.2.2 Conceptual modeling

Conceptual modeling assumes that the rainfall-runoff rela-
tion may be described by global concepts, such as the reser-
voir concept. This approach has been applied to the Gar-
don d’Anduze catchment using the SCS model (Soil Con-
servation Service) [3]. It is considered that rainfalls fill a
“soil reservoir” whose level is computed using a balance be-
tween infiltration and discharge. The reservoir is modeled as
a first-order linear filter. Therefore, two parameters only are
required: the capacity of the reservoir and its time constant.
The soil reservoir depends also on the soil characteristics
and is thus spatially distributed. The results of the simula-
tions performed with the model depend strongly on the pos-
tulated initial level of the soil reservoir.

For all hydrological models addressing flash floods, the
prominent variable is the spatially distributed rainfall. In the
case of TOPMODEL, variable ranking shows [2] the major
relevance of (i) distributed rainfalls, and (ii) soil moistures.
This expert knowledge will be useful for the design of our
statistical models, as shown in the “Model design” section.

Moreover, in both conceptual and physical models, rain-
fall information must be available; therefore, it is very dif-
ficult to forecast the future water level in the absence of
rainfall forecast. Neural networks, which can learn functions
based on rainfall and runoff time series, are thus good can-
didates for forecasting runoff at a predefined horizon.

2.3 Neural networks for flash flood forecasting

Although neural networks have been widely publicized for
flood forecasting, the prediction of flash floods, in the ab-
sence of rainfall predictions, has been seldom investigated

by machine learning techniques. In [9], flash flood forecast-
ing is performed by neural networks, radial basis functions
networks and nearest-neighbors, in the framework of nonlin-
ear, autoregressive models, taking into account past rainfall
measurements, and past runoff measurements; the authors
note that “all investigated MLP networks perform signifi-
cantly worse when applied to the test data sets”. This over-
fitting phenomenon can probably be traced to the fact that no
regularization mechanism was implemented during training.
By contrast, early stopping is used for regularization in [10]
and [11], but the scope of that research is long-term pre-
dictions. In [12, 13], flash floods are predicted by various
methods including neural networks. The reported results are
satisfactory probably due to the very small size of the basins
(2 and 20 km2) which simplify the rainfall runoff relation;
moreover they are not obtained on an independent test set:
therefore, the results are likely to be unduly optimistic. In
[14], even though generalization is assessed on an indepen-
dent test set, the most intense event of the database is always
included in the training set, so that the ability of the model
to forecast reliably a more intense event is not demonstrated.
The importance of such issues as complexity control, vari-
able selection, independent testing, are not always acknowl-
edged when machine learning techniques are used in hydrol-
ogy. Some well-known techniques are summarized in [15].
In addition, many publications in the field are plagued by
various problems (inefficient optimization techniques, over-
parameterized models, inappropriate performance indices,
and failure to realize that neural networks are just another
nonlinear regression technique); as a consequence, results
on difficult problems such as the forecasting of extreme
floods are often disappointing, although these are events that
most urgently need fast, accurate predictions.



In the present work, we show that a rigorous model de-
sign procedure, involving model complexity control, vari-
able selection, regularization, and independent testing, leads
to satisfactory predictions of extreme events.

3 Problem statement and data processing

3.1 Neural network models for flood forecasting

Time plays a functional role in the rainfall-runoff relation:
physically, the flow at time t depends on previous rainfalls.
Therefore, discrete-time dynamic models must be designed.
In the following, we denote by T the sampling period of the
physical quantity of interest yp(kT ), hereinafter abbreviated
as yp(k).

Denoting by y(k) the predicted value of the quantity of
interest at discrete time kT , by u(k) the vector of exogenous
variables at time kT , and by gNN the nonlinear function
implemented by a feedforward neural network, the follow-
ing simple input-output “neural” predictors can be designed
[16]:

(i) recurrent neural networks

y(k) = gNN(y(k − 1), y(k − 2), . . . , y(k − n),

u(k − 1),u(k − 2), . . . ,u(k − m))

where n and m are positive integers; recurrent neural net-
works predict the quantity of interest at time k from its past
predicted values and from past measured values of the ex-
ogenous variables,

(ii) feedforward neural networks with time delays

y(k) = gNN(yp(k − 1), yp(k − 2), . . . , yp(k − n),

u(k − 1),u(k − 2), . . . ,u(k − m)),

which predict the quantity of interest at time k from its past
measured values and from past values of the exogenous vari-
ables.

It has been shown [16] that the first category of predic-
tors is optimal if the modeled process is subjected to output
noise (typically measurement noise), while the second cate-
gory is optimal if the modeled process is subjected to state
noise (typically unknown disturbances acting on the process
itself). If both types of noise are present, recurrent models
fed both with past predicted variables and past measured
variables must be designed.

In the present study, the quantity of interest yp is the wa-
ter flow (or equivalently the water level), and the exogenous
variables are the rainfalls and possibly additional factors as
described below.

In addition, the purpose here is to forecast, at time kT ,
the water flow or water level at time (k + f )T , where

f is a given integer. The prediction horizon is typically
a few hours, while the sampling period is typically a few
minutes. In order to perform such a forecast, a recurrent
network might be used by running the predictor f times
at time kT : that would require the availability of u(k + 1),
u(k + 2), . . . ,u(k + f ), i.e. the availability of rainfall fore-
casts on that horizon. This requirement precludes the use of
recurrent predictors.

Therefore, the predictors designed in the present study
are of the form

y(k + f ) = g
f
NN(yp(k), yp(k − 1), . . . , yp(k − n),

u(k),u(k − 1), . . . ,u(k − m))

where g
f
NN is implemented as a feedforward neural network

whose number of variables and number of hidden neurons
depend on the forecasting horizon f .

Therefore, given a forecasting horizon f , one has to find
the appropriate time window m for rainfalls, the appropriate
time window n for past water levels, the relevant exogenous
variables, together with the appropriate complexity in terms
of number of hidden neurons, given the available data. We
perform this task as described below in the “model and vari-
able selection” subsection of the “model design” section.

3.2 Data acquisition

Rainfalls are measured by rain gauges, which are the most
accurate sensors available at present. However, they provide
local information, so that the heterogeneity of rainfalls is a
major problem for flash floods. For instance, in the case of
event 19, which is of particular interest in the present study,
the cumulated rainfall was three times as large in Anduze
as in Soudorgues, which is only fifteen kilometers away. In
order to obtain a more global picture, radar acquisitions of
rainfalls with a definition of 1 km2 have been performed
since 2002, but the number of flood events thus monitored
in the catchment under investigation is still too small for re-
liable use in a machine learning approach.

The sampling period for water level measurements dur-
ing flood events was 1 h before 2002 and has been 5 minutes
since 2002. In the present work, a sampling period of 30 min
was chosen, which is appropriate considering the 2–4 hours
rise time of this catchment. For events that occurred before
2002, re-sampling was performed by linear interpolation.

3.3 Database structure

The water level of the catchment under investigation is sam-
pled all year long with a sampling period of one hour, but
the sampling period is shortened to 5 min when flash floods
occur. Therefore, the database was organized as follows: at



Fig. 2 Concatenation of events
1, 3 and 4. Solid line: water
level; dashed line: rainfall
averaged over the six rain
gauges

the end of each flood event, a non-flood (zero or weak rain-
fall) time period of 15 hours (more than twice the concen-
tration time of the basin, i.e. the time that is necessary for
water to flow from the most distal point of the basin to the
catchment where the measurement is performed) was kept
in the database after each event. The flood events were sub-
sequently concatenated into a single time series (Fig. 2). Be-
tween two concatenated events, the non-flood zone is used
simultaneously as rainfall for the end of the present event
and as the rainfalls for the future event. A transition zone
is also introduced between two adjacent events in order to
decrease the outflow discontinuity between the end of an
event (high discharge) and the beginning of the adjacent
event (low discharge). The resulting database contains 1743
measurements of rainfalls and water levels at Anduze.

3.4 Typology of flood events

In order to perform (i) training, (ii) model and variable selec-
tion, and (iii) testing, three data sets are necessary: a training
set, a validation set and a test set. They must be chosen ap-
propriately. To this end, a typology of the available events
was created as follows.

The 15 events listed in Table 1 were clustered manu-
ally into three categories depending on their intensity, time
length and number of peaks: an event was classified as “very
intense” if the maximum water level exceeded 4.5 m; it was
classified as “long” if its duration exceeded 50 h; finally,
single-peak events were separated from events with multi-
ple water level peaks. This resulted in 8 categories, which
are listed in Table 2.

As might be expected, classes D and E are empty: an in-
tense and short event cannot have more than one peak, and
nonintense but long events necessarily have several peaks.

Table 2 List of classes and of their number of elements

Very intense Long Single-peak Class and number of elements

Y Y Y A (3)

Y Y N B (1)

Y N Y C (2)

Y N N D (0)

N Y Y E (0)

N Y N F (5)

N N Y G (3)

N N N H (1)

4 Model design

As indicated in the previous section, the constraints of the
problem lead naturally to choosing a model of the form

y(k + f ) = g
f
NN(yp(k), yp(k − 1), . . . , yp(k − n),

u(k),u(k − 1), . . . ,u(k − m))

where y is the estimated water level, yp is the measured
water level, u is the vector of exogenous variables g

f
NN is

the function implemented by a feedforward neural network
with one layer of hidden neurons with tanh nonlinearities,
and a linear output neuron.

As pointed out in section “hydrological method for flash
flood modeling”, the vector of exogenous candidate vari-
ables includes the rainfalls from 6 rain gauges (spatially dis-
tributed rainfalls), and the soil moisture (Soil Water Index,
given by the ISBA model [17]). The actual relevance of the
candidate variables must be assessed by a variable selection
procedure. n and m are positive integers that must also be



chosen by that procedure. The latter is described below, in
the section entitled “model and variable selection”.

4.1 Training

The usual least squares cost function was optimized by the
Levenberg-Marquardt algorithm; the gradient of the cost
function was computed by backpropagation.

4.2 Regularization

Regularization was performed by early stopping on event
13, which appears to be prototypical of the available events.
For more details on training and regularization, see e.g. [18].

4.3 Model and variable selection

Model and variable selection aim at finding the appropri-
ate number of hidden neurons, the appropriate values of m

and n, and the relevance of the soil moisture variable. The
procedure was a “leave-one-sequence-out” procedure, in-
spired by the usual leave-one-out cross-validation method.
First, sequence 13, which is used for early stopping (see
section “Regularization”), and sequence 19, which is used
for testing (see section “Test”) are set apart. From the set
of the remaining 13 sequences, each sequence in turn is ex-
tracted, a predictor is trained on the other 12 sequences, and
its performance on that sequence is computed. The leave-
one-sequence-out score is the average of the sum of squared
prediction errors, over all left-out sequences. However, since
the accuracy of the predictions of intense sequences is more
critical than the accuracy of the predictions of moderately
intense ones, the following variant was found more success-
ful: instead of leaving out each sequence in turn, the least
intense nine sequences were always kept in the training set,
and one sequence among the most intense four sequences
(3, 4, 109 and 23) was left out in turn.

At the end of the procedure, the combination of n, m,
of the number of hidden neurons, and of the presence or
absence of the soil moisture variable, that provides the best
leave-one-sequence-out score was selected. Such a model
was subsequently trained with all available sequences except
the early stopping sequence and the test sequence.

4.4 Test

The quality of the resulting model was assessed on the test
sequence, i.e. event 19 (class C), whose intensity made his-
tory in 2002. Several quality criteria can be considered.

The coefficient of determination of the regression, known
to hydrologists as Nash’s criterion, is defined as

R2 = 1 −
∑

k∈test sequence(y
p(k) − y(k))2

∑
k∈test sequence(y

p(k) − yp)2

where yp is the mean of the observations. R2 = 1 if the
model predicts the test data with perfect accuracy, and
R2 = 0 if the model simply predicts the mean of the obser-
vations.

For forecasting, the persistence coefficient Cp is of spe-
cial interest. For a forecasting horizon f , it is defined as
[19]:

Cp = 1 −
∑

k∈test set(y
p(k + f ) − y(k + f ))2

∑
k∈test set(y

p(k) − yp(k + f ))2

Cp ranges from −∞ to 1. Cp = 1 if the model predicts the
test data with perfect accuracy, and Cp = 0 if the predic-
tor is perfectly dumb, i.e. if it predicts that the future value
of the quantity of interest will be equal to the present one.
A predictor with negative Cp performs worse than a dumb
predictor.

5 Results

In order to obtain baseline results, static predictors of the
form

y(k + f ) = g
f
NN(u(k),u(k − 1), . . . ,u(k − m)),

where u(k) is the vector of exogenous variables, will first
be described. Dynamic predictors will be considered in the
subsequent section.

5.1 Static predictors

The procedure described in section “Model and variable se-
lection” showed that the best leave-one-sequence-out scores
were obtained by networks having 2 hidden neurons, with
m = 11 (12 rainfall values, sampled at 30-min intervals)
for thirty-minute ahead forecasts, m = 7 for one-hour ahead
forecasts, and m = 3 for two-hour ahead forecasts. Soil
moisture was not found to be relevant: it was not included
in vector u. An additional input variable was found to be
relevant, and was therefore included in vector u: the rainfall
accumulation from the beginning of the event.

For two forecasting horizons out of three, the persistence
coefficient was negative, showing that the predictor is less
efficient than a dumb predictor. Figure 3 shows the two-hour
ahead forecasts of event 19 and Table 3 the values of the
quality criteria.

Table 3 Quality criteria for static network (event 19)

Forecasting horizon Thirty-minutes One hour Two hours

R2 (Nash criterion) 0.83 0.79 0.76

Cp −2.68 −0.32 0.45



Fig. 3 Limnograph of event 19.
Solid line: observation; dotted
line: two-hour ahead forecast by
a static network. R2 and Cp are
0.76 and −0.45 respectively

5.2 Dynamic predictors: feedforward neural networks with
time delays

In the present section, we consider predictors of the form

y(k + f ) = g
f
NN(yp(k), yp(k − 1), . . . , yp(k − n),

u(k),u(k − 1), . . . ,u(k − m)).

As in the case of static predictors, the procedure described
in section “Model and variable selection” resulted in the se-
lection of m and of the number of hidden neurons, and in the
assessment of the relevance of the candidate exogenous vari-
ables. In addition, the appropriate value of n was selected by
the procedure.

The results are summarized as follows:

• n = 1 for all values of f (present value and one past value
of water level),

• 2 hidden neurons for thirty-minute and one-hour ahead
forecasts, 5 hidden neurons for two-hour ahead forecasts,

• m = 4 for thirty-minute ahead forecasts, m = 5 for one-
hour and two-hour ahead forecasts,

• soil moisture and cumulated rainfalls from the beginning
of the event were found irrelevant.

These predictors are much more efficient than the static pre-
dictors. Table 4 summarizes the values of the coefficient of
determination R2 and of the persistence coefficient Cp for
various forecasting horizons, for the most intense, single-
peak event (19) and for a more moderate, multiple-peak
event (107, class F). The results on event 107 were obtained
by exactly the same procedure as for event 19, except that
event 19 was in the training set and that event 107 was used

Table 4 Summary of test results obtained on two different events at
three different forecasting horizons

Event Forecasting horizon R2 Cp

19 1/2 h 0.98 0.60

1 h 0.92 0.51

2 h 0.86 0.68

107 1/2 h 1.00 0.72

1 h 0.99 0.77

2 h 0.98 0.76

neither for training nor for validation. In both cases the re-
sults are very satisfactory. For event 19, the prediction of
the peak is performed two hours before its occurrence, but
the rainfall peak occurs two hours before the peak of the
discharge; this explains in part why that particular event is
very difficult to predict accurately. To the best of our knowl-
edge, no forecasting method has ever achieved a compa-
rable accuracy on such an extremely intense flash flood as
event 19.

Figures 4a, b, c, and 5a, b, c show the observed and fore-
cast limnographs for the above events.

5.3 Assessment of the relevance of the predictor with
respect to present vigilance thresholds

From the end user’s point of view, it is important to assess
the behavior of the predictor in the framework of the present
flood warning system. Four vigilance levels, defined by the



Fig. 4 a. Limnograph of event
19. Solid line: observation;
dotted line: thirty-minute ahead
forecast. b. Limnograph of
event 19. Solid line:
observation; dotted line:
one-hour ahead forecast.
c. Limnograph of event 19.
Solid line: observation; dotted
line: two-hour ahead forecast

(a)

(b)

SCHAPI, are currently in use:

• Red: major risk of high water level with serious threats to
people and property,

• Orange: risk of high water level with considerable over-
flow liable to have a significant effect on daily life and on
the safety of people and property,

• Yellow: risk of high or rapidly rising water not involv-
ing significant damage but requiring particular vigilance
in the case of seasonal and/or outside activities,

• Green: no particular vigilance required.

For the Gardon at Anduze, the thresholds are defined as fol-

lows by the local Flood Forecasting Service,

• discharge < 800 m3/s: green

• 800 m3/s < discharge <1600 m3/s: yellow

• 1600 m3/s < discharge < 2800 m3/s: orange

• discharge > 2800 m3/s: red.
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Table 5 Forecasted vigilance
level for all events and all
forecasting horizons. Boldface
characters highlight
misclassifications

No event Observed f = 30 min f = 1 h f = 2 h f = 3 h f = 4 h f = 5 h

Vigilance Vigilance Vigilance Vigilance Vigilance Vigilance Vigilance

level level level level level level level

01 Green Green Green Green Yellow Green Green

03 Yellow Yellow Yellow Yellow Yellow Yellow Yellow

04 Yellow Yellow Yellow Yellow Yellow Yellow Yellow

08 Green Green Green Green Green Green Green

19 Orange Orange Orange Orange Orange Orange Yellow

22 Green Green Green Green Green Green Green

23 Yellow Yellow Yellow Yellow Green Green Green

24 Green Green Green Green Green Green Green

25 Green Green Green Green Green Green Green

107 Green Green Green Green Green Green Green

108 Green Green Green Green Green Green Green

109 Yellow Yellow Yellow Yellow Yellow Yellow Yellow

117 Green Green Green Green Green Green Yellow

120 Green Green Green Green Green Green Green

Therefore, predicting whether a given vigilance threshold
will be reached may be viewed as a classification problem.
This task is much less demanding than the prediction prob-
lem addressed in the present paper: the classification may be
correct although the predicted water level, or the timing of
the peaks, may be quite erroneous.

For the different prediction horizons f , the predicted and
the observed vigilance levels can be compared (a posteri-
ori because the flood warning system was not available in
2002), so that the ability of the model to forecast the risk of

the event, in the framework of the present warning system,

can be assessed. Table 5 presents the results of this analy-

sis. The agreement between the vigilance forecasts and the

issued vigilance warning is very good: for 10 events out of
14, the risk is correctly classified for all prediction horizons.

When misclassifications occur, it is only for high forecasting

horizons (≥3 h), with two false negatives. The 2002 event

(event 19, with a discharge peak value of 2742 m3/s) is clas-
sified in orange vigilance but it is very close to the red level.



Fig. 5 a. Limnograph of event
107. Solid line: observation;
dotted line: thirty-minute ahead
forecast. b. Limnograph of
event 107. Solid line:
observation; dotted line:
one-hour ahead forecast.
c. Limnograph of event 107.
Solid line: observation; dotted
line: two-hour ahead forecast

(a)

(b)

6 Conclusion

Forecasting flash floods in populated areas is an impor-
tant and difficult task, which is traditionally approached
by physics-based models or by hydrology-based concep-
tual models. In the present paper, we have shown that such
forecasts can be made with very satisfactory accuracy by
machine-learning methods, in the absence of rainfall predic-
tions, provided an appropriate methodology is used. Leave-
one-sequence-out cross-validation was used for model and
variable selection in the framework of feedforward mod-

els with time delays. Regularization was performed by
early stopping. Blind testing was performed on very intense
events, which caused large damages. The accuracy of the
forecasts, for the water level as well as for the vigilance
level, opens the way to early warnings of the population in
the area under investigation. Future research will involve the
application of the methodology to other flash-flood areas in
France. In addition, support vector regression and dynamic
modeling with kernel methods [20], on the same data, will
be investigated.
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