
Appl Intell
DOI 10.1007/s10489-010-0272-x

On the combination of logical and probabilistic models
for information analysis

Jingsong Wang · John Byrnes · Marco Valtorta ·
Michael Huhns

© Springer Science+Business Media, LLC 2010

Abstract Formal logical tools are able to provide some
amount of reasoning support for information analysis, but
are unable to represent uncertainty. Bayesian network tools
represent probabilistic and causal information, but in the
worst case scale as poorly as some formal logical sys-
tems and require specialized expertise to use effectively. We
describe a framework for systems that incorporate the ad-
vantages of both Bayesian and logical systems. We define
a formalism for the conversion of automatically generated
natural deduction proof trees into Bayesian networks. We
then demonstrate that the merging of such networks with
domain-specific causal models forms a consistent Bayesian
network with correct values for the formulas derived in the
proof. In particular, we show that hard evidential updates
in which the premises of a proof are found to be true force
the conclusions of the proof to be true with probability one,
regardless of any dependencies and prior probability values
assumed for the causal model. We provide several examples
that demonstrate the generality of the natural deduction sys-
tem by using inference schemes not supportable directly in
Horn clause logic. We compare our approach to other ones,
including some that use non-standard logics.

Keywords Reasoning · Uncertainty · Probabilistic
reasoning · Bayesian networks · Natural deduction proofs ·
Logic for knowledge representation

J. Wang · M. Valtorta (�) · M. Huhns
Department of Computer Science and Engineering, University of
South Carolina, Columbia, SC, USA
e-mail: mgv@cse.sc.edu

J. Byrnes
SRI International, San Diego, CA, USA

1 Introduction

Support systems for information analysis must be able to
quantify and track uncertainty in evidence findings, in data
used by inferential processes, in the imperfect theories that
emerge from the individual and collective experience of
information analysts, and from other sources. Although
they enjoy certain advantages in versatility and computa-
tional complexity, logical knowledge bases are ill-suited to
represent uncertainty and then reason about it correctly, be-
cause knowledge representation languages based on classi-
cal logic do not provide facilities for representing and rea-
soning about uncertainty expressed in a probabilistic form.
Bayesian probability theory defines the unique paradox-
free method for reasoning with uncertainty. Recent research
shows that, in principle, facilities for representing and rea-
soning about uncertain information can be provided by
extending the logical framework to support such represen-
tations as multiple-entity Bayesian networks and probabilis-
tic relational models, but the scalability of such approaches
is questionable. We have been working on overcoming this
problem in three ways. First, to simplify the construction
and application of probabilistic models of situations of in-
terest to an information analyst, we have implemented a
simple version of Laskey and Mahoney’s Bayesian network
(BN) fragments approach [57]. A key feature of BN frag-
ments is the distinction between nodes, which are in one-to-
one correspondence with the nodes of a Bayesian network,
and attributes of the nodes, which are used in the match-
ing and composition process, as we described in previously
published work [11, 98]. Second, we have developed an on-
tology of concepts that the designer of the decision sup-
port system can use in describing the nodes and attributes
of Bayesian network fragments, which enables disciplined
reuse and sharing of BN fragments [40]. Third, as we report

mailto:mgv@cse.sc.edu

J. Wang et al.

herein, we are developing methods that automatically con-
vert logical proofs into Bayesian networks. A proof is de-
rived (in our work, using a natural-deduction format) from
the application of a logical knowledge base to a particular
situation. The Bayesian network can then be used to reason
about the uncertainty of data sources, the uncertainty associ-
ated with expert judgment, conflicting data, and conflicting
judgments. Conflicting data will be a major issue as larger
knowledge bases are used, and particularly as more of their
content is extracted automatically from text, because most
logic engines fail catastrophically upon encountering a con-
tradiction.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the logical and probabilistic models.
We then analyze the complexity issues in Sect. 3. We de-
scribe the basic composition process in Sect. 4, discuss ex-
tensions in Sect. 5, and related work in Sect. 6. Then in
Sect. 7 we provide the formal proofs of correctness of our
approach. We briefly describe an early implementation in
Sect. 8 and conclude this paper in Sect. 9.

2 Logical and probabilistic models

2.1 Two kinds of information

When we describe a situation that needs to be analyzed, we
usually include two kinds of information. One part is about
logic, where each statement expresses a direct and absolute
relation among items of information, which can be used to
infer new information. This kind of knowledge is best for-
malized in logic and includes

− Class-subclass statements, such as “dogs are mammals”
and “coffee is a liquid”

− Part-whole statements, such as “intake valves are parts of
cylinders”

− Definitional statements, such as “triangles have three
sides” and “coffee is brown”

− Temporal statements, such as “3:00 p.m. occurs before
4:00 p.m.”

− Spatial statements, such as “London is located in the
UK”

Another part is about the probabilistic dependence of in-
formation. Examples of this kind of knowledge are state-
ment such as:

− “Earthquakes cause burglar alarms to go off”
− “Terrorist cell X planned the bombing”
− “Suspect Y met with cell leader Z in London last March”
− “If the authors of a research paper work late at night, they

drink coffee”

While the first kind of information can be viewed as a
special case of the latter, where the allocated probability is

one, it is convenient to represent purely logical relationships
without the machinery of probability. Conversely, it is very
difficult to represent expertise, especially as it relates to as-
sociational and causal information, without using probabili-
ties [78, 79].

We could build the model for a whole situation from two
parts too. The first part is the logic model, which translates
logical statements directly into first-order logic formulas.
In fact, due to its expressive power, logic is widely used
in building knowledge bases. The second part is the prob-
abilistic model in which we could use Bayesian networks to
describe probabilistic dependency and probability distribu-
tions.

In a practical application, it is convenient to distinguish
the description of a situation from findings and queries.
When a query only involves logical information, we can
get the answer using a basic inference mechanism. How-
ever, when a query involving uncertainty is placed, we will
not be satisfied with an answer only coming from the logi-
cal model, since it is not based on the complete knowledge
we have. For example, almost all diagnostic queries involve
abduction and are of this kind [79].

We also want to support the discovery of changes in the
probability of events that are not part of the original proba-
bilistic causal model, but that become related to parts of the
causal model via relationships captured in the logical model.
So, it is necessary to explore ways of integrating the two
kinds of information (logical and probabilistic) into one sin-
gle model capable of doing reasoning with uncertainty. We
use the methodology of representing the logical information
in first-order logic, using natural deduction, translating nat-
ural deduction proofs to Bayesian networks, and composing
the resulting Bayesian networks with already existing ones
that directly capture associational and causal information. In
this way, we integrate logical knowledge and probabilistic
knowledge into a probabilistic model.

2.2 Alternative approaches

Our objective is to produce models of systems and situations
that will be sufficiently accurate that they can be used—
where appropriate—to predict future states, to understand
operations, to illuminate the factors relevant to decisions,
and to control behaviors. We have realized that some knowl-
edge is more easily and naturally represented in the form of
statements in a logic language and some is more naturally
represented in a Bayesian network formalism. We would
like to take advantage of the strengths of each formalism
while combining them into a single coherent system. How-
ever, there are tradeoffs in how the two are combined. The
tradeoffs are as follows:

− First, we can extend a logic formalism (in this case
a natural-deduction proof system) to include causality.

On the combination of logical and probabilistic models for information analysis

This can be done by using special statements with as-
sociated conditional probabilities, for example, “coffee
keeps me awake”

coffee |→ awake, where P(awake | coffee) = 0.8 (1)

The problem is that if there are several statements about
the causes for the same concept (e.g., tea also keeps me
awake), then the representation may mislead a modeler
into assuming that it is possible to specify the whole con-
ditional probability of the effect given the causes by pro-
viding only marginal conditional probabilities, without
requiring assumptions such as independence of causal
influence. In other words, it is difficult to get the prob-
abilities correct, because each parameter in the special
formalism just described (with the |→ symbol) repre-
sents only a partial (marginal) specification of a large
conditional distribution, which is not specified, and for
which the number of independent parameters is (approx-
imately) the same as the number of configurations of the
possible causes.

− Second, we can try to include logic statements directly
within a Bayesian network. This is problematic in the
case of a large theory, even in the propositional case, be-
cause it requires the modeler to reconstruct proofs, which
are best carried out by an automated theorem prover.
It is especially confusing for a probabilistic modeler to
deal with proofs that go beyond what can be represented
by simple rules (definite Horn clauses). A probabilis-
tic modeler knows well that P(A → B) = m (which
is equivalent to P(¬A ∨ B) = m) is not equivalent to
P(B = true|A = true) = m, but might need help (from
an automated system or a logical modeler) to carry
through complicated proofs.

The two existing formalisms of natural deduction and
Bayesian networks are the most intuitive and most widely
already understood ways of capturing their form of knowl-
edge. The alternatives described, and especially the one with
the |→ symbol, may be worth pursuing. However, they
would require further work than has been done to date. For
the above reasons, we choose to pursue an integrated ap-
proach in which models are constructed from logical and
probabilistic specifications, rather than by adding features to
one of the two approaches. The probabilistic model provides
the base for the integration, while the natural deduction the-
orem prover is used to automatically extract important logi-
cal knowledge to complement the probabilistic model from
a purely logical knowledge base, which in some cases could
be extremely large.

3 Complexity of logical and probabilistic inference

Our major scientific hypothesis is that integration of proofs
and Bayesian networks will provide the main advantages of

a full integration of logical knowledge bases with Bayesian
networks, while keeping computational complexity suffi-
ciently low for practical use. We do not attempt to prove
the claim in this paper, but provide a proof of concept for a
system that achieves the integration, including some exam-
ples. Some parts of the system (most importantly, the pro-
gram for converting natural deduction proofs into Bayesian
networks, briefly described in Sect. 4.2.1) have been imple-
mented, while the others have been designed.

Most of the related decisions problems are intractable in
general, but they can all be solved in polynomial time on net-
works whose treewidth is bounded [14]. So we first look at
the general related classes of complexity, and then show the
bounds of treewidth for our Bayesian network-based repre-
sentation approach.

3.1 Classes of complexity

Given a Boolean formula, one of the most important and
extensively studied problems is to decide its satisfiability,
i.e., to decide whether there exists an assignment of its vari-
ables that makes the formula evaluate to True. The Boolean
formula is composed of Boolean variables, Boolean connec-
tives (AND, OR or NOT), and parentheses. The problem of
determining a propositional Boolean formula’s satisfiability
is called the Boolean Satisfiability Problem (SAT). SAT is
known to be NP-complete.1

Bayesian networks allow an explicit graphical represen-
tation of the probabilistic conditional dependences and in-
dependences among events or concepts, which reduces the
number of probability assessments needed. The simplest
form of probabilistic inference of Bayesian networks is the
calculation of probability P(X = xi), where X is a proposi-
tional variable, and xi is one of its possible values, which in
binary case are True and False. Following the notation and
conclusions from [12, 14, 85], we have the following prob-
lem representations and classes of complexity:

− PIBNET (Probabilistic Inference using Belief Networks),
to compute P(X = xi), is #P-complete.

− PIBNETD (a decision-problem version of PIBNET), to
decide P(X = xi) > 0, is NP-complete.

− D-PR (a decision-problem version of PIBNET), to de-
cide P(X = xi) > p, where p is a number between 0
and 1, is PP-complete. Note that PIBNETD is a special
case of D-PR in which p = 0.

It is also well known that PP and #P are closely related. PP
may be considered to be the decision version of #P. In par-
ticular, P#P = PPP, which can be paraphrased as follows: a

1When both universal and existential quantification of variables is per-
mitted in the formula, the satisfiability problem is called the Quanti-
fied Boolean Formula (QBF) problem. QBF is known to be PSPACE-
complete.

J. Wang et al.

Fig. 1 Fill-in edges for
elimination order
〈A,B,C,D,E〉 for the formula
F

problem can be solved in polynomial time using an oracle in
#P if and only if it can be solved in polynomial time using
an oracle in PP [47].

It is well known that even approximating probabilistic in-
ference is NP-hard [13, 77, 85]. It is also well known that
the complexity of probabilistic inference is critically depen-
dent on a graphical parameter called the treewidth of the
Bayesian network, and more precisely that PIBNET, PIB-
NETD, and D-PR can be solved in time polynomial in the
treewidth [5, 14, 84]. There is some evidence that most
human-generated Bayesian networks have low treewidth.

3.2 Bounded treewidth

The treewidth of a graph G, tw(G), is often characterized in
terms of elimination orders. For a specific elimination order,
its induced treewidth is the maximum neighborhood size in
this elimination process. The treewidth of a graph is defined
to be the minimum induced treewidth over all possible elim-
ination orders.

Consider the propositional formula F = (A ∨ B ∨ C) ∧
(¬A ∨ B ∨ E) ∧ (¬B ∨ C ∨ D) ∧ (¬C). Figure 1 shows
the partial process resulting from an elimination order
〈A,B,C,D,E,F 〉 on the primal graph of F , where the
dotted lines represent the edges added between each of the
neighbors of the eliminated nodes. The primal graph of a
formula in CNF form is a simple graph that has atomic
formulas as vertices and has an edge for every two atomic
formulas which occur in a common clause. The induced

treewidth by this elimination order is 3. (Note that the
treewidth of the primal graph of F is actually 2.) Figure 2
shows the translation of the formula into a Bayesian net-
work; the family of node F is an AND table, while the fam-
ilies of nodes C1,C2,C3,C4 are OR tables. C1,C2,C3
and C4 represent clauses of F (e.g., C1 corresponding
to the clause (A ∨ B ∨ C)). The first two steps of the
variable elimination process of the moral graph of this
Bayesian network are shown in Fig. 3 by the elimination
order 〈A,B,C,D,E,C1,C2,C3,C4,F 〉.

We now analyze the bounds of treewidth of a general for-
mula.

Suppose F is a general formula in CNF form consist-
ing of m clauses, represented by Ci , which totally contain
n atomic formulas, represented by Aj , with 1 ≤ i ≤ m and
1 ≤ j ≤ n. We denote the primal graph of F by Gp , and
the corresponding Bayesian network by Gb . Gb is gener-
ated from F and has similar network structure as shown in
Fig. 2. We assume Gp is a connected graph (if not, the iso-
lated nodes will not affect the whole graph’s treewidth, as
their neighborhood sizes are always 0). We also assume Gp

contains at least one node, i.e., n ≥ 1.

3.2.1 Lower bound

Because node F is in a clique formed by itself and m clause
nodes which are the only neighbors of node F , we can eas-
ily conclude that, in any elimination order, the maximum
neighborhood size is at least m. So obviously tw(Gb) ≥ m.

On the combination of logical and probabilistic models for information analysis

Fig. 2 Translation of the
formula F into a Bayesian
network [12]

3.2.2 Upper bound

Based on the definition of treewidth, we may use the max-
imum neighborhood size involved in any elimination order
to measure the upper bound, as the treewidth should always
be the minimum one. Also, because we want to analyze the
change of treewidth from Gp to Gb , we intend to represent
the bound of tw(Gb) in terms of tw(Gp).

So for Gb , we would start the elimination from the atom
nodes at first, and particularly we choose the order of atom
nodes which produces the real treewidth of Gp .

We represent this order by 〈A1,A2, . . . ,An,C1,

C2, . . . ,Cm,F 〉 for Gb . The nodes after An in this se-
quence come from the clause node set and F . Remember
that 〈A1,A2, . . . ,An〉 produces the treewidth of Gp . Then
for Gb , in the elimination process, the neighbors of any atom
node to be eliminated will come from both the atom node
set and the clause node set (the last atom node is an ex-
ception whose neighbors are all from clause node set). The
neighborhood size for the atom node Ai can be denoted by
xi + yi , 1 ≤ i ≤ n, where xi is the neighborhood size of this
atom node in the elimination order 〈A1,A2, . . . ,An〉 of Gp ,
and yi is the number of clause node neighbors connected to
this atom node in Gb in this elimination process.

Because of the particular order we choose, we know xi ≤
tw(Gp). Also, because there are totally m clause nodes, all
of which exist till the last atom node is eliminated, we know
yi ≤ m. So we conclude xi + yi ≤ tw(Gp) + m.

For the elimination of clause nodes and node F , it is obvi-
ous that the maximum neighborhood size is m, as they form
a m + 1 size clique.

So for this particular elimination order, the maximum
neighborhood size is max {xi + yi,m}. Because Gp is a
connected graph with at least one node, tw(Gp) ≥ 0.

So tw(Gp) + m ≥ m. So we can conclude tw(Gb) ≤
tw(Gp) + m.

So, m ≤ tw(Gb) ≤ tw(Gp) + m.

3.2.3 Further discussion

In general, the probabilistic inference problem of Bayesian
networks could be much harder than the satisfiability prob-
lem of the original logic theory. This conclusion seems to
make the translation un-necessary. But this may not be the
case when considering a special Bayesian network struc-
ture, like the one we shown in Fig. 2. We notice that one
primal graph with a specific structure could have an expo-
nential number of corresponding propositional theories, as
a single primal graph has no restriction on the number of
clauses the theory may contain. However, for any given the-
ory, there is only one corresponding primal graph and we
definitely know how many clauses it contains. Then based
on the primal graph and the extra parameter m—the num-
ber of clauses in the theory, from the upper bound obtained
above, we can see that the treewidth of the translated BN
is not greater than the primal graph’s treewidth plus m. So
the actual resulting BN’s complexity is much lower than in
the general case. In addition, our approach is based on nat-
ural deduction proofs. The proofs typically involve only a
small fraction of the logical knowledge contained in avail-
able knowledge bases, such as SUMO [72]. So usually2 the
resulting BN will only be a subgraph of the graph similar to
Fig. 2. This lowers the actual complexity even further.

2Our conversion of natural deduction proofs introduces context nodes
that are not present in the original logical knowledge base. These nodes
have no children and, in common reasoning modes, are never instanti-
ated. Therefore, they are barren nodes that do not affect the complexity
of reasoning [46].

J. Wang et al.

Fig. 3 The first and second steps of the solution of the satisfiability problem by variable elimination on the moral graph of the Bayesian network
in Fig. 2

4 The process of composing

In order to describe the process of composing, we need to
distinguish the variables represented in a Bayesian network
from the variables used in a logic formula. The first kind of
variables are in one-to-one correspondence with the nodes
in a Bayesian network. Authors differ in the name used for
such variables. For example, Neapolitan [69] uses the term
propositional variable, Jensen and Nielsen [46] simply use
the term variable, and Laskey [56] uses the term random
variable. In every case, such variables partition the outcome
space of interest. We trust that the context makes it clear
which of the two kinds of variables we refer to. If necessary,

C ∨ T

C → B C(1)

B
T → B T (2)

B (1,2)
B

Fig. 4 A natural deduction proof for brown liquids

we use random variables for the variables in one-to-one cor-
respondence with the nodes of a Bayesian network and log-

ical variables for the variables used in logic formulas. In
some extensions of Bayesian networks, a random variable
may correspond to a formula.

On the combination of logical and probabilistic models for information analysis

� 	 C ∨ T

� 	 C → B �,C 	 C →-Elim
�,C 	 B

� 	 T → B �,T 	 T →-Elim
�,T 	 B ∨-Elim

� 	 B

Fig. 5 This proof tree makes contexts explicit. � stands for the set of assumptions {C → B,T → B,C ∨ T }, and �,A stands for � ∪ {A}

4.1 The basic process

Before composition, we suppose that there is a logical
knowledge base (KB) consisting of logical rules and a
Bayesian network (BN). Regarding events or proposi-
tions, KB describes their logical relations, while BN repre-
sents their probabilistic dependencies. We can simplify the
process of composing by the following steps:

1. Natural Deduction
We set a goal and then derive its natural deduction proofs
based on the logical knowledge available in the KB.

2. Conversion
We convert each proof into a separate Bayesian network.

3. Composition
We compose the set of Bayesian networks obtained in the
previous step with the original Bayesian network.

We use two propositional examples to illustrate the
process. Note that, in this paper, the original Bayesian net-
work is also called probabilistic casual model or probabilis-
tic model. Correspondingly, the intermediate Bayesian net-
works resulting from natural deductions are called logical
models or proof models. We assume that there are only
atomic nodes (which represents atomic formulas) in the
probabilistic model.

4.2 Two detailed propositional examples

4.2.1 Brown liquids

We provide an example of using the integrated logical and
probabilistic reasoning system. Since the propositional the-
ory that formalizes the example includes at least one non-
Horn clause, i.e., at least one clause that includes two non-
negative literals, the theory cannot be handled correctly by
Horn clause logic3 or by forward chaining rule-based sys-
tems such as JESS or CLIPS. The example formalizes the
following story: my cup contains either coffee (C) or tea (T).
Coffee is a brown liquid (B). Tea is a brown liquid. Thus it
can be concluded that my cup contains a brown liquid.

The axioms in the knowledge base that formalize the
story are:

3Pure Prolog can be considered a Horn clause logic representation lan-
guage; however, Prolog is a general programming language that can be
used to implement complicated reasoning engines.

Fig. 6 The Bayesian network representation of the brown liquids
proof

English assertion Logical representation

My cup contains either coffee or tea C ∨ T

Coffee is a brown liquid C → B

Tea is a brown liquid T → B

We want to show B . Note that the theory allows for both
tea and coffee to be in my cup at the same time. A natural de-
duction proof for B is given in Fig. 4. The proof consists of
three steps: two →-elimination steps and one ∨-elimination
step. The ∨-elimination step, which corresponds to a case
analysis step, requires us to prove B from the assump-
tion C and separately from the assumption T . The assump-
tions are indicated by superscripts and discharged at the
∨-elimination step. These assumptions are used in the proof
of the →-elimination steps.

Figure 5 presents the same proof as Fig. 4, but in a
way that emphasizes the contexts used. The proof in Fig. 5,
which includes the 	 symbol, will remind some readers of
the sequent calculus. However, it is directly a natural de-
duction proof with the exact same structure as the proof in
Fig. 4; it only uses a different syntax to denote active as-
sumptions.

The natural deduction proof is converted to a Bayesian
network in the following way. Each non-atomic formula
used in the proof is the child of its component subformu-
las, with a conditional probability table (CPT) that encodes
the main connective introduced or eliminated. For example,
in Fig. 6, the (nodes corresponding to the) atomic formulas
C and T are parents of the (node corresponding to the) for-
mula (or C T), and the CPT for the family of those three
nodes, P((or C T) | C, T) is an OR table. The Bayesian
network also represents the nonempty contexts (sets of as-
sumptions) used in the proof. For example, formula C is the
context for the first step of the proof, namely the implication
elimination with premises C and (if C B) and conclusion
B . Accordingly, the node corresponding to formula C is a
parent of the node Context1 in the Bayesian network. In the

J. Wang et al.

Fig. 7 B logically follows from
the axioms in the brown liquids
domain

Fig. 8 A probabilistic causal model that relates work deadlines to cof-
fee and tea in my cup

CPT for a context node, the context is true if and only if all of
its parents are true. As an illustration, consider the Bayesian
network structure of Fig. 6.

The construction algorithm just outlined ensures that any
possible (i.e., non-zero probability) configuration (i.e., as-
signment of truth or false values) of the variables in the
Bayesian network that correspond to formulas is a true inter-
pretation (a model) of the formulas that appear in the steps of
the proof and that no other assignments have positive prob-
ability, when the value true is entered as evidence for the
(nodes corresponding to the) formulas of the theory. Fig-
ure 7 illustrates this, where it is shown that the only state
of positive probability of the B variable is the one in which
B is true, when evidence is entered for (if T B), (if C B),
and (or C T). The probabilities shown in Fig. 7 are com-
puted using the commercial Bayesian network shell Hugin
(www.hugin.com), which uses the junction tree algorithm
for probabilistic inference [46]. The evidence entered is in-
dicated by red bars in a color version of the figure. More-
over, for a particular set of contexts, the possible configura-
tions are models of the assumptions in the contexts and of
the formulas.

Now, imagine that we have probabilistic information re-
lating some of the variables in our domain of interest. In
particular, following our example, imagine a probabilistic
causal model is available that relates the presence of tea or
coffee in my cup to the amount of work I need to get done
before the end of the workday, as described in Fig. 8 us-
ing Hugin. Figure 9 shows one example of probability up-
date of this casual model conditioned on C. We can now
compose the logically derived model of Fig. 6 and the prob-
abilistic causal model of Fig. 8 into a single model using

Fig. 9 The probability update conditioned on C

Fig. 10 A model composed from logical and probabilistic components

the Bayesian network fragment composition algorithm de-
scribed in [11] and obtain the combined model of Fig. 10.

The combined model is a Bayesian network and can be
subjected to processing as any such network. The most im-
portant kind of processing is to compute the posterior prob-
ability of each variable in the network given a set of findings
(i.e., evidence). For example, we may be interested in the
probability of a deadline given that we observe coffee in my
cup and that some axioms hold (to meet deadlines we work
late and consume coffee to stay awake). The posterior prob-
abilities are shown in Fig. 11, where we observe a roughly
68% probability of my working on a deadline, which hap-
pens to be a bit higher than the one got from the single prob-
abilistic model as shown in Fig. 9, because of the introduc-
tion of logical relationships.

4.2.2 Swimming pool

The second example formalizes the following story: I have
a swimming pool (A). If I have a swimming pool and it does
not rain (D), I will go swimming (B). If I go swimming,
I will get wet (C). If it rains, I will get wet. It can thus be con-
cluded that I will get wet. Loveland and Stickel [60] use this

On the combination of logical and probabilistic models for information analysis

Fig. 11 Probability update in
the model of the previous figure

D ∨ ¬D

B → C

(A ∧ ¬D) → B
A ¬D(1)

A ∧ ¬D

B

C

D → C D(2)

C (1,2)
C

Fig. 12 A natural deduction proof for the swimming pool example

Fig. 13 The Bayesian network
representation of the swimming
pool proof

example to show that goal trees are incomplete and to mo-
tivate the use of ancestor contradiction checks, which they
show to be complete.

The axioms in the knowledge base that formalizes the
story are:

English assertion Logical representation

I have a swimming pool A

If I have a swimming pool and it
does not rain, I will go swimming (A ∧ ¬D) → B

If I go swimming, I will get wet B → C

If it rains, I will get wet D → C

We want to show C. A natural deduction proof for C is
given in Fig. 12, where we omitted the proof of D ∨ ¬D.
This proof consists of five steps: one ∧-introduction step,
three →-elimination steps, and one ∨-elimination step. The
∧-introduction step and the last →-elimination step require
one assumption each, namely ¬D and D. The ∨-elimination
step, which corresponds to a case analysis step, discharges
both assumptions.

The Bayesian network representation of the proof is
given in Fig. 13. We adopt the common convention that ¬D

is a shorthand for D → ⊥. For simplicity, we omitted the
node representing ⊥ and the edge from it to ¬D. Figure 14
shows the configuration of the Bayesian network variables
when the evidence indicating that the four axioms are true is
entered; note that C is true when the axioms are true. If we
have a probabilistic model as in the previous example, we
can do composition in a similar way.

5 Extensions

The previous section uses propositional examples to show
the basic idea of composition, especially the important con-
version step from natural deduction proofs to Bayesian net-
works. In solving real world problems, we are always facing
more complex situations. The possible problems could be:
How do we handle the multiple proof case? Where do goals
come from? We will discuss these related problems in this
section.

J. Wang et al.

Fig. 14 C logically follows
from the axioms in the
swimming pool domain

5.1 Composing more proofs together

In both examples shown in the previous section, only one
natural deduction proof is used for the composition with the
existing probabilistic model. In fact, when more proofs are
available, we can compose all of them with the probabilistic
model, in order to get more complete knowledge for prob-
abilistic reasoning.4 From another point of view, we may
think of the process of having multiple proofs composed to-
gether as the one in which we keep updating the probabilis-
tic model for the next round of composition. In the initial
round, we compose the original probabilistic model with one
proof model, and then use the resulting composite model as
the new probabilistic model to compose with another proof
model in the next round. Some practical issues will be dis-
cussed near the end of this section.

5.2 Goal setting

There are two ways of generating the goals, based on which
correspondingly we can categorize compositions into two
types: Query Based Composition and Probabilistic Model
Based Composition.

5.2.1 Query based composition

This type of composition occurs when the user submits a
query to the system, i.e., the user has specific interest in
some problem. In this case, we set this query or related for-
mula5 as a goal and get its natural deduction proofs. After
converting each of them into a Bayesian network, the proof
model, we start its composition with the probabilistic model
if it exists. The resulting composite model can then be used

4Obviously, proof search is also complex. In practice, we should bound
the search depth and time, since proofs might be infinite or we do not
need that many proofs.
5“Related formula” means that its natural deduction contains the query
formula. This will be explained more in the next section.

to reason about the uncertainty of the query. This kind of
composition can be considered as a special case of another
type of composition shown in the following section, by re-
garding the query node as a simple probabilistic model or
by extending the current probabilistic model to contain this
query node.

5.2.2 Probabilistic model based composition

This type of composition is used mostly when the user does
not have a specific question, but wants to augment the ex-
isting probabilistic model to support reasoning based on
more complete knowledge. In this case, the natural deduc-
tion proofs are used to complement the original probabilis-
tic model. There could be three scenarios regarding the way
goals are set:

− Scenario one:
In this scenario, we integrate all the possible proofs of
each node6 of the probabilistic model, as long as the
proofs introduce no new atomic nodes, to the probabilis-
tic model. Scenario one occurs when we are interested in
reasoning over a set of nodes, the basic probabilistic de-
pendencies of which have already been specified through
the probabilistic model by domain experts. However, we
want to exploit the logical knowledge base to capture
more connections among these nodes and build a more
accurate model for reasoning.
Based on the definition of conversion of natural deduc-
tion proofs to Bayesian networks, all the newly added
logical nodes from proof model, which are all compound

6Note that because both the probabilistic model and the proof model
are standard Bayesian networks, we simply use “node” to call each ran-
dom variable in the networks, which can represent atomic or compound
formulas as shown in Fig. 6. Specifically, the node corresponding to an
atomic formula is called atomic node, and the node corresponding to
an compound formula is called compound node. The proof model gen-
erally contains both kinds of nodes. The probabilistic model is tem-
porarily assumed to contain atomic nodes only.

On the combination of logical and probabilistic models for information analysis

nodes (because of the restriction on the proof that no
new atomic nodes are introduced), will be children of the
original nodes in the probabilistic model and therefore d-
separate (as converging connections) the original nodes,
when the logical nodes are not set as evidence findings.
So adding them will not affect the probability distribu-
tion of the original probabilistic model. But after their
instantiation, the logical nodes will open up communi-
cation among those pre-existing nodes. It is obvious that
the more proofs of natural deduction integrated into the
probabilistic model, as long as the restriction is not vio-
lated, the more dependencies of those pre-existing nodes
of the probabilistic model will be revealed from the re-
sulting composite model.

− Scenario two:
In this scenario, we integrate all the possible proofs of
each node of the probabilistic model. Here we relax the
restriction to the proofs in scenario one, i.e. the proofs
may introduce new atomic nodes. Scenario two occurs
when we have further interest in the nodes outside the
probabilistic model (e.g., there might be findings that are
not described in the original probabilistic model) and ad-
ditionally we still hope that the composite model could
have reasonable size considering accuracy and efficiency.
The restriction that only proofs of the nodes in the prob-
abilistic model can be integrated ensures that the inte-
grating process is finite. The same d-separations as in
scenario one still exist, since all the logical nodes still
serve as children of the original nodes. The new atomic
nodes cannot communicate with the original probabilis-
tic nodes if the logical nodes are not set to be findings,
because they are also parents of the logical nodes (by the
process of conversion).
Scenario two is just an extension of scenario one. We
have a bigger view of the world while the resulting model
still remains affordable regarding building cost and size.
Compared with scenario one and three, scenario two is
the most used.

− Scenario three:
In this scenario, we integrate all the possible proofs,
which are not restricted to be only for the nodes in the
probabilistic model. The proof can be for a new literal
(i.e., there may be a proof for an atomic node or its nega-
tion that is not in the probabilistic model), as long as
the converted proof model has common atomic nodes
to link itself with the original probabilistic model. Sce-
nario three is just an extension of scenario two. The set
of proofs that we could integrate into the probabilistic
model is still a countable set, but when the knowledge
base is huge, searching could be very expensive.
This kind of model composition is very helpful. Some-
times we know many nodes (nodes denote the entities’
properties) existing in the world, e.g., we get some con-
cepts from the existing knowledge base. But limited by

our understanding capability, we can only build a smaller
and simpler probabilistic model, which contains just
some of these nodes. With the methodology described
in the paper and the existing knowledge base, we could
use natural deduction proofs to bring the logical relation-
ships into the original probabilistic model, by integrating
the proofs, consisting of the atomic formula nodes origi-
nally isolated from the probabilistic model and the com-
pound formula nodes coming from logical rules, into the
original probabilistic model. So we have used the logical
knowledge to extend the original probabilistic model for
more accurate uncertainty reasoning.

The brown liquids example of the previous section can
be used for a simple illustration of the three scenarios. If we
assume that the user submits a query on B at first, then the
brown liquids example is a typical query based composition.
From another perspective, if we assume that a probabilistic
model is given at first, around which the composition is to
be built, we can think of the same example as a probabilis-
tic model based composition. Note that the composition in
Fig. 10 is directly a use of scenario three. In this example,
the probabilistic model is shown in Fig. 8. The proof model
for B (shown in Fig. 6) can be composed with the prob-
abilistic model because it has common nodes C and T . If
we consider having a probabilistic model which is similar
to the one shown in Fig. 8 but contains one extra node B ,
besides three pre-existing nodes Deadline, C, and T , then
the composition with the same proof model in Fig. 6 could
be regarded as a use of scenario one, as the proof is built for
the node contained in the probabilistic model and no new
atomic node is introduced. (Note that we ignore the context
nodes.)

General composition algorithms We can use Fig. 15 to
show different types of knowledge involved in composition.
Here, P represents the atomic nodes from the probabilistic
model. L represents the logical rules and findings available.
Each finding might be an atom or its negation, i.e., a literal;
compound formulas cannot be used as findings. O represents
all the literals (i.e., each member of the set O is either an
atomic node or the negation of an atomic node) contained in
some formula of L, but not contained in P7. The area in the
thin rectangle (purple and red in a color version of the fig-
ure) represents some of the finding nodes in L that are also
in either P or O. For example, some findings are relevant to
the probabilistic model, some are not. We group the finding
nodes into L because they are combined with logic rules to
make natural deduction proofs.

7If an atomic formula only appears negated, it is not necessary to set up
the goal to be proved as the non-negated atom. A literal has the form
A or A → ⊥, which is often conveniently represented as ¬A.

J. Wang et al.

Fig. 15 Relationships among the types of knowledge: atomic nodes in
the probabilistic model (P), logical rules (L), other nodes (O). P and O
are disjoint. We are interested in finding nodes in L that are common
to P and O

Based on this knowledge structure, we propose three al-
gorithms for composing proof models with the probabilistic
model, corresponding to each scenario.

Algorithm 1 Scenario One
Require: the probabilistic model BN, the set P of atomic

nodes in BN, the set L of the logical nodes (including
logical rules and findings)

1: for all e such that e ∈ P do
2: for all N such that N is a natural deduction proof of

e, based on L do
3: Qualified ⇐ true
4: for all a such that a is an atomic node of N do
5: if a /∈ P then
6: Qualified ⇐ false
7: break
8: end if
9: end for

10: if Qualified is true then
11: BN = BN ⊕ N {⊕ means composition}
12: end if
13: end for
14: end for
15: return BN

When we build a composite model, we can follow the
rule of cumulation. We start from scenario one and then see
whether the current model satisfies our requirement. Based
on scenario one, further, we can build a bigger model corre-
sponding to scenario two. When we cannot retrieve enough
valuable knowledge from scenario two, we will extend it to
scenario three. So each scenario is based on its previous sce-
nario. Especially for scenario three, we will not begin to add

Algorithm 2 Scenario Two
Require: the probabilistic model BN, the set P of atomic

nodes in BN, the set L of the logical nodes (including
logical rules and findings)

1: for all e such that e ∈ P do
2: for all N such that N is a natural deduction proof of

e, based on L do
3: BN = BN ⊕ N {⊕ means composition}
4: end for
5: end for
6: return BN

Algorithm 3 Scenario Three
Require: the probabilistic model BN, the set P of atomic

nodes in BN, the set L of the logical nodes (includ-
ing logical rules and findings - we consider only atomic
findings), the set O representing all the literal nodes in
L but not in P .

1: for all e such that e ∈ P ∪ O {elements of P should be
tried before of O} do

2: for all N such that N is a natural deduction proof of
e, based on L do

3: if N ∩ BN �= ∅ {∩ means intersections of nodes}
then

4: BN = BN ⊕ N {⊕ means composition}
5: end if
6: end for
7: end for
8: return BN

the proofs related to set O until we have finished composing
the proofs based on set P.

Examples We use an example to show how to follow the
algorithms to make compositions. Formulas in the example
do not have a real meaning and are just used to show the
procedures.

First, we have a probabilistic model as shown in Fig. 16.
In the knowledge base, we also have logical rules as shown
in Table 1. Based on the probabilistic model and logical
rules, we can generate:

P = {A,B,C},
L = {A,A → B,A → C,C → B,A → D,D → B,A

→ E,B → E,F → G}, and

O = {D,E,F,G}.

− Example for scenario one: In scenario one all proofs
involve only nodes that are in the probabilistic model.
The proofs that are used for the example are given in

On the combination of logical and probabilistic models for information analysis

Fig. 16 The probabilistic model used for composition of scenarios 1,
2, and 3

Table 1 The logical rules for
the examples illustrating the
three composition scenarios

1 A

2 A → B

3 A → C

4 A → D

5 A → E

6 B → E

7 C → B

8 D → B

9 F → G

Fig. 17 Scenario one: (a) Natural deduction proofs of B, (b) a natural
deduction proof for C, and (c) the output of the model composition

Fig. 17(a) and (b). The output of the model composition
process is given in (c).

− Example for scenario two: In addition to the proof shown
in scenario one, we add the proof of B in Fig. 18(a),
which cannot be used in scenario one as it will introduce
new atomic node D. The output of the model composi-
tion process is given in Fig. 18(b).

− Example for scenario three: In scenario three, a proof is
introduced as long as there is an undirected path link-

Fig. 18 Scenario two: (a) Another natural deduction proof of B and
(b) the output of the model composition

Fig. 19 Scenario three: (a) Natural deduction proofs of E in scenario
three and (b) the output of model composition. Notice that we use B
to prove E, and possibly there are different proofs of B that may then
lead to different proofs of E. But, since we have added those proofs of
B in previous scenarios (scenarios one and two), it is not necessary to
list all the different proofs of E based on B in (a)

ing it to the probabilistic model. In addition to the proofs
used in scenario two, we add the proof of E in Fig. 19(a).
The output of the model composition process is given in
Fig. 19(b).

J. Wang et al.

5.3 Discussion

5.3.1 Adaptation

For a real world probabilistic model, it is possible that it
contains not only atomic nodes but also compound nodes. So
we need to change the composition algorithm to adapt to this
situation. The solution is simple: just ignore the compound
nodes of the original probabilistic model, i.e., only consider
proofs of its atomic nodes in the composition process. This
ensures that in one composition we only merge the roots of
the proof model, which are atomic, with the probabilistic
model.

When considering composition involving multiple proof
models, the probabilistic model keeps changing after each
composition step and we are always adding new proofs to
the latest probabilistic model. In this case, the updated prob-
abilistic model will start to contain compound nodes that do
not exist in the original probabilistic model but come from
the proof model used in the previous step. For such com-
pound nodes in the next composition step, when we find a
new proof model containing them, we do not need to add
them to the probabilistic model once again. This is because,
for any compound node used by different proofs, its parent
nodes are always the same. This implies the same network
structures and conditional probability distributions. Also, it
is obvious that when different proofs of a given node are
available, the corresponding natural deductions should have
at least one logic rule used in one proof but not in the other.
Therefore, the process of composing another proof is just
adding to the current probabilistic model different nodes and
edges. The existing nodes and edges brought by other pre-
vious proofs are unchanged. At this time, node mergers oc-
cur not only on the roots, but implicitly also on the existing
compound nodes brought by previous proofs. Meanwhile,
it is still the case that only children are added to the cur-
rent probabilistic model, i.e. logical consistency still holds.
When adding different proofs of different nodes, the process
is the same. We never change the existing nodes. We just add
new nodes that do not exist before in the current probabilis-
tic model.

So we can make some changes to the algorithm by adding
one step for the preprocessing and another step after com-
position. Before making the composition, if a probabilistic
model contains compound formula nodes, we temporarily
remove these nodes with all the edges coming in and out
of them, and save them for later use. Now the probabilistic
model just contains atomic nodes, and in each step of com-
position, we get an updated probabilistic model. Then we
remove the restriction (which is only applicable in the single
proof model case) that mergers only occur on the root nodes
of a proof model and the atomic nodes of a probabilistic
model, i.e., mergers can occur on both roots and compound

nodes of proof models. (Since all the compound nodes in the
original probabilistic model have been removed temporarily,
any compound formula nodes found in the current proba-
bilistic model in the process of composition should be from
some previous integrated proofs.) In the part of the algo-
rithm deciding whether a proof is eligible to be composed,
we add one more check: if the proof involves the compound
nodes already existing in the node set with temporarily re-
moved nodes, we ignore this proof. (Otherwise it will bring
duplicate nodes to the integrated model.) After the compo-
sition of all the eligible proofs, we add the removed com-
pound nodes back to the probabilistic model. Because what
we have changed in the original probabilistic model is just
adding more children to its nodes, the probability distribu-
tions of all the nodes in the original model do not change.

5.3.2 Automation

In all the previous examples, both proof models and result-
ing composite models are very simple. They could be built
even without the use of natural deductions and conversions.
However, for a large domain problem, this might not be pos-
sible. For example, consider a knowledge base containing
1,000 logical rules.8 Consider building a Bayesian network
to meet new requirements in the task domain of the exist-
ing logical knowledge base. We can use the technique pre-
sented in this paper to automate the process of reusing the
existing knowledge base. For example, we may still get the
domain experts to specify the basic probabilistic model, but
then use natural deduction proofs to augment this model au-
tomatically. Through the use of soft evidence updating, we
can even assign uncertainty to logical rules.

Because of the mature and wide use of logical theories in
the past decades, we have large logical knowledge bases to
support logical reasoning in many task domains. One mo-
tivation of this paper is also to introduce a way of making
use of existing logical knowledge bases to support modern
approaches to probabilistic reasoning.

5.3.3 Probabilistic knowledge base

The goal of the approach introduced in this paper is not
to find an equivalent Bayesian network to represent exist-
ing logical knowledge base. Because natural deductions are
completely based on the logical knowledge base, when all
the logical rules in the logical knowledge base are certain,
the use of any generated proof model of a formula will
produce the same result as direct logical reasoning. So for
queries over formulas entailed by the logical knowledge

8The logical rules of such a large KB cannot be totally from human
specification, and must be learned through some learning techniques.

On the combination of logical and probabilistic models for information analysis

base with certainty, translation to a proof model is redun-
dant, as the queries can be answered by the logical system
directly.

However, with the aid of composition, for queries over re-
lated formulas originally existing in the probabilistic model,
this translation is very helpful. It makes possible for domain
experts to specify different knowledge, based on its type:
logical or probabilistic, in the most suitable way: logical for-
mulas or Bayesian networks, while reasoning with a uniform
model. The reasoning process is not based on the probabilis-
tic model alone, but also complemented by the available log-
ical knowledge. For some problems, this could be done by
applying logical reasoning systems and probabilistic reason-
ing systems separately and sequentially. A simple example
can be shown by Fig. 20, where a query regarding the pos-
terior probability of C, denoted by P(C|e), can be done by
using the KB to reason about B at first and then applying
the conclusion of B as hard evidence into the BN to get
the posterior probability of C. Note that the KB contains
three logical formulas: A,A → B , and C → D, and the BN
just describes our knowledge about the probabilistic depen-
dency between B and C. The result is same as directly using
the composite model at the bottom of Fig. 20, with which,
however, the user does not even have to build a real sepa-
rate logic reasoning systems. Particularly, for a more com-
plex probabilistic model, sequential uses of separate models
could be cumbersome. For example, instead of only hav-
ing B , if there are more nodes that could potentially affect
the probability of C in the BN of Fig. 20, the user needs to
figure out all of them at first, query the logical system sec-
ondly, and last return to BN to do probabilistic reasoning.
With the translation and the composition, we automate the
process and can take the advantage of separate specification
of knowledge and uniform reasoning.

This approach makes special sense when we bring uncer-
tainty into the logical knowledge base. There are two ways.
One is based on assumptions. In this case, the pre-existing
knowledge base has no uncertainty, but we add more as-
sumption formulas into it. For example, these assumptions
may come from the probabilistic model. Then they can be
used in normal proof steps. This way has much higher flexi-
bility for integrating logical and probabilistic reasoning and
provides a much larger space of support for queries. For the
same example of Fig. 20, if we are interested in P(D|e),
then the sequential use of two separate models cannot help,
as the probabilistic output C of BN cannot be used to reason
about D in the KB. If, in the KB, we add one formula C∗
to represent the assumption of C, we obtain the composite
model shown in Fig. 21, which we can use to reason about
D’s posterior probability.

The second way is based on making the logical knowl-
edge uncertain. Uncertainty can occur on findings (or facts)
or even logical rules, and can have different values at dif-
ferent times. In the case of Fig. 11, we are no longer sure

Fig. 20 The composite BN provides the same result as using separate
models sequentially

that one of the rules holds. More generally, we can assign a
probability to one or more facts or rules.

Of course these two ways of bringing uncertainty into the
traditional logical knowledge base can be mixed. Therefore,
given new evidence on some atomic formulas or even the
logical rules, especially considering the use of soft evidence
updating [52, 97], any influences from changes of uncer-
tainty of these evidence nodes can be captured through the
composite model, while traditional logical reasoning cannot
handle uncertainty on formulas at all. In addition, such a
way of translating provides high flexibility in building the
model, as we can put any related formulas into the com-
posite model for probabilistic reasoning regardless of their
uncertainty (even if it is close to zero).

6 Related work

First-Order Logic (FOL), often referred as classical logic, is
the formal system of logic that has been most extensively
studied. Although it has great expressive power, FOL is still
not sufficient and efficient to model all the ways humans rea-
son, and therefore is also used as a foundation for defining
extended logics.

J. Wang et al.

Fig. 21 The KB for the example of Fig. 20 with addition of assump-
tion C, which is denoted by C∗

One important issue in classical logic is the lack of
treatment of plausible reasoning under uncertainty. Uncer-
tain conclusions result from fallible methods or uncertain
premises and are natural in almost any real world appli-
cation. Uncertainty reasoning is a realistic requirement for
most modern expert systems, and has led to various research
based on extension of classical logic.

6.1 First-order probabilistic models

One major extension of classical logic to reasoning un-
der uncertainty is based on probability theory. Probabilistic
models deal well with inherent uncertainty, while FOL has
the power of rich expressiveness of knowledge. So the inte-
gration of these two kinds of inference is highly desirable.
One of the earliest and most influential works in defining
precise semantics for probabilistic logics is a paper by Nils-
son [73] that computes lower and upper bounds instead of
point values for the probabilities of queried sentences. Ear-
lier work [26, 70] proposes a language for reasoning about
probability and for interpreting truth values probabilisti-
cally. Bacchus and Halpern [3, 34] distinguish degrees of be-
lief from relative frequencies and provide the semantics re-
lating them. The popularity of Bayesian networks as a mod-

eling tool starting from the mid-1980s attracted many re-
searchers to study the integration of FOL with Bayesian net-
works for probabilistic reasoning. Recent research includes
PRM [29, 31, 54], MEBN [55, 56], BLP [49], LBN [27], and
RBN [43, 44]. Besides Bayesian approaches, other graph-
ical models have also been proposed, such as MLN [83].
Logic program-based approaches include ICL [80] and SLP
[67, 68]. We will discuss and compare this closely related
work in more detail. For a better understanding of relations
between the related approaches, we recommend two good
surveys [66, 86] that analyze and categorize existing tech-
niques in this field. In most of these approaches, probabil-
ities, which are used as a measure of subjective belief, are
assigned to propositions. This is the category our work be-
longs to, and in particular, we would put our approach in
the branch of unknown at the bottom level of the taxonomy
in [66], as we need to list all objects that might exist, al-
though we have our special way of treating unknown objects
as shown in Sect. 7.2.

6.1.1 Approaches based on Bayesian networks

Bayesian Logic Programs (BLPs) [49] are FOL-like pro-
grams that consist of a set of Bayesian definite clauses with
quantitative information. A BLP specifies a Bayesian net-
work, as each Bayesian predicate is more like a random vari-
able, instead of logical predicate. A combination rule is used
in BLPs to combine different ground instances of a rule with
the same ground atom as head. As a variant of BLPs, Log-
ical Bayesian Networks (LBNs) [27] explicitly distinguish
logical knowledge and probabilistic knowledge through two
disjoint sets of predicates: the set of logical predicates and
the set of probabilistic predicates. The extra set of normal
logical clauses specifies deterministic background informa-
tion, which can be used to remove probability distribution
that are not meaningful in the induced Bayesian network.

The way knowledge is represented in LBNs is very simi-
lar to our approach, as both have separate specifications for
logical knowledge and probabilistic knowledge, and the log-
ical knowledge in both approaches is used as the background
knowledge. However, there are still important differences.
In BLPs and LBNs, the ground logical atoms are excluded
from the induced Bayesian network, as they are fixed to be
deterministic and no uncertainty is considered over them un-
less the design is changed. In addition, random variables el-
igible to appear in the induced Bayesian network are only
those ground Bayesian atoms in the least Herbrand model
of the program. This means that queries about atoms out-
side the least Herbrand model will not be considered. In our
approach, proof models could be built in different sizes, as
described in the three scenarios introduced in the previous
section, based on the realistic consideration of the degree
of detail in knowledge representation and on computing ca-
pacity and efficiency, and then composed with the existing

On the combination of logical and probabilistic models for information analysis

probabilistic models, which are the center for extension. If
the normal logical formulas turn out to be uncertain, we do
not have to rebuild the composite model for probabilistic
reasoning, but apply new evidence, which could be soft evi-
dence. This way of using logical knowledge is more flexible
than the way of using logical clauses in LBNs, because new
findings or new uncertainties may be continuously added to
a knowledge base; this is particularly useful in information
analysis applications. We do not distinguish Bayesian atoms
and logical atoms, as all the formulas are standard binary
ones.9 An atom included in the proof model could be an ar-
bitrary formula in the knowledge base as long as it plays a
role in some natural deduction proof. It is not even necessar-
ily a goal that could be proved. In addition, compared with
the definite clauses used in BLP and LBN, our approach ac-
cepts any standard FOL formulas.

A Multi-Entity Bayesian Network (MEBN) [55, 56]
specifies a probabilistic knowledge base as a set of para-
meterized fragments of Bayesian networks (MFrag) [56],
each of which describes probability information about a
set of related random variables. This collection of Mfrags,
called a MEBN Theory, defines a unique joint probability
distribution over random variables in the theory if all the
consistency constraints associated with each Mfrag are sat-
isfied. Based on findings, Situation-Specific Bayesian Net-
works (SSBNs) are generated in response to specific queries.
A special feature of MEBNs is the use of context constraints
in each MFrag to restrict its instantiations. The constraints
play a similar role to the logical literals of the conditional
dependency clause in LBN. MEBN is a well defined and
rich language that extends both FOL and Bayesian net-
works [55, 56]. Because of its generality, implementation
of MEBN systems is difficult [86].

A Probabilistic Relational Model (PRM) [29, 31, 54] is
a framework to represent probabilistic models over multi-
ple entities and relations between them. Generally, a PRM
specifies a relational schema for classes of objects and at-
tributes, a structure to define the probabilistic dependencies
between attributes, and the numerical probability informa-
tion including aggregate functions. A database (skeleton)
can be used to instantiate entities and relations, and con-
struct the Bayesian network for reasoning. PRMs are based
on the formalism of Frame Systems, which are less expres-
sive than FOL.

In all the above approaches standard Bayesian net-
works are constructed from knowledge bases, a meta-
approach called Knowledge Based Model Construction
(KBMC). However, in our approach, the proof model ex-
tracted through natural deduction proofs, which represents

9We might have non-binary random variables in the composite model
that come from the original probabilistic model. However, they will
never get involved in proof and composition.

the logical knowledge in a probabilistic form, is used as sup-
plemental knowledge for the original probabilistic model,
which pre-exists to represent our major interest and can ac-
tually be specified in any formalism, such as MEBN. This
simplifies integration of logic knowledge with probabilistic
reasoning, as both are in Bayesian network form. Regard-
ing probability dependencies and distributions, for LBN, the
edges of resulting Bayesian networks are determined from
the conditional dependency clauses and the CPTs are from
the logical CPD. PRMs have aggregate functions besides
the ordinary CPDs. MEBNs use MFrags to specify each lo-
cal probability dependencies and distributions. For complex
relations, aggregation functions and combining rules must
be used to combine influences. However, in our approach,
the added edges and CPTs all depend on the logical struc-
ture of extracted logical formulas. The added nodes build
the indirect connections between the ones of the original
probabilistic model.

In addition, our approach explicitly distinguishes proba-
bilistic knowledge and logical knowledge, and each kind of
knowledge is represented through its most commonly used
and familiar way: Bayesian networks and FOL formulas.
However, the reasoning is still based on a uniform model.
This way of integration enables separate knowledge specifi-
cation in the design phase. Even FOL-conversant knowledge
engineers who are not familiar with Bayesian approaches
can use their previous knowledge to build a model that can
later support probabilistic reasoning.

Further, most techniques are designed completely as a
new formalism or variant of existing FOL or Bayesian net-
works to implement the integration of reasoning. In their real
use, users have to study new way of designing and model-
ing. This conversion is hard and always comes with waste of
efforts as many techniques are still in primary stage. Our ap-
proach is not a new language, but a framework, supported by
a theorem prover, that can automatically transform the users’
knowledge expressed in these two traditional formalisms
into a uniform model for probabilistic reasoning. This makes
our approach an alternative way of not only designing new
expert systems but also making use of historical ones.

Also notice that our approach defines an extension of
existing probabilistic model with logical rules. The result-
ing model used for reasoning is still a Bayesian network.
If the original probabilistic dependencies do not exist, the
extension effect is just to build a Bayesian network repre-
senting a logical knowledge base as all the entailments still
hold. When the logical knowledge does not exist, there is no
change to the original probabilistic model.

6.1.2 Non-Bayesian network based approaches

A Stochastic Logic Program (SLP) [68] consists of a set of
labeled clauses, which are range-restricted definite clauses.

J. Wang et al.

Probabilistic reasoning is done through a stochastic SLD-
tree. The labels are probabilities. However, the probability
distribution is not defined over proposition, but over proofs.
In our approach, we have no restriction on the form of logic
formulas. The probabilities are directly defined over propo-
sitions. We also use proofs, which are based on natural de-
duction. Proofs are not used for probabilistic reasoning, but
for knowledge selection. We can compose the proof BN with
the original Bayesian network, which may provide the prior
probability distribution for root nodes. The final probabilis-
tic reasoning is through a Bayesian network.

The Independent Choice Logic (ICL) [80] can be seen
as adding independent stochastic inputs to a logic program,
with a look similar to SLP. From another perspective, it can
be regarded as a way of rule-based specification of Bayesian
networks with logical variables. Compared with our ap-
proach, probabilities of ICL are specified only over alter-
natives, and probabilistic reasoning is done directly instead
of through Bayesian network. The logic programs are not
arbitrary. Atoms are classified to be atomic choice or not.

A Markov Logic Networks (MLN) [83] is a set of first-
order formulas with weights attached. The MLN approach
can be regarded as a special case of KBMC. Together with
a finite set of constants, an MLN defines a ground Markov
network, through which the reasoning is conducted. Unlike
Bayesian networks, Markov networks are undirected net-
works. When complex constructs are present, inference in
Markov networks can become quite slow [86]. MLNs have
great expressive power and can be viewed as a generaliza-
tion of FOL. However, learning and explaining the weights
are still hard problems.

All the above techniques appear very close to normal
logic programs, especially for SLP and MLN. These lan-
guages include direct support for arithmetic and probabilis-
tic computation in their processors. However, the knowledge
bases written in them are not pure FOL KBs, because they
require the addition of numeric labels that are interpreted in
a special way. Some are regarded as probabilities (in SLPs),
while some are weights (in MLNs). Since natively FOL for-
mulas are not designed for probabilistic reasoning, these la-
bels are hard even for domain experts to specify, and also
hard for users to understand and maintain. To overcome this
difficult step, it has been suggested that learning be used as
the source of the values of these labels, but learning itself
is another hard problem, and a great deal of the latest work
concentrates on it. For example, for MLN, recent papers ad-
dress structure learning (formula learning) [6, 53], parame-
ter learning (weight learning) [42, 61, 88] and both [41]. For
PRM, learning algorithms for both structure and parameters
have been proposed in [29, 31, 32]. For BLP, the learning
principle is discussed in [48]. A search algorithm for learn-
ing LBN is proposed in [28], which is also valid for learning
some other directed probabilistic logical models. One new

method for parameter learning for relational models is in-
troduced in [45], based on compiling a RBN model into a
computational structure for the likelihood function and its
partial derivatives. Some detailed discussions of current and
emerging trends in learning can be found in [16, 30].

By contrast, in our approach, through natural deduction
proofs the logical models are extracted directly from the log-
ical knowledge base, which consists of standard FOL for-
mulas that are not restricted to any special form. Addition-
ally, no learning is involved in our framework, as we expect
that the probabilistic knowledge is best presented through
the probabilistic model Bayesian network.

Although our approach separates the logical and proba-
bilistic knowledge specifications, we still allow the user to
place uncertainty over logical rules, using the technique of
soft evidence updating [52, 97], since each logical rule used
in the proof has a corresponding node in our proof-based
logical model, which is just a Bayesian network. This way
of attaching uncertainty information over not only atomic
formulas but the whole logic rules, is quite different from
what is done in most other techniques, which generate prob-
abilistic models that contain only atomic formulas as nodes,
such as BLP/LBN [27, 49] and MLN [83].

As discussed before in Sect. 5.3.2, one motivation of our
approach is to introduce a way of making use of existing
logical knowledge bases to support modern approaches to
probabilistic reasoning. This point of view, to the authors’
knowledge, has never been considered in other work on the
integration of logical and probabilistic reasoning.

From another perspective, compared with our approach
of converting logical knowledge into Bayesian networks,
there have also been some work done in the reverse direc-
tion, i.e., from Bayesian networks to logical theories [14].
However, the translation of a BN into a pure logical the-
ory requires including axioms for arithmetic and for prob-
ability itself, which would take a lot of space, slow down
computation, and be difficult for a user to read. For exam-
ple, a set of axioms for a FOL theory of probability given
in [3] includes the field axioms. A user would undoubtedly
find the application of field axioms to probabilistic infer-
ence very hard to comprehend. So the resulting logical the-
ory from the integration approach with translation in this di-
rection should rather be regarded as supporting logic-based
techniques to do probabilistic inference, instead of support-
ing human-oriented knowledge representation and reason-
ing. In fact, some authors have suggested using a transla-
tion of Bayesian networks to propositional logic as a step
in probabilistic inference, which would be hidden from the
user [14].

6.2 Models based on non-standard logics

Traditional tools based on probability theory still cannot
handle all facets of uncertainty. This leads to extensions

On the combination of logical and probabilistic models for information analysis

of classical logic based on different representations of un-
certainty, such as possibility theory and belief functions.
The main motivation is a more faithful treatment of incom-
plete knowledge [21]. Among the vast literature, one impor-
tant representative work is possibilistic logic [24, 25]. Like
our approach, possibilistic logic is also based on two value
states, i.e., Boolean propositions. However, the weights at-
tached to sentences quantify their possibility or necessity.
For a sentence p, the degrees of possibility and necessity
are denoted by �(p) and N(p) [18]. Dubois, Lang, and
Prade [17, 18, 22] show how to extend the resolution prin-
ciple to possibilistic logic. Ignorance is well expressed in
possbilistic logic through (N(p),N(¬p)) = (0,0), and the
complete lack of certainty that p is false (N(¬p) = 0)

can be clearly distinguished from the total certainty that
p is true (N(p) = 1). For consistent knowledge bases,
we can conclude N(¬p) = 0 given N(p) = 1, but not
the other way around. This is quite different from the
probability measures where Prob(p) = 1 is equivalent to
Prob(¬p) = 0 [24]. The fundamental semantic differences
between probabilities and possibilities determine the dif-
ferent ways of handling uncertainty in probabilistic logic
and possibilistic logic. For example, reasoning based on a
possibilistic knowledge base uses only the part of knowl-
edge one is most sure of [24]. “Possibilistic logic may es-
pecially be used for encoding user preferences, since pos-
sibility measures can actually be viewed as rankings (on
worlds or also objects) along an ordinal scale” [93]. One
preliminary investigation of the potentials of possibilis-
tic logic in the representation and combination of pref-
erences in decision analysis can be found in [4]. Possi-
bilistic logic has been implemented in many ways, e.g.,
the POSLOG system [23]. The possibility measure was
introduced by Zadeh [99] and was greatly developed by
Dubois, Prade and others [19]. It has a representation whose
complexity is linear with the number of elements in the
set of possible worlds (the frame of discernment) [21]. It
deals well with default reasoning and counterfactual reason-
ing [35].

The Dempster-Shafer (D-S) theory [87] (sometimes
called belief function theory) provides an alternative way
of handling partially specified models, unlike the pure
Bayesian theory that requires the specification of a complete
probabilistic model before reasoning can start. D-S theory
computes probabilities of provability rather than computing
probabilities of truth. The mass function m is defined for
each possible proposition. m is also called a basic probabil-
ity assignment, and the belief function bel is defined based
on m. If we use W to represent the possible worlds and A to
represent a proposition, the following expressions show the

relations between m and bel:
∑

A⊆W

m(A) = 1,

bel(A) =
∑

B⊆A

m(B).

In addition, Dempster’s Rule of Combination provides a way
to combine the impact of several pieces of evidence that are
independent. For example, for two mass functions m1 and
m2, we have:

m1 ⊕ m2(A) = 1

c

∑

A1∩A2=A

m(A1)m(A2),

where c is a normalization factor. This rule of combination is
commutative and associative. Although these features make
D-S theory attractive, problems do exist in its real use. One
major one is computational complexity, which increases ex-
ponentially with respect to the size of the frame of discern-
ment [75]. There are also other methods of computing be-
lief functions, such as the Incidence Calculus [7, 58, 59],
which is based on a representation of uncertainty using sets
of points. Probabilities are not directly associated with for-
mulas, but with possible worlds.

Vagueness and fuzziness lead to the extension of classical
logic to many-valued logics and fuzzy logics. For example,
in three-valued logic, besides the usual truth value true and
false, the third value is to express the idea of “unknown”
or “possible.” Note that vague/fuzzy propositions are truth-
functional, while the degree of uncertainty is not with re-
spect to all the connectives [20, 24]. Many-valued logics
normally consider degree of truth, instead of degree of un-
certainty. One widely studied class of many-valued logics is
annotated logic, which is proposed by Subrahmanian in [96]
as a formal model to represent and reason under incomplete
and inconsistent information, and it therefore addresses im-
portant aspects of the management of uncertainty in infor-
mation analysis, although not the issue of representation and
management of belief in hypotheses, which is the focus of
our paper. Annotated logic has been greatly extended to sup-
port temporal and uncertain reasoning [95]. Related research
can be found in, e.g., [1, 2, 9, 15, 50, 51, 63, 96]. Many-
valued logics have been extended and applied in many fields,
e.g., Kleene’s three-valued logic is used in [74] for repre-
senting and reasoning with temporal information, and a new
symbolic approach to representation of imprecise (or fuzzy)
information has been proposed in [10] based on a symbolic
many-valued logic. A more complete list of categorized ref-
erences for the management of imperfect information can be
found in [62, 93].

The comparison between our approach and these tech-
niques is mainly a comparison of probability theory with
possibility theory, belief function theory, and many-valued

J. Wang et al.

logic. However, since they are just different representations
of uncertainty, it is hard to conclude that approaches based
on one representation are absolutely better for reasoning
than ones based on the other. The choice should depend on
the application domain. Probability has the advantage of be-
ing better studied and understood, and many arguments sug-
gest that it is the only “rational” way to represent uncertainty
under certain assumptions [35]. In particular, for applica-
tions in information analysis, such as hypothesis manage-
ment, surprise detection, and generation of alerts, it is conve-
nient to leverage probabilities to compute expected utilities
and base decisions on the maximum expected utility princi-
ple. More detailed comparisons and discussions about these
theories are available, e.g., in [35, 89].

Note that it may not be appropriate to simply classify
uncertainty reasoning into probabilistic approaches or not.
Some non-classical logics are better suited to support un-
certain reasoning directly in particular domains. Some ex-
amples include logics for temporal and spatial reasoning.
As another example, Description Logics (DLs) play an im-
portant role in the semantic web domain, and incorporating
uncertainty in DL reasoning has been the topic of much re-
search. DLs could be fuzzy [90–92, 94], probabilistic [64,
65], and possibilistic [39, 81]. A recent proposal uses a sin-
gle reasoning procedure for dealing with uncertainty repre-
sented by different mathematical formalisms [33].

7 Correctness proofs

7.1 Correctness of the logical model

We want to demonstrate that models constructed as de-
scribed above behave according to our logical intuitions. We
consider an arbitrary “mixed” model of the sort in Fig. 10.

Note that the roots (nodes without parents) of the proof
Bayesian network need not be atomic formulas, and not all
subformulas of a logical node formula need to be present
in the proof Bayesian network. For example, we might have
proved R ∧ Q from (R ∧ Q) ∧ S without introducing the
atomic formulas R and Q. In this case, S does not appear
in the proof Bayesian network. Although it is not necessary
to do so, it is convenient for this presentation to extend the
proof Bayesian network so that all complex formulas that
are not roots have exactly two parents. Also, we define ¬A

to be an abbreviation for A → ⊥.
We permit the causal Bayesian network to introduce ar-

bitrary dependencies between the root nodes of the logical
Bayesian network. We make the restriction that nodes of the
causal Bayesian network that are not shared with the proof
Bayesian network may not be part of the language of the
proof Bayesian network. The proof Bayesian network just
described, for example, could not be joined with a causal

Bayesian network that refers to R, because R is in the proof
Bayesian network but would not be properly linked. This
can always be overcome by extending the proof Bayesian
network so that it does contain R before joining with the
causal Bayesian network.

As described in Sect. 4.2.1, the general claim that we
wish to prove is that for an arbitrary probability distribution
P over the language of the proof and for an arbitrary for-
mula G occurring in the proof dependent on assumptions
A1, . . . ,An, P(G = true | A1 = true, . . . ,An = true) = 1.
For simplicity, we will use P(ai) to abbreviate P(Ai = true)

and P(āi) to abbreviate P(Ai = false). Let L represent the
set of all nodes of the causal Bayesian network and all
roots of the proof Bayesian network. We let P be an arbi-
trary probability distribution over L satisfying the indepen-
dence relations induced by the DAG, with the restriction that
P(⊥) = 0. Our first step will be to extend P to all logical
formulas over L.

Let v be an arbitrary function from L to {true, false}. For
an arbitrary complex formula A, we define v[A] recursively
on the structure of A by case depending on the main con-
nective of A. If A ≡ B ∧ C then we define v[A] = true
if v[B] = true and v[C] = true; v[A] = false otherwise.
Similarly, v[B ∨ C] = true iff either of v[B] or v[C] are
true, v[B → C] = true iff v[B] = false or v[C] = true, and
v[⊥] = false. When v[A] = true we write v |= A and other-
wise we write v �|= A. v is called a valuation over L.

Using the set of all valuations over L as a sample space
with all possible subsets as events, we can define a proba-
bility distribution P ′ such that, for any A ∈ L, P ′({v | v |=
A}) = P(a). Since P is given for all A ∈ L, P uniquely de-
termines P ′ over any subset of valuations. We now use P to
denote P ′, since this usage is unambiguous. Note in partic-
ular that P(⊥) = P({v | v |= ⊥}) = P(∅) = 0 as required.

Since the composite DAG is, in fact, a Bayesian network,
and since P is given over the parents of all logical nodes,
the full distribution P̂ over the entire DAG is uniquely de-
termined. Since P̂ extends P , we again use P to denote it.
We next show that for every node A in the Bayesian net-
work, P(a) = P({v | v |= A}), by induction over the com-
plexity of A. Complexity here means the depth of the parse
tree of the formula relative to L (for example, the complex-
ity of B ∧ C is one greater than the maximum complexity
of B or C), where all formulas in L are given complexity 1
regardless of their structure.

We have established the claim already for A ∈ L, satis-
fying the base case, in which the complexity of A is 1. For
the inductive step we suppose that A is of higher complex-
ity. Suppose A ≡ B ∧ C. A must have parents in the proof
Bayesian network in order that A �∈ L, so B and C are both
nodes in the proof Bayesian network. By the inductive hy-
pothesis, P(b) = P({v | v |= B}) and P(c) = P({v | v |=

On the combination of logical and probabilistic models for information analysis

C}). By the conditional probability table for ∧,

P(B ∧ C = true) = P(b, c)

= P({v | v |= B}, {v | v |= C})
= P({v | v |= B} ∩ {v | v |= C})
= P({v | v |= B and v |= C})
= P({v | v |= B ∧ C})

If A ≡ B ∨ C, then by the conditional probability table
for ∨,

P(B ∨ C = true) = P(b, c) + P(b, c̄) + P(b̄, c)

= P({v | v |= B and v |= C})
+ P({v | v |= B and v �|= C})
+ P({v | v �|= B and v |= C})

= P({v | v |= B ∪ v |= C})
= P({v | v |= B ∨ C})

The case in which A ≡ B → C is similar.
We have thus established that for every node A in the

composite network, P(a) = P({v | v |= A}), indicating that
the semantics of our network is what we would expect. Next
consider any formula occurrence G in the proof and let
� = {A1, . . . ,An} be the set of all assumptions on which G

depends. Our original goal was to show that P(g | �) = 1.
Since � 	 G, the soundness of the logical rules gives us that
for every v such that v |= �, v |= G. Thus {v | v |= �,G} =
{v | v |= �}. This allows us to reason:

P(g | �) = P(g,�)

P (�)
= P({v | v |= �,G})

P ({v | v |= �}) = 1

The correctness proof demonstrates the desirable charac-
teristic that the conclusion of a proof is in state “true” with
probability 1, conditional on the premises of the proof be-
ing in the state “true.” More generally, it demonstrates that
any formula in the proof is true with probability 1, condi-
tional on those premises on which it depends in the proof.
One possible use of this is to observe that a given context
node of the network is true; then every formula of the proof
within that context will have value true as well.

Although we leave the “background context” � implicit
when translating the proof in Fig. 6, we could have intro-
duced a node for � as well, with all premises of the proof
pointing to that node. Making a hard evidential observation
on that node (which is only true when all of its parents are)
then forces the truth of all conclusions that occur within that
context, just as in the other contexts. Making a soft eviden-
tial observation on that node can provide a way to quantify
that we have a certain degree of trust for the information

that comes from a particular knowledge base. If we are rea-
soning over knowledge from many sources, we can assign a
different context node for each source and quantify the trust-
worthiness of each source in this way. Note that this cannot
be accomplished by assigning the appropriate degree of be-
lief to each premise individually, because doing this indi-
cates that the premises succeed or fail independently rather
than together. A conclusion that depends on a very large
number of highly likely premises will mistakenly be given a
lower probability than it would be given when the context is
used to indicate the single degree of certainty for the set of
premises.

Another property of the networks that is made apparent
by the correctness proof is the desirable semantic interpre-
tation that the probability for a given node is the total prob-
ability of the set of models of that node. This is similar to
the technique presented in [76] and allows one to define
arbitrary distributions over logical models, while maintain-
ing consistency with the Bayesian networks derived from
proofs.

In some cases it might be desirable to force all atomic
formulas to be explicitly represented in proofs. This can be
done straightforwardly by converting the natural deduction
proof to its so-called long βη-normal form. Certain search
strategies for natural deduction proving will automatically
generate such proofs without the need for conversion [8].

7.2 The first-order logic case

Although all the examples shown in the previous sections
are propositional, our approach work in FOL case too. The
proof for the first-order case is similar to the proof for the
propositional case. We use a standard term models as used
to prove completeness for first order logic. For any term t ,
we call A(t) a subformula of (∀x)A(x) and of (∃x)A(x).
The parents of any quantified node include all of its subfor-
mulas which occur in the proof and also a special syntac-
tic construction of the form A(x)s,...,t which is intended to
represent all possible instantiations of x other than s, . . . , t .
This single node allows to avoid attempting to enumerate or
sample from all terms in the language. The details of this
proof are not presented in this paper.

7.3 Correctness of adding a new proof to the updated
probabilistic model

We only provide a proof sketch for the propositional case;
the FOL case is very similar. Starting from a probabilistic
model Bayesian network B , we denote the first integrated
proof as G1 and the second (current) proof as G2. B con-
tains all the roots in G1 and G2 (we extend B if necessary).
Then, there are two possibilities:

1. G1 and G2 do not have common compound formula
nodes, as shown in Fig. 22.

J. Wang et al.

Fig. 22 The case when two proofs do not have common compound
formula nodes

2. G1 and G2 have common compound formula nodes, as
shown in Fig. 23. (The special case in which all the com-
pound formula nodes are common is the same as adding
one proof only, and the correctness is obvious.)

We extend G1 to be BN(G1,G2), which denotes the
Bayesian network having all the nodes in G1 and G2, in-
cluding both root atomic formula nodes and compound
formula nodes. We can see that all the root nodes of
BN(G1,G2) are also in B . BN(G1,G2) is still a proof
model that contains a complete set of nodes used in a proof
for some given goal formula. In particular, here the num-
ber of goal formulas could be one or two, depending on we
are composing two proofs of one same goal or two different
goals, and each node only appears once even if it is used in
two different proofs (no duplicate nodes). Also we denote
the composite model as BN(B,BN(G1,G2)).

We then can define the same L and P as in Sect. 7.1: L
represents the set of all the nodes of B and P is an arbitrary
probability distribution over L satisfying the independence
relations induced by B . In a way similar to Sect. 7.1, we can
easily extend P to all the nodes of BN(B,BN(G1,G2))

and prove that for an arbitrary formula G occurring in the
proof dependent on assumptions A1, . . . ,An, P(G = true |
A1 = true, . . . ,An = true) = 1.

If we keep on adding different proofs to the current prob-
abilistic model, following the same analysis as above, the
resulting Bayesian network always keeps the same charac-
teristic, i.e. the conclusion of a proof is in state “true” with
probability 1, conditional on the premises of the proof being
in the state “true.”

8 Implementation considerations

We decided to use the IKL Lisp-like language to represent
formulas within a proof [36–38]. An issue that had to be
resolved is that of representing the proof in a convenient

Fig. 23 The case when two proofs have common compound formula
nodes

Fig. 24 A natural deduction proof in XML format

machine-readable form. Due to the prevalence of XML, we
decided to use a variation of the XML format used in the
Vampire theorem prover [82]. Since Vampire is a resolution
theorem prover, while we use natural deduction, we mod-
ified the schema by allowing for an explicit representation
of the rule used and of the context, defined as the set of as-
sumptions, used in a proof step. The XML document rep-
resenting the brown liquids proof contains a list of contexts

On the combination of logical and probabilistic models for information analysis

Fig. 25 The BALER software
process flow [40]

and the proof steps, which are both numbered and refer to
the contexts, as shown in Fig. 24. Note that the IKL syntax
requires what seems to be, in the propositional case, super-
fluous parentheses.

The methodology described in this paper has been partly
implemented in the BALER software system, which is de-
scribed in Fig. 25. In this paper, we do not discuss the use of
OWL for the representation of variables (nodes in Bayesian
networks, their attributes, and variables of the logical the-
ories) that are used to support the composition process.
See [40] for some discussions of this topic. A full implemen-
tation and an empirical study of the ergonomical aspects of
our methodology have not yet carried out and should be the
subject of future work.

9 Conclusion

In this paper, we describe a framework for systems that in-
corporate the advantages of both Bayesian and logical sys-
tems. We define a formalism for the conversion of automat-
ically generated natural deduction proof trees into Bayesian
networks. We then demonstrate that the merging of such net-
works with domain-specific causal models forms a consis-
tent Bayesian network with correct values for the formulas
derived in the proof. We have used examples to show the
influence brought by logical knowledge to uncertainty rea-
soning in our integrated approach and have discussed its ex-
tensions that address practical issues.

Depending on problems, we can build composite mod-
els of different sizes automatically by adding fewer or more
proofs as needed. Especially for large pre-existing knowl-
edge bases, such automation facilitates building models of
information analysis and, through the use of pre-existing
logical knowledge, makes our specification more complete
and objective. Because we are using Bayesian networks for
probabilistic reasoning, the actual inference would be done
only on the subgraph consisting of the query and evidence
nodes and their ancestors [71], even if the model is very
large. In particular, the complementary knowledge is al-
ways added as child nodes in resulting Bayesian networks.
When there is no logical knowledge available as hard or
soft evidence, the composite model just resumes to be the
originally manual-specified Bayesian network. Meanwhile,
our approach is very easy to understand. Based on support
from a theorem prover, the whole process including conver-
sion and composition is straightforward. In addition, our ap-
proach can be combined with any other Bayesian network-
based techniques used for probabilistic reasoning. For ex-
ample, we can use the Bayesian networks that are the output
of other techniques as the input probabilistic models for our
technique, instead of specifying them manually.

Acknowledgements This work was funded in part by the Disruptive
Technology Office (DTO) Collaboration and Analyst System Effec-
tiveness (CASE) Program, contract FA8750-06-C-0194 issued by Air
Force Research Laboratory (AFRL). The views and conclusions are
those of the authors, not of the US Government or its agencies. The
authors thank the anonymous reviewers for many useful suggestions.

J. Wang et al.

References

1. Abe J, Akama S (2001) On some aspects of decidability of anno-
tated systems. In: Proceedings of the international conference on
artificial intelligence, pp 789–795

2. Akama S, Abe J (1998) Many-valued and annotated modal logics.
In: Proceedings of the 28th international symposium on multiple-
valued logic. IEEE Computer Society, Washington, pp 114–119

3. Bacchus F (1990) Representing and reasoning with probabilistic
knowledge: a logical approach to probabilities. MIT Press, Cam-
bridge

4. Benferhat S, Dubois D, Prade H (2001) Towards a possibilistic
logic handling of preferences. Appl Intell 14:303–317

5. Bertelè U, Brioschi F (1972) Nonserial dynamic programming.
Academic Press, New York

6. Biba M, Ferilli S, Esposito F (2008) Discriminative structure
learning of Markov logic networks. In: Proceedings of the 18th in-
ternational conference on inductive logic programming, ILP ’08.
Springer, Berlin, pp 59–76

7. Bundy A (1985) Incidence calculus: a mechanism for probabilistic
reasoning. J Autom Reason 1(3):263–283

8. Byrnes J (1999) Proof search and normal forms in natural deduc-
tion. PhD thesis, Department of Philosophy, Carnegie Mellon Uni-
versity

9. Carbogim DV, da Silva FSC (1998) Annotated logic applications
for imperfect information. Appl Intell 9:163–172

10. Chachoua M, Pacholczyk D (2000) A symbolic approach to un-
certainty management. Appl Intell 13:265–283

11. Cheng J, Emami R, Kerschberg L, Santos JE, Zhao Q, Nguyen
H, Wang H, Huhns M, Valtorta M, Dang J, Goradia H, Huang J,
Xi S (2005) Omniseer: a cognitive framework for user modeling,
reuse of prior and tacit knowledge, and collaborative knowledge
services. In: Proceedings of the 38th Hawaii international confer-
ence on system sciences (HICSS38), Big Island, HI

12. Cooper GF (1987) Probabilistic inference using belief networks is
np-hard, memo KSL-87-27 (revised July 1988). Tech rep, Medical
Computer Science Group, Knowledge Systems Laboratory, Stan-
ford University

13. Cooper GF (1990) The computational complexity of probabilistic
inference using Bayesian belief networks. Artif Intell 42:393–405

14. Darwiche A (2009) Modeling and reasoning with Bayesian net-
works. Cambridge University Press, Cambridge

15. Dekhtyar A, Subrahmanian VS (2000) Hybrid probabilistic pro-
grams. J Log Program 43(3):187–250

16. Dietterich TG, Domingos P, Getoor L, Muggleton S, Tadepalli
P (2008) Structured machine learning: the next ten years. Mach
Learn 73:3–23

17. Dubois D, Prade H (1987) Necessity measures and the resolution
principle. IEEE Trans Syst Man Cybern 17:474–478

18. Dubois D, Prade H (1988) Possibility theory. Plenum Press, New
York

19. Dubois D, Prade H (1990) An introduction to possibilistic and
fuzzy logics. In: Readings in uncertain reasoning. Morgan Kauf-
mann Publishers, San Francisco, pp 742–761

20. Dubois D, Prade H (1994) Can we enforce full compositional-
ity in uncertainty calculi? In: Proc of the 11th nat conf on ar-
tificial intelligence (AAAI-94). AAAI Press/MIT Press, Menlo
Park/Cambridge, pp 149–154

21. Dubois D, Prade H (2001) Possibility theory, probability theory
and multiple-valued logics: a clarification. Ann Math Artif Intell
32(1–4):35–66

22. Dubois D, Lang J, Prade H (1987) Theorem proving under un-
certainty: a possibility theory-based approach. In: IJCAI’87: pro-
ceedings of the 10th international joint conference on artificial in-
telligence. Morgan Kaufmann Publishers Inc, San Francisco, pp
984–986

23. Dubois D, Lang J, Prade H (1990) Poslog, an inference system
based on possibilistic logic. In: Proc of the North American fuzzy
information processing society conference (NAFIPS’90): quar-
ter century of fuzzyness, Toronto, Canada, 06/06/90–08/06/90,
pp 177–180

24. Dubois D, Lang J, Prade H (1994) Automated reasoning using
possibilistic logic: semantics, belief revision and variable certainty
weights. IEEE Trans Knowl Data Eng 6(1):64–71

25. Dubois D, Lang J, Prade H (1994) Possibilistic logic. In: Gabbay
DM, Hogger CJ, JA Robinson (eds) Handbook of logic in artificial
intelligence and logic programming. Nonmonotonic reasoning and
uncertain reasoning, vol 3. Oxford University Press, New York,
pp 439–513

26. Fagin R, Halpern JY, Megiddo N (1990) A logic for reasoning
about probabilities. Inf Comput 87:78–128

27. Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical
Bayesian networks and their relation to other probabilistic logical
models. In: Proceedings of the 15th international conference on
inductive logic programming. Springer, Berlin, pp 121–135

28. Fierens D, Ramon J, Bruynooghe M, Blockeel H (2008) Learn-
ing directed probabilistic logical models: ordering-search versus
structure-search. Ann Math Artif Intell 54:99–133

29. Friedman N, Getoor L, Koller D, Pfeffer A (1999) Learning prob-
abilistic relational models. In: IJCAI. Springer, Berlin, pp 1300–
1309

30. Getoor L, Taskar B (2007) Introduction to statistical relational
learning (adaptive computation and machine learning). MIT Press,
Cambridge

31. Getoor L, Friedman N, Koller D, Taskar B (2001) Learning prob-
abilistic models of relational structure. In: Proceedings of the
eighteenth international conference on machine learning. Morgan
Kaufmann, San Mateo, pp 170–177

32. Getoor L, Friedman N, Koller D, Taskar B (2002) Learning prob-
abilistic models of link structure. J Mach Learn Res 3:679–707

33. Haarslev Pai HI V, Shiri N (2009) A formal framework for descrip-
tion logics with uncertainty. Int J Approx Reason 50(9):1399–
1415

34. Halpern JY (1990) An analysis of first-order logics of probability.
Artif Intell 46:311–350

35. Halpern JY (2003) Reasoning about uncertainty. MIT Press, Cam-
bridge

36. Delugach H (ed) (2005) Common logic—a framework for a fam-
ily of logic-based languages. Tech rep, International Standards
Organization: iSO/IEC JTC 1/SC 32N1377, International Stan-
dards Organization Final Committee Draft, 2005-12-13, available
at http://i-cl.tamu.edu/docs/cl/32N1377T-FCD24707.pdf

37. Hayes PJ (2006) IKL guide. Tech rep, Florida Institute for Human
and Machine Cognition, unpublished memorandum available at
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html

38. Hayes PJ, Menzel C (2006) IKL specification document. Tech
rep, Florida Institute for Human and Machine Cognition, un-
published memorandum available at http://www.ihmc.us/users/
phayes/IKL/SPEC/SPEC.html

39. Hollunder B (1995) An alternative proof method for possibilis-
tic logic and its application to terminological logics. Int J Approx
Reason 12(2):85–109

40. Huhns M, Valtorta M, Wang J (2010) Design principles for on-
tological support of Bayesian evidence management. In: Obrst L,
Janssen T, Ceusters W (eds) Semantic technologies, ontologies,
and information sharing for intelligence analysis. IOS Press, Am-
sterdam, pp 163–178

41. Huynh TN, Mooney RJ (2008) Discriminative structure and pa-
rameter learning for Markov logic networks. In: Proceedings of
the 25th international conference on machine learning, ICML ’08.
ACM, New York, pp 416–423

http://i-cl.tamu.edu/docs/cl/32N1377T-FCD24707.pdf
http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

On the combination of logical and probabilistic models for information analysis

42. Huynh TN, Mooney RJ (2009) Max-margin weight learning for
Markov logic networks. In: Proceedings of the European confer-
ence on machine learning and principles and practice of knowl-
edge discovery in databases (ECML/PKDD-09). Bled, pp 248–
263

43. Jaeger M (1997) Relational Bayesian networks. In: Proceedings of
the 13th conference of uncertainty in artificial intelligence (UAI-
13). Morgan Kaufmann, San Mateo, pp 266–273

44. Jaeger M (2002) Relational Bayesian networks: a survey. Electron
Trans Artif Intell 6

45. Jaeger M (2007) Parameter learning for relational Bayesian net-
works. In: Proceedings of the international conference in machine
learning

46. Jensen FV, Nielsen TD (2007) Bayesian networks and decision
graphs, 2nd edn. Springer, New York

47. Johnson DS (1990) A catalog of complexity classes. In: van
Leeuwen J (ed) Handbook of theoretical computer science, vol. A:
algorithms and complexity. MIT Press, Cambridge, pp 67–161

48. Kersting K, De Raedt L (2008) Basic principles of learning
Bayesian logic programs. In: De Raedt L, Frasconi P, Kersting
K, Muggleton S (eds) Probabilistic inductive logic programming.
Springer, Berlin, pp 189–221

49. Kersting K, Raedt LD (2001) Bayesian logic programs. CoRR
cs.AI/0111058

50. Kifer M, Subrahmanian VS (1989) On the expressive power of
annotated logic programs. In: Proceedings of the North American
conference on logic programming, pp 1069–1089

51. Kifer M, Subrahmanian VS (1992) Theory of generalized an-
notated logic programming and its applications. J Log Program
12:335–367

52. Kim YG, Valtorta M, Vomlel J (2004) A prototypical system for
soft evidential update. Appl Intell 21(1):81–97

53. Kok S, Domingos P (2009) Learning Markov logic network struc-
ture via hypergraph lifting. In: Proceedings of the 26th interna-
tional conference on machine learning (ICML-09)

54. Koller D (1998) Pfeffer a probabilistic frame-based systems. In:
Proc AAAI. AAAI Press, Menlo Park, pp 580–587

55. Laskey KB (2006) First-order Bayesian logic. Technical report
C4I06-01. Tech rep, SEOR Department, George Mason Univer-
sity

56. Laskey KB (2008) MEBN: a language for first-order knowledge
bases. Artif Intell 172:140–178

57. Laskey KB, Mahoney SM (1997) Network fragments: represent-
ing knowledge for constructing probabilistic models. In: Proceed-
ings of the thirteenth annual conference on uncertainty in artificial
intelligence (UAI-97), Providence, pp 334–341

58. Liu W, Bundy A (1994) A comprehensive comparison between
generalized incidence calculus and the Dempster-Shafer theory of
evidence. Int J Hum-Comput Stud 40:1009–1032

59. Liu W, McBryan D, Bundy A (1998) The method of assigning
incidences. Appl Intell 9:139–161

60. Loveland DW, Stickel M (1976) A hole in goal trees: Some guid-
ance from resolution theory. IEEE Trans Comput 25:335–341

61. Lowd D, Domingos P (2007) Efficient weight learning for Markov
logic networks. In: Proceedings of the eleventh European confer-
ence on principles and practice of knowledge discovery in data-
bases, pp 200–211

62. Loyer Y, Straccia U (2009) Approximate well-founded semantics,
query answering and generalized normal logic programs over lat-
tices. Ann Math Artif Intell 55:389–417

63. Lu JJ, Murray NV, Rosenthal E (1993) Signed formulas and anno-
tated logics. In: Proceedings of int symposium on multiple-valued
logic, pp 48–53

64. Lukasiewicz T (2007) Probabilistic description logic programs. Int
J Approx Reason 45(2):288–307

65. Lukasiewicz T (2008) Probabilistic description logic programs un-
der inheritance with overriding for the semantic web. Int J Approx
Reason 49(1):18–34

66. Milch B, Russell S (2007) First-order probabilistic languages: Into
the unknown. In: Proceedings of the 16th international conference
on inductive logic programming, pp 10–24

67. Muggleton S (1996) Stochastic logic programs. In: Advances in
inductive logic programming. IOS Press, Amsterdam, pp 254–
264

68. Muggleton S (2000) Learning stochastic logic programs. In:
Getoor L, Jensen D (eds) Proceedings of the AAAI2000 work-
shop on learning statistical models from relational data, URL:
http://www.doc.ic.ac.uk/~shm/Papers/slplearn.pdf

69. Neapolitan RE (1990) Probabilistic reasoning in expert systems:
theory and algorithms. Wiley, New York

70. Ng R, Subrahmanian VS (1992) Probabilistic logic programming.
Inf Comput 101:150–201

71. Ngo L, Haddawy P (1996) Answering queries from context-
sensitive probabilistic knowledge bases. Theor Comput Sci
171:147–177

72. Niles I, Pease A (2001) Towards a standard upper ontology. In:
Welty C, Smith B (eds) Proceedings of the 2nd international con-
ference on formal ontology in information systems (FOIS-2001),
Ogunquit, ME, USA, pp 2–9

73. Nilsson NJ (1986) Probabilistic logic. Artif Intell 28(1):71–87
74. Obeid N (2005) A formalism for representing and reasoning with

temporal information, event and change. Appl Intell 23:109–119
75. Orponen P (1990) Dempster’s rule of combination is #p-complete.

Artif Intell 44:245–253
76. Paris J (1994) The uncertain reasoner’s companion: a mathemati-

cal perspective. Cambridge tracts in theoretical computer science,
vol 39. Cambridge University Press, Cambridge

77. Park J (2002) Map complexity results and approximation meth-
ods. In: Proceedings of the 18th annual conference on uncertainty
in artificial intelligence (UAI-02). Morgan Kaufmann, San Fran-
cisco, pp 388–439

78. Pearl J (2000) Causality: modeling, reasoning, and inference.
Cambridge University Press, Cambridge

79. Peng Y, Reggia JA (1990) Abductive inference models for diag-
nostic problem solving. Springer, New York

80. Poole D (2008) The independent choice logic and beyond. In:
Probabilistic inductive logic programming: theory and applica-
tions. Springer, Berlin, pp 222–243

81. Qi G, Pan JZ, Ji Q (2007) A possibilistic extension of description
logics. In: Proceedings of the international workshop on descrip-
tion logics (DL’07), pp 435–442

82. Riazanov A, Voronkov A (2002) The design and implementation
of Vampire. AI Commun. 15:91–110

83. Richardson M, Domingos P (2006) Markov logic networks. Mach
Learn 62(1–2):107–136

84. Rose DJ (1972) A graph-theoretic study of the numerical solution
of sparse positive definite systems of linear equations. In: Read R
(ed) Graph theory and computing. Academic Press, New York, pp
183–217

85. Roth D (1996) On the hardness of approximate reasoning. Artif
Intell 82:273–302

86. de Salvo Braz R, Amir E, Roth D (2008) A survey of first-
order probabilistic models. In: Holmes D, Jain L (eds) Innova-
tions in Bayesian networks. Springer, Berlin, pp 289–317. URL:
http://l2r.cs.uiuc.edu/danr/Papers/BrazAmRo08.pdf

87. Shafer G (1976) A mathematical theory of evidence. Princeton
University Press, Princeton

88. Singla P, Domingos P (2005) Discriminative training of Markov
logic networks. In: Proc of the natl conf on artificial intelligence

89. Smets P, Mamdani E, Dubois D, Prade H (eds) (1988) Non-
standard logics for automated reasoning. Academic Press, San
Diego

http://arxiv.org/abs/cs.AI/0111058
http://www.doc.ic.ac.uk/~shm/Papers/slplearn.pdf
http://l2r.cs.uiuc.edu/danr/Papers/BrazAmRo08.pdf

J. Wang et al.

90. Stoilos G, Stamou G, Pan JZ, Tzouvaras V, Horrocks I (2007) Rea-
soning with very expressive fuzzy description logics. J Artif Intell
Res 273–320

91. Straccia U (2001) Reasoning within fuzzy description logics. J
Artif Intell Res 14:137–166

92. Straccia U (2006) A fuzzy description logic for the semantic web.
In: Sanchez E (ed) Fuzzy logic and the semantic web, capturing
intelligence. Elsevier, Amsterdam, pp 73–90. Chap 4

93. Straccia U (2008) Managing uncertainty and vagueness in descrip-
tion logics, logic programs and description logic programs. In:
Baroglio C, Bonatti PA, Maluszyński J, Marchiori M, Polleres A,
Schaffert S (eds) Reasoning web. Springer, Berlin, pp 54–103

94. Straccia U, Bobillo F (2007) Mixed integer programming, general
concept inclusions and fuzzy description logics. In: Proceedings
of the 5th conference of the European society for fuzzy logic and
technology (EUSFLAT-07), vol 2, University of Ostrava, Ostrava,
Czech Republic, pp 213–220

95. Subrahmanian V (2007) Uncertainty in logic programming: some
recollections. Assoc Log Program Newslett 20(2)

96. Subrahmanian VS (1987) On the semantics of quantitative logic
programs. In: Proceedings of the 4th IEEE symposium on logic
programming, pp 173–182

97. Valtorta M, Kim YG, Vomlel J (2002) Soft evidential update for
probabilistic multiagent systems. Int J Approx Reason 29(1):71–
106

98. Valtorta M, Dang J, Goradia H, Huang J, Huhns M (2005) Ex-
tending Heuer’s analysis of competing hypotheses method to
support complex decision analysis. In: Proceedings of the 2005
international conference on intelligence analysis (IA-05) (CD-
ROM), extended version available at http://www.cse.sc.edu/~mgv/
reports/IA-05.pdf

99. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility.
Fuzzy Sets Syst 1:3–28

http://www.cse.sc.edu/~mgv/reports/IA-05.pdf
http://www.cse.sc.edu/~mgv/reports/IA-05.pdf

	On the combination of logical and probabilistic models for information analysis
	Abstract
	Introduction
	Logical and probabilistic models
	Two kinds of information
	Alternative approaches

	Complexity of logical and probabilistic inference
	Classes of complexity
	Bounded treewidth
	Lower bound
	Upper bound
	Further discussion

	The process of composing
	The basic process
	Two detailed propositional examples
	Brown liquids
	Swimming pool

	Extensions
	Composing more proofs together
	Goal setting
	Query based composition
	Probabilistic model based composition
	General composition algorithms
	Examples

	Discussion
	Adaptation
	Automation
	Probabilistic knowledge base

	Related work
	First-order probabilistic models
	Approaches based on Bayesian networks
	Non-Bayesian network based approaches

	Models based on non-standard logics

	Correctness proofs
	Correctness of the logical model
	The first-order logic case
	Correctness of adding a new proof to the updated probabilistic model

	Implementation considerations
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

