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Abstract An evolutionary algorithm based approach for selection of topologies in hierarchical fuzzy systems (HFS) is 

presented. Coupling fuzzy system with evolutionary algorithm provides a solution to the automated acquisition of the fuzzy 

rule base. It is difficult to study the problem of hierarchical decomposition for a large class of fuzzy systems but it is possible 

to analyse such architectures on the example of a particular fuzzy system, such as inverted pendulum. Topology of the HFS 

must be selected according to the physical properties of the dynamical system under consideration. Different HFS topologies 

for an inverted pendulum system are investigated and analysed to address the problem of how input configuration in multi-

layered structure affects the controller performance. The experiments are conducted to test controller performance for 

different topologies of the hierarchical fuzzy system. The impact of different topologies on control process is discussed. The 

results from the case study of inverted pendulum can be extended to other dynamical systems. 
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1 Introduction 

The design of control systems for complex and high dimensional dynamical systems relies on the 

availability of a system model under consideration. It is often difficult to create an adequate model of the 

system or process due to a limited availability of mathematical theory in case of very complex systems. 

Approximate models are often employed in such cases but with the growing discrepancy between 

physical system and its mathematical (or experimental) model. However, very complex systems can be 

controlled by human operators with only a rudimentary knowledge of the dynamic model.  This kind of 

control problems has given rise to new intelligent control methods, fuzzy logic and neural networks 

being most widely used. 

    There are two main problems with the design of the intelligent control methods.  The first is to obtain 

an adequate knowledge base for the controller, usually obtained from expert knowledge, and the second 

problem is selection of key parameters defined in the method. Evolutionary algorithms are often used for 

automated knowledge acquisition for fuzzy logic controllers [1—3]. However, there are a number of 

methods employed to knowledge base acquisition [2]: 
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 Fuzzy rule base derived from human experts. The expert specifies the linguistic labels associated 

with linguistic variables, structure of the rule base, and the meaning of each label. 

 Fuzzy rule base derived from automated learning methods.  

The most popular application of fuzzy set theory are fuzzy rule-based systems as they provided the 

framework for engineering applications. There are three major types of rule-based systems [4]: 

 Linguistic fuzzy model in which both the antecedent and consequent part of IF-THEN rule are fuzzy 

propositions [5]. 

 Fuzzy relational model in which a particular antecedent proposition can be associated with several 

different consequent propositions via a fuzzy relation [6]. 

 Takagi-Sugeno fuzzy model in which the consequent is a crisp function of antecedent variables [7]. 

In this paper we take classical Zadeh [5] approach to fuzzy control. 

    In a hierarchical fuzzy logic structure, typically  the most influential parameters are chosen as the 

system variables in the first level, the next most important parameters are chosen as the system variables 

in the second level, and so on [8]. In this hierarchy, the first level gives an approximate output which is 

then modified by the second level rule set, this procedure can be repeated in succeeding levels of 

hierarchy.  

    In general, with n input variables and m fuzzy sets defined for each input variable, there is m
n
 fuzzy 

rules in the rule base.  In the hierarchical structure, the number of rules in a complete rule set is so 

reduced to a linear function of the number of variables, but this number may still be high. Increasing the 

number of input variables or input fuzzy sets results in an exponential increase in complexity of the rule 

base.  The decomposition of the system into hierarchical fuzzy system is intended to reduce the size of 

the rule base while maintaining an adequate accuracy. Layered fuzzy logic systems utilize the 

modularity characterising many physical systems and their mathematical models. The output influenced 

by one closely related group of input variables may be largely independent of the values of other 

variables. Therefore, a layered fuzzy logic system can decompose the rule base along these lines of weak 

interdependence and still maintain a high level of accuracy. 

    The combination of fuzzy logic control (FLC) and evolutionary algorithm (EA) provides efficient 

method to examine different control systems for a given control problem. The FLC approach is used to 

define the framework used by solution search method (EA). Determining a particular HFS, and its 

encoding method, creates a search space within which the EA searches for the best solution according to 

the pre-defined performance index, see Section 6 for details. In other words, the fuzzy logic defines the 

control problem and the EA is used to find a solution to that problem. Evolutionary algorithm is a search 



 

 

 

technique that mimicks the biological evolutionary strategies. The search space is initially filled with an 

initial population of potential solution, either randomly generated or initialized by any other mechanism, 

and then the population is subjected to evolutionary operators, such as selection operator (‘survival of 

the fittest’), crossover (playing role of sexual reproduction), mutation, etc. Next population (often called 

generation) is created and every individual in the population is assigned the fitness value according to 

pre-defined fitness function. Fitness value is used to select the best individuals (potential solutions) for 

crossover operator. The process continues until termination condition is satisfied. If the EA ends 

successfully the solution to the control problem is found.  

    In this paper (extended version of [9,10]) different topologies of HFS for a given dynamical system 

(the inverted pendulum system) are investigated and analysed to address the problem of how input 

configuration in multi-layered structure affects the controller performance. The research presented in 

this paper has originated in research work by R.J. Stonier et al.  [11]. Examination of the topologies 

gives insight into the workings of the physical system and its control system. For the inverted pendulum 

system, a single layer, two layers, three layers, and four layers HFS with different input configurations 

are examined and controllers’ performances compared. There are various approaches to building a 

topology of the HFS and it is area of current research, see the following section.   

2 Related work 

There is a vast literature on fuzzy control systems, especially with applications to the inverted 

pendulum (cart-pole system) as it is often used as a test system for proposed methods. However, there is 

much less publications on hierarchical fuzzy control systems and topology selection. A large number of 

control systems (especially from 1980’s and 1990’s) rely on local linearization of the dynamical system 

under consideration. Design of the stabilizing fuzzy logic controllers is achieved via piece-wise 

linearization of the non-linear system, especially when authors are implementing Lyapunov direct 

method. Lyapunov method can be used not just for stability analysis but also to design fuzzy controllers, 

for example [12—14]. 

It is difficult to study the problem of hierarchical decomposition for a large class of fuzzy systems but 

it is possible to analyse such architectures on the example of a particular fuzzy system. Obviously, 

topology of the HFS must be selected according to the physical properties of the dynamical system 

under consideration. The selection process is subject to human decision. It might be possible to design 

the EA for finding the most suitable (optimal or near-optimal) topology for any particular problem 

(hierarchical EA), so the process can be automated. There is a number of papers dealing with variable 



 

 

 

control structures, see for example [15—19]. P. Durr and C. Mattiussi [15] utilise a modular network 

architecture for the neural network and introduce its modular genetic representation that allows 

evolutionary algorithm to search for the neural network topology. The methodology can be implemented 

in fuzzy logic control where neural network is replaced by hierarchical fuzzy structure. A different 

approach is taken by G. Acampora [16] who designs a fuzzy controller with a variable configuration 

(among other characteristics) based on the concept of Timed Automata-based Fuzzy Controllers. The 

timed fuzzy controller acts on the system through a number of time intervals (knows as control eras) 

which are characterized by specific control configurations which in turn are determined by: the number 

and typology of fuzzy variables and also by the number and structure of relationships between variables 

[16].  The same concept is explored in [17] with more specific application to modeling variable fuzzy 

structures. 

The curse of dimensionality remains an unsolved problem in fuzzy logic control theory [20]. The 

problem is subject of many research papers with some authors focusing on systematic design of fuzzy 

logic systems. An automatic design of Takagi-Sugeno hierarchical fuzzy systems is investigated in [21]; 

the algorithm starts with random structures and rules’ parameters. First, hierarchical structure is 

modified to find controller improvement and after completion of this step the rules’ parameters are fine-

tuned. The algorithm continues until a satisfactory solution (hierarchical TS-FS model) is found or a 

time limit is reached. Takagi-Sugeno approach has advantage of making use of Lyapunow stability 

analysis. 

A number of papers investigate construction of hierarchical fuzzy systems. Most notably a series of 

papers in the special issue of International Journal of Intelligent Systems on hierarchical fuzzy systems. 

A review of the construction of hierarchical fuzzy systems is given in V. Torra paper [22]. E. Tunstel et 

al. [23] examines hierarchical control design and synthesis for the collection of subsystems comprising 

of fuzzy logic controllers and fuzzy knowledge-based decision systems. The technique is implemented 

to hierarchical behavior-based controllers for autonomous navigation of mobile robots. L. Magdalena 

[24] in his article analyses the role of context in hierarchical fuzzy controllers based on the 

decomposition of the input space. His aim is to improve the HFS design process by making it easier to 

introduce the expert knowledge in that process. K. Tachibana and T. Furuhashi [25] use multi-objective 

genetic algorithm (MOGA) and human expert intervention to determine hierarchical structure of 

submodels, select input variables of each submodel, divide input and output space, tune membership 

functions, and decide on the inference engine method. MOGA is used for selecting input variables of 

submodels. MOGA finds multiple models with different input variables and different numbers of fuzzy 



 

 

 

rules. A human expert decides on the selection of the most suitable model. H. Kikuchi et al. [26] 

investigate partitioning of complex systems into simpler subsystems. They examined problem of an 

arbitrary function being decomposed into several subfunctions with a non-disjoint partition of variables. 

This problem corresponds to hierarchical fuzzy system decomposition. Their investigation established 

functional incompleteness of joint expansion which imposes certain limitation on hierarchical 

modelling.  

Ming-Ling Lee et al. [27] introduces a new mapping rule base scheme to generate the fuzzy rule-base 

for the HFS. O. Cordon et al. [28] analyses problems related to the inflexibility of the linguistic rule. An 

extension of the knowledge base of linguistic fuzzy rule-based systems is introduced: the hierarchical 

knowledge base. M.R. Delgado et al. [29] introduces a hierarchical evolutionary approach to optimize 

the parameters of Takagi–Sugeno fuzzy systems. A least-squares method is sued to determine the 

parameters of nonlinear consequents. A pruning procedure is implemented to prevent redundancy in 

each rule consequent. Their approach  provides structurally simple fuzzy systems with better than 

average performance. 

S. Sushmita and S. Chaudhury [30] designed a case-based reasoning system for stock analysis in 

financial market, see also [31, 37], using hierarchical structure for case representation. The developed 

method also makes use of a multi-criteria decision-making algorithm which provides the most suitable 

solution with respect to the current market scenario. F. Cheong [31] describes a method for building 

HFS design with high input dimensions based the MacVicar-Whelan meta-rules. The method was tested  

on two applications: the Mexican and Argentinean currency exchange rates.  

R.R. Yager [32] examines the basic assumptions in the Mamdani model. Fuzzy rules are considered as 

a partitioning of the input space. Different representations of the rule consequent are discussed. A new 

representation of fuzzy rules is introduced that is called the hierarchical prioritized structure (HPS). R. 

Holve [33] introduces a new method of rule generation for HFS called a hierarchical fuzzy associative 

memory (HIFAM). A HIFAM, structured as a binary tree, overcomes the curse of dimensionality when 

the number of inputs increases. R. Sindelar [34] describes a method for a fuzzy hierarchical structure 

design that uses data to design a structure of the fuzzy subsystems. The fuzzy structure is designed level 

by level from the data and therefore there is no need to develop an initial fuzzy model (single layer) 

avoiding HFS decomposition problem. 

Y.J. Mon and C.M Lin [35] proposed a hierarchical fuzzy sliding-mode control to achieve asymptotic 

stability of the system. The nonlinear system is decomposed into several subsystems and the state 

response of each subsystem can be designed to be governed by a corresponding sliding surface. The 



 

 

 

whole system is controlled by a hierarchical sliding-mode controller. The inverted pendulum system is 

used to test the proposed method. Later they improved their hierarchical fuzzy sliding-mode controller 

with decoupling of the nonlinear inverted pendulum system into several subsystems. Z.M. Yeh and K.H. 

Li [36] proposed a multistage control system for the inverted pendulum system that reduced the number 

of rules. R.J. Stonier and M. Mohammadian [37] presented introduction to hierarchical fuzzy control 

with the use of evolutionary algorithms on several examples: interest rate prediction, inverted pendulum, 

collision-avoidance in a robot system, micro-robot control, and co-evolutionary algorithm. D. Dasgupta 

[38] was one of the first researchers that explored evolving neuro-controllers for a dynamic system using 

genetic algorithms. W. Wang [39] designed a sliding mode controller for one-input multiple-output 

system where sliding surfaces are organized in a cascade thus creating a hierarchical system. F. Cheong 

and R. Lai [40] addressed problems with the use of hierarchical fuzzy logic controllers, especially in the 

automatic design of controllers. This includes the coordination of intermediary outputs (approximate 

controllers) of sub-controllers at lower levels of the hierarchy. The authors describe a method for the 

automatic design of a hierarchical fuzzy logic controller using an evolutionary algorithm called 

differential evolution. The method is developed for a wide class of control systems and the feasibility of 

the method is demonstrated by developing a two-layered HFS for controlling the inverted pendulum 

system. Other examples of hierarchical fuzzy control applied to the inverted pendulum system can be 

found in [41—47]. Related studies, but not applied to the inverted pendulum system, can be found in 

[47—58]. 

3 Inverted pendulum system 

The inverted pendulum system consists of the cart and a rigid pole hinged to the top of the cart, see 

Fig. 1. The cart moves left or right on a straight bounded track and the pole swings in the vertical plane 

determined by the track. The dynamics of the system is modeled by the following equations: 

   ̇   =      

     ̇ =  u + m L (sin (  )   
  –    ̇ cos (  ) )/(M+m)  

   ̇   =                                                                               (1)                                                                                                                                  

   ̇   =   
                                 

                   

                     
          

  

where x1 is the position of the cart, x2 is the velocity of the cart, x3 is the angle of the pole, x4 is the 

angular velocity of the pole, u is the control force on the cart, m is the mass of the pole, M is the mass of 

the cart, L is the length of the pole, and g is gravitational acceleration.  The control force is applied to the 

cart to prevent the pole from falling while keeping the cart within the specified bounds on the track. The 



 

 

 

system has the following parameters:  m = 0.1 kg, M = 1 kg, L = 0.5m, g = 9.81 m   , with state 

variables restricted by: −1.0 ≤ x1 ≤ 1.0 and −π /6 ≤ x3 ≤ π/6. 

Fuzzy controller task is to stabilise the system about the unstable reference position  ⃗ =  ⃗⃗ whilst 

maintaining the system within the target region (TR) defined by the following bounds:  |  | ≤ 0.1, |  | ≤ 

0.1, |  | ≤ π/24, |  | ≤ 3.0. The fuzzy controller is to ensure the state variables convergence to the TR 

and to maintain them within the TR for a prescribed time limit   = 20.0. 

 

Fig. 1 Inverted pendulum system. 

 

Each domain region for input variables xi is divided into five overlapping intervals covered by 

membership sets   
 , k = 1,...,5, encoded as integers from 1 to 5.  The output variable u is divided into 

seven regions covered by membership sets B
k
, k = 1,...,7. All fuzzy membership functions are assumed 

to be triangular. Given a fuzzy rule base with M rules and n antecedent variables, a fuzzy controller as 

given by (1), with Mamdani product inference engine, uses a singleton fuzzifier and centre average 

defuzzifier to determine output variables: 

u = 
∑   ̅   ∏  

  
      

 
   

 
      

∑   ∏  
  

      
 
   

 
      

                                  (2)                                                                                                                       

where  ̅  are centres of the output sets B
l
 and    

  are membership functions associated with fuzzy sets 

Ai
l
.  

    The following notation for 2-layered HFS topologies is used: L2-mn-kl denotes that input variables for 

layer 1 are xm, xn  and for layer 2: xk, xl, where all integers m,n,k,l ∊ [1,4]. Similarly, for a three-layers 

HFS the following notation: L3-mn-k-l denotes that input variables for layer 1 are xm , xn  for layer 2: xk, 

and for layer 3: xl , where all integers  m,n,k,l  ∊ [1,4]. For other 2 and 3-layers HFS the same notation is 

used, for example: L3-3-41-2 means that input in layer 1 is x3, in layer 2: x4, x1, and in layer 3: x2. 

Generally speaking, the number after capital letter L defines the number of layers, followed by 

groupings of numbers separated by hyphens representing input variables in every layer. 



 

 

 

4 Hierarchical fuzzy system 

The structure of the hierarchical fuzzy system for the inverted pendulum problem defines the fuzzy 

controller to be found (by the EA). This means finding the controller input configuration and fuzzy rule 

bases (IF-THEN rules) corresponding to each component of the HFS. In the HFS structure the single 

rule base is split into separate rule bases corresponding to each layer of the hierarchical structure, see for 

example Fig. 2 – 7. The hierarchical fuzzy structure can be encoded as a string of integer or real 

numbers. If binary approach is used, encoding the HFS by string of 0-1 numbers, then well developed 

theory of genetic algorithms can be used to find a control problem solution. In this paper we use HFS 

encoding by integer numbers, and the search technique is called evolutionary algorithm.    

In the context of HFS, topology means both structure (layers) and input configuration of the 

hierarchical fuzzy system. In inverted pendulum problem there are four possible structures: 1-layer, 2-

layers, 3-layers, and 4-layers, with different input configuration (except single layer topology). The 

number of rules in the hierarchical fuzzy system is a linear function of the number of input variables. Let 

assume that there are n input variables in a L-layers structure. For every input variable there are m fuzzy 

sets associated with that variable. Assume further that in the first layer there is n1 input variables, 2 ≤ n1  

< n, and ni + 1 in the i-th layer, ni ≥ 1. If  n1 =  ni + 1 = c is constant for i = 2,…, L, then the total number 

of rules in the hierarchical fuzzy system is given by:      
  

   
           If m ≥ 2 the number of rules 

M is minimized when c = 2, which means that there are two input variables in every layer [51].  This 

input configuration provides the minimal number of fuzzy rules in the knowledge base but it does not 

necessarily provide the best configuration from the control system perspective. Often, such systems do 

not provide sufficient control performance, especially in complex high-dimensional systems. The 

decomposition needs to be performed along the weak interdependencies between input variables. 

Obviously, it requires certain knowledge of the physical system in the absence of any automated method 

of HFS decomposition. Note, that only L3-mn-k-l configuration satisfies the above condition. 

Topologies L2-mn-kl do not provide the minimal size for the knowledge base. 

In general, the first step in establishing the hierarchical structure for a given dynamical system is to 

establish the importance of its input variables and their interactions. If the character of the dynamical 

system allows it, the variables should be grouped according to the degree they influence the output of 

the system and their inter-relations. This allows designing the layered structure and input configuration. 

The structure can be a combination of strictly hierarchical layers and parallel layers with similar input 

variables grouped according to their inter-relations, see example of such a topology in Fig. 2. 
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Fig.2 Example of HFS with two parallel layers. 

4.1 Two layered HFS 
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Fig.3 HFS: 2-layers input configuration. 

 

There are six different topologies of the 2-layered hierarchical fuzzy system in the L2-mn-kl 

configuration: two input variables in the first layer and two input variables plus intermediary control 

variable from layer 1 in layer 2. This decomposition does not exhaust all possibilities as different input 

configurations can be considered, for example: three input variables in layer 1 and one input variable 

plus intermediary control from layer 1 in layer 2. Another possibility is to have one input in layer 1 and 

three input variables plus intermediary control in layer 2 which would result in knowledge base 

consisting of 880 rules which is larger in size than single layer architecture. The architecture of 2-

layered HFS is shown in Fig. 3. 

For the inverted pendulum system the first knowledge base has the two inputs to produce as output a 

first approximation of the control u1.  This u1 together with another state input xi and xj, i, j ∊ [1,4] are 

used as input in the second knowledge base to produce the final control output u. In the first layer there 

are 25 =5
2
 rules in the knowledge base. The l

th
 fuzzy rule for the first layer has the form: If (xi is Ai

l
) and 



 

 

 

(xj is Aj
l
) Then (u1 is B

l
), where   

 , k = 1,2,3,4, are fuzzy sets for input variables xk, k = 1,2,3,4, 

respectively, and where    are fuzzy sets for output variable u1. For the second layer there are 175 = 

7(5)
2
 rules in the knowledge base. The l

th 
fuzzy rule for the second layer has the form: If (u1 is C

l
) and (xi 

is Ai
l 
) and (xj is Aj

l
)  ) Then (u is B

l
), where C

l 
are fuzzy sets for the input control variable u. There are a 

total of 200 fuzzy rules in this hierarchical structure while there are 625 rules in the single layer rule 

base: 5
4
 = 625.  

4.2 Three layered HFS 

In L3-mn-k-l configuration there are twelve different topologies for the 3-layered hierarchical fuzzy 

system with two input variables in the first layer, and one input variable plus intermediatory control in 

layer 2 and 3. Again, this decomposition does not exhaust all possibilities, as different input 

configurations can be considered but with an increased number of rules in the knowledge base. The 

architecture of 3-layered HFS is shown in Fig. 4. This input configuration provides the minimal number 

of fuzzy rules in the knowledge base.  
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Fig. 4 HFS: 3-layers input configuration. 

 

For this system the first knowledge base has the two inputs, xi and xj, i, j ∊ [1,4] to produce as output a 

first approximation of the control u1. This u1 together with xk are used as input in the second knowledge 

base. Then the second layer produces another approximation of control u2 which with xl is used as input 

to the third (and final) layer to produce the final control output u. There are a total of 95 fuzzy rules in 

this hierarchical structure. 

4.3 Four Layered HFS 

There are twenty four different topologies for the 4-layered HFS for the inverted pendulum with one 

input in every layer plus intermediatory control in layer 2, 3, and 4. The architecture of 4-layered HFS is 

shown in Fig. 5. 
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Fig. 5 HFS: 4-layers input configuration. 

 

In the first layer there are only five rules in the knowledge base. The l
th 

fuzzy rule for the first layer has 

the form: If (xi is   
  ) Then (u1 is B

l
 ),where   

   k = 1,2,3,4  are fuzzy sets for input variables xk, k  = 

1,2,3,4, respectively, and where B
l
 are fuzzy sets for output variable u1. For all the other layers there are 

35 = 7 · 5 rules in their respective knowledge bases. For the second layer the l
th 

fuzzy rule has the form: 

If ( (u1 is C
l
 ) and (xk is Ak

l 
 ) ) Then (u2 is B

l
  ), where C

l
 are fuzzy sets for the input control variable u1. 

Fuzzy rules for the third and fourth layer has a similar form. There are a total of 110 fuzzy rules in the 4-

layered hierarchical structure. 

5 Alternative topologies 

There are other input configurations within two and three layered hierarchical structures that do not 

have two inputs in the first layer (one of the conditions for the minimal size of the rule base). Two 

examples of 2-layered alternative input configurations are shown in Fig. 5. In the first configuration 

there are three input variables in layer 1 and one input variable plus intermediary control in layer 2 

which results in 160 rules in the knowledge base. In the second configuration there is one input in layer 

1 and three input variables plus intermediary control in layer 2 which results in a knowledge base of 880 

rules - more than in a single layer knowledge base. Two 3-layered alternative topologies are shown in 

Fig. 6. Both configurations have 215 rules in their rule bases. 
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Fig. 6 HFS: 2-layers alternative input configurations. 
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Fig. 7 HFS: 3-layers alternative input configurations. 

6 Proposed evolutionary algorithm based approach 

    The evolutionary algorithm is a heuristic search technique that maintains a population of individuals. 

Each individual can be considered to represent a potential solution to a given problem.  Each individual 

is assigned a measure of fitness which determines how accurate it is as a potential solution to the 

problem. The new population is obtained from the old one by the use of genetic operators such as 

crossover and mutation. An elitism strategy is used to pass the fittest individuals to the new population, 

so that the information encapsulated in the best individual is not lost and passed to the next generation. 

A selection process is used to obtain parents for mating in the current generation. The most popular is 

proportional selection to select randomly two parents based on their fitness in proportion to the overall 

total fitness of the population. Another is tournament selection in which a specified number of possible 

parents are selected at random from the population.  A tournament is then held to select the two fittest 

strings and they are used as parents in the next process of crossover to generate children to be passed 

into the next generation.  

    In the crossover operation a number of ‘parent’ strings, typically two, are recombined to create ‘child’ 

strings.  The most popular crossover operator is the one-point, arithmetic, and uniform crossover. The 

crossover operator plays a role of sexual reproduction in which two individuals exchange parts of their 

strings to produce offspring. 

    With a given probability the mutation operator mutates elements of the individual in the population. 

This ensures satisfactory diversity within the population which is required for the EA to find better 

approximate solutions to the problem. 

    With an appropriate selection of EA parameters and operators, the algorithm is allowed to evolve. It is 

terminated when pre-defined termination condition is satisfied; usually at a fixed number of generations 



 

 

 

or until there is minimal change or no change to the string which has the best fitness. The fittest 

individual is taken as the best possible solution learnt by the algorithm. 

The HFS decomposition is not unique and may give rise to variables with no physical significance.  

This can cause difficulties in obtaining a complete class of rules from human experts.  Therefore, the 

rules need to be learnt by some learning algorithm, for example an evolutionary algorithm.  These fuzzy 

rules are typically evolved with no previous knowledge other than input-output data, or the physical 

system model. 

In the knowledge base of any layer each fuzzy rule is uniquely defined by the position of the 

consequent part in the string. The consequent part is identified by a particular output fuzzy set, for 

example, B
k
.  Such a fuzzy set can be identified by the integer k   [1,7].  For example, 2-layered fuzzy 

rule base can be represented as a linear individual string of M = 25 + 175= 200 consequents,  ⃗   

(a1,…,a200), where aj is an integer[1,7] for  j = 1,..., 200. Other hierarchical fuzzy system structures 

can be represented in a similar fashion.  

Full replacement policy (constant population size) is used and tournament selection with size nT = 4.  

A strong elitism policy is implemented: four copies of the top five individuals are passed to the next 

generation. To maintain diversity of the population crossover operators of parent strings to form two 

children in the next generation are used. In examination of different topologies so called random 

crossover is implemented.  The random crossover procedure creates child1 from parent2 by copying it, 

then randomly selecting m-genes in the parent1 string to copy them in the corresponding positions in the 

child1 string. The procedure is repeated for the child2 string with parent strings roles reversed. The 

random crossover operator gives more control over crossover process as the number of genes subject to 

exchange can be arbitrarily determined. Mutation is undertaken with probability pm whose value is 

determined by a mutation schedule that decreases from 0.8 to 0.001 over 300 generations. 

 if ( gen ≥ 0   & gen < 50  ) pm = 0.8 

 if ( gen ≥ 50 & gen < 100  ) pm = 0.7 

 if ( gen ≥ 100 & gen < 150 ) pm = 0.6 

 if ( gen ≥ 150 & gen < 200 ) pm = 0.3 

 if ( gen ≥ 200 & gen < 250 ) pm = 0.1 

 if ( gen ≥ 250 & gen < 300 ) pm = 0.01 

 if ( gen > 300) pm = 0.001 

where gen denotes the generation number. The operator is defined by the following pseudo code: 

  if (mutate)  { 

   if (ak = 7)  ak = ak - rnd(1,3) 

   else if (ak = 1) ak = ak + rnd(1,3) 

   else if (flip(0.5)) ak= ak + rnd(1,3) 

        else  ak = ak - rnd(1,3) 

   if (ak > 7) ak = 7 



 

 

 

   if (ak < 1) ak = 1  } 

The objective function is evaluated as follows: each string  ⃗  is decoded into two or more components 

defining the fuzzy knowledge base for each layer, then the formula (2) is used to evaluate u1, u2, and u3 

to find the final control to be applied at each value of the state  ⃗. The system state equations are 

integrated by the Runge-Kutta algorithm with step size 0.02. The fitness fk to be minimised, is then 

calculated based on certain measures of the behaviour of the system: the accumulated sum of normalised 

absolute deviations of    and    from zero, the average deviation from vertical, the average deviation 

from the origin or T - TS where TS, the survival time, is taken to mean the total time before the pole and 

cart break defined bounds.  A penalty is added to the objective if the final state breaks the following 

bounds: |  | ≤ 0.1, |  | ≤ 0.1, |  | ≤ π/24, |  | ≤ 3.0, i.e., leaves the designated target region. The 

objective function is defined as: fk = ω 1 F1 + ω 2 F2 + ω 3 F3+ ω 4 F4+ ω 5  F5           

with: F1 =  
 

 
  ∑

     

    

 
  , F2=  

 

 
   ∑

     

 ̇   

 
 ,  F3=  

 

 
  ∑  

     

    

 
  ,     F4=  

 

 
  ∑   

     

 ̇   
  

    F5=  
 

 
  T - TS), 

where xmax = 1.0, θmax =  π/6,  ̇max= 1.0,  ̇max = 3.0.  N is the number of iteration steps.  Survival time is 

defined as:  TS = 0.02·N, with  T =  0.02· Nmax, where the max. number of iterations Nmax= 1000. 

7 Experiments and analysis of results 

The relatively low number of possible topologies for the inverted pendulum enables their examination 

one by one and finding the topology with the best controller performance. The best controller is decided 

arbitrarily by considering its performance: time to reach target region, magnitude of control, and 

oscillations. For each topology ten simulations are run with randomly generated initial populations. The 

initial population P(0) = {  ⃗ : k = 1,...,Mp } is determined by choosing the aj as a random integer in 

[1,7]. Population size is set at Mp = 500. The initial state is:   ⃗0 = (0.5, 0.0, 0.01, 0.0). The EA is 

terminated after 300 generations. The following fitness function parameters: ω1 = 3000, ω2 = 2000, ω3 = 

0, ω4 = 0, ω5 = 5000, are selected for all simulations except single layer fuzzy system with:  ω1 = 1000, 

ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 5000. Selecting different weights ω introduces a bias in the EA towards 

one or a group of input variables. In most simulation, the most difficult was to control the cart’s position 

and therefore ω1 was assigned a larger value than other weights, except ω5 that corresponds to the 

survival time. Controller acts on the system for T = 20. 



 

 

 

 

Fig. 8 Minimum, average and maximum objective function values over 300 generations for L2-34-12. 

 

The minimum, average and maximum of objective function are examined for every topology over 

consecutive generations. The results are fairly similar, both for the 2 and 3-layered HFS.  Examples for 

typical simulations are given in Fig. 8. 

Comparison between controllers with L2-14-23 topology and L2-23-14 shows that swapping input 

variables between layer 1 and layer 2 can have a significant effect on the controller performance. This 

indicates that the HFS topology is a decisive factor in the controller performance.  This assertion is 

confirmed by the 3-layered HFS results presented in the following section. 

7.1 One Layer Topology Results 

The EA is run ten times for the single layer FS with different initial random populations. Within 

around 200 generations the best fuzzy controller at each generation achieved convergence of state 

variables to the designated TR and maintained it within this region for the remainder of the prescribed 

time Tf. Typical convergence and controller output values are shown in Fig. 9. As it can be seen from 

Fig. 9  the stabilisation is smooth and regular for all state variables. The controller is ‘frugal’, with 

values lying in [−0.83, 0.202], the best simulation results in terms of control magnitude. In ten 

simulations for L1-1234 there are controllers with faster stabilisation times but with higher control 

magnitude. 
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Fig. 9  State variables convergence (left) and controller (right) L1-1234. 

7.2 Two Layers Topology Results 

The EA converged on average to a satisfactory solution within 100—184 generations.  The best result 

is shown in Fig. 10, where pole angle x3 and its angular velocity x4 are input to layer 1, and cart position 

x1 and its speed x2 as input variables to layer 2. This result demonstrates that the inverted pendulum 

system should be decomposed into two input variables groupings: cart variables: x1 and x2 (cart’s 

position and its velocity) and pole variables: x3 and x4 ( pole angle and pole’s angular velocity). 

Stabilisation is very quick and to 5 decimal place accuracy for all variables. This result gives the first 

indication as to which input configuration provides the best controller performance. Furthermore a small 

control effort is required with control values in [−2.0, 1.6]. 

Obviously, if topology L2-34-12 provides good control structure then L2-12-34 controller is expected 

to achieve similar performance as it is decomposed along the same weak interdependence between input 

variables only with pole variables replaced with cart variables as input in the first layer.  Indeed, the L2-

12-34 controller performance is similar in both state variable convergence and controller magnitude to 

L2-34-12 controller. However, results for controllers with topology L2-12-34 were much less consistent 

in ten simulation runs than for L2-34-12. On average, controller with topology L2-34-12 provides 

slightly better performance and consistency of the EA solutions. 

Table 1 Stabilisation times for 1 and 2-layered HFS 

Run No L1-1234 L2-12-34 L2-13-24 L2-14-23 L2-23-14 L2-24-13 L2-34-12 

10 3.92 9.12 4.16 3.1 9.02 9.36 2.74 
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Fig. 10 State variables convergence and controller L2-34-12.  

 

 

Fig. 11 State variables convergence and controller L2-14-23.  

 

 

Fig. 12 State variables convergence and controller L2-23-14. 
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Fig. 13 State variables convergence and controller L3-34-2-1. 

 

Comparison between controllers with L2-14-23 topology and L2-23-14, see Fig. 11 and 12, shows that 

swapping input variables between layer 1 and layer 2 has a significant effect on the controller 

performance, which indicates that the HFS topology is a decisive factor in the controller performance.  

This assertion is confirmed by the 3-layered HFS results. The relatively good performance delivered by 

the controller with topology L2-14-23 is an example of a ‘mixed’ input configuration where 

decomposition breaks strong interdependence of state variables. A poor controller performance can be 

expected in such cases but if most significant state variable is an input in the first layer then it has 

positive moderating effect on the control process. 

 

Table 2 Learning Speed: 1 and 2 layered Topologies 

Run No L1-

1234 

L2-

12-

34 

L2-

13-

24 

L2-

14-

23 

L2-

23-

14 

L2-

24-

13 

L2-

34-

12 

1 201 150 119 183 150 201 13 

2 181 93 174 204 170 188 160 

3 204 139 157 179 167 160 114 

4 180 54 111 222 150 152 103 

5 202 124 151 161 138 176 154 

6 217 126 139 199 7 106 169 

7 205 127 211 158 150 153 52 

8 201 114 159 188 155 158 150 

9 189 30 153 167 112 205 177 

10 199 44 169 203 151 227 172 

Average 198 100 154 186 135 173 126 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-4

-2

0

2

4

6

8

10

u



 

 

 

Table 3 Learning speed: 3-layered HFS 

Run No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

1 28 153 210 166 109 192 144 202 154 204 81 55 

2 157 93 181 193 150 188 212 165 3 160 178 57 

3 156 103 172 115 4 171  179 153 156 161 157 

4 151 119 202 211 154 205 162 163 162 162 143 210 

5 164 150 201 176 112 236  167 164 244 68 94 

6 133 164 205 185 152 191 209 165 150 200 146 81 

7 150 1 206 158 117 169 159 208 23 195 152 27 

8 151 151 151 49 10 137  36 145 177 151 204 

9 152 62 233 174 145 170  184 157 166 156 150 

10 152 142 213 153 152 210 215 123 130 155 207 129 

Average 139 114 197 158 111 187 184 159 124 182 144 116 

Total Avg 151 

where C1 denotes:  L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2,  C5: L3-14-2-3, C6: L3-14-3-2, C7: L3-23-1-4, 

C8: L3-23-4-1,  C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-1-2, C12: L3-34-2-1. 

 

7.3 Three Layers Topology Results 

For the 3-layers HFS, the evolutionary algorithm converged to a satisfactory solution within 150—200 

generations. Controller defined by topology L3-34-1-2 achieves all state variables smooth convergence 

to the origin without any large oscillations. The magnitude of control is reasonably low, within range of 

[−2.4, 1.4]. It is one of the best controllers among the 3-layers HFS. However, in ten simulations the 

controllers L3-34-2-1 generally outperformed the controllers L3-34-1-2 and therefore should be 

considered as the best controller amongst the 3-layers HFS, see Fig. 13. Note, that the state variables 

convergence to the TR is faster for L2-34-12 than for L3-34-1-2.  

As can be seen from comparison of L3-13-2-4 and L3-13-4-2 controllers, a seemingly insignificant 

change in input configuration in layer 2 and layer 3 results in a significant change in the controller 

performance, see Fig. 14 and 15.  A similar effect can be seen by in topologies L3-14-2-3 and L3-14-3-2. 

Three-layered topology breaks strong interdependence between state variables in layers 2 and 3. This 

does not have adverse effect on the controller performance for the ‘best’ topologies L3-34-1-2 and L3-

34-2-1 because decomposition reflects physical properties of the system. However, for L3-12-3-4 or L3-

12-4-3 it has slightly detrimental effect because the HFS decomposition breaks state variables 

interdependence. In some other cases, for example L3-14-2-3 or L3-14-3-2 it has a profound effect. 

Physical properties of the system under consideration require grouping of the input variables along weak 

state variables interdependence. In case of the inverted pendulum this grouping corresponds to two 



 

 

 

subsystems: the cart represented by x1 and x2, and the pole represented by x3 and x4. Swapping the input 

variables between the layers but preserving to some extent abovementioned groupings has little effect on 

the controller performance. When this grouping principle is broken, the results are often detrimental 

(depending which variables are more influential in the dynamical system). In case of L3-14-2-3 and L3-

14-3-2 it seems that controlling the angle of the pole is more crucial than controlling the cart’s velocity 

as it is reflected in both topologies. 

Table 4 Stabilisation times for 3-layered HFS 

Run 

No 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

10 9.18 13.72 2.52 2.54 3.68 3.5  2.14 12.2 6.96 2.9 2.06 

where C1 denotes:  L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2,  C5: L3-14-2-3, C6: L3-14-3-2, C7: L3-23-1-4, 

C8: L3-23-4-1,  C9: L3-24-1-3, C10: L3-24-3-1, C11: L3-34-1-2, C12: L3-34-2-1 

7.4 Four Layers Topology Results 

Four variants of the 4-layered topology: L4-3-4-1-2, L4-3-4-2-1, L4-4-3-1-2, and L4-4-3-2-1 are 

examined. The last two topologies produced good controller performance. One of the controllers 

representing topology L4-3-4-1-2 produced a low control magnitude in range [−2.0, 2.8], see Fig. 17. 

Examination of 4-layered topologies can determine which input variables are most influential in the 

inverted pendulum system. It was found that topologies L2-34-12 and L3-34-2-1 are the best performing 

controllers. The simulation results show that the topology L4-4-3-2-1 is the most consistent in producing 

well performing controllers for ten different initial populations with L4-4-3-1-2 close behind. This 

clearly indicates that the most influential input variable is the angular speed of the pole x4, second - the 

angle of the pole x3, and then cart’s speed x2 and its position x1.  

It is noted that 4-layered topologies are significantly outperformed by lower layers HFS controllers. 

This indicates that for the inverted pendulum problem this ladder-like structure does not produce well 

performing controllers. 

Table 5 Stabilisation times for 4-layered HFS 

L4-3-4-1-2 L4-3-4-2-1 L4-4-3-1-2 L4-4-3-2-1 

3.22 1.68 2.64 1.82 

7.5 Alternative Topologies Results 

Simulations conducted for 2 and 3-layered HFS that do not have two inputs in the first layer are shown 

in Fig. 16—20. Variations on topologies L2-34-12 and L3-34-1-2 were selected for simulations as they 

were shown to be the best controller candidates. The following input configurations were considered: 



 

 

 

L2-3-412, L2-341-2, L3-3-41-2 and L3-3-4-12. The controller performance is better than expected, 

especially for topologies L3-3-41-2 and L3-3-4-12, with smooth control and relatively low control 

magnitude. 

Considering the performance of these controllers they cannot be ruled out on the basis of their large 

rule bases. The large number of rules does not hamper performance even though it might cause 

problems in controller application if controller speed is of critical importance.  

 

 

Fig. 14 State variables convergence and controller L3-13-2-4. 

 

 

Fig. 15 State variables convergence and controller L3-13-4-2. 
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Fig. 16 State variables convergence & controller L4-4-3-2-1.  

 

 

Fig. 17 State variables convergence & controller L4-4-3-1-2.  

 

 

Fig. 18 State variables convergence & controller L4-3-4-2-1.  

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-10

-5

0

5

10

15

u

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x1 x2 x3 x4

-3

-2

-1

0

1

2

3

4

u

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x1 x2 x3 x4

-6

-4

-2

0

2

4

6

8

u



 

 

 

 

 

 

Fig. 19 State variables convergence & controller L4-3-4-1-2. 

 

 

Fig. 20 State variables convergence & controller L4-4-3-2-1.  

 

Fig. 21 State variables convergence and controller L2-3-412. 
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8 Controller test 

Intermediate variables u1 and u2 may have not any physical representation.  They can be considered as 

approximations to the controller action.  By testing their performance, with one or two layers removed 

from the HFS one can expect to determine the robustness of the controller. Examining the approximate 

control provides insight into ‘working parts’ of the HFS. When one layer is eliminated it is denoted by 

L2-mn or L3-mn-k. In a 3-layered HFS L3-mn denotes elimination of the two last layers. For controller 

tests the best controllers for the 2 and 3-layered HFS are selected. The best 2-layered HFS are: L2-34-

12, L2-14-23, L2-13-24 and L2-12-34. The best 3-layered HFS are: L3-34-1-2, L3-14-3-2, and L3-13-4-

2. 

8.1 Two layers HFS controller test results 

The best performing among the 2-layered HFS is the controller with topology L2-34-12. The 

controller is tested with its last layer removed: topology L2-34. The controller stabilises the system for 

1.6 time units before ‘crashing’, i.e., until breaking the state bounds: |x1| ≤ 1.0 and | x3 |  ≤ π/6. Otherwise 

the controller exhibits very regular behavior, see Fig. 22. Then the controller with topology L2-14-23 is 

tested with its last layer removed. One layer version L2-24 ‘crashed’ at t = 0.8, the angular velocity of 

the pole x4 rising steeply, see Fig. 23.   

The controller with topology L2-13-24 is tested with its last layer removed. As can be seen in Fig. 24 

the approximate controller with only one layer rule base attempts to stabilise the system for the whole 

period of time Tf  = 20: the angle of the pole x3 is stabilised in a narrow band around the origin, the 

angular velocity x4 oscillates but the values of x4 remain within [−1, 1] band. Therefore, the approximate 

controller, with second layer removed, performs well, while the controller with full rule base performs 

poorly. 

The controller with topology L2-12-34 with its last layer removed is one of the worst performing 

controllers, see Fig. 25. This poor performance comes in spite of relatively good performance of the 

controller with the full rule base. The controller stabilises the system for 3.76 time units until the angle 

of the pole x3 breaks the state limits. 

8.2 Three layers HFS controller test results 

In the 3-layered HFS the controllers are tested by removing the last layer or the two last layers. The 

controller with topology L3-34-1-2 is analysed first. The simulation results are shown in Fig. 26—27.  

The approximate controller u2 maintains control of the system for the whole prescribed time Tf = 20 and 



 

 

 

exhibits very regular behaviour. The controller with topology L3-23-4-1 is analysed and simulation 

results are shown in Fig. 28—29. The control pattern is regular but the ‘crash-time’ for this controller is 

relatively short (1.2 and 0.78 respectively). 

 

 

Fig. 22 State variables convergence and controller L2-34. 

 

 

Fig. 23 State variables convergence and controller L2-14. 
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Fig. 24 State variables convergence and controller L2-13. 

 

Fig. 25 State variables convergence and controller L2-12. 

The well performing controller L3-14-3-2 is analysed and simulation results are shown in Fig. 30—31. 

The additional rule base in the control system L3-14-3 produces a better result than smaller rule base in 

L3-14. 

In general, the approximate controller u2 (intermediary control between layer 2 and layer 3) 

maintained control of the system for longer periods of time than approximate controller u1 (intermediate 

control between layer 1 and layer 2), which is not surprising as the controller u2 has a larger knowledge 

base to rely on. 
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Fig. 26 State variables convergence and controller L3-34-1. 

 

Fig. 27 State variables convergence and controller L3-34. 

 

 

Fig. 28 State variables convergence and controller L3-23-4. 

 

-50

0

50

100

150

200

250

300

x1 x2 x3 x4

20.0 
0

0.5

1

1.5

2

2.5

u 20.0 

-50

0

50

100

150

200

250

300

x1 x2 x3 x4

20.0 
-5

-4

-3

-2

-1

0

1

2

3

u

20.0 

-4

-2

0

2

4

6

8

10

x1 x2 x3 x4

1.2 
-12

-10

-8

-6

-4

-2

0

2

4

u
1.2 



 

 

28 

 

 

Fig. 29 State variables convergence and controller L3-23. 

 

Fig. 30 State variables convergence and controller L3-14-3. 

 

 

Fig. 31 State variables convergence and controller L3-14. 
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8.3 Controller remarks 

  The approximate controllers even from the best performing topologies did not exhibit the same quality 

of control as the final controller u.  In some cases, approximate controllers from the ‘worse’ performing 

topologies, performed reasonably well. The simulations with removed layers clearly demonstrate that 

the hierarchical structure cannot be assembled from a well-performing component rule-bases but he HFS 

needs to be developed as a complete topology; hierarchical structure and input configuration.  

9 Comparison of results 

  The developed controllers (see Tables 1, 4, and 5) compare favourably with similar control techniques 

[41, 47—51]. The fastest stabilization time 1.68 sec was achieved by controller with topology L4-3-4-2-

1. However, the main aim of this investigation is the impact of HFS topology on controller performance 

rather than achieving the best controller performance. 

  Y.J. Mon and C.M. Lin [35] using hierarchical sliding mode control achieved inverted pendulum 

stabilization in about 10 sec (for initial pole angle x3 =  π/3). Considering larger pole angle this 

stabilisation time is a good result. M. Akole and B. Tyagi [59] fuzzy controller was tested for small 

disturbances and achieved good controller response, better than PID controller, and stabilization in 5-10 

sec. One of the fastest stabilization times, about 1-1.5 sec, was achieved by Y. Becerikli and B.K. Celik 

[60]. Comparison of abovementioned controllers is difficult as the system model, system parameters, 

and initial conditions were different in each case.   

10 Conclusions 

In this paper the EA based approach for topology selection was examined. The EA approach enabled 

comprehensive analysis of simulation results and detailed conclusions are presented below. Fine-tuning 

of the EA parameters allowed achieving better controller performance for various topologies.  

It was observed that the performance of the fuzzy controller is not related to the EA learning speed. It 

has been shown that it is important to select the correct input variables into the first layer to achieve 

effective and accurate control. Furthermore, structure of the second and third layer in 3-layered HFS 

plays a significant role as reversed order in input in those layers produced dramatically different results, 

as shown for example in case of  L3-13-2-4 (poor results) and L3-13-4-2 (good results). Similarly, 

controller L3-14-2-3 shows poor results and L3-14-3-2 good results. Both cases illustrate how intricate 

interdependencies between input variables can be.  
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It was shown that the inverted pendulum system should be decomposed into two input variables 

groupings:  

 cart variables: x1 and x2 (cart’s position and its velocity). 

 pole variables: x3 and x4 ( pole angle and pole’s angular velocity). 

Results from the 4-layered HFS simulations established that the most influential variable is x4   

(angular velocity), then x3 (pole angle) in the first grouping followed by x2 (cart’s velocity) and x1 (cart’s 

position) in the second grouping. Simulation results obtained for two, three and four layered HFS 

confirm that it is important to control the inverted pendulum, by examining first its angular speed and 

angular position then the cart's speed and position. 

Three-layered topology breaks strong interdependence between state variables in layers 2 and 3 but it 

does not have adverse effect on the controller performance for topologies L3-34-1-2 and L3-34-2-1 as 

this decomposition reflects physical properties of the system (ranking of the most influential variables). 

For topologies L3-14-2-3 or L3-14-3-2 the difference in decomposition has a profound effect. 

Decomposition needs to reflect the physical properties of the system under consideration and it requires 

grouping of the input variables along weak interdependences between state variables. The inverted 

pendulum can be decomposed into two subsystems: the cart represented by x1 and x2, and the pole 

represented by x3 and x4. Swapping the input variables between the layers but preserving to some extent 

abovementioned groupings has little effect on the controller performance. When this grouping principle 

is broken, the results are often detrimental (depending which variables are more influential in the 

dynamical system). The simulation for 4-layered topologies show that the topology L4-4-3-2-1 is the 

most consistent controller in ten different simulations  indicating the ranking of the most influential 

input variables: first - x4, second - x3, third - x2, and finally x1. 

The initial population (randomly generated in the simulations) has significant impact on the evolution 

of the knowledge base. Some controllers, from ten control systems developed for each topology, differ 

considerably in their performance. Therefore a simulation resulting in a single controller should not be 

regarded as a sufficient representation of controllers developed for any particular topology. Especially, if 

the EA does not produce a relatively uniform population at the end of the algorithm. Developing a 

relatively homogenous set of controllers requires careful fine-tuning of the EA parameters and usually a 

large number of generations. 

The controller with topology L1-1234 stabilises the system relatively well, with no preference given to 

any input variable, and interdependence between input variables (being locked in the fuzzy rules) 

remains hidden. Only by decomposition of the HFS (by breaking a single knowledge base into a 
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hierarchically structured knowledge base) this interdependence comes into play with dramatic effect. 

The topologies analysis shows that the 2-layered HFS provides a slightly better solution to the control 

problem of the inverted pendulum than 3-layered HFS. This result reflects the physical nature of the 

inverted pendulum system with pole and cart variables grouped in two separate subsystems that are 

mirrored in the 2-layered HFS. However, the 3-layered HFS significantly reduces the size of the 

knowledge bases while providing control system of similar performance.  

The investigation into HFS topologies suggests that the size of the knowledge base is not an important 

factor in controller performance. On one side there is topology L2-3-412 with 880 fuzzy rules or single 

layer topology L1-1234 with 625 fuzzy rules, and on the other side 3-layered topology with 95 fuzzy 

rules in its knowledge base, except for 3-layered ‘alternative topologies’, with some of them providing 

similar controller performance. However, the topology of the HFS seems to be the decisive factor in 

controller performance. 

Similarly, the HFS topologies investigation shows that the number of layers is not an important factor 

in the controller performance (in terms of control magnitude and stabilisation rate of the state variables). 

This fact allows large single knowledge base to be replaced with the HFS without loss of controller 

performance. In fact, the HFS produced more efficient controllers (in terms of system stabilisation) than 

single layer controller except for control magnitude that is lowest for a single layer fuzzy system.  

Experiments with the HFS with layers removed show that the HFS is not a mere sum of its rule bases 

in the component layers. Topology of the HFS is a key factor in the performance of the controller. It has 

been shown that the HFS needs to be considered in its entirety, not as an assembly of the better or worse 

performing component layers. 

The simulation results indicate that a particular input configuration in the HFS layers is more 

important than the number of layers as good controller performance was achieved for L2-34-12, L3-34-

2-1, and L4-3-4-2-1. This indicates that interdependence of variables plays a crucial role in finding the 

‘optimal’ HFS for a particular problem. Examining the nature of variables interdependence is a key to an 

automated determination of the decomposition of the fuzzy model of control, i.e, selection of the optimal 

or near-optimal topology. The decomposition of the hierarchical fuzzy structure should be performed 

along weak interdependency between input variables. However, with more complex dynamical systems 

there might be multiple weak interdependencies in input configuration. In such cases either expert 

knowledge is required to resolve the decomposition problem or an automated process that finds optimal 

or near optimal hierarchical fuzzy topology.  



 

 

32 

 

References 

1. Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems: evolutionary tuning and learning of 

fuzzy knowledge bases. Advances in Fuzzy Systems Applications and Theory, Vol. 19, World Scientific Publishing. 

2. Cordon O, Herrera F, Zwir I (2001) Linguistic modeling of hierarchical systems of linguistic rules.  IEEE 

Transactions on Fuzzy Systems 10(1): 2–20. 

3. Konar A (2005) Computational intelligence. Springer Verlag, Berlin. 

4. Babuska R (2009) Computational intelligence in modelling and control. Delft University of Technology.  

http://www.dcsc.tudelft.nl/ ~rbabuska/CTU/transp/lecture_notes_ctu.pdf 

5. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE 

Transactions on Systems, Man, and Cybernetics 3(1): 177–200. 

6. Pedrycz W (1984) An identification algorithm in fuzzy relational systems. Fuzzy Sets and Systems 13:153–167. 

7. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modelling and control. IEEE 

Transactions on Systems, Man, and Cybernetics 15(1):116–132. 

8. Raju GVS, Zhou J, Kisner RA (1991) Hierarchical fuzzy control. International Journal on Control, 54(5):1201–

1216. 

9. Zajaczkowski J, Verma B (2010) An evolutionary algorithm based approach for selection of topologies in 

hierarchical fuzzy systems. In: WCCI 2010 IEEE World Congress on Computational Intelligence, July 18-23, 2010 

CCIB, Barcelona, Spain, pp 976—983. 

10. Zajaczkowski J, Stonier RJ  (2008) Analysis of hierarchical control for the inverted pendulum. Complexity 

International, Vol. 12, Paper ID: msid49. http://www.complexity.org.au/vol12/msid49/ 

11. Stonier RJ, Stacey AJ, Messom C (1998) Learning fuzzy controls for the inverted pendulum. In: Proceedings of 

ISCA 7
th
 International Conference on Intelligent Systems, Melun, pp 64–67. 

12. Chen CS, Chen WL (1998) Robust adaptive sliding-mode control using fuzzy modelling for an inverted-pendulum 

system. IEEE Transactions on Industrial Electronics 45(2):297–306. 

13. Chen  BS, Uang HJ, Tseng CS (1999) Robustness design of nonlinear dynamic systems via fuzzy linear control. 

IEEE Transactions on Fuzzy Systems 7(5): 571–585. 

14. Zhong W, Rock H (2001) Energy and passivity based control of the double inverted pendulum on a cart. 2001 IEEE 

Conference on Control Applications, pp 896–901. 

15. Durr P, Mattiussi C (2010) Genetic representation and evolvability of modular neural controllers. IEEE 

Computational Intelligence Magazine, August 2010, pp 11-19. doi: 10.1109/MCI.2010.937319 

16. Acampora G (2010) Exploiting Timed Automata-based Fuzzy Controllers and data mining to detect computer 

network intrusions. In: In:  WCCI 2010 IEEE World Congress on Computational Intelligence, FUZZ, July 18-23, 

2010, Barcelona, Spain, pp 1381-1388. 

17. Acampora G, Loia V, Vitiello A (2010) Hybridizing fuzzy control and timed automata for modeling variable 

structure fuzzy systems. In:  WCCI 2010 IEEE World Congress on Computational Intelligence, FUZZ, July 18-23, 

2010, Barcelona, Spain, pp 1894-1901. 

18. Hsu YC, Chen G, Li HX, (2001) A fuzzy adaptive variable structure controller with applications to robot 

manipulators. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 31(3):331–340. 

http://www.dcsc.tudelft.nl/%20~rbabuska/CTU/transp/lecture_notes_ctu.pdf
http://www.complexity.org.au/vol12/msid49/


 

 

33 

 

19. Huang YP, Wang SF (2000) Designing a fuzzy model by adaptive macroevolution genetic algorithms. Fuzzy Sets 

and Systems 113: 367–379.  

20. Abraham A (2005) Adaptation of fuzzy inference system using neural learning, fuzzy system engineering: Theory 

and practice. Eds. Edjah, N. et al. Springer-Verlag, Chapter 3, pp 53–83. 

21. Chen Y, Yang B, Abraham A, Peng L (2007) Automatic design of hierarchical Takagi-Sugeno type fuzzy systems 

using evolutionary algorithms. IEEE Transactions on Fuzzy Systems 15(3):385–397. doi: 10.1016/S0020-

0255(01)00140-2 

22. Torra V (2002) A review of the construction of hierarchical fuzzy systems. International Journal of Intelligent 

Systems 17(5): 531—543. doi: 10.1002/int.10036 

23. Tunstel E, de Oliveira MAA, Berman S (2002) Fuzzy behavior hierarchies for multi-robot control. International 

Journal of Intelligent Systems, 17(5): 449–470. doi: 10.1002/int.10032 

24. Magdalena L (2002) On the role of context in hierarchical fuzzy controllers. International Journal of Intelligent 

Systems, 17(5): 471–493. doi: 10.1002/int.10033 

25. Tachibana K, Furuhashi T (2002) A structure identification method of submodels for hierarchical fuzzy modeling 

using the multiple objective genetic algorithm. International Journal of Intelligent Systems, 17 (5): 495–513. 

doi: 10.1002/int.10034 

26. Kikuchi H, Takagi N (2002)  Hierarchical fuzzy modeling and jointly expandable functions. International Journal of 

Intelligent Systems, 17 (5): 515–529. doi: 10.1002/int.10035 

27. Lee ML,  Chung HY, Yu FM (2003) Modeling of hierarchical fuzzy systems. Fuzzy Sets and Systems 138(2): 343-

361. doi: 10.1016/S0165-0114(02)00517-1 

28. Cordon O, Herrera F, Zwir I (2002) A hierarchical knowledge-based environment for linguistic modeling: models 

and iterative methodology. Fuzzy Sets and Systems 138(2): 307-341. doi:10.1016/j.asoc.2006.12.001 

29. Delgado MR, von Zuben F, Gomide F (2003) Hierarchical genetic fuzzy systems.  Fuzzy Sets and Systems, 

138(2): 307-341. doi: 10.1016/S0165-0114(02)00388-3 

30. Sushmita S, Chaudhury S (2007) Hierarchical fuzzy case based reasoning with multi-criteria decision making for 

financial applications. In: Pattern recognition and machine intelligence. Lecture Notes in Computer Science, 

Springer, Volume 4815/2007, 226-234. doi:10.1007/978-3-540-77046-6_28 

31. Cheong F (2008) A hierarchical fuzzy system with high input dimensions for forecasting foreign exchange rates. 

International Journal of Artificial Intelligence and Soft Computing 1(1): 15-24. 

32. Yager RR. (1998) On the construction of hierarchical fuzzy systems models. IEEE Transactions on Systems, Man 

and Cybernetics 28(1):55-66. 

33. Holve R (1997) Rule generation for hierarchical fuzzy systems. In: Fuzzy Information Processing Society, 1997. 

NAFIPS '97. pp 444 - 449. doi: 10.1109/NAFIPS.1997.624082 

34. Sindelar R (2005) Hierarchical fuzzy systems. In: Proceedings of the 16th IFAC World Congress, 2005, Vol 15 (1). 

doi: 10.3182/20050703-6-CZ-1902.01119 

35. Mon YJ, Lin CM (2002) Hierarchical fuzzy sliding-mode control. In: Proceedings of the 2002 IEEE World 

Congress on Computational Intelligence, pp 656–661. doi: 10.1109/FUZZ.2002.1005070 

36. Yeh ZM, Li KH (2004) A systematic approach for designing multistage fuzzy control systems. Fuzzy Sets and 

Systems 143(2): 251–273. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLee,%2520Ming-Ling%26authorID%3D7409116906%26md5%3Dc154543401551caa8a64380a826b8b37&_acct=C000032020&_version=1&_userid=613232&md5=ee28a6949984a7f4124a1501de0e3b59
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DChung,%2520Hung-Yuan%26authorID%3D7404006415%26md5%3D5d7b20550a15c8e2f9e141ef8e2fddee&_acct=C000032020&_version=1&_userid=613232&md5=55725d391758c922887fcdb92615ea11
http://dx.doi.org/10.1016/j.asoc.2006.12.001
http://www.sciencedirect.com/science/journal/01650114
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235637%232003%23998619997%23442407%23FLP%23&_cdi=5637&_pubType=J&view=c&_auth=y&_acct=C000032020&_version=1&_urlVersion=0&_userid=613232&md5=b8e876fffadf6ae41a42c1fea29e9343
http://www.ingentaconnect.com/content/ind/ijaisc;jsessionid=3b561u135bbgn.alice
http://dx.doi.org/10.1109/NAFIPS.1997.624082
http://www.ifac-papersonline.net/cgi-bin/links/page.cgi?g=World_Congress%2FProceedings_of_the_16th_IFAC_World_Congress__2005%2Findex.html;d=1;browse=a
http://dx.doi.org/10.1109/FUZZ.2002.1005070


 

 

34 

 

37. Stonier RJ, Mohammadian M (2004) Multi-layered and hierarchical fuzzy modelling using evolutionary algorithms. 

In:  Proceedings of CIMCA’2004, Gold Coast, pp 321—344. 

38. Dasgupta D (1998) Evolving neuro-controllers for a dynamic system using structured genetic algorithm. Applied 

Intelligence 8: 113–121. 

39. Wang W, Yi J, Zhao D, X. Liu X (2005) Design of cascade fuzzy sliding-mode controller. In: 2005 American 

Control Conference, Portland, USA, pp 4649–4654. 

40. Cheong F, Lai R (2007) Designing a hierarchical fuzzy controller using the differential evolution approach. Applied 

Soft Computing 7(2):481–491. 

41. Magdalena L (1998) Hierarchical Fuzzy Control of a Complex System using Meta-knowledge. In: Proceedings of 

the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-based 

Systems, pp 630—637. 

42. Lei S, Langari R (2003) Synthesis and approximation of fuzzy logic controllers for nonlinear systems. International 

Journal of Fuzzy Systems 5(2):98–105. 

43. Lin CM, Mon YJ (2005) Decoupling control by hierarchical fuzzy sliding-mode controller.  IEEE Transactions on 

Control Systems Technology 13(4): 593—589. 

44. Shuliang L, Langari R (2000) Hierarchical fuzzy logic control of a double inverted pendulum. In: Fuzzy System 

2000, FUZZ IEEE 2000, The Ninth IEEE International Conference, Vol 2, pp 1074—1077. 

45. Castillo O, Cazarez N, Rico D (2006) Intelligent control of dynamic systems using type-2 fuzzy logic and stability 

issues. International Mathematical Forum 1(28): 1371—1382. 

46. Raju S, Zhou J (1993) Adaptive hierarchical fuzzy controller. IEEE Transactions on Systems, Man, Cybernetics 

23(4): 973—980. 

47. Yi J, Yubazaki N (2000). Stabilization fuzzy control of inverted pendulum systems.  Artificial Intelligence in 

Engineering  14: 153–163. 

48. Yu WS, Sun CJ (2001) Fuzzy model based adaptive control for a class of nonlinear systems.  IEEE Transactions on 

Fuzzy Systems  9: 413–425. 

49. Chang W, Park JB, Joo YH, Chen G (2002) Design of robust fuzzy-model based controller with sliding mode 

control for SISO nonlinear systems. Fuzzy Sets and Systems 125: 1–22. 

50. Koo TJ (2001) Stable Model Reference Adaptive Fuzzy Control of a Class of Nonlinear Systems. IEEE 

Transactions on Fuzzy Systems  9(4): 624–636. 

51. Qiao F, Zhu QM, Winfield A, Melhuish C (2003) Fuzzy sliding mode control for discrete nonlinear systems.  

Transactions of China Automation Society 22(2): 313–315. 

52. Wang LX (1997) A Course in fuzzy systems and control. Prentice Hall, NJ, USA. 

53. Khan SA, Engelbrecht AP (2010) A fuzzy particle swarm optimization algorithm for computer communication 

network topology design. Applied Intelligence. doi: 10.1007/s10489-010-0251-2 

54. Gacto MJ, Alcala R, Herrera F (2010) A multi-objective evolutionary algorithm for an effective tuning of a fuzzy 

logic controllers in heating, ventilating and air conditioning systems. Applied Intelligence. doi: 10.1007/s10489-

010-0264-x 

55. Erus G, Polat F (2007) A layered approach to learning coordination knowledge in multiagent environments. Applied 

Intelligence 27: 249–267. doi: 10.1007/s10489-006-0034-y 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91


 

 

35 

 

56. Chen CM (2005) A hierarchical neural network document classifier with linguistic feature selection. Applied 

Intelligence 23: 277–294. 

57. Hong TP, Lin KY, Chien BC (2003) Mining fuzzy multiple-level association rules from quantitative data. Applied 

Intelligence 18: 79–90. 

58. Cho SB, Shimohara K (1998) Evolutionary learning of modular neural networks with genetic programming. Applied 

Intelligence 9: 191–200. 

59. Akole M, Tyagi B (2008) Design of fuzzy logic controller for nonlinear model of inverted pendulum-cart system. In: 

XXXII National Systems Conference NSC 2008, pp. 750–755. 

60. Beceriklia  Y, Celik BK (2007) Fuzzy control of inverted pendulum and concept of stability using Java application. 

Mathematical and Computer Modeling.  46(1-2): 24–37. 

 

.  

 

. 

 

 

 

 

 

 


