
1

CLA-DE: A Hybrid Model Based On Cellular
Learning Automata for Numerical
Optimization

R. Vafashoar, M. R. Meybodi, A. H. Momeni

Soft Computing Laboratory, Computer Engineering and Information Technology
Department, Amirkabir University of Technology, Tehran, Iran.
Tel: +98-21-64545120; Fax: +98-21-66495521; e-mail: (vafashoar, mmeybodi,
a_h_momeni)@aut.ac.ir

Abstract

This paper presents a hybrid model named: CLA-DE for global numerical optimization. This

model is based on cellular learning automata (CLA) and differential evolution algorithm. The main

idea is to learn the most promising regions of the search space using cellular learning automata.

Learning automata in the CLA iteratively partition the search dimensions of the problem and learn

the most admissible partitions. In order to facilitate corporation among the CLA cells and improve

their impact on each other, differential evolution algorithm is incorporated, by which

communication and information exchange among neighboring cells are speeded up. The proposed

model is compared with some evolutionary algorithms to demonstrate its effectiveness.

Experiments are conducted on a group of benchmark functions which are commonly used in the

literature. The results show that the proposed algorithm can achieve near optimal solutions in all

cases, which are highly competitive with the ones from compared algorithms.

Keyword

Cellular learning automata; learning automata; optimization; differential

evolution algorithm;

1 Introduction

Global optimization problems are one of the major challenging tasks in almost

every field of science. Analytical methods are not applicable in most cases;

therefore, various numerical methods such as evolutionary algorithms [1] and

learning automata based methods [2, 3] have been proposed to solve these

problems by estimating the global optima. Most of these methods suffer from

convergence to local optima and slow convergence rate.

Learning automata (LA) follows the general schemes of reinforcement learning

(RL) algorithms. RL algorithms are used to enable agents learn from the

2

experiences gained by their interaction with an environment. For more theoretical

information and applications of reinforcement learning see [4-6]. Learning

automata are used to model learning systems. They operate in a random unknown

environment by selecting and applying actions via a stochastic process. They can

learn the optimal action by iteratively acting and receiving stochastic

reinforcement signals from the environment. These stochastic signals or responses

from the environment exhibit the favorability of the selected actions, and

according to them a learning automaton modifies its action selecting mechanism

in favor of the most promising actions [7-10]. Learning automata have been

applied to a vast variety of science and engineering applications [10, 11],

including various optimization problems [12, 13]. A learning automata approach

is used for a special optimization problem, which can be formulated as a special

knapsack problem [13]. In this work a new on-line Learning Automata System is

presented for solving the problem. Sastry et al. used a stochastic optimization

method based on continuous-action-set automata for learning a hyperplane

classifier which is robust to noise [12]. In spite of its effectiveness in various

domains, learning automata have been criticized for having a slow convergence

rate.

Meybodi et al. [14] introduced a new model obtained from the combination of

learning automata and cellular automata (CA), which they called cellular learning

automata (CLA). It is a cellular automaton that one or more learning automata

reside in each of its cells. Therefore, the cells of CLA have learning abilities and

also can interact with each other in a cellular manner. Because of its learning

capabilities and cooperation among its elements, this model is considered superior

to both CA and LA. Because of local interactions, cellular models can be

implemented on distributed and parallel systems. Up to now, CLA has been

applied to many problems. Esnaashari and Meybodi proposed a fully distributed

clustering algorithm, based on cellular learning automata, for sensor networks

[15]. They also used cellular learning automata for scheduling the active times of

the nodes in Wireless Sensor Networks [16]. A Dynamic Web Recommender

System Based on Cellular Learning Automata is introduced in [17]. More

information about the theory and some applications of CLA can be found in [14,

18, 19].

3

These two paradigms (LA and CLA) have also been used to tackle global

numerical optimization problems. Zeng and Liu [3] have used learning automata

for continuously dividing and sampling the search space. Their algorithm

gradually concentrates on favorable regions and leaves out others. Beigy and

Meybodi proposed a new learning algorithm for continuous action learning

automata [20] and proved its convergence in stationary environments. They also

showed the applicability of the introduced algorithm in solving noise corrupted

optimization problems. An evolutionary inspired learning method called genetic

learning automata was introduced in 2002 [2]. In this hybrid method, genetic

algorithm and learning automata are combined to compensate the drawbacks of

both methods. Genetic learning automata algorithm evolves a population of

probability strings for reaching the global optima. At each generation, each

probability string gives rise to one bit string child. These children are evaluated

using a fitness function and based on this evaluation, probability strings are

adjusted. After that, these probability strings are further maturated using standard

evolutionary operators. A somehow closer approach termed CLA-EC [21] is

developed on the basis of cellular learning automata and evolutionary computing

paradigm. Learning automata technique is also used for improving the

performance of PSO algorithm by adaptively tuning its parameters [22].

Differential evolution algorithm (DE) is one of the recent evolutionary methods

that attracted the attention of many researchers. Up to now, after its initial

proposal by Storn and Price [23, 24], a great deal of work has been done for its

improvement [25-28]. DE is simple, yet very powerful, making it an interesting

tool for solving optimization problems in various domains. Some applications of

DE can be found in [29]. It is shown [30] that DE has better performance than

genetic algorithm (GA) and particle swarm optimization (PSO) over some

benchmark functions; still it suffers from premature convergence and stagnation.

In the premature convergence, population converges to some local optima and

loses its diversity. In stagnation, population ceases approaching global optima

whether or not it has been converged to some local ones.

The work presented in this paper is primarily based on cellular learning automata,

and uses differential evolution algorithm to improve its convergence rate and the

accuracy of achieved results. A CLA constitutes the population of the algorithm

and is evolved for reaching the optima. Each cell of the CLA is composed of two

4

parts that are termed: Candidate Solution and Solution Model. Solution Model

represents a model for the desirability of different regions of the problem search

space. Candidate Solution is the temporary fittest solution obtained by the cell.

The Solution Model is a learning system including a set of learning automata in

which each automaton is prescribed to one dimension of the problem search

space, and learns the promising regions of that dimension. The Solution Model

governs the evolution of its related Candidate Solution. On the other hand,

Candidate Solutions also guide the learning process of their Solution Models,

through reinforcement signals provided for Solution Models. Unlike DE or GA

approaches in which each entity represents a single point of the search space, each

Solution Model represents the entire search space, and so trapping on local optima

is avoided. The Solution Models interact with each other through a set of local

rules. In this way, they can impact on the learning process of each other. DE

algorithm is used to transfer information between neighboring Candidate

Solutions which increases impact of Solution Models on each other’s learning

process.

This paper is organized as follows. In Section 2, the principles on which cellular

learning automata are based are discussed. Section 3 includes a brief overview of

differential evolution algorithm. The CLA-DE algorithm is then described in more

details in Section 4. Section 5 contains implementation considerations, simulation

results and comparison with other algorithms to highlight the contributions of the

proposed approach. Finally, conclusions and future works are discussed in section

6.

2 Cellular Learning Automata

Learning automata are adaptive decision making systems that operate in an

unknown stochastic environment with the purpose of determining the optimal

action for that environment out of a set of actions. The learning process is as

follows: at each stage a learning automaton selects one of its actions according to

its probability vector and performs it on the environment; the environment

evaluates the performance of the selected action to determine its effectiveness,

and then provides a response for the learning automaton. The learning automaton

uses this response as an input to update its internal action probabilities. By

5

repeating this procedure the learning automaton learns to select the optimal action,

which leads to desirable responses from the environment [7, 8].

The type of the learning automata which is used in this paper belongs to a family

of learning automata called variable structure learning automata. This kind of

automata can be represented with a six-tuple like {Φ, α, β, A, G, P}, where Φ is a

set of internal states, α a set of outputs, β a set of input actions, A a learning

algorithm, G(.): Φ → α a function that maps the current state into the current

output, and P a probability vector that determines the selection probability of a

state at each stage. In this definition the current output depends only on the

current state. In many cases it is enough to use an identity function as G, in this

case the terms action and state may be used interchangeably. The core factor in

the performance of the learning automata approach is the choice of the learning

algorithm. The learning algorithm modifies the action probability distribution

vector according to the received environmental response. One of the commonly

used updating methods is linear reword-penalty algorithm (LR-P). Let ai be the

action selected at cycle n according to the probability vector at cycle n, p(n); in an

environment with two outputs, β ∈ {0,1}, if the environmental response to this

action is favorable (β=0), the probability vector is updated according to equation

1, otherwise (when β = 1) it is updated using equation 2,

() (1 ())
(1)

()(1)
j j

j
j

p k a p k if i j
p k

p k a if i j

+ − =⎧⎪+ = ⎨ − ≠⎪⎩
 (1)

()(1)
(1)

()(1)
1

j

j
j

p k b if i j
p k b p k b if i j

r

− =⎧
⎪+ = ⎨

+ − ≠⎪⎩ −

 (2)

where a and b are called reward and penalty parameters respectively.

Cellular automata are abstract models for systems consisting of a large number of

identical simple components [31]. These components which are called cells are

arranged in some regular forms like grid and ring, and have local interactions with

each other. CA operates in discrete times called steps; at each time step each cell

will have one state out of a limited number of states, states of all cells define the

state of the whole CA. The state of a cell at the next time step is determined

according to a set of rules and the states of its neighboring cells. Through these

rules, CA evolves from an internal state during the time to produce complicated

6

patterns of behavior. The ability to produce sophisticated patterns, from an

internal state with only local interactions and a set of simple rules, has caused CA

to be a popular tool for modeling complicated systems and natural phenomena.

There are some neighborhood models defined in literature for CA, the one which

is used in this paper is called Von Neumann.

Cellular Learning Automata (CLA) is an abstract model for systems consisting a

large number of simple entities with learning capabilities [14]. It is a hybrid model

composed of learning automata and cellular automata. It is a cellular automaton in

which each cell contains one or more learning automata. The learning automaton

(or group of learning automata) residing in each cell determines the cell state.

Each cell is evolved during the time based on its experience and the behavior of

the cells in its neighborhood. For each cell the neighboring cells comprise the

environment of the cell.

Cellular learning automata starts from some initial state (it is the internal state of

every cell); at each stage, each automaton selects an action according to its

probability vector and performs it. Next, the rule of cellular automaton determines

the reinforcement signal (the response) to the learning automata residing in its

cells, and based on the received signal each automaton updates its internal

probability vector. This procedure continues until the result is obtained.

3 Differential Evolution Algorithm

A differential evolution algorithm like other evolutionary algorithms starts with an

initial population and evolves it through some generations. At each generation, it

uses evolutionary operators: mutation, crossover, and selection to generate a new

and probably better population. The population consists of a set of N-dimensional

parameter vectors called individuals: Population = {X1,G, X2,G, …, XNP,G} and Xi,G

= {Xi,G
1, Xi,G

2, …, Xi,G
N}, where NP is the population size and G is the generation

number. Each individual is an encoding corresponding to a temporary solution of

the problem in hand. At first stage, the population is created randomly according

to the uniform distribution from the problem search space for better covering of

the entire solution space [23, 24].

In each generation G, mutation operator creates a mutant vector Vi,G, for each

individual Xi,G. There are some mutation strategies reported in the literature, three

common ones are listed in equations 3, 4 and 5.

7

, 1, 2, 3,

/ /1:
 .()i G r G r G r G

DE rand
V X F X X= + −

 (3)

, , 1, 2,

/ /1:
 .()i G best G r G r G

DE best
V X F X X= + −

 (4)

, , , , 1, 2,

/ /1:
 .() .()i G i G best G i G r G r G

DE rand to best
V X F X X F X X

− −
= + − + −

 (5)

where r1, r2, and r3 are three mutually different random integer numbers uniformly

taken from the interval [1,NP], F is a constant control parameter which lies in the

range [0,2], Xbest,G is the individual with the maximum fitness value at generation

G.

Each mutant vector, Vi,G recombines with its respective parent Xi,G through

crossover operation to produce the final offspring vector Ui,G. DE algorithms

mostly use binomial or exponential crossover of which the binomial one is given

in equation 6. In this type of crossover each generated child inherits each of its

parameter values from either of the parents.

,
,

,

 R (0,1)

j
i Gj

i G j
i G

V if and CR or j irand
U

X otherwise

⎧ < =⎪= ⎨
⎪⎩

 (6)

CR is a constant parameter controlling the portion of the offspring inherited from

the mutant vector. irand is a random integer generated uniformly from the interval

[1,N] for each child to ensure that at least one of its parameter values are taken

from the mutant vector. Rand(0,1) is a uniform random real number generator

from the interval [0,1].

Each generated child is evaluated with the fitness function, and based on this

evaluation, eiher the child Ui,G or its parent Xi,G is selected for the next generation

as in equation 7.

, , ,
, 1

,

 () ()

i G i G i G
i G

i G

U if f U f X
X

X otherwise+

<⎧⎪= ⎨
⎪⎩

 (7)

8

4 The proposed model

This Section describes in detail the proposed model to solve the global

optimization problem defined as:

Minimize: y = f(x),

Subject to: xd ∈[sd, ed], (8)

where s = [s1, s2, …, sd, …, sN] and e = [e1, e2, …, ed, …, eN] define the feasible

solution space, x = [x1, x2, …, xd, …, xN]T is a variable vector from this space and

[sd, ed] denotes the domain of the variable xd.

Like evolutionary algorithms, in order to reach the final answer, a population of

individuals will be evolved through some generations. Each individual is

composed of two parts. The first part of an individual is an N dimensional real

vector from the search space, and will be referred to as Candidate Solution. A

Candidate Solution represents a probable solution to the problem. The second part

which will be called Solution Model is a set of N learning automata; each one

corresponds to one dimension of the Candidate Solution. The Solution Model of

an individual governs the evolutionary process of its Candidate Solution. Its

objective is to determine the most promising regions of the problem search space

by continuously dividing the search space and learning the effectiveness of each

division. The population of individuals is spatially distributed on a cellular

learning automata. Each cell is occupied by only one individual and each

individual is exactly assigned to one cell; therefore, the terms individual and cell

can be used interchangeably.

As mentioned earlier, each LA pertains to one dimension of the problem search

space and can modify only its associated parameter value in the Candidate

Solution. For each individual, LAd will be used to denote the learning automaton

associated to d dimension. During the evolution process, LAd will learn an

admissible interval, where the d element of the solution will fall. This interval

should be as small as possible in order to achieve a high precision final solution.

Figure 1 shows the relationship between the described entities.

9

Figure 1 A scheme of CLA-DE model entities

For a typical LA like LAd, each action corresponds to an interval in its associated

domain ([sd, ed]). The actions of LAd divide the domain d into some disjoint

intervals in such a way that the union of the intervals equals to the whole domain.

These intervals are adapted during the time. At the beginning, the domain is

divided into K intervals with equal length that have no intersections. So at the

beginning, each LA has K actions, and these actions have identical probabilities.

During subsequent stages, each LA learns which one of its actions is more

appropriate. After that, this action is substituted with two actions whose related

intervals are bisections of the former interval and each one’s probability is half of

the former one’s. By continuing this process, the search in the promising regions

is refined and the accuracy of the solution is improved. On the other hand, to

avoid an unlimited increase in the number of actions, adjacent intervals with small

probabilities are merged together, so are their related actions.

CLA cells (individuals) are adapted during a number of iterations. This adaption

includes both Solution Model and Candidate Solution parts of an individual. In

each cell, some copies of the Candidate Solution are generated. Each learning

automaton selects one of its actions and applies it to one of these copies (this

process will be explained later). The altered copies generated by a Solution Model

are compared to the neighboring ones and based on this comparison, a

reinforcement signal is generated for each learning automaton of the Solution

Model. Learning automata use these responses to update their action probabilities,

and based on these new action probabilities, they may adapt their internal

10

structure by action refinement, which will be discussed later. The best generated

copy in each cell is used to update the Candidate Solution part.

Each Solution Model modifies its Candidate Solution, and neighboring Candidate

Solutions affect the Solution Model by producing reinforcement signals. In this

way, information is communicated among the Solution Models. Though this

method of communication is rather slow. So in complicated problems, Solution

Models tend to learn by themselves and have little impact on the learning

behavior of each other. It’s desirable to spread good Solution Models into the

population for improving convergence and search speed. One way to attain this is

to exchange information among the neighboring Candidate Solutions since the

Solution Model and the Candidate Solution parts of each cell are correlated. A

method based on differential evolutionary algorithm will be used for this purpose,

and it will be applied at some generations. The general algorithm is as follows and

is described in detail in the subsequent sections.

CLA-DE algorithm:

1) Initialize the population.

2) While stopping condition is not met do:

3) Synchronously update each cell based on Model Based Evolution.

4) If generation number is a multiple of 5 do:

5) Synchronously update each cell based on DE Based Evolution.

6) End.

7) End.

Figure 2 General pseudo code for CLA-DE

4.1 Initialization

At first stage, the population is initiated. The Candidate Solution part of each

individual is randomly generated from the search space using the uniform random

distribution. Each LA like LAd will have K actions with equal probabilities 1/K at

the beginning. These K actions partition the domain of the dimension d into K

nonintersecting intervals. For each action ad,j, its corresponding interval is defined

as in equation 9.

, , (1) ,1d d d d
d j d j d d

e s e ss e s j s j j K
K K
− −⎡ ⎤⎡ ⎤ = + − + ≤ ≤⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9)

11

4.2 Model Based Evolution

At each iteration of the algorithm, each cell evolves based on its Solution Model

and the received signals from its neighboring cells. Consider a cell like C, first its

learning automata are partitioned into L disjoint groups (some of these groups

may be void). Each group creates one replica of the cell’s Candidate Solution.

Then, each learning automaton like LAd in the group selects one of its actions

based on its probability vector. Let the selected action of LAd be the jth action

which is associated with an interval like [sd,j, ed,j]; a random number r is uniformly

selected from this interval and the parameter value in the dth dimension of the

replica is changed to r. This way, a group of children is generated for each cell.

Figure 3 (a) schematically shows these ideas.

Figure 3 (a) Learning automata of each cell are randomly partitioned into exclusive groups and

each group creates one child for the cell. (b) Reinforcement signals from generated children and

the neighboring cells are used for updating the Solution Model and the best generated child is used

for updating the Candidate Solution.

12

The Best generated child in each cell is picked out and is compared with the

Candidate Solution of the cell, and the superior one is selected as the Candidate

Solution for the next generation. After updating the Candidate Solution part of a

cell, its Solution model is also updated. Each selected action of the learning

automata is evaluated in the environment and its effectiveness is measured.

Consider a typical LA like LAd; its selected action will be rewarded if this action

matches more than half of the neighboring Candidate Solutions, or if its

corresponding generated child is at least better than the half of the neighboring

Candidate Solutions. An action like ad,j that defines an interval like [sd,j, ed,j]

matches a Candidate Solution like CS = < CS1, CS2, …, CSN> if CSd ∈ [sd,j, ed,j].

If an action is favorable, then its corresponding LA is updated based on equation 1

and otherwise, it is updated as in equation 2. Figure 3 (b) depicts these steps.

Pseudo code for this phase of algorithm is shown in figure 4. Consider that after

updating the probability vector of each learning automata, its actions are also

refined. The action refinement step is described in the subsequent section.

Model Based Evolution Phase:

1) For each cell C, with Candidate Solution CS = {CS1, …,CSN} and Solution Model M = {LA1,

…, LAN}, where N is the number of dimensions, do:

2) Randomly partition M into L mutually disjoint groups: G = {G1, …,GL}.

3) For Each nonempty Group Gi do:

4) Create a copy CSCi = {CSCi
1, …, CSCi

N } of CS (CSCi = CS), for Gi.

5) For each LAd ∈ Gi associated with the dth dimension of CS do:

6) Select an action from the action set of LAd according to its probability.

 Let this action correspond to an interval like [sd,j ed,j].

7) Create a uniform random number r from the interval [sd,j, ed,j] and alter

 the value of CSCi
d to r.

8) End.

9) Evaluate CSCi with fitness function.

10) End.

11) End.

12) For each cell C do:

13) Create a reinforcement signal for each one of its LAs.

14) Update the action probabilities of each LA based on its received reinforcement signal.

16) Refine the actions of each LA in C.

17) End.

Figure 4 pseudo code for Model Based Evolution phase.

13

Action Refinement:

The proposed model slightly differs from other LA based algorithms which have

fixed actions. In our proposed model, the actions of learning automata will change

during the execution of the algorithm. After updating action probabilities of a

typical LA like LAd, if one of its actions like ad,j corresponding to an interval like

[sd,j, ed,j] seems to be more appropriate, then it will be replaced by two actions

representing the two halves [sd,j, (sd,j+ed,j)/2] and [(sd,j+ed,j)/2, ed,j] of the interval.

An action is considered to be appropriate if its probability exceeds a threshold like

χ. This will cause finer probing of the promising regions. Dividing an action of a

learning automaton has no effect on what has been learned by the LA, since the

probability of selecting a subinterval from any desired interval in the pertaining

dimension is the same as before.

Replacing one action with two ones causes an increase in the number of actions,

and continuing this process would cause the number of actions to increase

tremendously. Considering that the sum of the probabilities of all actions of an LA

always equals one, therefore an increase in the probability of one action induces a

decrease on the probabilities of the other actions of the LA. So there would be

some actions with low probabilities that we can merge together making the

number of actions almost constant. To attain this, any adjacent actions (whose

related intervals are adjacent) with probabilities lower than some threshold like ε

are merged together.

As an example, consider an LA with five actions {ad,1, ad,2, ad,3, ad,4, ad,5} with

respective probabilities {0.05,0.05,0.51,0.35,0.04} and corresponding intervals

{[1, 2), [2, 4), [4, 4.3), [4.3, 5), [5, 6)}. If χ and ε be respectively 0.5 and 0.07,

then after the action refinement step, the LA will be changed as follows. It will

have 5 actions {ad,1’, ad,2’, ad,3’, ad,4, ad,5} with corresponding probabilities {0.1,

0.255,0.255,0.35,0.04} and respective intervals {[1,4), [4,4.15),[4.15,4.3), [4.3, 5),

[5, 6)}. The pseudo code in figure 5 describes the action refinement step.

14

Action Refinement Step:

1) If the probability pd,j of an action ad,j corresponding to an interval [sd,j, ed,j] is greater than χ, split

the action into two actions ad,j
1 and ad,j

2 with the corresponding intervals [sd,j, (sd,j+ed,j)/2] and

[(sd,j+ed,j)/2, ed,j] and equal probabilities pd,j/2.

2) If the probabilities of two adjacent actions ad,j and ad,j+1 with corresponding regions [sd,j ei,j] and

[ed,j ei,j+1] are both less than ε, merge them into one action ad,j’ with corresponding interval: [sd,j

ed,j+1], and probability pd,j+pd,j+1.

Figure 5 pseudo code for action refinement step

4.3 DE Based Evolution

In this phase, each Candidate Solution is evolved based on equations 3, 4 and 6;

though, the process slightly differs from that of the standard DE algorithm. In our

model, instead of producing just one new child for each Candidate Solution,

several children are generated, and then the best one is selected for updating the

Candidate Solution. In order to do this, four Candidate Solutions are selected

without replacement from the neighborhood of each cell. The best one is

considered as Pbest and others as P1, P2 and P3. Using different combinations of P1,

P2 and P3 a set of mutant vectors are generated based on equation 3. Based on

equation 4, another set of mutant vectors are also generated with different

combinations of P1, P2 and P3 in the deferential term and Pbest in the base term.

The set of generated mutant vectors are then recombined with the Candidate

Solution of the cell based on equation 6 to generate the children set. A pseudo

code describing this phase is shown in figure 6.

15

DE Based Evolution Phase:

1) For each cell C with Candidate Solution CS = {CS1, …,CSN} do (where N is the number of

dimensions) :

2) Let Pbest, P1, P2 and P3 be four mutually different Candidate Solutions in the neighborhood

 of C, where Pbest is the best Candidate Solution neighboring C.

3) Create 12 children U = {U1, U2, …, U12} for CS, Ui = {Ui
1, Ui

2, …, Ui
N}:

 V1:6 = {Pi + F× (Pj – Pk)| i, j, k = 1,2,3},

 V6:12 = {Pbest + F× (Pi – Pj)| i, j = 1,2,3},

 Recombine each V1:12 with CS based on eq. 6 to form H:

 (0,1) ,

, ,

V if rand CR or j irandi j
Ui j X otherwisei j

< =
=
⎧⎪
⎨
⎪⎩

4) Select the best generated child Ubest according to fitness function.

5) If Ubest is better than CS replace CS with Ubest.

Figure 6 pseudo code for DE Based Evolution

5 Implementation and numerical results

In order to evaluate the performance of the proposed model, it is applied to 11

benchmark functions that are shown in table 1 with some of their key properties.

These functions include unimodal and multimodal functions with correlated and

uncorrelated variables and are vastly used in the literature for examining the

reliability and effectiveness of algorithms [32, 33]. In unimodal functions, the

convergence rate is the most interesting factor of the study, and multimodal ones

are incorporated to study the capability of algorithms in escaping from local

optima and achieving global optima.

Table 1 benchmark functions and their properties

Equation
Search

domain

Problem

dimension

Known

global

value

Max

precision

()sin(| |)1 1

N
f x xi ii

∑= −
=

 [-500, 500]N 30 -12569.49 -

()2 10 cos(2) 102 1

N
f x xi ii

π∑= − +
=

 [-5.12, 5.12]N 30 0 1e-14

16

1 220 exp 0.23 1

1
exp cos(2) 20 exp(1)

1

N
f xiiN

N
xiiN

π

∑= − −
=

∑− + +
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 [-32, 32]N 30 0 1e-14

1 2 cos 14 1 14000

NN xif xii i i
∑ ∏= − +
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 [-600, 600]N 30 0 1e-15

()

() ()

2 21 1 1 10 sin ()1 1
5 2210 sin 11

(,10,100, 4)1
1: 1 (1)4

() ,

: (, , ,) 0,

()

N y yii i
f

N y yN
N u xii

where y xi i
mk x a x ai i

and u x a k m a x ai i
mk x a a xi i

ππ

π

−∑ − += +
=

+ + −

∑+ =

= + +

− >

= − ≤ ≤

− − − <

⎧ ⎫⎡ ⎤⎪ ⎪⎣ ⎦⎨ ⎬
⎪ ⎪⎩ ⎭

⎧
⎪
⎨
⎪
⎩

 [-50, 50]N 30 0 1e-30

()
() ()

(, 5,100, 4)16

2 21 1 1 sin (3)1 1 1
22 210 sin 3 1 1 sin (2)1

 s in 11

Nf u xi i

N x xi i i

x x xN N

with u defined a f

π

π π

∑= +=

−∑ − += +

+ + − +

⎧ ⎫⎡ ⎤⎪ ⎪⎣ ⎦
⎨ ⎬

⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
 [-50, 50]N 30 0 1e-30

2
20sin() sin7 1

N i xif xii π

×
∑= −
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 [-0, π]N 100 -99.2784

1 4 2(16 5)8 1

N
f x x xi i iiN

∑= − +
=

 [-5, 5]N 100 -78.33236

1 2 2100() (1)9 11

N
f x x xj jjj

−
∑= − + −+=
⎡ ⎤⎣ ⎦ [-30, 30]N 30 0

2
10 1

N
f xii

∑=
=

 [-100, 100]N 30 0

| | | |11 1 1

NN
f x xi ii i

∑ ∏= +
= =

 [-10, 10]N 30 0

17

5.1 Algorithms for comparison and simulation settings

Algorithms for comparison and their settings:

To evaluate the effectiveness of the proposed model, it is compared to four other

evolutionary algorithms. These algorithms include: DE/rand/bin/11, DERL [25],

ODE [27] and PSO with inertia weight (PSO-W) [34].

The population size NP is equal to 100 for DE/rand/bin/1, DERL, and ODE. This

population size is used and recommended in many works for 30 dimensional

problems [26, 27]. NP = 10×N, is used in the original paper for DERL [25], and is

recommended in some other works. But almost on all of the used benchmark

functions DE algorithms, including DERL, have much better performance with

NP = 100, so the population size of 100 is adopted for all DE algorithms. There

are 2 100-dimensional functions in table 1, larger population sizes are also tested

for these functions, but better results achieved when we used NP = 100. For ODE

and DE/rand/bin/1, F and CR are set to the values 0.5 and 0.9 respectively which

are used in many works [26, 27, 30, 36]. RLDE uses CR = 0.5 along with a

random F value for each generated mutant vector. The values for parameter F are

taken uniformly from one of the intervals [-1, -0.4] or [0.4, 1] [25].

The PSO algorithm is implemented as described in [34]. In this implementation,

an inertia weight (w) is considered for velocity which is linearly decreased from

0.9 to 0.4 in each generation. The parameters C1 and C2 are kept 2 as used in

[34].

Parameter settings for CLA-DE:

Many experiments are conducted to study the impact of different parameter

settings on the performance of the proposed model, and accordingly, the

following settings are adopted. 3×4 CLA with LR-εP learning algorithm for LAs

are used; population size is kept small in order to let the CLA learn for more

generations and to demonstrate its learning capability. K, number of initial

actions, is set to be 5. At each iteration, M is portioned into N/2 groups (L = N/2),

so in the average case each group contains two Learning automata. Large values

for L would cause LA’s to learn individually, which may cause failure in

achieving a desirable result for correlated problems, though small values for L are

1 Source code for DE is publicly available at: http://www.icsi.berkeley.edu/~storn/code.html

18

also inappropriate because with large groups of cooperating LA’s it is difficult to

evaluate the performance of each LA. Probability thresholds for dividing and

merging actions, χ and ε, are reasonably set to the values: two times the initial

action probability and some less than half of the initial action probability e.g.: 0.4

and 0.07. DE based evolution part parameters, i.e. F and CR, are set to the values:

0.8 and 0.9 as recommended in [35]. DE based evolution is repeated every 5

generations.

5.2 Experiment 1: comparison of finding the global optimum

In this section the effectiveness of the tested algorithms in reaching the global

optima is studied. The success rate of each algorithm on each benchmark is

determined. A run of an algorithm on a benchmark is considered to be successful,

if the difference of the reached solution and the global optimum is less than a

threshold ∆. A run of an algorithm is terminated after the success occurrence or

after 300000 function evaluations. The average number of function evaluations

(FE) for the successful runs is also determined for each algorithm. Success rate

and average number of function evaluations are used as the criteria for

comparison. For all benchmark functions, except f7 and f9, the accuracy of the

achieved results or ∆ is considered 1e-5. None of the compared algorithms have

reached this accuracy on the functions f7 and f9 (table 4), so 60 and 0.1 are used as

∆ for f7 and f9 respectively. The success rate along with the average number of

function evaluations for each algorithm on the given benchmarks is shown in table

2. Based on the results of table 2, table 3 shows the success rate and average

number of function evaluation ranks of each method. All results reported in this

and next sections are obtained based on 40 independent trials.

The first point which is obvious form the achieved results is the robustness of the

proposed approach. This issue is apparent from the success rates of CLA-DE

which, except in one case, are the highest of all compared ones. Considering

problems f2, f7 and f8 CLA-DE is the only algorithm that effectively solved these

problems. Although CLA-DE didn’t achieve the best results in terms of average

number of function evaluations in all cases, but it has an acceptable FE in all

cases. CLA-DE has a better performance than DE and DERL in terms of

approaching speed to the global optima in almost all of the cases. Although it has

a weaker performance than ODE on some benchmarks, according to this criterion,

19

but CLA-DE has a high success rate in comparison to ODE. Considering table 3,

the success rate rank of ODE is a bit lower than DE and DERL, which is the result

of its fast convergence rate.

Table 2 Mean success rate and Mean number of function evaluations to reach the specified

accuracy for successful runs. Success rates are shown inside the parentheses

 CLA-DE DE DERL ODE

f1 71600 (1) - (0) 184242.50 (1) - (0)

f2 102256.6 (1) - (0) - (0) 115147 (0.05)

f3 116616.6 (1) 124688.8 (1) 143642.5 (1) 69087.5 (1)

f4 90455.5 (1) 93902.3 (0.95) 111670 (1) 53958.9 (0.97)

f5 50496.6 (1) 80140.4 (1) 104097.5 (1) 41220 (1)

f6 60430 (1) 88048.3 (1) 109680 (1) 40052.5 (1)

f7 3570 (1) - (0) - (0) 233263.6 (0.55)

f8 179595 (1) 267199 (0.1) 298807 (0.02) - (0)

f9 246218 (0.64) 238117 (0.9) 266219 (0.05) 247251 (0.05)

f10 80595 (1) 89956.4 (1) 101243 (1) 46147.5 (1)

f11 113265 (1) 135922.3 (1) 135055 (1) 106115 (1)

Table 3 Success rate and Mean number of function evaluation ranks of the compared methods.

Success rate ranks are shown inside the parentheses

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
Average

rank

CLA-DE 1(1) 1(1) 2(1) 2(1) 2(1) 2(1) 1(1) 1(1) 2(2) 2(1) 2(1) 1.63(1.09)

DE 3(2) 3(3) 3(1) 3(3) 3(1) 3(1) 3(3) 2(2) 1(1) 3(1) 3(1) 2.72(1.72)

DERL 2(1) 3(3) 4(1) 4(1) 4(1) 4(1) 3(3) 3(3) 4(3) 4(1) 4(1) 3.54(1.72)

ODE 3(2) 2(2) 1(1) 1(2) 1(1) 1(1) 2(2) 4(4) 3(3) 1(1) 1(1) 1.81(1.81)

5.3 Experiment 2: comparison of mean best fitness

This experiment is conducted for investigating the mean best fitness that the

compared algorithms could achieve after a fixed number of fitness function

evaluations. For a fair comparison, all runs of an algorithm are terminated after

300000 function evaluations, or when the error of achieved result falls below

some specified precision (table 1) for some particular functions. These threshold

20

values are used because variable truncations in implementations limit the

precision of results in the cases of these functions.

Evolution curves (the mean best versus the fitness evaluations) for all of the

algorithms described in section 5.1 are depicted in figures 7 and 8; in addition,

table 4 shows the average final result along with its standard deviation for the

different algorithms.

(a)

(b)

(c)

(d)

(e)

(f)

21

(g)

(h)

Figure 7 Fitness curves for functions (a) f2, (b) f3, (c) f4, (d) f5, (e) f6, (f) f9, (g) f10 and (h) f11. The

horizontal axis is the number of fitness evaluations and the vertical axis is the logarithm in base 10

of mean best function value over all trials.

(a)

(b)

(c)

Figure 8 Fitness curves for functions (a) f1, (b) f7 and (c) f8. The horizontal axis is the number of

fitness evaluations and the vertical axis is the mean best function value over all trials.

22

Table 4 average final result (along with its standard deviation)

 CLA-DE PSO-W DE DERL ODE

f1
-12569.49

(3.71e-12)

-11367.10

(8.43e+2)

-8940.19

(1.55e+3)

-12569.49

(3.68e-12)

-5415.23

(5.35e+2)

f2
8.70e-15

(7.15e-16)

26.41

(8.07)

133.55

(25.63)

117.11

(6.72)

32.27

(22.67)

f3
3.08e-14

(1.72e-14)

6.057

(9.49)

7.99e-15

(0)

5.84e-13

(2.10e-13)

7.99e-15

(0)

f4
9.53e-16

(7.70e-17)

2.17e-2

(2.05e-2)

3.69e-4

(1.65e-3)

8.96e-16

(1.18e-16)

1.84e-4

(1.16e-3)

f5
9.36e-31

(6.04e-32)

2.07e-2

(7.21e-2)

1.31e-30

(7.83e-31)

8.69e-24

(8.46e-24)

9.20e-31

(6.98e-32)

f6
7.16e-31

(7.75e-32)

1.64e-3

(4.02e-3)

4.41e-30

(4.03e-30)

3.15e-23

(2.44e-23)

8.97e-31

(8.32e-32)

f7
-97.46

(4.04e-2)

-63.67

(4.45)

-30.21

(1.97)

-35.92

(0.73)

-39.34

(1.76)

f8
-78.33

(3.97e-10)

-59.24

(1.54)

-77.14

(6.39e-1)

-78.29

(7.67e-2)

-69.13

(5.75)

f9
1.56e-1

(2.09e-1)

4.68e+3

(4.47e+3)

4.00e-2

(6.65e-2)

4.26

(6.84)

5.14

(6.02)

f10
5.54e-27

(1.38e-26)

4.78e-48

(1.44e-47)

4.86e-30

(4.53e-30)

4.34e-24

(2.28e-24)

8.21e-58

(1.70e-57)

f11
2.02e-14

(5.77e-14)

8.88e-32

(1.94e-31)

7.11e-15

(4.64e-15)

3.36e-14

(8.63e-15)

4.83e-18

(6.20e-18)

From the obtained results, it is clear that no algorithm performs superiorly better

than others. But CLA-DE can achieve a near optimal solution in all cases. From

this perspective, it is superior to all the other compared algorithms because any

one of them fails to achieve a reasonable result on some of the benchmark

functions. For f1, f2, f7 and f8 CLA-DE obtained the least mean best fitness values.

Considering figures 7(a) and 8, it also achieved these results with the highest

convergence rate. For f3, f5, and f6 it also achieved the near best results, but with a

lower rate than ODE. However, its convergence rate is acceptable and isn’t far

worse than that of ODE for these functions. It also has good convergence rate for

these functions in comparison to algorithms other than ODE (figure 7).

CLA-DE presents some compromise between local search and global search.

Because it considers the whole search space, and each parameter can take values

from the entire space, it is immune to entrapment in local optima. It is primarily

based on meta-intelligent mutations, which diversify its population, and so it does

not have the problem of stagnation and premature convergence even in the case of

23

small populations (3×4 CLA in our experiments). Due to this characteristic, it

shows a slower convergence rate on functions f10 and f11.

6 Conclusion

In this paper, a hybrid method based on cellular learning automata and deferential

evolution algorithm is presented for solving global optimization problems. The

methodology relies on evolving some models of the search space. Each Solution

Model is composed of a group of learning automata and is placed in one cell of a

CA, and so search space is dynamically divided into some stochastic areas

corresponding to the actions of learning automata. These learning automata

interacted with each other through some CA rules. Also, for better commutation

and finer results, DE algorithm was incorporated.

CLA-DE was compared to some other global optimization approaches tested on

some benchmark functions. Results exhibited the effectiveness of the proposed

model in achieving finer results. It was able to find the global optima on almost all

of the test functions with acceptable accuracy. In some cases, it showed slower

convergence rate than the best algorithms, but the difference between its results

and the best ones is admissible. The proposed method totally exhibits good global

search capability with an acceptable convergence rate.

As future works, working on fuzzy actions for learning automata to improve

searching at boundary points of actions will be interesting. Also, considering other

learning algorithms for the learning automata might be beneficial.

References

[1] Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, New York

[2] Howell MN, Gordon TJ, Brandao FV (2002) Genetic learning automata for function

optimization. IEEE Trans Syst Man Cybern 32:804-815

[3] Zeng X, Liu Z (2005) A learning automata based algorithm for optimization of continuous

complex functions. Inf Sci 174:165-175

[4] Hong J, Prabhu VV (2004) Distributed reinforcement learning control for batch sequencing

and sizing in just-in-time manufacturing systems. J Appl Intell 20: 71-87

[5] Iglesias A, Martinez P, Aler R, Fernandez F (2009) Learning teaching strategies in an adaptive

and intelligent educational system through reinforcement learning. J Appl Intell 31: 89-106

 [6] Wiering MA, Hasselt HV (2008) Ensemble algorithms in reinforcement learning. IEEE Trans

Syst Man Cybern, Part B 38(4): 930-936

24

[7] Narendra KS, Thathachar MAL (1989) Learning automata: an introduction. Prentice Hall, New

Jersey

[8] Tathachar M AL, Sastry PS (2002) Varieties of learning automata: an Overview”, IEEE

Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 32, No. 6, PP. 711-722,

2002.

[9] Najim K, Poznyak AS (1994) Learning automata: theory and applications. Pergamon, New

York

[10] Thathachar MAL, Sastry PS (2003) Networks of learning automata: techniques for online

stochastic optimization. Springer-Verlag, New York

[11] Haleem MA, Chandramouli R (2005) Adaptive downlink scheduling and rate selection: a

cross-layer design. IEEE J Sel Areas Commun 23:1287-1297

 [12] Sastry PS, Nagendra GD, Manwani N (2010) A team of continuous-action learning automata

for noise-tolerant learning of half-spaces. IEEE Trans Syst Man Cybern, Part B: Cybern 40(1): 19-

28

[13] Granmo OL, Oommen BJ (2010) Optimal sampling for estimation with constrained resources

using a learning automaton-based solution for the nonlinear fractional knapsack problem. J Appl

Intell 33: 3-20

[14] Meybodi MR, Beigy H, Taherkhani M (2003) Cellular learning automata and its applications.

Sharif J Sci technol 19:54–77

[15] Esnaashari M, Meybodi MR (2008) A cellular learning automata based clustering algorithm

for wireless sensor networks. Sens Lett 6(5):723-735

[16] Esnaashari M, Meybodi MR (2010) Dynamic point coverage problem in wireless sensor

networks: a cellular learning automata approach. J Ad Hoc & Sens Wirel Netw 10(2-3):193-234

[17] Talabeigi M, Forsati R, Meybodi MR (2010) A hybrid web recommender system based on

cellular learning automata. In Proc 2010 IEEE Int Conf Granul Comput, San Jose, California, 453-

458

[18] Beigy H, Meybodi MR (2008) Asynchronous cellular learning automata. J Automatica

44(5):1350-1357

[19] Beigy H, Meybodi MR (2010) Cellular learning automata with multiple learning automata in

each cell and its applications. IEEE Trans Syst Man Cybern, Part B: Cybern 40:54-66

[20] Beigy H, Meybodi MR (2006) A new continuous action-set learning automata for function

optimization. J Franklin Inst 343:27-47

[21] Rastegar R, Meybodi MR, Hariri A (2006) A new fine-grained evolutionary algorithm based

on cellular learning automata. Int J Hybrid Intell Syst 3:83-98

[22] Hashemi AB, Meybodi MR (2011) A note on the learning automata based algorithms for

adaptive parameter selection in PSO. Appl Soft Comput 11:689-705

[23] Storn R, Price K (1995) Differential evolution - a simple and efficient adaptive scheme for

global optimization over continuous spaces. Technical report, International Computer Science

Institute, Berkley

[24] Storn R, Price KV (1997) Differential evolution- a simple and efficient heuristic for global

optimization over continuous Spaces. J Glob Optim 11:341–359

25

[25] Kaelo P, Ali MM (2006) A numerical study of some modified differential evolution

algorithms. Eur J Oper Res 169:1176-1184

[26] Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self adapting control parameters

in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol

Comput 10(6):646-657

[27] Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution.

IEEE Trans Evol Comput 12:64-79

[28] Brest J, Maucec MS (2008) Population size reduction for the differential evolution algorithm.

J Appl Intell 29: 228-247

[29] Chakraborty UK (2008) Advances in differential evolution. Springer-Verlag, Heidelberg

Germany, 2008

[30] Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle

swarm optimisation and evolutionary algorithms on numerical benchmark problems. In: Proc Sixth

Congr Evol Comput (CEC-2004), IEE Press, Piscataway, NJ, USA, 1980-1987

[31] Wolfram S (1994) Cellular automata and complexity. Perseus Books Group

[32] Leung YW, Wang YP (2001) An orthogonal genetic algorithm with quantization for global

numerical optimization. IEEE Trans Evol Comput 5:41-53

[33] Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol

Comput 3:82-102

[34] Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In Proc IEEE Int

Congr Evol Comput, (CEC 1999), Piscataway, NJ, IEEE Press 3:101–106

[35] Srorn R, Differential evolution (DE) for continuous function optimization. Rainer's

Homepage. http://www.icsi.berkeley.edu/~storn/code.html. Accessed January 2010

[36] Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput - A

Fusion Found Methodol Appl 9: 448–462

26

Figure legends

Figure 1 A scheme of CLA-DE model entities

Figure 2 General pseudo code for CLA-DE

Figure 3 (a) Learning automata of each cell is randomly partioned into exclusive groups and each

group creates one child for the cell. (b) Reinforcement signals from generated children and the

neighboring cells are used for updating the Solution Model and the best generated child is used for

updating the Candidate Solution.

Figure 4 pseudo code for Model Based Evolution phase

Figure 5 pseudo code for action refinement step

Figure 6 pseudo code for DE Based Evolution

Figure 7 Fitness curves for functions (a) f2, (b) f3, (c) f4, (d) f5, (e) f6, (f) f9, (g) f10 and (h) f11.

The horizontal axis is the number of fitness evaluations and the vertical axis is the logarithm in

base 10 of mean best function value over all trials.

Figure 8 Fitness curves for functions (a) f1, (b) f7 and (c) f8. The horizontal axis is the number of

fitness evaluations and the vertical axis is the mean best function value over all trials.

table title

Table 1 benchmark functions and their properties

Table 2 Mean success rate and Mean number of function evaluations to reach the specified

accuracy for successful runs. Success rates are shown inside the parentheses

Table 3 Success rate and Mean number of function evaluation ranks of the compared methods.

Success rate ranks are shown inside the parentheses

Table 4 average final result (along with its standard deviation)

