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Abstract 

This paper presents a hybrid model named: CLA-DE for global numerical optimization. This 

model is based on cellular learning automata (CLA) and differential evolution algorithm. The main 

idea is to learn the most promising regions of the search space using cellular learning automata. 

Learning automata in the CLA iteratively partition the search dimensions of the problem and learn 

the most admissible partitions. In order to facilitate corporation among the CLA cells and improve 

their impact on each other, differential evolution algorithm is incorporated, by which 

communication and information exchange among neighboring cells are speeded up. The proposed 

model is compared with some evolutionary algorithms to demonstrate its effectiveness. 

Experiments are conducted on a group of benchmark functions which are commonly used in the 

literature. The results show that the proposed algorithm can achieve near optimal solutions in all 

cases, which are highly competitive with the ones from compared algorithms. 
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1 Introduction 

Global optimization problems are one of the major challenging tasks in almost 

every field of science. Analytical methods are not applicable in most cases; 

therefore, various numerical methods such as evolutionary algorithms [1] and 

learning automata based methods [2, 3] have been proposed to solve these 

problems by estimating the global optima. Most of these methods suffer from 

convergence to local optima and slow convergence rate. 

Learning automata (LA) follows the general schemes of reinforcement learning 

(RL) algorithms. RL algorithms are used to enable agents learn from the 
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experiences gained by their interaction with an environment. For more theoretical 

information and applications of reinforcement learning see [4-6]. Learning 

automata are used to model learning systems. They operate in a random unknown 

environment by selecting and applying actions via a stochastic process. They can 

learn the optimal action by iteratively acting and receiving stochastic 

reinforcement signals from the environment. These stochastic signals or responses 

from the environment exhibit the favorability of the selected actions, and 

according to them a learning automaton modifies its action selecting mechanism 

in favor of the most promising actions [7-10]. Learning automata have been 

applied to a vast variety of science and engineering applications [10, 11], 

including various optimization problems [12, 13]. A learning automata approach 

is used for a special optimization problem, which can be formulated as a special 

knapsack problem [13]. In this work a new on-line Learning Automata System is 

presented for solving the problem. Sastry et al. used a stochastic optimization 

method based on continuous-action-set automata for learning a hyperplane 

classifier which is robust to noise [12]. In spite of its effectiveness in various 

domains, learning automata have been criticized for having a slow convergence 

rate. 

Meybodi et al. [14] introduced a new model obtained from the combination of 

learning automata and cellular automata (CA), which they called cellular learning 

automata (CLA). It is a cellular automaton that one or more learning automata 

reside in each of its cells. Therefore, the cells of CLA have learning abilities and 

also can interact with each other in a cellular manner. Because of its learning 

capabilities and cooperation among its elements, this model is considered superior 

to both CA and LA. Because of local interactions, cellular models can be 

implemented on distributed and parallel systems. Up to now, CLA has been 

applied to many problems. Esnaashari and Meybodi proposed a fully distributed 

clustering algorithm, based on cellular learning automata, for sensor networks 

[15]. They also used cellular learning automata for scheduling the active times of 

the nodes in Wireless Sensor Networks [16]. A Dynamic Web Recommender 

System Based on Cellular Learning Automata is introduced in [17]. More 

information about the theory and some applications of CLA can be found in [14, 

18, 19]. 
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These two paradigms (LA and CLA) have also been used to tackle global 

numerical optimization problems. Zeng and Liu [3] have used learning automata 

for continuously dividing and sampling the search space. Their algorithm 

gradually concentrates on favorable regions and leaves out others. Beigy and 

Meybodi proposed a new learning algorithm for continuous action learning 

automata [20] and proved its convergence in stationary environments. They also 

showed the applicability of the introduced algorithm in solving noise corrupted 

optimization problems. An evolutionary inspired learning method called genetic 

learning automata was introduced in 2002 [2]. In this hybrid method, genetic 

algorithm and learning automata are combined to compensate the drawbacks of 

both methods. Genetic learning automata algorithm evolves a population of 

probability strings for reaching the global optima. At each generation, each 

probability string gives rise to one bit string child. These children are evaluated 

using a fitness function and based on this evaluation, probability strings are 

adjusted. After that, these probability strings are further maturated using standard 

evolutionary operators. A somehow closer approach termed CLA-EC [21] is 

developed on the basis of cellular learning automata and evolutionary computing 

paradigm. Learning automata technique is also used for improving the 

performance of PSO algorithm by adaptively tuning its parameters [22]. 

Differential evolution algorithm (DE) is one of the recent evolutionary methods 

that attracted the attention of many researchers. Up to now, after its initial 

proposal by Storn and Price [23, 24], a great deal of work has been done for its 

improvement [25-28]. DE is simple, yet very powerful, making it an interesting 

tool for solving optimization problems in various domains. Some applications of 

DE can be found in [29]. It is shown [30] that DE has better performance than 

genetic algorithm (GA) and particle swarm optimization (PSO) over some 

benchmark functions; still it suffers from premature convergence and stagnation. 

In the premature convergence, population converges to some local optima and 

loses its diversity. In stagnation, population ceases approaching global optima 

whether or not it has been converged to some local ones. 

The work presented in this paper is primarily based on cellular learning automata, 

and uses differential evolution algorithm to improve its convergence rate and the 

accuracy of achieved results. A CLA constitutes the population of the algorithm 

and is evolved for reaching the optima. Each cell of the CLA is composed of two 
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parts that are termed: Candidate Solution and Solution Model. Solution Model 

represents a model for the desirability of different regions of the problem search 

space. Candidate Solution is the temporary fittest solution obtained by the cell. 

The Solution Model is a learning system including a set of learning automata in 

which each automaton is prescribed to one dimension of the problem search 

space, and learns the promising regions of that dimension. The Solution Model 

governs the evolution of its related Candidate Solution. On the other hand, 

Candidate Solutions also guide the learning process of their Solution Models, 

through reinforcement signals provided for Solution Models. Unlike DE or GA 

approaches in which each entity represents a single point of the search space, each 

Solution Model represents the entire search space, and so trapping on local optima 

is avoided. The Solution Models interact with each other through a set of local 

rules. In this way, they can impact on the learning process of each other. DE 

algorithm is used to transfer information between neighboring Candidate 

Solutions which increases impact of Solution Models on each other’s learning 

process. 

This paper is organized as follows. In Section 2, the principles on which cellular 

learning automata are based are discussed. Section 3 includes a brief overview of 

differential evolution algorithm. The CLA-DE algorithm is then described in more 

details in Section 4. Section 5 contains implementation considerations, simulation 

results and comparison with other algorithms to highlight the contributions of the 

proposed approach. Finally, conclusions and future works are discussed in section 

6. 

2 Cellular Learning Automata 

Learning automata are adaptive decision making systems that operate in an 

unknown stochastic environment with the purpose of determining the optimal 

action for that environment out of a set of actions. The learning process is as 

follows: at each stage a learning automaton selects one of its actions according to 

its probability vector and performs it on the environment; the environment 

evaluates the performance of the selected action to determine its effectiveness, 

and then provides a response for the learning automaton. The learning automaton 

uses this response as an input to update its internal action probabilities. By 
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repeating this procedure the learning automaton learns to select the optimal action, 

which leads to desirable responses from the environment [7, 8]. 

The type of the learning automata which is used in this paper belongs to a family 

of learning automata called variable structure learning automata. This kind of 

automata can be represented with a six-tuple like {Φ, α, β, A, G, P}, where Φ is a 

set of internal states, α a set of outputs, β a set of input actions, A a learning 

algorithm, G(.): Φ → α a function that maps the current state into the current 

output, and P a probability vector that determines the selection probability of a 

state at each stage. In this definition the current output depends only on the 

current state. In many cases it is enough to use an identity function as G, in this 

case the terms action and state may be used interchangeably. The core factor in 

the performance of the learning automata approach is the choice of the learning 

algorithm. The learning algorithm modifies the action probability distribution 

vector according to the received environmental response. One of the commonly 

used updating methods is linear reword-penalty algorithm (LR-P). Let ai be the 

action selected at cycle n according to the probability vector at cycle n, p(n); in an 

environment with two outputs, β ∈ {0,1}, if the environmental response to this 

action is favorable (β=0), the probability vector is updated according to equation 

1, otherwise (when β = 1) it is updated using equation 2, 
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where a and b are called reward and penalty parameters respectively. 

Cellular automata are abstract models for systems consisting of a large number of 

identical simple components [31]. These components which are called cells are 

arranged in some regular forms like grid and ring, and have local interactions with 

each other. CA operates in discrete times called steps; at each time step each cell 

will have one state out of a limited number of states, states of all cells define the 

state of the whole CA. The state of a cell at the next time step is determined 

according to a set of rules and the states of its neighboring cells. Through these 

rules, CA evolves from an internal state during the time to produce complicated 
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patterns of behavior. The ability to produce sophisticated patterns, from an 

internal state with only local interactions and a set of simple rules, has caused CA 

to be a popular tool for modeling complicated systems and natural phenomena. 

There are some neighborhood models defined in literature for CA, the one which 

is used in this paper is called Von Neumann. 

Cellular Learning Automata (CLA) is an abstract model for systems consisting a 

large number of simple entities with learning capabilities [14]. It is a hybrid model 

composed of learning automata and cellular automata. It is a cellular automaton in 

which each cell contains one or more learning automata. The learning automaton 

(or group of learning automata) residing in each cell determines the cell state. 

Each cell is evolved during the time based on its experience and the behavior of 

the cells in its neighborhood. For each cell the neighboring cells comprise the 

environment of the cell. 

Cellular learning automata starts from some initial state (it is the internal state of 

every cell); at each stage, each automaton selects an action according to its 

probability vector and performs it. Next, the rule of cellular automaton determines 

the reinforcement signal (the response) to the learning automata residing in its 

cells, and based on the received signal each automaton updates its internal 

probability vector. This procedure continues until the result is obtained. 

3 Differential Evolution Algorithm 

A differential evolution algorithm like other evolutionary algorithms starts with an 

initial population and evolves it through some generations. At each generation, it 

uses evolutionary operators: mutation, crossover, and selection to generate a new 

and probably better population. The population consists of a set of N-dimensional 

parameter vectors called individuals: Population = {X1,G, X2,G, …, XNP,G} and Xi,G 

= {Xi,G
1, Xi,G

2, …, Xi,G
N}, where NP is the population size and G is the generation 

number. Each individual is an encoding corresponding to a temporary solution of 

the problem in hand. At first stage, the population is created randomly according 

to the uniform distribution from the problem search space for better covering of 

the entire solution space [23, 24]. 

In each generation G, mutation operator creates a mutant vector Vi,G, for each 

individual Xi,G. There are some mutation strategies reported in the literature, three 

common ones are listed in equations 3, 4 and 5. 
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where r1, r2, and r3 are three mutually different random integer numbers uniformly 

taken from the interval [1,NP], F is a constant control parameter which lies in the 

range [0,2], Xbest,G is the individual with the maximum fitness value at generation 

G.  

Each mutant vector, Vi,G recombines with its respective parent Xi,G through 

crossover operation to produce the final offspring vector Ui,G. DE algorithms 

mostly use binomial or exponential crossover of which the binomial one is given 

in equation 6. In this type of crossover each generated child inherits each of its 

parameter values from either of the parents. 

,
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CR is a constant parameter controlling the portion of the offspring inherited from 

the mutant vector. irand is a random integer generated uniformly from the interval 

[1,N] for each child to ensure that at least one of its parameter values are taken 

from the mutant vector. Rand(0,1) is a uniform random real number generator 

from the interval [0,1]. 

Each generated child is evaluated with the fitness function, and based on this 

evaluation, eiher the child Ui,G or its parent Xi,G is selected for the next generation 

as in equation 7. 
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4 The proposed model 

This Section describes in detail the proposed model to solve the global 

optimization problem defined as: 

Minimize: y = f(x), 

Subject to: xd ∈[sd, ed], (8) 

where s = [s1, s2, …, sd, …, sN] and e = [e1, e2, …, ed, …, eN] define the feasible 

solution space, x = [x1, x2, …, xd, …, xN]T is a variable vector from this space and 

[sd, ed] denotes the domain of the variable xd. 

Like evolutionary algorithms, in order to reach the final answer, a population of 

individuals will be evolved through some generations. Each individual is 

composed of two parts. The first part of an individual is an N dimensional real 

vector from the search space, and will be referred to as Candidate Solution. A 

Candidate Solution represents a probable solution to the problem. The second part 

which will be called Solution Model is a set of N learning automata; each one 

corresponds to one dimension of the Candidate Solution. The Solution Model of 

an individual governs the evolutionary process of its Candidate Solution. Its 

objective is to determine the most promising regions of the problem search space 

by continuously dividing the search space and learning the effectiveness of each 

division. The population of individuals is spatially distributed on a cellular 

learning automata. Each cell is occupied by only one individual and each 

individual is exactly assigned to one cell; therefore, the terms individual and cell 

can be used interchangeably. 

As mentioned earlier, each LA pertains to one dimension of the problem search 

space and can modify only its associated parameter value in the Candidate 

Solution. For each individual, LAd will be used to denote the learning automaton 

associated to d dimension. During the evolution process, LAd will learn an 

admissible interval, where the d element of the solution will fall. This interval 

should be as small as possible in order to achieve a high precision final solution. 

Figure 1 shows the relationship between the described entities.  
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Figure 1 A scheme of CLA-DE model entities 

 

For a typical LA like LAd, each action corresponds to an interval in its associated 

domain ([sd, ed]). The actions of LAd divide the domain d into some disjoint 

intervals in such a way that the union of the intervals equals to the whole domain. 

These intervals are adapted during the time. At the beginning, the domain is 

divided into K intervals with equal length that have no intersections. So at the 

beginning, each LA has K actions, and these actions have identical probabilities. 

During subsequent stages, each LA learns which one of its actions is more 

appropriate. After that, this action is substituted with two actions whose related 

intervals are bisections of the former interval and each one’s probability is half of 

the former one’s. By continuing this process, the search in the promising regions 

is refined and the accuracy of the solution is improved. On the other hand, to 

avoid an unlimited increase in the number of actions, adjacent intervals with small 

probabilities are merged together, so are their related actions. 

CLA cells (individuals) are adapted during a number of iterations. This adaption 

includes both Solution Model and Candidate Solution parts of an individual. In 

each cell, some copies of the Candidate Solution are generated. Each learning 

automaton selects one of its actions and applies it to one of these copies (this 

process will be explained later). The altered copies generated by a Solution Model 

are compared to the neighboring ones and based on this comparison, a 

reinforcement signal is generated for each learning automaton of the Solution 

Model. Learning automata use these responses to update their action probabilities, 

and based on these new action probabilities, they may adapt their internal 
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structure by action refinement, which will be discussed later. The best generated 

copy in each cell is used to update the Candidate Solution part. 

Each Solution Model modifies its Candidate Solution, and neighboring Candidate 

Solutions affect the Solution Model by producing reinforcement signals. In this 

way, information is communicated among the Solution Models. Though this 

method of communication is rather slow. So in complicated problems, Solution 

Models tend to learn by themselves and have little impact on the learning 

behavior of each other. It’s desirable to spread good Solution Models into the 

population for improving convergence and search speed. One way to attain this is 

to exchange information among the neighboring Candidate Solutions since the 

Solution Model and the Candidate Solution parts of each cell are correlated. A 

method based on differential evolutionary algorithm will be used for this purpose, 

and it will be applied at some generations. The general algorithm is as follows and 

is described in detail in the subsequent sections. 

 

CLA-DE algorithm: 

1) Initialize the population. 

2) While stopping condition is not met do: 

3) Synchronously update each cell based on Model Based Evolution. 

4) If generation number is a multiple of 5 do: 

5)  Synchronously update each cell based on DE Based Evolution. 

6) End. 

7) End. 

Figure 2 General pseudo code for CLA-DE 

 

4.1 Initialization 

At first stage, the population is initiated. The Candidate Solution part of each 

individual is randomly generated from the search space using the uniform random 

distribution. Each LA like LAd will have K actions with equal probabilities 1/K at 

the beginning. These K actions partition the domain of the dimension d into K 

nonintersecting intervals. For each action ad,j, its corresponding interval is defined 

as in equation 9. 

, , ( 1)        ,1d d d d
d j d j d d

e s e ss e s j s j j K
K K
− −⎡ ⎤⎡ ⎤ = + − + ≤ ≤⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9) 
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4.2 Model Based Evolution 

At each iteration of the algorithm, each cell evolves based on its Solution Model 

and the received signals from its neighboring cells. Consider a cell like C, first its 

learning automata are partitioned into L disjoint groups (some of these groups 

may be void). Each group creates one replica of the cell’s Candidate Solution. 

Then, each learning automaton like LAd in the group selects one of its actions 

based on its probability vector. Let the selected action of LAd be the jth action 

which is associated with an interval like [sd,j, ed,j]; a random number r is uniformly 

selected from this interval and the parameter value in the dth dimension of the 

replica is changed to r. This way, a group of children is generated for each cell. 

Figure 3 (a) schematically shows these ideas. 

 

 

Figure 3 (a) Learning automata of each cell are randomly partitioned into exclusive groups and 

each group creates one child for the cell. (b) Reinforcement signals from generated children and 

the neighboring cells are used for updating the Solution Model and the best generated child is used 

for updating the Candidate Solution. 
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The Best generated child in each cell is picked out and is compared with the 

Candidate Solution of the cell, and the superior one is selected as the Candidate 

Solution for the next generation. After updating the Candidate Solution part of a 

cell, its Solution model is also updated. Each selected action of the learning 

automata is evaluated in the environment and its effectiveness is measured. 

Consider a typical LA like LAd; its selected action will be rewarded if this action 

matches more than half of the neighboring Candidate Solutions, or if its 

corresponding generated child is at least better than the half of the neighboring 

Candidate Solutions. An action like ad,j that defines an interval like [sd,j, ed,j] 

matches a Candidate Solution like CS = < CS1, CS2, …, CSN> if CSd ∈ [sd,j, ed,j]. 

If an action is favorable, then its corresponding LA is updated based on equation 1 

and otherwise, it is updated as in equation 2. Figure 3 (b) depicts these steps. 

Pseudo code for this phase of algorithm is shown in figure 4. Consider that after 

updating the probability vector of each learning automata, its actions are also 

refined. The action refinement step is described in the subsequent section.  

 

Model Based Evolution Phase: 

1) For each cell C, with Candidate Solution CS = {CS1, …,CSN} and Solution Model M = {LA1, 

…, LAN}, where N is the number of dimensions, do: 

2) Randomly partition M into L mutually disjoint groups: G = {G1, …,GL}. 

3) For Each nonempty Group Gi do: 

4)  Create a copy CSCi = {CSCi
1, …, CSCi

N } of CS (CSCi = CS), for Gi. 

5)  For each LAd ∈ Gi associated with the dth dimension of CS do: 

6)   Select an action from the action set of LAd according to its probability.  

   Let this action correspond to an interval like [sd,j ed,j].  

7)   Create a uniform random number r from the interval   [sd,j, ed,j] and alter 

   the value of CSCi
d to r. 

8)  End. 

9)  Evaluate CSCi with fitness function. 

10) End. 

11) End. 

12) For each cell C do: 

13) Create a reinforcement signal for each one of its LAs. 

14) Update the action probabilities of each LA based on its received reinforcement signal. 

16) Refine the actions of each LA in C. 

17) End. 

Figure 4 pseudo code for Model Based Evolution phase. 
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Action Refinement:  

The proposed model slightly differs from other LA based algorithms which have 

fixed actions. In our proposed model, the actions of learning automata will change 

during the execution of the algorithm. After updating action probabilities of a 

typical LA like LAd, if one of its actions like ad,j corresponding to an interval like 

[sd,j, ed,j] seems to be more appropriate, then it will be replaced by two actions 

representing the two halves [sd,j, (sd,j+ed,j)/2] and [(sd,j+ed,j)/2, ed,j ] of the interval. 

An action is considered to be appropriate if its probability exceeds a threshold like 

χ. This will cause finer probing of the promising regions. Dividing an action of a 

learning automaton has no effect on what has been learned by the LA, since the 

probability of selecting a subinterval from any desired interval in the pertaining 

dimension is the same as before. 

Replacing one action with two ones causes an increase in the number of actions, 

and continuing this process would cause the number of actions to increase 

tremendously. Considering that the sum of the probabilities of all actions of an LA 

always equals one, therefore an increase in the probability of one action induces a 

decrease on the probabilities of the other actions of the LA. So there would be 

some actions with low probabilities that we can merge together making the 

number of actions almost constant. To attain this, any adjacent actions (whose 

related intervals are adjacent) with probabilities lower than some threshold like ε 

are merged together. 

As an example, consider an LA with five actions {ad,1, ad,2, ad,3, ad,4, ad,5} with 

respective probabilities {0.05,0.05,0.51,0.35,0.04} and corresponding intervals 

{[1, 2), [2, 4), [4, 4.3), [4.3, 5), [5, 6)}. If χ and ε be respectively 0.5 and 0.07, 

then after the action refinement step, the LA will be changed as follows. It will 

have 5 actions {ad,1’, ad,2’, ad,3’, ad,4, ad,5} with corresponding probabilities {0.1, 

0.255,0.255,0.35,0.04} and respective intervals {[1,4), [4,4.15),[4.15,4.3), [4.3, 5), 

[5, 6)}. The pseudo code in figure 5 describes the action refinement step. 
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Action Refinement Step: 

1) If the probability pd,j of an action ad,j corresponding to an interval [sd,j, ed,j] is greater than χ, split 

the action into two actions ad,j
1 and ad,j

2 with the corresponding intervals [sd,j, (sd,j+ed,j)/2] and 

[(sd,j+ed,j)/2, ed,j] and equal probabilities pd,j/2. 

2) If the probabilities of two adjacent actions ad,j and ad,j+1 with corresponding regions [sd,j ei,j] and 

[ed,j ei,j+1] are both less than ε, merge them into one action ad,j’ with corresponding interval: [sd,j 

ed,j+1], and probability pd,j+pd,j+1. 

Figure 5 pseudo code for action refinement step 

 

4.3 DE Based Evolution 

In this phase, each Candidate Solution is evolved based on equations 3, 4 and 6; 

though, the process slightly differs from that of the standard DE algorithm. In our 

model, instead of producing just one new child for each Candidate Solution, 

several children are generated, and then the best one is selected for updating the 

Candidate Solution. In order to do this, four Candidate Solutions are selected 

without replacement from the neighborhood of each cell. The best one is 

considered as Pbest and others as P1, P2 and P3. Using different combinations of P1, 

P2 and P3 a set of mutant vectors are generated based on equation 3. Based on 

equation 4, another set of mutant vectors are also generated with different 

combinations of P1, P2 and P3 in the deferential term and Pbest in the base term. 

The set of generated mutant vectors are then recombined with the Candidate 

Solution of the cell based on equation 6 to generate the children set. A pseudo 

code describing this phase is shown in figure 6. 
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DE Based Evolution Phase: 

1) For each cell C with Candidate Solution CS = {CS1, …,CSN} do (where N is the number of 

dimensions) : 

2) Let Pbest, P1, P2 and P3 be four mutually different Candidate Solutions in the neighborhood 

 of C, where Pbest is the best Candidate Solution neighboring C. 

3) Create 12 children U = {U1, U2, …, U12} for CS, Ui = {Ui
1, Ui

2, …, Ui
N}: 

  V1:6 = {Pi + F× (Pj – Pk)| i, j, k = 1,2,3}, 

  V6:12 = {Pbest + F× (Pi – Pj)| i, j = 1,2,3}, 

  Recombine each V1:12 with CS based on eq. 6 to form H: 

  
     (0,1)    ,

,   ,

V if rand CR or j irandi j
Ui j X otherwisei j

< =
=
⎧⎪
⎨
⎪⎩

    

4) Select the best generated child Ubest according to fitness function. 

5) If Ubest is better than CS replace CS with Ubest. 

Figure 6 pseudo code for DE Based Evolution 

 

5 Implementation and numerical results 

In order to evaluate the performance of the proposed model, it is applied to 11 

benchmark functions that are shown in table 1 with some of their key properties. 

These functions include unimodal and multimodal functions with correlated and 

uncorrelated variables and are vastly used in the literature for examining the 

reliability and effectiveness of algorithms [32, 33]. In unimodal functions, the 

convergence rate is the most interesting factor of the study, and multimodal ones 

are incorporated to study the capability of algorithms in escaping from local 

optima and achieving global optima. 

 

Table 1 benchmark functions and their properties 
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5.1 Algorithms for comparison and simulation settings  

Algorithms for comparison and their settings:  

To evaluate the effectiveness of the proposed model, it is compared to four other 

evolutionary algorithms. These algorithms include: DE/rand/bin/11, DERL [25], 

ODE [27] and PSO with inertia weight (PSO-W) [34]. 

The population size NP is equal to 100 for DE/rand/bin/1, DERL, and ODE. This 

population size is used and recommended in many works for 30 dimensional 

problems [26, 27]. NP = 10×N, is used in the original paper for DERL [25], and is 

recommended in some other works. But almost on all of the used benchmark 

functions DE algorithms, including DERL, have much better performance with 

NP = 100, so the population size of 100 is adopted for all DE algorithms. There 

are 2 100-dimensional functions in table 1, larger population sizes are also tested 

for these functions, but better results achieved when we used NP = 100. For ODE 

and DE/rand/bin/1, F and CR are set to the values 0.5 and 0.9 respectively which 

are used in many works [26, 27, 30, 36]. RLDE uses CR = 0.5 along with a 

random F value for each generated mutant vector. The values for parameter F are 

taken uniformly from one of the intervals [-1, -0.4] or [0.4, 1] [25]. 

The PSO algorithm is implemented as described in [34]. In this implementation, 

an inertia weight (w) is considered for velocity which is linearly decreased from 

0.9 to 0.4 in each generation. The parameters C1 and C2 are kept 2 as used in 

[34]. 

Parameter settings for CLA-DE:  

Many experiments are conducted to study the impact of different parameter 

settings on the performance of the proposed model, and accordingly, the 

following settings are adopted. 3×4 CLA with LR-εP learning algorithm for LAs 

are used; population size is kept small in order to let the CLA learn for more 

generations and to demonstrate its learning capability. K, number of initial 

actions, is set to be 5. At each iteration, M is portioned into N/2 groups (L = N/2), 

so in the average case each group contains two Learning automata. Large values 

for L would cause LA’s to learn individually, which may cause failure in 

achieving a desirable result for correlated problems, though small values for L are 

                                                 
1 Source code for DE is publicly available at: http://www.icsi.berkeley.edu/~storn/code.html 
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also inappropriate because with large groups of cooperating LA’s it is difficult to 

evaluate the performance of each LA. Probability thresholds for dividing and 

merging actions, χ and ε, are reasonably set to the values: two times the initial 

action probability and some less than half of the initial action probability e.g.: 0.4 

and 0.07. DE based evolution part parameters, i.e. F and CR, are set to the values: 

0.8 and 0.9 as recommended in [35]. DE based evolution is repeated every 5 

generations. 

5.2 Experiment 1: comparison of finding the global optimum 

In this section the effectiveness of the tested algorithms in reaching the global 

optima is studied. The success rate of each algorithm on each benchmark is 

determined. A run of an algorithm on a benchmark is considered to be successful, 

if the difference of the reached solution and the global optimum is less than a 

threshold ∆. A run of an algorithm is terminated after the success occurrence or 

after 300000 function evaluations. The average number of function evaluations 

(FE) for the successful runs is also determined for each algorithm. Success rate 

and average number of function evaluations are used as the criteria for 

comparison. For all benchmark functions, except f7 and f9, the accuracy of the 

achieved results or ∆ is considered 1e-5. None of the compared algorithms have 

reached this accuracy on the functions f7 and f9 (table 4), so 60 and 0.1 are used as 

∆ for f7 and f9 respectively. The success rate along with the average number of 

function evaluations for each algorithm on the given benchmarks is shown in table 

2. Based on the results of table 2, table 3 shows the success rate and average 

number of function evaluation ranks of each method. All results reported in this 

and next sections are obtained based on 40 independent trials. 

The first point which is obvious form the achieved results is the robustness of the 

proposed approach. This issue is apparent from the success rates of CLA-DE 

which, except in one case, are the highest of all compared ones. Considering 

problems f2, f7 and f8 CLA-DE is the only algorithm that effectively solved these 

problems. Although CLA-DE didn’t achieve the best results in terms of average 

number of function evaluations in all cases, but it has an acceptable FE in all 

cases. CLA-DE has a better performance than DE and DERL in terms of 

approaching speed to the global optima in almost all of the cases. Although it has 

a weaker performance than ODE on some benchmarks, according to this criterion, 
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but CLA-DE has a high success rate in comparison to ODE. Considering table 3, 

the success rate rank of ODE is a bit lower than DE and DERL, which is the result 

of its fast convergence rate.   

 

Table 2 Mean success rate and Mean number of function evaluations to reach the specified 

accuracy for successful runs. Success rates are shown inside the parentheses 

 CLA-DE DE DERL ODE 

f1 71600 (1) - (0) 184242.50 (1) - (0) 

f2 102256.6 (1) - (0) - (0) 115147 (0.05) 

f3 116616.6 (1) 124688.8 (1) 143642.5 (1) 69087.5 (1) 

f4 90455.5 (1) 93902.3 (0.95) 111670 (1) 53958.9 (0.97) 

f5 50496.6 (1) 80140.4 (1) 104097.5 (1) 41220 (1) 

f6 60430 (1) 88048.3 (1) 109680 (1) 40052.5 (1) 

f7 3570 (1) - (0) - (0) 233263.6 (0.55) 

f8 179595 (1) 267199 (0.1) 298807 (0.02) - (0) 

f9 246218 (0.64) 238117 (0.9) 266219 (0.05) 247251 (0.05) 

f10 80595 (1) 89956.4 (1) 101243 (1) 46147.5 (1) 

f11 113265 (1) 135922.3 (1) 135055 (1) 106115 (1) 

 

Table 3 Success rate and Mean number of function evaluation ranks of the compared methods. 

Success rate ranks are shown inside the parentheses 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 
Average 

rank 

CLA-DE 1(1) 1(1) 2(1) 2(1) 2(1) 2(1) 1(1) 1(1) 2(2) 2(1) 2(1) 1.63(1.09) 

DE 3(2) 3(3) 3(1) 3(3) 3(1) 3(1) 3(3) 2(2) 1(1) 3(1) 3(1) 2.72(1.72) 

DERL 2(1) 3(3) 4(1) 4(1) 4(1) 4(1) 3(3) 3(3) 4(3) 4(1) 4(1) 3.54(1.72) 

ODE 3(2) 2(2) 1(1) 1(2) 1(1) 1(1) 2(2) 4(4) 3(3) 1(1) 1(1) 1.81(1.81) 

 

 

5.3 Experiment 2: comparison of mean best fitness 

This experiment is conducted for investigating the mean best fitness that the 

compared algorithms could achieve after a fixed number of fitness function 

evaluations. For a fair comparison, all runs of an algorithm are terminated after 

300000 function evaluations, or when the error of achieved result falls below 

some specified precision (table 1) for some particular functions. These threshold 



20 

values are used because variable truncations in implementations limit the 

precision of results in the cases of these functions.  

Evolution curves (the mean best versus the fitness evaluations) for all of the 

algorithms described in section 5.1 are depicted in figures 7 and 8; in addition, 

table 4 shows the average final result along with its standard deviation for the 

different algorithms. 

 

(a) 

 

(b) 

(c) 

 

(d) 

(e) 

 

(f) 
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(g) 

 

(h) 

Figure 7 Fitness curves for functions (a) f2, (b) f3, (c) f4, (d) f5, (e) f6, (f) f9, (g) f10 and (h) f11. The 

horizontal axis is the number of fitness evaluations and the vertical axis is the logarithm in base 10 

of mean best function value over all trials. 

 

(a) 

 

(b) 

 

(c) 

 

 

Figure 8 Fitness curves for functions (a) f1, (b) f7 and (c) f8. The horizontal axis is the number of 

fitness evaluations and the vertical axis is the mean best function value over all trials. 
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Table 4 average final result (along with its standard deviation)  

 CLA-DE PSO-W DE DERL ODE 

f1 
-12569.49 

(3.71e-12) 

-11367.10 

(8.43e+2) 

-8940.19 

(1.55e+3) 

-12569.49 

(3.68e-12) 

-5415.23 

(5.35e+2) 

f2 
8.70e-15 

(7.15e-16) 

26.41 

(8.07) 

133.55 

(25.63) 

117.11 

(6.72) 

32.27 

(22.67) 

f3 
3.08e-14 

(1.72e-14) 

6.057 

(9.49) 

7.99e-15 

(0) 

5.84e-13 

(2.10e-13) 

7.99e-15 

(0) 

f4 
9.53e-16 

(7.70e-17) 

2.17e-2 

(2.05e-2) 

3.69e-4 

(1.65e-3) 

8.96e-16 

(1.18e-16) 

1.84e-4 

(1.16e-3) 

f5 
9.36e-31 

(6.04e-32) 

2.07e-2 

(7.21e-2) 

1.31e-30 

(7.83e-31) 

8.69e-24 

(8.46e-24) 

9.20e-31 

(6.98e-32) 

f6 
7.16e-31 

(7.75e-32) 

1.64e-3 

(4.02e-3) 

4.41e-30 

(4.03e-30) 

3.15e-23 

(2.44e-23) 

8.97e-31 

(8.32e-32) 

f7 
-97.46 

(4.04e-2) 

-63.67 

(4.45) 

-30.21 

(1.97) 

-35.92 

(0.73) 

-39.34 

(1.76) 

f8 
-78.33 

(3.97e-10) 

-59.24 

(1.54) 

-77.14 

(6.39e-1) 

-78.29 

(7.67e-2) 

-69.13 

(5.75) 

f9 
1.56e-1 

(2.09e-1) 

4.68e+3 

(4.47e+3) 

4.00e-2 

(6.65e-2) 

4.26 

(6.84) 

5.14 

(6.02) 

f10 
5.54e-27 

(1.38e-26) 

4.78e-48 

(1.44e-47) 

4.86e-30 

(4.53e-30) 

4.34e-24 

(2.28e-24) 

8.21e-58 

(1.70e-57) 

f11 
2.02e-14 

(5.77e-14) 

8.88e-32 

(1.94e-31) 

7.11e-15 

(4.64e-15) 

3.36e-14 

(8.63e-15) 

4.83e-18 

(6.20e-18) 

 

From the obtained results, it is clear that no algorithm performs superiorly better 

than others. But CLA-DE can achieve a near optimal solution in all cases. From 

this perspective, it is superior to all the other compared algorithms because any 

one of them fails to achieve a reasonable result on some of the benchmark 

functions. For f1, f2, f7 and f8 CLA-DE obtained the least mean best fitness values. 

Considering figures 7(a) and 8, it also achieved these results with the highest 

convergence rate. For f3, f5, and f6 it also achieved the near best results, but with a 

lower rate than ODE. However, its convergence rate is acceptable and isn’t far 

worse than that of ODE for these functions. It also has good convergence rate for 

these functions in comparison to algorithms other than ODE (figure 7).  

CLA-DE presents some compromise between local search and global search. 

Because it considers the whole search space, and each parameter can take values 

from the entire space, it is immune to entrapment in local optima. It is primarily 

based on meta-intelligent mutations, which diversify its population, and so it does 

not have the problem of stagnation and premature convergence even in the case of 
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small populations (3×4 CLA in our experiments). Due to this characteristic, it 

shows a slower convergence rate on functions f10 and f11. 

6 Conclusion 

In this paper, a hybrid method based on cellular learning automata and deferential 

evolution algorithm is presented for solving global optimization problems. The 

methodology relies on evolving some models of the search space. Each Solution 

Model is composed of a group of learning automata and is placed in one cell of a 

CA, and so search space is dynamically divided into some stochastic areas 

corresponding to the actions of learning automata. These learning automata 

interacted with each other through some CA rules. Also, for better commutation 

and finer results, DE algorithm was incorporated. 

CLA-DE was compared to some other global optimization approaches tested on 

some benchmark functions. Results exhibited the effectiveness of the proposed 

model in achieving finer results. It was able to find the global optima on almost all 

of the test functions with acceptable accuracy. In some cases, it showed slower 

convergence rate than the best algorithms, but the difference between its results 

and the best ones is admissible. The proposed method totally exhibits good global 

search capability with an acceptable convergence rate. 

As future works, working on fuzzy actions for learning automata to improve 

searching at boundary points of actions will be interesting. Also, considering other 

learning algorithms for the learning automata might be beneficial. 
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Figure legends 

Figure 1 A scheme of CLA-DE model entities 

Figure 2 General pseudo code for CLA-DE 

Figure 3 (a) Learning automata of each cell is randomly partioned into exclusive groups and each 

group creates one child for the cell. (b) Reinforcement signals from generated children and the 

neighboring cells are used for updating the Solution Model and the best generated child is used for 

updating the Candidate Solution. 

Figure 4 pseudo code for Model Based Evolution phase 

Figure 5 pseudo code for action refinement step 

Figure 6 pseudo code for DE Based Evolution 

Figure 7 Fitness curves for functions (a) f2, (b) f3, (c) f4, (d) f5, (e) f6, (f) f9, (g) f10 and (h) f11. 

The horizontal axis is the number of fitness evaluations and the vertical axis is the logarithm in 

base 10 of mean best function value over all trials. 

Figure 8 Fitness curves for functions (a) f1, (b) f7 and (c) f8. The horizontal axis is the number of 

fitness evaluations and the vertical axis is the mean best function value over all trials. 

table title 

Table 1 benchmark functions and their properties 

Table 2 Mean success rate and Mean number of function evaluations to reach the specified 

accuracy for successful runs. Success rates are shown inside the parentheses 

Table 3 Success rate and Mean number of function evaluation ranks of the compared methods. 

Success rate ranks are shown inside the parentheses 

Table 4 average final result (along with its standard deviation) 


