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Abstract

We propose a nonrigid registration approach for diffusion tensor images using a multicomponent

information-theoretic measure. Explicit orientation optimization is enabled by incorporating tensor re-

orientation, which is necessary for wrapping diffusion tensor images. Experimental results on diffusion

tensor images indicate the feasibility of the proposed approach and a much better performance com-

pared to the affine registration method based on mutual information in terms of registration accuracy

in the presence of geometric distortion.
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1 Introduction

Diffusion tensor imaging (DTI) is a state-of-the-art magnetic resonance imaging (MRI) technique for an-

alyzing the underlying white matter (WM) structure of the brain and investigating the microstructure of

biological tissue, especially in the presence of fibrous structures [1]. At each voxel of a diffusion tensor

(DT) image, the water diffusion anisotropy and preferred orientation can be measured and represented

by a symmetric second-order tensor. The orientation of the resulting DT field represents the orientation

of fiber bundles, and hence DTI is considered an ideal choice for studying and inspecting white matter

metabolism in the brain. By detecting the orientation of water molecules in WM, DTI enables studying

WM alteration across populations and provides a helpful tool for brain growth research [2]. An important

prerequisite for these studies is nonrigid image registration, which refers to the process of aligning two or

more images of the same scene that were subject to elastic or nonrigid transformations so that their details

overlap accurately. Extending nonrigid image registration from scalar images to DT images is, however, a

challenging task, not only because of the multi-dimensionality of DT images, but also due in large part to

the requirement of keeping DT orientation consistent with the anatomy after image transformation [3].

In recent years, a wide range of techniques have been proposed in the literature to tackle the nonrigid

registration problem of DT images. The vast majority of these methods can be broadly classified into

three main categories. The techniques in the first category ignore the orientation components of images

and register scalar images associated with DTI data sets, such as the non-diffusion weighted images, MR-

T2-weighted images, and fractional anisotropy (FA) maps [4–6]. In the second category, the methods

register actual tensor images without reorienting the tensors during registration [7, 8]. Ruiz-Alzola et

al. [7] proposed a unified framework for nonrigid registration of scalar, vectorial and tensorial medical data.

The framework measures image correspondence based on DT data by optimizing affine transformations

in a certain restricted window of the image domain. Alexander et al. [8] presented a multiresolution

elastic matching method and proposed a similarity measure that combines DT and T1-weighted structural

information by averaging their individual similarities. In all the aforementioned techniques, no tensor

reorientation was applied during the registration and hence producing inaccurate image matching results.

Techniques in the last category either explicitly optimize tensor reorientation [9, 10] or perform tensor

reorientation after application of the final transformations; and hence no tensor reorientation is applied

during the optimization step [11]. Zhang et al. [9] proposed a piecewise affine registration algorithm

that incorporates DT data in the similarity measure in an effort to explicitly optimize tensor reorientation.

In [11], Hecke et al. proposed a nonrigid coregistration algorithm based on a viscous fluid model, in which
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the quality of image matching is measured by the mutual information similarity measure. The tensor

reorientation in this method is only carried out after the application of the final deformation field.

A number of DTI registration methods align T1- or T2- weighted images that are taken at the same

time as DTI data sets, followed by applying the resulting deformation to DT images. T1- and T2-weighted

images represent the WM structure as low-contrast regions, and hence registration based on these images

poorly align the structure and orientation of the WM regions [12]. To circumvent this limitation and provide

a more structural information, DT features are usually used. One possible feature that contains a high WM

contrast is the scalar FA map, which has proven to be a suitable feature [4]. Guimond et al. [5] proposed

a multicomponent registration method based on eigenvalue images. Another feature that enhanced the

quality of DTI registration is the DT components as reported in [12, 13]. Thirion et al. [13] proposed

a demons-based registration algorithm and used the sum of square differences as a similarity criterion

based on DT elements. Alexander et al. [3] reported that only rigid transformation should reorient the

tensors to keep them consistent with anatomical structure of the image. For scalar measures such as the

eigenvalues and the FA map, tensor reorientation is not required during registration due to the invariance to

rigid transformations of their corresponding tensors. In contrast to FA, the DT elements contain orientation

information, and hence the voxel intensities of the DT elements may have different values for a particular

WM tract follows a different path in two subjects, where the FA can be similar. Because the intensity

variation in the corresponding voxels has a local, spatial dependent nature, a DTI registration algorithm

needs to accommodate both the alignment of intersubject images and the presence of nonlinear intervoxel

intensity differences [11]. Moreover, the widely used sum of square differences similarity measure assumes

similar voxel intensity values in different images that only differ from each other by a Gaussian noise term.

But the FA or eigenvalue image data are known to be non-Gaussian distributed due to nonlinearity in the

calculation of the eigenvalue system [14]. As a result, the sum of square differences cannot be used for this

purpose optimally.

To tackle the aforementioned problem, we propose in this paper a multicomponent entropic similarity

measure for DTI registration. A general framework for image registration methods relies on information-

theoretic measures such as mutual information and Jensen-Shannon divergence [15]. By employing the

Jensen-Tsallis (JT) similarity measure [16,17], the nonlinear intervoxel intensity differences are taken into

account without the need for an explicit tensor reorientation during the optimization procedure. Hence, the

tensors are only reoriented after the application of the final deformation field. More precisely, we propose

a nonrigid image registration method by optimizing a multicomponent JT similarity measure using the

3



quasi-Newton L-BFGS-B method [18] as an optimization scheme and cubic B-splines for modeling the

nonrigid deformation field between the fixed and moving 3D image pairs. The analytical gradient of the

multicomponent JT similarity is derived in a effort to design an efficient and accurate nonrigid registration

algorithm. In order to achieve a compromise between the nonrigid registration accuracy and the associated

computational cost, we implement a three-level hierarchical multi-resolution approach such that the image

resolution is increased, along with the resolution of the control mesh, in a coarse to fine fashion. Since

the JT is a robust measure of the image similarity, no tensor reorientation is performed in an iterative way.

Tensor reorientation is only performed after the application of final deformation. A major advantage of

not applying tensor reorientation iteratively is to decrease the computational complexity of the registration

algorithm and hence the runtime. The experimental results demonstrate the registration accuracy of the

proposed approach in comparison to the affine registration method based on mutual information [11, 19].

The rest of this paper is organized as follows. In Section 2, we provide a brief background on diffusion

tensor imaging, followed by the problem formulation and the definition of the JT similarity measure. In

Section 3, we describe in detail the proposed method, including the multicomponent JT similarity, and

the tensor reorientation formulation. Then, we present a summary of our proposed algorithm. Section 4

provides experimental results on a diffusion tensor imaging data set to demonstrate the effectiveness and

superior performance of our method compared to the affine registration technique.

2 Background and Problem Formulation

2.1 Diffusion Tensor Imaging

Water diffusion inside the brain can be characterized by a diffusion tensor, D, at each voxel of an MRI

volume. This diffusion tensor can be represented as a real, symmetric and positive definite matrix

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



. (1)

For each voxel, the signal intensity S of the tissue is calculated as follows:

S = S0 e
−bADC (2)

where S0 is the signal intensity on the T2-weighted image, b is a scalar weighting factor representing the

strength of diffusion sensitivity, and ADC is the apparent diffusion coefficient. ADC is the projection
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of the diffusion tensor along the gradient of measure and describes the diffusivity along that particular

direction. The diffusion tensor, D, and the apparent diffusion coefficient,ADC are related by the equation:

ADC = ĝTk Dĝk, (3)

where ĝk is a dimensionless unit vector given by the direction of the measurement [9].

Acquisition and computation of the diffusion tensor: Several diffusion weighted (DW) images and dif-

ferent non-collinear gradient directions gk(k = 1, 2, . . . , N) should be acquired to compute the diffusion

tensor D(r), where r denotes the voxel position. Because D(r) is characterized by six degrees of freedom

due to the symmetry of the tensor, at least six DW measurements Sk(r) are needed, along with a reference

image S0(r) acquired without diffusion weighting. In general, D(r) can be calculated for each voxel at

position r by solving the following system of equations

Sk(r) = S0(r)e−b ĝ
T
k D(r)ĝk with ĝk =

gk
‖gk‖

. (4)

Six axial DW measurements Sk(r) and one non-DW image S0(r) are shown in Figure 1, along with the

corresponding magnetic field gradients gk (k = 1, . . . , 6). Note the difference in intensity values for

different gradient directions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Axial DW images Sk(r) of the human brain for different gradient directions gk.

The diffusion tensor field D is in fact a covariance matrix describing the translational displacement of

the diffusing molecules. Therefore, an ellipsoidal shape can be associated with D, which represents the

5



probabilistic iso-surface of this molecular diffusion [20]. Because D is a symmetric and positive definite

second-order tensor, its spectral decomposition may be written as

D = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3 (5)

where λ1 ≥ λ2 ≥ λ3 > 0 are the positive eigenvalues of D and ei are the associated orthonormal eigen-

vectors. These eigenvectors and eigenvalues represent the principal axes of the ellipsoid and their corre-

sponding principal diffusion coefficients, respectively, as illustrated in Figure 2. Therefore, the ellipsoid

axes are oriented according to the tensor eigenvectors, and their lengths depend on the tensor eigenvalues.

λ1 ≈ λ2 ≈ λ3 λ1 ≈ λ2 � λ3 λ1 � λ2 ≈ λ3

Figure 2: Different cases of diffusion: Spherical diffusion (left); planar diffusion (center); linear diffusion

(right).

2.2 Scalar Indices

The first eigenvector e1 = (e1x, e1y, e1z), also called principal diffusion vector, of D describes the pre-

dominant diffusion direction, which is parallel to the orientation of the corresponding underlying WM fiber

system. Figure 3 shows a visualization of the color-coded MR-DTI data with ellipsoids. The predominant

diffusion direction can be directly related to a Green (G), Red (R) and Blue (B) digital color triple. The

convention in which the G, R and B color components represent the directions is as follows:

[‖e1x‖, ‖e1y‖, ‖e1z‖] = [G,R,B] . (6)

The RGB color-coded directionality maps provide an indication of the direction in which water diffusion

is the highest and improve the visibility of different WM fiber bundles.

Trace and Mean Diffusivity: The total diffusivity is trace(D) =
∑3

i=1 λi, and the mean diffusivity (MD)

is equal to one third of trace(D). The MD measure serves as an indicator of brain maturation and/or injury,

and provides the overall magnitude of water diffusion independent of anisotropy [21]. The MD map is

shown in Figure 4(c), where higher values of average diffusion appear brighter.
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Fractional Anisotropy (FA): FA serves as an indicator of the degree of water diffusion anisotropy inde-

pendent of the overall water diffusion coefficient and is defined as

FA =

√
3

2

∑3
i=1 (λi − 1

3 trace(D))2
∑3

i=1 λ
2
i

, (7)

which is basically the normalized standard deviation of the eigenvalues. The values of FA vary from 0 to

1 with higher values corresponding to greater diffusion anisotropy. Figure 4(c) shows the FA map of the

same slice as in Figure 4(a). The higher values of FA correspond to the WM regions containing densely

packed fiber bundles that cause anisotropic diffusion by restricting water movement along the direction

perpendicular to the fiber bundles.

Figure 3: Ellipsoidal representation of the diffusion tensor at each voxel location of a DTI image.

2.3 Problem Statement

Let I and J be two misaligned images to be registered, where I is the fixed image and J is the moving

image. The moving image J is obtained by applying a deformation field Φ to the fixed image I , as depicted

in Figure 5. Note that the deformation field Φ can be applied directly to the DT components of the fixed

image I , or to the DW images before calculating the DT components. The deformation field Φ is described

by a transformation function g(x;µ) : VJ → VI , where VJ and VI are continuous domains on which J

and I are defined, and µ is a vector of transformation parameters to be determined.
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(a) (b) (c) (d)

Figure 4: Axial slice No. 30 of the DT image chosen as the template in this study : (a) DW image; (b)

mean diffusion; (c) fractional anisotropy; (d) color-coded DT elements. The DT maps are color-coded

according to the diffusion direction.

The image alignment or registration problem may be formulated as an optimization problem:

µ̂ = arg min
µ
S
(
I(x), J(g(x;µ))

)
, (8)

where S(·, ·) is a cost function that measures the similarity between the fixed image and the deformed

moving image.

To align the transformed moving image J(g(x;µ)) to the fixed image I , we seek the vector of trans-

formation parameters µ that minimize the cost function S
(
I(x), J(g(x;µ))

)
.

(a) (b) (c)

Figure 5: (a) Fixed image I; (b) moving image J ; (c) deformation field Φ.

2.4 Jensen-Tsallis Similarity Measure

Recently, there has been a concerted research effort in statistical physics to explore the properties of Tsallis

entropy, leading to a statistical mechanics that satisfies many of the properties of the standard theory [22].

Tsallis entropy is defined as

Hα(p) =
1

1− α
( k∑

j=1

pαj − 1
)

= −
k∑

j=1

pαj logα(pj), (9)
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Figure 6: JT similarity Sα(p,q) between two Bernoulli distributions p = (p, 1 − p) and q = (1 − p, p)

for different values of α.

where p = (p1, p2, . . . , pk) is a probability distribution, logα is the α-logarithm function defined as

logα(x) = (1 − α)−1(x1−α − 1) for x > 0, and α ∈ (0, 1) ∪ (1,∞) is an exponential order (also

referred to as entropic index).

The Jensen-Tsallis (JT) similarity measure [16] between n probability distributions p1,p2, . . . ,pn is

given by

Sωα (p1, . . . ,pn) = 1− D
ω
α (p1, . . . ,pn)

logα n
, (10)

where Dωα is the JT divergence defined as

Dωα (p1, . . . ,pn) = Hα

(
n∑

i=1

ωipi

)
−

n∑

i=1

ωiHα(pi) (11)

and ω = (ω1, ω2, . . . , ωn) is a nonnegative weight vector such that
∑n

i=1 ωi = 1.

Figure 6 illustrates the JT similarity between two Bernoulli distributions p = (p, 1 − p) and q =

(1− p, p), with uniform weight ω1 = ω2 = 1/2, for different values of the entropic index. As can be seen

in Figure 6, the highest similarity corresponds to the entropic index α = 2. Consequently, we choose an

entropic index α = 2 throughout the paper unless indicated otherwise.

3 Proposed Framework

We propose two different registration approaches using a different number of components, namely the FA

map with one component, and the DT elements with six components. In the first approach, referred to
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as JT-FA, we apply our JT similarity based registration algorithm to the FA map between the fixed and

deformed moving images. In this approach we do not need to modify the JT similarity measure because

each DTI data set contains only one FA map (i.e. L = 1).

In the second approach, which we call JT-DT, the JT similarity measure needs to be modified to reg-

ister the multicomponent DT elements because each DTI data set contains six DT elements L = 6 (i.e.

` = 1, . . . , L). To determine the multicomponent JT similarity, the JT measure is computed for all corre-

sponding components separately, assuming that they are independent. For instance, the first DT element

image (i.e. for ` = 1) of the fixed DTI data set is compared to the first DT element image of the moving

DTI data set. A similar approach was presented in [11] using mutual information as a similarity metric.

The multicomponent JT similarity measure is then calculated by averaging the JT similarity of the different

corresponding components, as explained in the next subsection. Finally, the JT-DT approach is optimized

via an iterative process.

3.1 Multicomponent Jensen-Tsallis Similarity

As mentioned earlier, we assume that the entropic index is set to α = 2. For each component ` = 1, . . . , L,

the JT similarity, denoted by Sω`,α, and its derivative between all corresponding components of the moving

and fixed DTI data sets are given by

Sω`,2(p`,1, . . . ,p`,n) = 1−
Dω`,2(p`,1, . . . ,p`,n)

log2 n
(12)

and
∂Sω`,2(p`,1, . . . ,p`,n)

∂µ`
= −

∂Dω`,2(p`,1, . . . ,p`,n)

∂µ`

1

log2 n

respectively, where

p`,i = p`,i
(
J(g(x;µ))|I(x)

)
, ∀i = 1, . . . , n,

are the conditional intensity probability distributions of the corresponding `-th image component.

The multicomponent JT similarity measure is obtained by averaging the JT similarity for multiple

components. In other words, the multicomponent JT similarity, denoted by SωL,2, and its derivative are

given by

SωL,2(p1, . . . ,pn) =
1

L

L∑

`=1

Sω`,2(p`,1, . . . ,p`,n) (13)

and
∂SωL,2(p1, . . . ,pn)

∂µ
=

1

L

L∑

`=1

∂Sω`,2(p`,1, . . . ,p`,n)

∂µ`
(14)
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Note that when L = 1, the multicomponent JT similarity reduces to the JT measure.

To solve the nonrigid DT image alignment problem given by Eq. (8), we will use the multicomponent

JT similarity measure as a matching criterion. According to Eq. (8), if I and J are scalar-valued images,

then image transformations only change the position of each voxel x. Image deformation is more complex

for diffusion tensor images because the transformations also change the diffusion tensor orientation. Hence,

tensor reorientation is needed to ensure that DT orientation is consistent with the underlying deformed

microstructure.

3.2 Tensor Reorientation Formulation

For rigid transformation of DT images, tensor reorientation is straightforward. Let the orthogonal matrix

R denote the rotational component of the rigid transformation to each tensor. Thus, the reorientation on

a diffusion tensor D is D′ = RDRT . On the other hand, for nonrigid transformations of DT images,

when the moving image J is deformed to match the fixed image I with the mapping g : VJ → VI , the

tensor at voxel location x is deformed according to the Jacobian matrix M = ∇g−1(x). Alexander et

al. [3] proposed a simple reorientation strategy, called finite strain method, to determine a rotational matrix

R from the Jacobian matrix M . The finite strain algorithm selects the best orthogonal approximation of

M to be R, where R is the solution of arg minR′ ||R′ −M||. Figure 7 shows a registered image before

and after applying FS tensor reorientation algorithm. In Figure 7(b), we display a portion of the diffusion

tensor field before applying the tensor reorientation algorithm. Some tensor orientations in this field are

not consistent with the anatomy after image deformation. Figure 7(d) shows that the orientations of all

tensors become consistent with the anatomy after applying the finite strain method.

3.3 Transformation Model

We model the transformation g(x;µ) using the free form deformation [16,23], which is based on cubic B-

splines. Let Φ denote a nx×ny×nz mesh of control points ϕi,j,k with a uniform spacing ∆. Then, the 3D

transformation at any point x = [x, y, z]T in the moving image is interpolated using a linear combination

of cubic B-spline convolution kernels as follows

g(x;µ) =
∑

ijk

ηijkβ
(3)

(
x− ϕijk

∆

)
, (15)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) is a separable cubic B-spline convolution kernel [16], and ηijk are

the deformation coefficients associated to the control points ϕijk. The degree of nonrigidity can be adopted
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Figure 7: (a) and (c) Registered images before and after tensor reorientation, respectively; (b) and (d)

Diffusion tensors of a certain region before and after applying tensor reorientation, respectively.

to a specific registration problem by varying the mesh spacing or the resolution of the mesh Φ of control

points. The parameter vector µ = (ηijk) represents the vector of deformation coefficients associated to the

control points ϕijk, where the indices i, j, k denote the coordinates of the control points on the mesh grid.

3.4 Implementation

The proposed algorithm for nonrigid DTI registration is implemented by changing the deformation in the

moving image(s) until the discrepancy between the moving and fixed images is minimized. The main

algorithmic steps of our DTI registration framework are summarized in Algorithm 1. First, the algorithm

initializes the deformation field Φ by creating a uniform B-spline control grid with predefined spacing

knots. Next, a 3-level hierarchical multi-resolution scheme is used to achieve the best compromise between

the registration accuracy and the associated computational cost. As the hierarchical level increases the

resolution of the control mesh is increased, along with the image resolution, in a coarse to fine fashion. In

each hierarchical level, a limited-memory, quasi-Newton minimization scheme is used to find the optimum

set of transformation parameters that reduce the multicomponent JT cost function until the difference

between the cost function values in two consecutive iterations is less than ε = 0.01. The resolution of the

optimum set of transformation parameters, at a courser level, is increased to be used as starting point for

the next hierarchical level. Finally, after the application of the final deformation field a tensor reorientation
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is applied using the finite strain strategy.

6 Mohammed Khader1, A. Ben Hamza1, Adrian Martin2, Emanuele Schiavi2

to determine a rotational matrix R from the Jacobian ma-
trix M . The finite strain algorithm selects the best orthog-
onal approximation of M to be R, where R is the solu-
tion of argminR′ ||R′−M ||. Fig. 7 shows a registered im-
age before and after applying FS tensor reorientation algo-
rithm. In Fig. 7(b), we display a portion of the diffusion ten-
sor field before applying the tensor reorientation algorithm.
Some tensor orientations in this field are not consistent with
the anatomy after image deformation. Fig. 7(d) shows that
the orientations of all tensors become consistent with the
anatomy after applying the finite strain method.

Fig. 7 (a) and (c) Registered images before and after tensor reorien-
tation, respectively; (b) and (d) Diffusion tensors of a certain region
before and after applying tensor reorientation, respectively.

3.3 Transformation Model

We model the transformation g(x;µ) using the free form
deformation [15,21], which is based on cubic B-splines. Let
Φ denote a nx × ny × nz mesh of control points ϕi,j,k with
a uniform spacing ∆. Then, the 3D transformation at any
point x = [x, y, z]T in the moving image is interpolated us-
ing a linear combination of cubic B-spline convolution ker-
nels as follows

g(x;µ) =
∑

ijk

ηijkβ
(3)

(
x− ϕijk

∆

)
, (15)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) is a separable cu-
bic B-spline convolution kernel [15], and ηijk are the de-
formation coefficients associated to the control points ϕijk.
The degree of nonrigidity can be adopted to a specific reg-
istration problem by varying the mesh spacing or the reso-
lution of the mesh Φ of control points. The parameter vec-
tor µ = (ηijk) represents the vector of deformation coef-
ficients associated to the control points ϕijk, where the in-
dices i, j, k denote the coordinates of the control points on
the mesh grid.

3.4 Implementation

The proposed algorithm for nonrigid DTI registration is im-
plemented by changing the deformation in the moving im-
age(s) until the discrepancy between the moving and fixed
images is minimized. The main algorithmic steps of our DTI
registration framework are summarized in Algorithm 1. First,
the algorithm initializes the deformation field Φ by creat-
ing a uniform B-spline control grid with predefined spacing
knots. Next, a 3-level hierarchical multi-resolution scheme
is used to achieve the best compromise between the regis-
tration accuracy and the associated computational cost. As
the hierarchical level increases the resolution of the con-
trol mesh is increased, along with the image resolution, in
a coarse to fine fashion. In each hierarchical level, a limited-
memory, quasi-Newton minimization scheme is used to find
the optimum set of transformation parameters that reduce
the multicomponent JT cost function until the difference be-
tween the cost function values in two consecutive iterations
is less than ε = 0.01. The resolution of the optimum set
of transformation parameters, at a courser level, is increased
to be used as starting point for the next hierarchical level.
Finally, after the application of the final deformation field a
tensor reorientation is applied using the finite strain strategy.

Algorithm 1 Proposed nonrigid DTI registration framework
1: Initialize the deformation field Φ for each DTI-image component
2: for hierarchical level = 1 to 3 do
3: Calculate the cost function and its gradient as given by Eq. (13)

and (14)
4: repeat
5: Use the quasi-Newton method to solve the optimization

problem given by Eq. (8)
6: Update the deformation field for each DTI-image component
7: Recalculate the cost function and its gradient
8: until the difference in consecutive iterates is less than ε = 0.01
9: Increase the resolution of both the deformation field and the

image.
10: end for
11: Apply tensor reorientation using the finite strain strategy.

4 Experimental Results

We tested the performance of the proposed approach on med-
ical imaging data sets that were obtained from the National
Alliance for Medical Image Computing (NAMIC) database
in the MIDAS Journal [22]. These data sets contain 20 cases:
ten are normal controls and ten are Schizophrenic. Each data
set contains images from several protocols, including T1-
weighted (MR-T1), T2-weighted (MR-T2), diffusion weighted
DWI, and fMRI. The images used in our experiments are
DTI scans that were acquired on a 3 Tesla GE system using

4 Experimental Results

We tested the performance of the proposed approach on medical imaging data sets that were obtained from

the National Alliance for Medical Image Computing (NAMIC) database in the MIDAS Journal [24]. These

data sets contain 20 cases: ten are normal controls and ten are Schizophrenic. Each data set contains images

from several protocols, including T1-weighted (MR-T1), T2-weighted (MR-T2), diffusion weighted DWI,

and fMRI. The images used in our experiments are DTI scans that were acquired on a 3 Tesla GE system

using an echo planar imaging (EPI) DTI Tensor sequence. The following scan parameters were used:

TR = 17000 ms, TE = 78 ms, FOV = 24 cm, 144× 144 encoding steps, and 1.7 mm slice thickness. The

number of slices is 85 axial slices. In addition, Bo field inhomogeneity maps are collected. To assess the

registration accuracy of the proposed method on DTI data, we first applied a geometric distortion to a fixed

image in order to generate a moving image. Then, we aligned the moving image with the fixed image. In

all the experiments, we used the normalized histogram of the fixed image as the weight vector ω in the

multicomponent JT similarity measure. Moreover, the moving image is generated by applying a random

perturbation to the corresponding fixed image using a thin-plate spline interpolation such that the mean

nonrigid displacement of the pixels, caused by the relative displacement between the fixed and generated

moving images, is the ground truth deformation field.
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4.1 Evaluation Criteria

For the quantitative evaluation analysis, we considered only voxels having FA values larger than 0.4. The

registration accuracy of the proposed method is evaluated in terms of both the spatial registration and

orientation correspondence.

Deformation field correspondence: The deformation field correspondence measure is defined as

CB =
‖Φ−Φ′‖
‖Φ‖+ ‖Φ′‖ , (16)

where CB represents the distance between the estimated deformation field Φ′ and the ground-truth defor-

mation Φ for each voxel B. We then compute the median value, denoted by C, of CB for all selected

voxels. The median value C represents an overall measure of the deformation field correspondence, and

takes values between 0, when the estimated deformation field exactly matches ground truth deformation,

and 1 resulting in the worst alignment.

First eigenvector angle difference: To evaluate the quality of registration method with respect to the

orientation information, the angle aB between the first eigenvector nB of the fixed image and the deformed

moving image n′B can be calculated for each selected white matter voxel B as follows:

aB = cos−1
( 〈n′B,nB〉
||n′B|| ||nB||

)
. (17)

The median, denoted by a, of all selected voxels B is a measurement of preservation of orientation in-

formation after registration. The smaller the value of a, the better the orientation alignment between the

involved images.

Overlap of eigenvalue-eigenvector pairs: The overlap of eigenvalue-eigenvector pairs between tensors is

another measure of registration quality given by

OV L =
1

NB

∑

B

∑3
i=1 λ

′
iλi〈ε′i, εi〉2∑3
i=1 λ

′
iλi

, (18)

whereNB is the total number of selected WM voxels, and λ′i, λi, ε
′
i and εi are eigenvalues and eigenvectors

of the deformed moving image and fixed image, respectively. The maximum value 1 of OV L indicates

complete overlap, whereas the minimum value 0 represents no overlap of the principal axes of the DT field.

4.2 Qualitative Test

In the first experiment, we distorted the fixed DW images of the data set shown in Figure 4 with a known

nonrigid transformation field or the so-called ground truth deformation Φ, as shown in Figure 8(a). Then,
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the DT field is computed from the deformed DW images. Next, the DT elements are reoriented to preserve

the alignment with the underlying, deformed microstructure. And then, the DW images are recomputed

from the reoriented DT field, resulting in the moving image data set, as shown in Figure 8(b)-(c). Next, we

applied the proposed approaches using DT elements (JT-DT) and FA images (JT-FA), as well as the affine

registration method based on mutual information [11,19]. Finally, we compared the registered DT and FA

images to their corresponding fixed images. Figure 8 shows the results obtained from this experiment. It

should be noted that the registered moving images obtained by JT-DT and JT-FA are visually more similar

in shape to the fixed images than the images produced by the affine method. Moreover, it can be seen that

the registered image using the affine registration method still has a considerable amount of misregistration.

Unlike the affine method, most of the visible amount of misalignment in the moving image has been

removed after applying our JT-DT and JT-FA approaches.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Geometric distortion experiment: (a) Ground truth deformation field; (b)-(c) distorted FA and

DT elements’ images, respectively, with geometric distortion; (d)-(f) DT elements of the registered images

using affine, JT-FA and JT-DT, respectively; (g)-(i) FA of the registered images using affine, JT-FA and

JT-DT, respectively.
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4.3 Quantitative Test

In the second experiment, quantitative registration results on DTI data sets deformed with known deforma-

tion fields are shown in Figure 9. All methods apply the finite strain strategy to reorient the tensors after

registration. In Figure 9(a)-(b), the eigenvalue-eigenvector overlap (OV L) of tensors in corresponding

voxels, and the first eigenvector angle difference (a) between the first eigenvectors of corresponding vox-

els are displayed. As shown in Figure 9(a)-(b), the proposed registration approaches outperform the affine

registration method. Moreover, the use of diffusion elements in the JT-DT method resulted in improved

registration results compared to the JT-FA method. In Figure 9(c), the measure C calculates the discrep-

ancy between the estimated deformation field and ground truth deformation field. The results obtained

using the JT-DT method are considerably small compared to JT-FA. On the other hand, a paired t-test

is used to determine if the difference in the quantitative parameters for the pairs of registration methods

is statistically significant. The table displayed in Figure 9(d) shows that at 95% level of confidence, the

JT-DT method significantly improves the registration accuracy compared to JT-FA and affine methods.

5 Conclusions

We proposed an information-theoretic technique for nonrigid registration of diffusion tensor images using

a multicomponent similarity measure. In the proposed approach, we enabled explicit orientation optimiza-

tion by incorporating tensor reorientation, which is necessary for wrapping DT images. The experimental

results on DTI registration indicated the feasibility of the proposed approach and a much improved perfor-

mance compared to the affine registration method.
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