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Abstract Non-stationary domains, where unforeseen changes happen, present
a challenge for agents to find an optimal policy for a sequential decision mak-
ing problem. This work investigates a solution to this problem that combines
Markov Decision Processes (MDP) and Reinforcement Learning (RL) with An-
swer Set Programming (ASP) in a method we call ASP(RL). In this method,
Answer Set Programming is used to find the possible trajectories of an MDP,
from where Reinforcement Learning is applied to learn the optimal policy of
the problem. Results show that ASP(RL) is capable of efficiently finding the
optimal solution of an MDP representing non-stationary domains.

Keywords Non-determinism · Markov Decision Processes · Answer Set
Programming · Action Languages

1 Introduction

John McCarthy defined Elaboration Tolerance as “the ability to accept changes
to a person’s or a computer program’s representation of facts about a subject
without having to start all over” [17]. An example of a real world problem that
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requires solutions that are tolerant to elaborations is the dynamics of urban
mobility, where streets and roads are constantly reconstructed or modified.
Some of these changes are planned and, thus, can be previously informed to the
inhabitants of the city. However, unplanned changes due to natural phenomena
(rain or snowing, for example), or due to human actions (e.g. road accidents),
may occur that cause road blocks which could prevent the traffic through
certain routes of the city. In such cases, it is not possible to know the changes
until they are observed by the agents. However, an agent immersed in this
domain must be capable of finding the best sequence of actions, considering
the new situations, but without loosing all the information previously acquired.

One formalism that can be used to model the kind of situations described
above is a non-stationary Markov Decision Process (MDP), where the set
of states represented by observations of the environment (facts) can suffer
changes over time such that states can be added to, or removed from, the de-
cision process. As these changes may not be known a priori, the environment
cannot be modelled as a stationary MDP due to the Curse of Dimensional-
ity [9], which describes the growth in the set of states when considering the
number of variables involved in the description of a state.

This work is directed towards problem solving in non-stationary domains
in which, not only the transition and the reward functions change, but also the
states and actions may change during the agent’s interaction with the envi-
ronment. The ASP(RL) proposed here is able to change an MDP’s description
during learning and to reuse the learnt data in the new domain that it is inter-
acting with. A consequence of using ASP(RL) is the speed up in the searching
for an MDP solution as a consequence of the reduction that may occur in the
search space.

In order to model an agent capable of interacting efficiently with non-
stationary domains, we propose a method called ASP(RL) that combines
Markov Decision Process, Reinforcement Learning (RL) (Section 2.1) with An-
swer Set Programming (Section 2.2). The proposed combination (Section 3)
allows an agent to learn incrementally in an environment that suffers changes.
The method was analysed in a non-stationary grid world (Section 4) and exper-
imentally evaluated and compared to two Reinforcement Learning algorithms
(Section 5).

2 Background

This section introduces Markov Decision Processes (MDP), Reinforcement
Learning (RL) and Answer Set Programming (ASP), which constitute the
foundations of this work.

2.1 MDP and Reinforcement Learning

In a Sequential Decision Making Problem, an agent must select a series of
actions in order to find a solution to a given problem. A feasible solution,
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known as policy (π), is a sequence of non-deterministic actions that leads the
agent from an initial state to a goal state [7,9]. A problem such as this may
have more than one feasible solution, thus it is possible to use the Bellman’s
Principle of Optimality [7,9] as a criterion to define which of the feasible
policies can be considered as the optimal policy (π∗). Bellman’s Principle of
Optimality states that “an optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision” [9].
By this definition, an optimal policy is the one that maximises (or minimises)
a desired reward/cost function.

Markov Decision Process (MDP) [8] can be used to formalise Sequential
Decision Making Problems. An MDP is defined as a tuple M = 〈S,A, T ,R〉
where:

– S is the set of states at any time step;
– A is the set of allowed actions in the states s ∈ S;
– T : S×A×S 7→ [0, 1] is the transition function that gives the probability of

reaching the future state s′ ∈ S by performing action a ∈ A in the current
state s ∈ S;

– R : S × A × S 7→ R is the reward function that returns a real value for
reaching a state s′ ∈ S after performing an action a ∈ A in a state s ∈ S.

To find the optimal solution of an MDP is to find, for each state, which is
the action that maximises the reward function. One of the methods that can
be used to approximate such optimal solution is Reinforcement Learning (RL).
With RL, at each time step, a learning agent at a state s ∈ S chooses an action
a ∈ A to be performed in the environment. After the action a is performed,
the agent receives its new state s′ ∈ S and a reward r(s, a, s′). This reward
is used to update a value function V (s) (or an action-value function Q(s, a),
depending on the method used) and the interaction continues from the new
state. Given enough time, the agent is capable to approximate the (action-)
value function, maximising the reward function and finding the optimal policy.
One important aspect of RL methods is that the transition and reward function
are not necessarily known beforehand by the agent, but are present in the
environment.

Two well-known methods of RL are SARSA [23] and Q-Learning [24,23].
Both are based on the concept of updating an (action-) value function con-
sidering the observations received from the environment. The main difference
between them is how this update is accomplished. SARSA is an on-policy
method, which means that updates in the Q(s, a) function use the actions ex-
ecuted in the policy that is being followed, while Q-Learning is an off-policy
method that uses the maximum value of the next state to update the current
state-action pairs.

Although Reinforcement Learning allows for learning the optimal solu-
tion of a sequential decision-making problem with non-stationary transition
and reward functions (functions that may change over time) and without the
knowledge of the reward function, it still needs stationary sets (which do not
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change during the interaction) of states and actions in order to proceed with
the learning process. In order to account for changes in the set of states, we
propose the use of Answer Set Programming.

2.2 Answer Set Programming

Answer Set Programming (ASP) is a declarative non-monotonic logic program-
ming language that has been used with great success to describe and provide
solutions for NP-complete problems, such as planning and scheduling [15,25].
Furthermore, ASP can be used for problems with large search space, such as
the Reaction Control System of a Space Shuttle [3,5,4,18].

An ASP program is a set of rules, each rule is composed of an atom A
and of literals Lm, which are atoms or negated atoms. An ASP rule can be
represented as: A ← L1, . . . , Ln; where A is called the head of the rule and
the conjunction of literals L1, . . . , Ln is its body. A rule is said to be positive
when there is no negated atom in its body; when n = 0 the atom A is said to
be a fact.

Let Π be an ASP program, an answer set of Π is an interpretation that
makes all the rules of this program true. This interpretation is a minimal model
of the program. One important aspect of ASP is its non-monotonic semantics
(based on the Stable Model Semantics [13]), which respects the rationality
principle that states that “one shall not believe anything one is not forced to
believe” [13]. Along with true and false, ASP also has a third truth value for
unknown.

There are two types of negation in ASP: strong (or “classical”) and weak,
which in ASP represents negation as failure [16].

Given an ASP program Π and a set M of atoms of Π, a reduct program
ΠM is obtained from Π by [13]:

– Deleting each rule with a negative literal in its body in the form ¬B,B ∈
M ;

– Deleting every negative literal in the body of remaining rules.

Thus, the reduct program ΠM is negation-free and has a unique minimal
Herbrand model. If M coincides with this model for ΠM , then M is a stable
model of Π. Furthermore, by using an operator OΠ defined as “for any set of
atoms M of Π, OΠ(M) is the minimal Herbrand model of ΠM ”, then a stable
model can also be described as the fixed points of OΠ . From this definition, a
minimal model that accepts classical negation is called an answer set instead
of a stable model.

Although ASP does not provide syntax to describe non-deterministic events,
it is possible to use choice rules in order to verify each possible outcome of
a choice. Considering for example that an agent is at a state s0 and chooses
to perform action a with the possible outcomes being the future states s1, s2
and s3, this transition can be encoded using “1 { s1, s2, s3 } 1 :- s0,
a.” in an ASP program. Thus, when s0 and a are true in Π (the agent has
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performed the action a in the state s0), only one of the future states s1, s2
or s3 is true (reached by the agent).

Since ASP can be used as a tool for providing reasoning and knowledge
revision on a set of states and Reinforcement Learning allows for learning
the solution of an MDP without the need of an explicit reward function, an
opportunity arises to combine both methods in order to efficiently find the
optimal policies for domains where unforeseen changes occur. The next section
presents the action language BC+ that provides the appropriate definitions
for domain modelling needed to bridge the gap between ASP and RL.

2.3 The Action Language BC+

The action language BC+ is defined over the stable model semantics and al-
lows for some useful ASP constructs, such as a high-level description of actions
and their effects, as a consequence of its structured abstract representation of
transition systems [2].

BC+ has two sets of symbols: action constants and fluent constants; and
also two sets of formulas: fluent formula, which has only fluent constants, and
action formula, which has at least one action constant and no fluent constant.

In BC+, an action description is a set of causal laws that have two forms.
The first is:

caused F if G (1)

where, F and G are formulas. If F and G are both fluent formulas, then For-
mula 1 is a static law. If F is an action formula, but G is a fluent formula, then
Formula 1 is an action dynamic law. The second form is called fluent dynamic
law and has the form:

caused F if G after H (2)

where H is a formula, F and G are fluent formulas and F does not contain
statically determined constants.

Causal dependencies between fluents in the same state are described by
static laws. Direct effects of actions are represented by fluent dynamic laws,
while causal dependencies between concurrently executed actions are expressed
by action dynamic laws.

Given an action description D expressed in BC+, a stable model for the
sequence PFm(D) of propositional formulae describes a path of length m in
a transition system D [2]. Given a time instant i ∈ {0, . . . ,m}, a translation
PFm(D) is a conjunction of:

– i : F← i : G for every static and atomic law in D and ∀i ∈ {0, . . . ,m− 1};
– i + 1 : F ← (i + 1 : G) ∧ (i : H) for every fluent dynamic law in D and
∀i ∈ {0, . . . ,m− 1};

– {0 : c = v} for every regular fluent constant c and every v ∈ Dom(c);
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– Given {v1, . . . , vm} as Dom(c), ⊥ ← ¬(1 ≤ {i : c = v1, . . . , i : c = vm} ≤ 1)
for every i : c representing the uniqueness of names and existence values
for the constants;

The action language BC+ can be directly translated into an ASP program
for providing sequences of actions as answer sets.

3 Combining ASP and MDP

This section presents the main contribution of this work, the ASP(RL) method,
which is a combination of ASP and MDP for solving non-stationary decision
making problems.

3.1 Finding the Set of States

In this work Answer Set Programs, translated from BC+, represent the states
s ∈ S, the actions a ∈ A, and the expected transition function of an MDP,
along with sets S0 ∈ S and Sg ∈ S which represents the sets of initial states
and goal states respectively. Let Π(S,A) be one such ASP program with S
and A as set of states and actions respectively. Given an initial state s0 ∈ S0
and a goal state sg ∈ Sg, an answer set of Π(S,A) represents a trajectory T
of the form:

T = 〈〈s0, a0, s1〉, 〈s1, a1, s2〉, . . . , 〈sn, an, sg〉〉 (3)

where sn and an are, respectively, the state and the action at time n.
As ASP programs can have more than one answer set, let a set H contain

all trajectories T that represent the sequence of actions leading from an initial
state to a goal state. Thus, in the set of trajectories H there are a set of states
visited and a set of actions performed that are subsets of those sets in the
MDP defined in the logic program Π(S,A). Thus, this set H can be used to
describe a new MDP Ṁ , as stated in the following Lemma.

Lemma 1 Given an MDP M = 〈S,A, T ,R〉 described by a logic program
Π(S,A), the set H of trajectories found for Π(S,A) defines Ṁ = 〈Ṡ, Ȧ, Ṫ ,R〉,
such that Ṁ ⊆ M . Considering that Ṁ ⊆ M iff Ṡ ⊆ S or Ȧ ⊆ A or Ṫ ⊆ T
or Ṙ ⊆ R.

Proof (Sketch) A logic program Π(S,A) defines a set of restrictions on an
MDP. These restrictions are a set S of states that the agent may not be able
to visit and a set A of actions that the agent may not be able to perform.
Also, changing actions or states imply changing the transitions as well. Thus,
Ṡ ⊆ S | Ṡ = S − S and Ȧ ⊆ A | Ȧ = A−A.

The transition function Ṫ is then described considering the following con-
ditions:

1. The agent cannot visit a state that is forbidden: S ×A;
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2. The agent cannot perform a forbidden action: S ×A;
3. The agent cannot perform a forbidden action in a state that it cannot visit:
S ×A;

4. The agent cannot visit states that have no transition probabilities: S×A×
S 7→ 0;

5. The agent is not allowed to perform some specific actions in some specific
states: Q(s, a).

Thus, the transition function that is extracted from the answer sets is
defined as:

Ṫ (Ṡ, Ȧ) =(Ṡ × Ȧ)−
(
(S ×A) + (S ×A) + (S ×A)

+(S ×A× S 7→ 0) + (Q(s, a))
)
7→ Ṡ (4)

When an MDP is not deterministic, choice rules are used to describe the
transition possibilities (without the probability itself), a similar process is used
to find the transition function Ṫ .

Therefore, with this new set of states Ṡ ⊆ S, actions Ȧ ⊆ A and tran-
sition function Ṫ , it is possible to formalise an MDP Ṁ ⊆ M in the form
Ṁ = 〈Ṡ, Ȧ, Ṫ ,R〉. Since the reward comes from the interaction with the en-
vironment, there is no need to suppress any value in this function or even to
know which is the reward function beforehand.

Once it is possible to formalize an MDP Ṁ that is a subset of another
MDP M , it is still necessary to guarantee that the optimal solution π∗

Ṁ
of Ṁ

is the optimal solution of π∗M of M as stated in Theorem 1.

Theorem 1 Given a reward function and an evaluation criteria (i.e. maxi-
masing or minimising rewards), the optimal solution π∗

Ṁ
for the MDP Ṁ ⊆M

is equivalent to the optimal solution π∗M for the MDP M given the answer sets
(trajectories) H found as solutions to the logic program Π(S,A) that repre-
sents M .

Proof Both M and Ṁ have to maximise (or minimise) the same reward func-
tion R. If there is no restrictions in the set of states (S = ∅) and actions
(A = ∅), we have that Ṁ =M and π∗M = π∗

Ṁ
.

If there are restrictions represented in Π(S,A), then Ṁ ⊂ M and the
feasible solutions (answer sets) H for M are the same of those for Ṁ (by
using Lemma 1). Since the optimal solution must be a feasible solution, then
π∗M ∈ H and π∗

Ṁ
∈ H. Thus, given the same set of feasible solutions and the

same evaluation criteria, π∗M = π∗
Ṁ
.

3.2 The Algorithm ASP(RL)

Lemma 1 and Theorem 1 support the use of ASP to find the sets of states and
actions of an MDP. By using RL it is possible to find an optimal stochastic



8 Leonardo A. Ferreira et al.

1 Algorithm: ASP(RL)
Input: An MDP descried as a logic program Π(S,A) and a (optional) Q(s, a)

function to be approximated.
Output: The approximated Q(s, a) function.

2 Find the answer sets H for Π(S,A).
3 Update Q(s, a) function using Ṡ and Ȧ found in H.
4 while the environment does not change do
5 Approximate Q(s, a) using a RL method.
6 end
7 Include the observed changes in Π(S,A)
8 Call ASP(RL) with Π(S,A) and the Q(s, a) function approximated.

Algorithm 1: ASP(RL) Algorithm.

solution to this MDP. Since ASP allows for revisions to be made in the set of
states and actions, if it is the case that the environment changes at any time
step, it can be used to find the new subsets Ṡ of states and Ȧ of actions of the
modified MDP and values learnt from the previous interaction can be used
as input for this new MDP. Algorithm 1 is the pseudocode of ASP(RL), that
uses the non-monotonicity of ASP along with the exploratory nature of RL
algorithms in stochastic domains.

Algorithm 1 uses RL methods for approximating the Q(s, a) function for
the states and actions obtained by ASP. First, the domain is described as a
logic program Π(S,A), using the BC+ vocabulary, and answer sets are found
for it. From those answer sets (as shown in Lemma 1) the sets of states Ṡ
and actions Ȧ are constructed for the MDP that will be used by the agent to
interact with the environment, along with the transition function Ṫ . Once the
MDP Ṁ = 〈Ṡ, Ȧ, Ṫ ,R〉 is formalised, the interaction with the environment
and the search for the optimal solution begins by using any RL algorithm.
This interaction continues until a change in the environment happens. At this
instant, the algorithm returns the approximated Q(s, a).

The algorithm works in non-stationary environments by including the ob-
served environment changes in Π(S,A) so that ASP can be used again to find
the new sets of states and actions along with the transition function. Since
there is a Q(s, a) function approximated from the previous interaction, modi-
fications are performed in it. The state-action pairs that are in the new set of
answer sets are added to the action-value function and the pairs that are not
in this set are removed. The state-action pairs that were in the function, and
that are also in the answer set, remain in the action-value function with the
previously learned value. Therefore, the interaction with a changing environ-
ment is done by calling ASP(RL) with Π(S,A), augmented with the observed
changes, and the action-value function returned by the previous call.
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(a) Map 1: Initial configuration. (b) Map 2.

(c) Map 3. (d) Map 4.

Fig. 1: Grid worlds used in the experiments. Squares labelled with W represent
walls and with H, holes.

4 Experiments

Experiments were performed in a non-deterministic non-stationary grid world
of size 10×10 which allowed the execution of only one of four actions each time:
go up, go down, go left and go right . The probabilities for the environment
were defined as 80% for the transition to happen as expected (e.g., executing
go up makes the agent go up with 80% of probability) and a 20% chance for
the agent to go orthogonal to the desired direction (e.g., executing go up may
make the agent to go left or right with 10% of chance for each side).

The grid world may have walls (W) and holes (H) each of which occupies
a single cell of the grid. When the agent performs an action and hits a wall, it
stays in the same state; when it executes an action and falls into a hole, the
episode ends. In this domain, an agent that starts in the lowermost, leftmost,
cell has as a goal to reach the topmost, rightmost, cell. The reward function
used in this domain is +100 for reaching the goal, −100 for falling in a hole
and −1 in any other event. It is important to notice that the transition func-
tion and reward function are unknown to the agent. For this grid world, the
representation used by the agent is the value of its position in X and Y. These
values are not treated by the agent as an X by Y matrix, but as a set of atoms
in the form (X,Y ) for each pair of X and Y values found in an answer set.
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This grid world suffers changes in a manner that is previously unknown
to the learning agent. In this work, ASP(RL) is evaluated in three distinct
situations, in each of them the agent starts in the map shown in Figure 1a
that, after 5000 episodes, changes to one of the other maps in Figure 1. For
this work, changes observed in the environment were manually entered in the
logic program. Nevertheless, this can be automatically done by using an online
method with ASP.

The map in Figure 1a represents a grid world with no walls or holes. In
this case, any combination of actions that makes the agent to go up and right
leads the agent to the goal. Figure 1b represents a grid world with two walls
and two holes. Figure 1c shows a grid world containing more walls and holes
than in the previous situation. In this case, the agent has fewer action options
to achieve the goal state. Finally, Figure 1d represents a grid world in which
there is only one policy for achieving the goal state with the minimum number
of actions. Any other policy for this grid world will necessarily make the agent
hit a wall before reaching the goal state.

The arrows in the maps shown in Figure 1 represent the feasible policies
obtained by ASP with the minimum number of steps. Note that, these policies
do not represent the transition probabilities of the environment.

In the first situation, the environment changes from the map in Figure 1a
to that in Figure 1b. In this case, we can see that there is a reduction in the
number of policies with the minimum number of steps.

In the second situation, the change occurs from the map shown in Figure 1a
to that in Figure 1c. By analysing the arrows in the final (Fig. 1c) grid world,
we can see that there is an even greater reduction in the number of policies
than in the previous situation, since there are more walls and holes in this
map, which imply fewer safe actions (arrows) available.

In the final situation the environment changes from the map in Figure 1a
to the one in Figure 1d. In this case the MDP has only one optimal solution.
This situation was chosen since the answer set provides the only optimal so-
lution almost instantly, whereas in the case where an action-value function is
approximated by RL (without using the answer sets), every possible action in
every possible state is considered, leading to a costly search procedure.

5 Results

In this section we use the situations described above to compare the learning
processes of SARSA and Q-Learning with those of ASP(SARSA) and ASP(Q-
Learning), which are ASP(RL) methods where SARSA and Q-Learning are
used along with ASP. This comparison is accomplished with two different
criteria: the return (

∑
r(s, a, s′)) of the episode and the number of steps needed

to reach the goal state and root-mean-square deviation (RMSD) of the action-
value function, at time t wrt time t− 1, according to the equation 5 below.

RMSD =

√∑n
m=1Qm,t(s, a)−Qm,t−1(s, a)

n
(5)
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The graphs in Figures 2, 3, 4, 5, 6 and 7 represent measurements for the
four algorithms applied in the three situations considered. Figures 3, 5 and 7
depict the results of the first 50 episodes for the first map and then skipping
to the 5000th episode directly, in order to present the measurements after
the environment change occurs1. The respective results for every episode are
shown in Figures 2, 4 and 6.

The results for the number of steps from the first situation are presented
in Figure 3a. Figure 3b presents the returns. In the first map (Figure 1a)
all four algorithms present the same number of steps and returns during the
initial 50 episodes shown. After the 5000th episode, the number of steps of
ASP(Q-Learning) and ASP(SARSA) decrease faster than that of Q-Learning
and SARSA, while the returns of ASP(Q-Learning) and ASP(SARSA) increase
faster than Q-Learning and SARSA. This difference in the performance of
ASP(RL) and RL algorithms after the change occurs in the environment is
due to the fact that ASP(RL) reuses the Q(s, a) function approximated in the
previous map.

For the second situation, Figure 5a presents the number of steps and Fig-
ure 5b the returns for the four algorithms. Regarding the number of steps, it is
possible to notice that although ASP(Q-Learning) and ASP(SARSA) use the
information acquired from previous experience, they still need the same num-
ber of steps as Q-Learning and SARSA in all episodes. However, the returns
for ASP(Q-Learning) and ASP(SARSA) are higher than the returns from Q-
Learning and SARSA when the change in the map occurs (5000th episode).
This similarity in the number of steps for the four algorithms is due to the
great change that occurred in the environment, thus ASP(Q-Learning) and
ASP(SARSA) still need to learn interactively with the new environment, even
though they use information from the previous map.

The number of steps and returns for the third situation are presented in
Figure 7a and 7b respectively. In both returns and steps, when the change oc-
curs, the use of previously learned values enhance the performance of ASP(Q-
Learning) and ASP(SARSA). While there is a slow decrease in the number of
steps in Q-Learning and SARSA and a slow increase in the returns, ASP(Q-
Learning) and ASP(SARSA) can quickly learn the only optimal policy since
this policy is already known from previous map.

Experiments were performed in a 1.66GHz Core2Duo with 4GB of RAM
running Debian 9 (currently the testing version). Logic programs were written
in BC+ [2] and translated to ASP language using CPLUS2ASP [1], which uses
iClingo [12] to find answer sets. For finding the optimal solution, Q-Learning
and SARSA were implemented in Python 3.5 using only built-in libraries.
Thirty training sessions were executed for each algorithm. The same param-
eters were used in all the experiments: learning rate α = 0.2, discount factor
γ = 0.9, exploration/ exploitation rate ε = 0.1 and the Q table was randomly
initialised.

1 Episodes 51st to 4999th were removed from the figures.
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(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 2: Results for the first situation for every episode.
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(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 3: Results for the first situation.
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(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 4: Results for the second situation for every episode.
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(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 5: Results for the second situation.



16 Leonardo A. Ferreira et al.

(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 6: Results for the third situation for every episode.
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(a) Steps needed to reach the goal state.

(b) Total returns receive per episode.

Fig. 7: Results for the third situation.
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6 Discussion

The results shown in the previous section, present the best, worst and average
cases of the ASP(RL) method proposed.

The first map (Figure 1a) represents the worst case for ASP(RL). As can
be seen in the graphs in Figures 2, 3, 4, 5, 6,7, the performance of ASP(Q-
Learning) and ASP(SARSA) are the same as that of Q-Learning and SARSA.
This is due to the fact that the reduction in the sets of states and actions are
minimal (since there isn’t any restriction in this map) and ASP(RL) methods
use the same S and A as an RL method.

The best case is represented in the last map (Figure 1d). In this case, there
is only one feasible policy and, thus, this is the optimal policy. Although the
learning process has been executed, in situations like these learning is not
necessary, since there is only one feasible policy that is provided by an answer
set.

A similar case occurs when there is no feasible policy. In this situations
there is also no need to perform the learning process, since it is already known
from the answer sets that there is no feasible/optimal policy and the problem
cannot be solved.

The average case is presented in the second and third maps (Figures 1b
and 1c respectively). In these situation it is possible to notice that there is a
reduction in the sets of states and actions, along with a reduction in the search
space. Nevertheless, the acceleration in the learning process depends on how
much the environment has changed from the previous situation. For example,
the gain in learning time in the second situation (Figures 4 and 5) is greater
than that of the third situation (Figures 6 and 7).

ASP(RL) was not only capable of dealing with non-stationary non-deterministic
environments but it also provides the possibility to reduce the search space,
thus finding the optimal solution in fewer interactions with the environment
than using RL alone. This reduction in the search space is related to the
problem that is being solved and not only to the method proposed.

7 Related Work

The method proposed in this paper is in line with the work reported in [27,22]
where ASP is used to find a description of the domain and RL is applied in
the search for the optimal solution. Although both proposals combine similar
tools, their use differ. While the present work formalises an MDP from the
answer sets, the method proposed in [27,22] finds only one answer set for the
problem, where each atom in this set defines a hierarchical POMDP that has
to be solved.

A related approach is the combination of ASP with action costs [15,25].
Although this method also uses a logic program to describe the domain, it
uses a method different from RL to find the action costs. At each action that
is executed, the agent finds new plans to reach the goal; the update of the
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state-action pair’s value is not based on the Temporal Difference method of
RL.

Another work that also deals with sequential decision making is P-Log [14,
6] which calculates transition probabilities from sampling the environment,
but without considering the cost of performing an action. The present work
differs from P-Log in that our goal is to find the optimal solution regarding
not only the transition probabilities, but also the action costs.

Also related to our work is Saturated Path-Constrained MDP (SPC-MDP) [21].
In a SPC-MDP, a solution is found by a constraint satisfaction procedure. This
closely relates to the results obtained with the use of ASP to define the set
of states for an MDP as proposed in this paper. However, while the approach
described in [21] uses a Dynamic Programming algorithm to find the solutions,
ASP(RL) uses the interaction with the environment in order to approximate
the action-value function in non-stationary decision making problems, which
(to the best of our knowledge) has never been attempted before.

Works that are somewhat related to our approach, but can be used when
searching for the optimal policy are the ones that deals with changing reward
functions, such as [10,11,26]. Since ASP(RL) uses RL, changes in the reward
function are learned by the agent and does not affect the algorithm. Another
approach that is somewhat related to ASP(RL) is hierarchical MDPs (such
as the works of [19,20]), which can also be incorporated such as the method
proposed by [27,22] described in the beginning of this section. Although the
decomposition proposed by hierarchical MDPs provide more abstraction when
searching for the solution, ASP(RL) deals with changes in S and A such
as the number of states and actions available in the environment or their
representation.

To the best of our knowledge, these are the only works related to our
method in which the focus is in the change of the sets of states and actions, not
only in the transition and reward functions, nevertheless comparison with these
methods is not possible since their goals and results differs from ASP(RL).

8 Conclusion

This paper presented a method for efficiently solving non-stationary Markov
Decision Processes (MDP). The proposed approach, called ASP(RL), uses a
combination of Answer Set Programming (ASP) and Reinforcement Learning
(RL) in which ASP provides the set of states and actions in domains where un-
foreseen changes may happen, while RL is used to approximate a value-action
function by means of interactions with the environment. In ASP(RL), Answer
Set Programming is used as a tool for reasoning and knowledge revision and
Reinforcement Learning allows for learning the solution of an MDP without
the need of an explicit stationary reward function.

Experiments were performed in a changing grid world, whose results show
that the use of ASP to find the set of states and actions effectively reduces
the search space for finding optimal policies of Markov Decision Processes in
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complex domains, as well as in domains that allow only a few possible policies.
Not only ASP(RL) allowed a faster approximation of the action-value function
(compared to standard RL algorithms), but the process could continue to
interact in a changing environment indefinitely.

ASP(RL) is capable of dealing with unforeseen changes in the domain, thus
solving non-stationary decision making problems. To the best of our knowl-
edge, this has never been accomplished before.

Future work shall be directed towards a full integration of RL into the
ASP engine, facilitating the use of ASP when new states appear in a non-
deterministic environment, with the possibility of reviewing the whole set of
states seamlessly.
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