
”Applied Intelligence” manuscript No.
(will be inserted by the editor)

Convolutional Neural Network Acceleration with
Hardware/Software Co-Design

Andrew Tzer-Yeu Chen1 · Morteza Biglari-Abhari1 ·
Kevin I-Kai Wang1 · Abdesselam Bouzerdoum2,3 · Fok Hing Chi Tivive2

Received: date / Accepted: date

Abstract Convolutional Neural Networks (CNNs)

have a broad range of applications, such as image pro-

cessing and natural language processing. Inspired by

the mammalian visual cortex, CNNs have been shown

to achieve impressive results on a number of computer

vision challenges, but often with large amounts of pro-

cessing power and no timing restrictions. This paper

presents a design methodology for accelerating CNNs

using Hardware/Software Co-design techniques, in or-

der to balance performance and flexibility, particularly

for resource-constrained systems. The methodology is

applied to a gender recognition case study, using an

ARM processor and FPGA fabric to create an embed-

ded system that can process facial images in real-time.

Keywords Computer Vision · Embedded System ·
Neural Network · Co-design · Hardware Acceleration ·
FPGA · Real-time · Gender Recognition

1 Introduction

Convolutional Neural Networks (CNNs) are becoming

increasingly popular for image processing tasks, com-

bining the use of filters with neural networks in a way

B Andrew Tzer-Yeu Chen
andrew.chen@auckland.ac.nz

1 Embedded Systems Research Group, Department of
Electrical and Computer Engineering, The University of
Auckland, New Zealand

2 School of Electrical, Computer, and Telecommunica-
tions Engineering, University of Wollongong, Wollongong,
Australia

3 College of Science and Engineering, Hamad Bin Khalifa
University, Qatar

that is biologically inspired by the receptive fields of

the visual cortex. However, Convolutional Neural Net-

works, and Deep CNNs in particular, are often very

computationally expensive, with many layers of neurons

requiring many floating-point multiplications. While

this may be manageable in the laboratory, this presents

significant barriers for real-world embedded system im-

plementations. With the aim of lowering processing

times, researchers first moved from typical CPUs to

GPUs to leverage the inherent parallelism of both CNNs

and GPUs. More recently, a few companies have devel-

oped ASIC-based platforms that place multipliers in a

sea of RAM to achieve maximum performance at the

cost of design and execution flexibility [1], as well as at

great monetary cost.

Optimising CNNs for speed can be focused on the

software algorithms or on the hardware execution plat-

form. When trying to identify the most appropriate

hardware platform many factors need to be balanced,

including the design flexibility, the execution speed of

the target platform, availability of fast enough mem-

ory, the level of parallelism available in the CNN algo-

rithm itself, the required accuracy, power/energy con-

sumption, and the monetary costs of the system. While

taking advantage of parallelism to accelerate execution

is generally desirable, it is rare for an algorithm to be

fully executed in parallel without some sequential con-

trol flow, which affects the achievable speedup.

In general, having a limited range of parallel instruc-

tions is better suited for hardware execution, while a

broad range of sequential instructions is better suited

for software execution. Hardware/Software Co-design

(HW/SW Co-Design) offers a balance between speed

and flexibility by combining traditional software execu-

tion on CPUs or GPUs with more customised hardware

accelerators on FPGAs, DSPs, or ASICs, as shown in

2 A. T.-Y. Chen et al.

Fig. 1 General Hardware/Software Co-design Architecture

Figure 1. HW/SW Co-design has been applied in sys-

tem design for embedded electronics in automobiles,

avionics, industrial automation, and other areas, yet

it is underused in computer vision applications. In this

paper, we discuss the use of HW/SW Co-design tech-

niques for accelerating the execution of CNNs in em-

bedded systems. This builds upon our previous publi-

cations [2] [3] which describe the algorithmic develop-

ment and subsequent acceleration of a CNN for binary

male/female gender recognition of human faces. In this

paper our key outputs are a deeper explanation of the

underlying CNN architecture, presenting the acceler-

ation methodology systematically, and using a much

larger testing set to demonstrate the accuracy of the

system. The main contribution of this paper is an ex-

planation of a methodology for effectively implementing

CNNs using Hardware/Software Co-design techniques,

allowing real-time execution on embedded system plat-

forms without significant degradation of accuracy.

The remainder of the paper is structured as follows.

In Section 2, we present related work while providing

some of the background of CNNs and HW/SW Co-

design. Section 3 discusses the CNN architecture be-

ing studied, and the gender recognition application that

we use as a case study. Section 4 describes the use of

HW/SW Co-design to accelerate the execution of the

CNN post-training, and Section 5 presents the results

of our work. Section 6 discusses some ideas for future

work and concludes the paper.

2 Literature Review

2.1 Hardware/Software Co-design for CNNs

HW/SW Co-design is a growing field of interest because

it offers a path forward for system implementations that

have to be both fast and correct while satisfying the de-

sign constraints [4][5]. Pure software solutions tend to

be more flexible, but the sequential bottlenecks may

prevent real-time execution and lead to inefficient en-

ergy use. Pure hardware solutions can be very fast, but

this comes at the cost of less flexibility, as well as a

need to balance the accuracy (especially for floating-

point arithmetic) and implementation cost. In addition,

it may require significant development costs due to the

high cost of hardware fabrication and the shortage of

sufficiently skilled hardware engineers. By combining

the software and hardware worlds, we can strike a bal-

ance between execution speed and execution flexibility

in order to achieve real-time performance with sufficient

accuracy.

A number of existing papers have revealed how hard-

ware/software co-design can accelerate algorithm exe-

cution in an embedded vision context, particularly tak-

ing advantage of the parallelism often found in image

processing scenarios. For example, a vehicle detection

algorithm based on the detection of taillights and find-

ing light pairs was accelerated using an FPGA and

PowerPC HW/SW co-design system, achieving 12-20x

speedup in comparison to the PowerPC alone [6]. Har-

ris Corner Detection (HCD) and Histogram of Oriented

Gradient (HOG) feature calculations were implemented

on a Xilinx Zynq system that includes an ARM proces-

sor and FPGA fabric, achieving a 15x speedup in com-

parison to an octo-core i7 CPU [7]. A recent pedestrian

detection implementation uses an ARM processor for

control and reconfigures an FPGA on the fly, achiev-

ing a 120x speedup over a PC-only implementation [8].

While not all HW/SW co-design approaches lead to

speedups as impressive as the above cases, the exam-

ples serve to show that in the quest for real-time image

processing, HW/SW co-design is a valuable part of the

developers design options. Not all image processing uses

CNNs, and not all CNNs are used for image processing,

but the strong relationship between the two suggests

that techniques that have been shown to successfully

accelerate image processing may also accelerate CNN

execution.

The application of HW/SW Co-design to CNN exe-

cution has thus far been relatively limited. One class of

CNN accelerators exist purely on an FPGA [9] [10] [11]

[18] or ASIC [12] [13]. In some cases a soft-core proces-

sor is implemented in conjunction with hardware units;

in others, a fixed set of hardware units are used, sacri-

ficing most of the flexibility in favour of higher speeds.

Li and Areibi [14] present a facial recognition system in-

corporating a soft-core processor and FPGA fabric for a

back-propagating multi-layer perceptron artificial neu-

ral network, achieving a 1.69x speedup over a pure soft-

ware implementation. In [15], a hardware implementa-

tion is used to accelerate convolution operations across

an image for a face detection algorithm with the help

of a Nios embedded soft-core processor for control, en-

abling real-time processing. However, few papers report

using a hard processor to run software code in conjunc-

tion with hardware such as a DSP or FPGA fabric in

order to accelerate CNN execution, as proposed in our

approach. One example is Qiu et al [16], who develop a

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 3

deep CNN for the ImageNet image classification com-

petition, achieving a 1.4x speedup with a System-on-

Chip with hard CPU and FPGA in comparison to a

CPU alone with 14x less power consumption.

One of the continuing challenges in the use of

hardware-based approaches for machine learning is the

complexity of implementing floating-point arithmetic,

and determining the level of precision required with-

out wasting resources [17]. However, recent research

[1] [18] has shown that as long as CNNs are trained

with floating-point precision, the execution itself can

be done using integer arithmetic without significantly

harming accuracy. This is supported by the results of

our study reported previously in [3] and also here. It

should be noted that recently Gupta et al. [19] have

also shown that deep CNNs can be trained using only

16-bit fixed-point representations without significantly

impairing classification accuracy. In this paper, we fo-

cus largely on CNN execution, making the assumption

that training can be completed on a powerful PC (i.e.

offline) with the algorithm and weights then ported to a

hardware implementation. This paper presents a com-

plete look at how CNN architectures are developed, and

therefore how they can be accelerated using HW/SW

Co-design techniques.

2.2 Gender Recognition Implementations

Ng et al. [20] present a comprehensive survey of vision-

based human gender recognition, and show that algo-

rithmically, substantial progress has been made. While

humans can achieve roughly 95% accuracy in

male/female binary gender recognition, computer vi-

sion algorithms have reportedly achieved up to 99.8%

accuracy in controlled environments [21] and up to 95%

in uncontrolled environments [22]. Ng et al. also de-

scribe potential applications, such as biometrics,

human-computer interaction, and demographic stud-

ies. In particular, they discuss demographic classifiers

for customer relationship and marketing systems, which

require the ability to process 15-20 images per second.

This relatively fast real-time requirement disqualifies

many complicated neural network-based algorithms be-

cause their processing requirements are too large. This

is exacerbated by the reality that for real-world imple-

mentation, these algorithms need to run on embedded

hardware platforms with constrained resources in com-

parison to desktop computers.

There have been relatively few hardware implemen-

tations of machine learning powered gender recognition

algorithms. Perhaps the most significant is Azarmehr et

al. [23], which uses a Support Vector Machine (SVM)

and Radial Basis Function (RBF) Classifier to process

Multi-Scale Local Binary Pattern (MSLBP) features.

Their algorithm also detects faces, crops appropriately,

and can characterise age. This is implemented on a

1.7GHz quad-core Snapdragon 600 SoC, and the gen-

der recognition portion takes 2.3ms per image with 95%

accuracy. The overall algorithm achieves an average

performance of 15 to 20 frames per second. Other ap-

proaches in the literature include the work by Irick et

al., which reports an SVM approach with a pure FPGA

implementation [24], achieving lower accuracy (88%)

but a much faster throughput at 1,100 frames per sec-

ond (with a 100MHz clock). Irick et al. have also pre-

viously reported an artificial neural network-based sys-

tem [25] with 83.3% accuracy and only 30 frames per

second. Ratnakar and More [26] report an FPGA-based

system that achieves 78% accuracy with a propagation

delay of 1.9 seconds, which implies a very slow latency

but does not necessarily indicate an improvement of the

throughput.

In our previous work [3], we describe the use of

HW/SW Co-design to speed up an existing shunting in-

hibitory neural network for a targeted advertising appli-

cation, achieving just over 20 frames per second. While

many gender recognition algorithms use SVMs for

higher accuracy and modelling flexibility, neural net-

works can characterise multiple outputs based on mul-

tiple input factors or features, and are more suited for

fixed hardware implementations that seek to avoid un-

used capacity or reliance on dynamic reconfiguration.

Neural network approaches also tend to be more easily

parallelisable, and can be more easily partitioned be-

tween hardware and software for HW/SW Co-design.

To our knowledge, our papers are the first reports of

implementations of CNN-based gender recognition al-

gorithms in an embedded system using both a hard core

processor and FPGA fabric.

3 Convolutional Neural Network Architecture

A Convolutional Neural Network (CNN) bears many

similarities to the traditional Artificial Neural Network,

with the key difference being that we use filters to op-

erate on windows of an image in a way that emulates

the receptive field of biological vision. CNNs scale up

for arbitrarily large images much better than multi-

layer perceptrons, using local connections and shared

weights to reduce computational complexity and mem-

ory consumption. A strong benefit of this approach is

that CNNs are reasonably shift and distortion invariant,

helping deal with test images captured in uncontrolled

environments. CNNs are built using layers, which are

comprised of filters for feature extraction, feature clas-

sification, and downsampling (pooling). Recent systems

4 A. T.-Y. Chen et al.

use deep CNNs, with many, many layers; for example,

Redmon et al. [27] uses 26 layers. In this paper, we use

a comparatively simple CNN with only three layers to

demonstrate the benefits of HW/SW Co-design.

In this paper, we use gender recognition as a case

study for an application that can use an embedded sys-

tem CNN. Gender recognition is an important part of

creating computer systems that can develop a better

understanding of the humans in their environment, such

as for biometric authentication, human-computer inter-

action, and targeted marketing. Classification of gender

is challenging because there can be many variations in

physical appearance between genders and within the

same gender that can lead to erroneous classification,

as well as environmental conditions such as lighting and

image/vision degradation that can make accurate char-

acterisation difficult, even for humans. In many of these

applications, we need computer systems that can oper-

ate in real-time conditions with limited computational

resources; for example, an active smart billboard could

scan the faces of the people in its audience, and de-

liver targeted advertisements that best reflect the gen-

der demographics of the people actually viewing the

advertisement. Building upon our previous work pre-

sented in [2], we use a CNN trained on web images in

order to detect male/female binary gender from facial

images. The ultimate goal is to accelerate the network

so that it can be executed in real-time in an embedded

system.

The network developed for gender classification com-

prises an input layer and three processing layers, in-

cluding the classification layer, as shown in Figure 2.

The input layer is used to receive a 32 × 32 pixel face

image as the input. The first layer (Layer-1) is a convo-

lutional layer comprised of a set of nonlinear filters with

fixed kernel coefficients, designed to extract directional

contrast information from the input image. The second

layer (Layer-2) consists of neurons with adaptive recep-

tive fields which are trained using supervised learning to

detect discriminative features for gender classification.

Finally, the third layer (Layer-3) consists of two output

units to predict the gender of the test face with a cer-

tain probability. Note that this architecture is slightly

different to the one described in our previous work [3],

and presented in much more detail here.

3.1 Layer-1: Directional Filters

The first processing layer focuses on the extraction of

contrast-invariant oriented features from the input im-

age at different scales. For this purpose, a set of direc-

tional non-linear filters is designed using complex Ga-

bor filters combined with the shunting inhibition mech-

Fig. 2 Gender classification network architecture

anism [28]. A Gabor filter is a Gaussian filter modulated

by a complex sinusoid, which can be expressed as:

g(t) =
1√
2πσ

e−
t2

2σ2 ei2πft (1)

where σ is the standard deviation of the Gaussian

filter and f is the frequency of the complex sinusoid.

The bandwidth and the center frequency of a Gabor

filter can be controlled by changing, respectively, the

parameters σ and f . Gabor filters have been used in

numerous image processing applications, including tex-

ture classification [29], face recognition [30], and hyper-

spectral image classification [31] to name a few. Its pop-

ularity in computer vision and image processing stems

from the similarity with the receptive fields of simple

cells in cat striate cortex [32]. Furthermore, Gabor fil-

ters have optimal joint resolution in both spatial and

frequency domains [33]. The magnitude of the Gabor

filter is commonly used as a feature since it is invariant

to translation. The filter output response of the j-th

orientation and k-th scale is given by:

Xj,k =
|Dj,k ∗ I|
|Gk ∗ I|+c

(2)

where |·| denotes the magnitude operator, ∗ denotes

the two-dimensional convolution operator, I is the in-

put image, Dj,k is a Gabor filter of the j-th orientation

and k-th scale, Gk is a circular Gabor filter of the k-th

scale, and c is a positive constant to avoid division by

zero. Let fk denote the k-th scale and θj the j-th orien-

tation of the Gabor filter. The kernel of the directional

Gabor filter Dj,k can be written as:

Dj,k(x, y) =
f2k
πγη

exp(−[
f2k
γ2
x2 +

f2k
η2
y2]) exp(2iπfkx)(3)

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 5

Fig. 3 In the spatial domain, (a) real part and (b) imagi-
nary part of a directional Gabor filter, (c) real part and (d)
imaginary part of a circular Gabor filter at θ = 0 and f = 0.4

where γ and η are sharpness parameters (here set to

1 (γ = η = 1)), and (x, y) are the rotation of (x, y)

through the angle θj ,[
x

y

]
=

[
cos(θj) sin(θj)

− sin(θj) cos(θj)

] [
x

y

]
(4)

The kernel of the circular Gabor filter Gk is given

by:

Gk(x, y)

=
f2k
πγη

exp(−[
f2k
γ2
x2 +

f2k
η2
y2]) exp(2iπfk

√
x2 + y2)

(5)

To generate a set of filters with J orientations and

M scales, the centre frequency corresponding to the k-

th scale is computed as:

fk =
fM

(
√

2)k−1
, k = 1, ...,M (6)

and the angle θj is given by:

θj =
(j − 1)π

J
, j = 1, ..., J (7)

where fM is the maximum centre frequency. In this

paper, a set of 36 filters were designed to detect features

at 9 different orientations and 4 scales, i.e. J = 9 and

M = 4, and the maximum centre frequency was set to

0.4 (fM = 0.4). Figure 3 shows the real and imaginary

parts of a directional and circular Gabor filter in the

spatial domain.

After filtering, pooling and down-sampling opera-

tions are applied to each feature map by averaging 2×2

non-overlapping windows. The rationale for this is to

reduce the number of pixels in the feature map and

introduce some tolerance (invariance) to small trans-

lations and geometric distortions. The final operation

in Layer-1 is contrast enhancement using the Naka-

Rushton equation [34] defined by

Y j,k =
(Xj,k)r

(Xj,k)r + µr
(8)

where Xj,k is the input pixel value, µ is the mean

value of the down-sampled feature map, and r is a con-

stant that controls the slope of the function (here r=3).

3.2 Layer-2: Trainable Filters

In Layer-2, the filter kernels are trained to detect dis-

criminative features. Each trainable filter is cast as a

neuron with a set of free parameters and an activa-

tion function. Let Qj,k,l denote the kernel of the jkl-th

trainable filter, bj,k,l be a bias term, and g(·) denote

the hyperbolic tangent function. The feature map of

the j, k, l-th trainable filter is given by:

Zj,k,l = g(Qj,k,l ∗ Y j,k + bj,k,l) (9)

The same pooling and down-sampling operations as

in Layer-1 are applied to each feature map in Layer-2.

Then, the down-sampled feature maps are arranged into

a column vector, which is used as input to the classifier

(Layer-3). Instead of connecting all features maps be-

tween Layer-1 and Layer-2, a binary connection scheme

is adopted, which connects a feature map in Layer-1 to

two feature maps in Layer-2. This connection scheme

decreases the number of trainable weights, thereby re-

ducing the complexity of the hardware implementation.

3.3 Layer-3: Classifier

To predict the gender of the input face image, two neu-

rons with the softmax activation function are used in

the classification layer: one neuron for the male class

and the other for the female class. Let x denote the

feature vector generated by Layer-2; the response of

the i-th neuron with the weight vector wi and bias di
is given by:

yi = wT
i x + di (10)

Using the softmax activation function on the output

responses, we can compute the probability that a given

input x belongs to the i-th class as:

P (Ci|x) =
exp(yi)∑2
j=1 exp(yj)

(11)

6 A. T.-Y. Chen et al.

3.4 Training Methodology

Prior to its implementation using Hardware/Software

Co-design, the gender recognition architecture is trained

offline using MATLAB. Since the weights in Layer-1 are

pre-designed filters, no training is required for Layer-

1. The parameters in the second and third layer are

learned from a training dataset, using the Levenberg-

Marquardt (LM) algorithm. Instead of the sum squared

error function, the cross-entropy error function is used

as the objective function to be minimized; it is given

by:

ε = −
P∑
i=1

2∑
j=1

tj,i log(yj,i) (12)

where tj,i is the desired i-th class label for the j-th

training sample and yj,i is the i-th output due to the

j-th sample. Let w denote the weight vector comprising

all the parameters in Layer-2 and Layer-3. The weight

update rule of the LM algorithm is given by:

wnew = wold +
[
JTJ + µI

]−1
Je (13)

where J denotes the Jacobian matrix, µ is a regulariza-

tion parameter, and e is the error vector; the Jacobian

matrix is computed using the standard backpropaga-

tion algorithm [35].

4 Hardware/Software Co-design

In order to execute the CNN in real-time in an em-

bedded context, we can investigate the use of hard-

ware to accelerate execution. One option is to imple-

ment the entire network using hardware only, such as

on an FPGA or in an ASIC. However, this presents

the immediate problem of a high cost barrier, both in

terms of development time and hardware cost. We can

significantly reduce both of these cost factors by utilis-

ing Hardware/Software Co-design principles. In this pa-

per, we will use an FPGA chip with an embedded hard

core processor to demonstrate how we can partition the

algorithm between hardware and software; these tech-

niques can be applied to other applications and hard-

ware/software combinations to also achieve speed-ups

in an embedded context. The FPGA acts as reconfig-

urable hardware fabric, which can be programmed to

emulate digital circuits.

4.1 Algorithm Partitioning

Given that we have both hardware resources in the form

of FPGA fabric and software resources in the form of

Fig. 4 Flowchart representation of the CNN algorithm

a typical processor, the main question to be addressed

is how to partition the overall algorithm between hard-

ware and software. One of the key principles of HW/SW

Co-design is leveraging concurrency and/or parallelism

wherever possible. In the context of a CNN as shown

in Figure 2, we can see that there is inherent paral-

lelism; each neuron in a layer is independent and thus

can be processed at the same logical time. These paral-

lelism opportunities are targets for hardware implemen-

tation in order to avoid much slower sequential execu-

tion on the processor. When the algorithm is presented

in a flowchart format such as Figure 4, the division be-

tween sequential dependencies and parallelisable loops

are easier to see; for example, in Layer-2, the 72 neurons

each contain multiple sequential steps, but the overall

neurons can be implemented independently in hardware

so that they execute at the same time.

However, hardware implementation is both difficult

and costly, so the decision is not as easy as pushing

all parallelisable execution onto hardware. A manage-

ment decision has to be made about the amount of time

and other resources available to the developer(s). As

part of this decision, we should understand where the

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 7

Table 1 Execution Profiling (across 62 images)

Function
Time per
call (ms)

of
calls

Total
Time (s)

Total
Time (%)

Gabor Filters 2.4 2728 6.56 73.87
Adaptive Mask Filter 0.33 4960 1.66 18.69
2x2 Local Averaging 0.04 7440 0.29 3.27
NAKA-Rushton 0.06 2480 0.14 1.58
Normalisation 0.05 2480 0.12 1.35
Activation Function 0.01 4960 0.06 0.68
Activation Weighting 0.01 4960 0.04 0.45

most efficient performance gains are, i.e. which parts

of the algorithm can be implemented in hardware the

most easily for the most speed improvement. Execu-

tion profiling allows developers to identify bottlenecks

in the algorithm. This requires an initial implementa-

tion of the algorithm in software; in our case, we ported

the algorithm from MATLAB to C (including rewriting

built-in MATLAB functions from first principles) and

then using GNU gprof for profiling. In our case, pro-

filing is done on an ARM Cortex-A9 processor clocked

at 400MHz, executed over 62 iterations (i.e. images).

These 62 images were randomly selected, with 30 male

and 32 female images, and pre-loaded into the memory,

purely for the purposes of early-stage execution pro-

filing. Table 1 shows that rather than focusing on the

neurons in Layer-2 as suggested earlier, the bottleneck

is in fact in the Gabor filters in Layer-1.

There are two main reasons why the Gabor filters

are responsible for such a large portion of the execution

time. Firstly, as shown in Figure 5, the Gabor filter uses

a 5x5 convolution window with real and imaginary com-

ponents (with floating-point coefficients), leading to a

computational complexity of O(50N) (as well as the

sum and magnitude operations) for each filter, where

N is the number of pixels in the image. This is exacer-

bated by the fact that the first layer requires 40 passes

of the Gabor filter (both the circular Gabor and regular

Gabor types) for each input image. Secondly, the Gabor

filters are in the first layer of the CNN, before any down-

sampling has occurred. As the images progress through

each layer of the CNN, downsampling compresses the

image in order to reduce the amount of information be-

ing passed on. It therefore stands to reason that earlier

layers are often more computationally expensive than

succeeding layers, simply because there is more data to

process, and therefore it is more efficient to target the

earlier layers of the CNN.

In our application, we parallelise the Gabor filter

by describing a kernalised correlation filter in VHDL

with 50 parallel combinational multipliers, as well as

two summation blocks and an absolute value block. The

VHDL code is simulated and tested in Modelsim and

then synthesised and implemented on the FPGA fabric.

Fig. 5 Diagram of the Gabor filter operation

The hard processor system (HPS) passes a set of real

and imaginary coefficients to the filter which are stored

in local memory. Successive image windows (5x5 pixels)

are then sent from the HPS to the FPGA, with the HPS

retrieving the computed value from the FPGA. This

design reduces the computational complexity of com-

pleting a Gabor filter operation from O(50N) to O(N).

Rather than porting the entire algorithm to hardware,

we can limit the amount of developer effort by simply

targeting the filters in the early layer(s) of the CNN and

achieve significant improvements in execution speed, as

demonstrated in the results in Section 5. Other litera-

ture that covers real-time acceleration of Gabor filters

using FPGAs include [36] and [37].

4.2 Data Quantisation

In the C version of the code, the Gabor filters use

floating-point coefficients. While it is possible to im-
plement floating-point multiplication in hardware, this

can be very resource intensive and expensive. The main

solution for addressing this problem is quantisation by

rounding or truncating the data and using fixed-point

integer arithmetic instead. The main concern with this

approach is the inherent loss of precision that could lead

to decreased accuracy. However, as discussed earlier in

Section 2.2, recent research suggests that CNNs can ex-

perience little to no degradation in classification accu-

racy when network weights are cast to integers. While

the specific Gabor filters are selected for their ability

to extract certain features, it stands to reason that if

integer network weights do not adversely affect the final

accuracy, then the impact of quantising the coefficients

may not be significant.

In our application, we use a simple Python script to

extract the real and imaginary coefficients for each Ga-

bor filter from MATLAB, multiply it by 1000 to move

some of the decimal part into the integer part, and then

cast the numbers to integers (thus truncating the val-

8 A. T.-Y. Chen et al.

Fig. 6 Channels of the AMBA AXI bridge

ues). This allows us to represent each coefficient with

10-bits, reducing the amount of hardware resources re-

quired to implement the Gabor filter on the FPGA as

well as the amount of memory required. As demon-

strated in the results in Section 5, this does not compro-

mise the classification accuracy at all. References [19]

and [16] discuss the selection of the number of bits for

quantisation in much more detail. It is also possible to

learn the number of bits required using offline or online

training, but the computation for this outweighs any

performance gains [38].

4.3 Communication Constraints

While the FPGA may be able to process data in par-

allel, it must receive that data and output it after-

wards. The communication link(s) between the HPS

and FPGA can become a bottleneck when large amounts

of data need to be transmitted, as is common in im-

age processing applications [39]. In our application, the

HPS-FPGA bridge uses the AMBA AXI bus protocol

as shown in Figure 6, which introduces handshaking

for passing data in either direction that requires a non-

negligible amount of time. For example, a write trans-

action requires at least six clock cycles; this adds up

quickly when we consider that for a 32x32 pixel input

image, 25650 transactions are required for each of the

40 filters. We use two main approaches to help alleviate

this bottleneck by reducing the amount of communica-

tion required between the HPS and FPGA.

Firstly, a shifting (or sliding) window significantly

reduces the amount of data that needs to be provided

to the FPGA, at the cost of a few hardware resources

for control. When windows from an image are passed

from the HPS to FPGA, it makes sense to iterate from

the top-left corner to the bottom-right corner. As the

window moves across a row of pixels, the windows are

overlapping; out of 25 pixels, only 5 are actually new.

We can exploit this by adding shift registers into the fil-

ter on the FPGA so that redundant transactions can be

avoided. An additional transaction is required in order

to control the FPGA and indicate that a shift should

Fig. 7 Computer architecture of the HPS-FPGA system

occur, but overall this reduces the number of required

memory transactions per image by 77%.

Secondly, in our system the HPS-FPGA bridge has a

32-bit bus. Using the full width to send 10-bit numbers

back and forth is therefore wasteful. The coefficient val-

ues and pixel values are concatenated together as much

as possible to make full use of the 32-bit bus (also known

as data packing [10]). We are able to send three coef-

ficients or pixel values in one transaction, reducing the

number of required memory transactions per image by

64%. Combining these two methods together achieves

an 83% reduction, leading to much faster overall system

performance.

Another method for addressing the communication

constraint is the use of shared memory between the pro-

cessor and FPGA, reducing the amount of data that

needs to be transmitted through the communication

link [7] [40]. For example, the HPS can simply send a

memory address, and the FPGA can read from that ad-

dress. However, there is a careful balance to be struck

as accessing external memory can be costly in terms of

time for FPGAs, and careful system design is required

to avoid memory contention and race conditions. In our

case, we did not explore the use of shared memory any

further. A further improvement is to detect and remove

unnecessary neurons if their operations are ineffectual

[41], for example if the pixel value is zero then it may

not need to be passed to the FPGA for multiplication.

However, this introduces more control costs, and the

performance will vary between applications, so the de-

sign decision of whether to include these checks should

be considered carefully.

4.4 System Parallelism

The last major optimisation is fully leveraging the avail-

able computing resources. As previously mentioned in

Section 4.1, the neurons within each layer of the CNN

do not have dependencies on each other, and there-

fore can be implemented independently. Our target ex-

ecution platform is the DE1-SoC development board,

which has a Cyclone V 5CSEMA5F31C6 device. This

device includes a dual-core ARM Cortex A9 (as hard

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 9

processor system or HPS) and FPGA logic cells, DSP

blocks, and memory resources. We can quickly reuse

the developed hardware filter and instantiate a second

instance of the filter, and create two threads in the soft-

ware since there are two cores, each responsible for pro-

cessing half of the neurons in each layer. This leads to

the system architecture shown in Figure 7. We should

not expect the speed-up to be exactly 2x, because the

communication bottleneck still exists, and the synchro-

nisation time between the two threads is non-zero. How-

ever, this does lead to some performance gain.

5 Results

5.1 CNN Training and Evaluation

The gender recognition network was trained on a set of

100,000 face images (50,000 males and 50,000 females)

collected from the web. The face images were collected

from the web to represent general cases and avoid bias

from an existing dataset with a large sample size, com-

prising of male and female subjects of different ages and

different ethnicities. For training, the male and female

face images are labeled as 1 and -1, respectively. Each

face image was resized to 32 × 32 pixels and scaled to

the range [0,1]. Two stopping criteria were used to ter-

minate training: the average cross-entropy error falling

below 0.07 as calculated using Equation 12, or the num-

ber of iterations reaching 100. The trained networks

was tested on four image datasets: the BioID face dat-

set [42], MMI facial expression dataset [43], FERET

dataset [44], and FEI Face Dataset [45]. All training

and testing were done on a desktop PC in MATLAB.

The theory of the specifc CNN is described in Sec-

tion 3, but it is relevant to include a summary of the

justifications behind those parameters here. Prelimi-

nary experiments were conducted to determine the in-

put size and the number of Gabor filters in Layer-1.

A set of experiments with different number of scales

and orientations of Gabor filter were performed. In-

creasing the number of filters improves the classifica-

tion rate, but above 4 scales and 9 orientations, the

preliminary experimental results show that there is no

significant improvement in the classification rate, so we

use 36 filters in order to balance classification rate and

network complexity. For the input size, 32 × 32 pixels

was chosen to achieve the state-of-the-art classification

rate on the FERET benchmark dataset as reported in

[2], with a compact network structure that can be im-

plemented in hardware with real-time processing. The

number of trainable filters in Layer-2 is based on the

connection strategy used to connect Layer-1 and Layer-

2. In this paper, a binary connection scheme was used;

Table 2 Classification Rate of on Different Face Datasets

Database Number of Faces
Classification
Rate (CR)

BioID [42] 976 Males, 545 Females 95.4%
MMI [43] 6558 Males, 3728 Females 90.0%
FERET [44] 1718 Males, 1004 Females 93.5%
FEI [45] 200 Males, 200 Females 93.3%
Overall 9452 Males, 5477 Females 91.3%

Table 3 Comparison of Gender Recognition Classifiers on
the FERET Face Database [44] (Five-fold Cross Validation)

Classifier
Number of
Faces

Classification
Rate (CR)

Regression Function + SVM [46] 1158M + 615F 98.8%
Our CNN 1152M + 610F 98.5%
Gabor + Fuzzy SVM [47] 160M + 140F 98.0%
SVM-RBF [48] 1044M + 711F 96.6%
2D-PCA + SVM-RBF [49] 400M + 400F 94.9%
Adaboost [50] 1495M + 914F 94.3%
PCA + SVM-RBF [51] 200M + 200F 92.3%

therefore, Layer-2 contains twice the number of Gabor

filters in Layer-1. The weights of the trainable filters

were obtained using the Levenberg-Marquardt super-

vised training algorithm, as explained in Section 3.4.

The gender of each input image is determined by the

output with the highest probability. Table 2 presents

the classification rate (CR) for each database. On aver-

age, the gender network achieves a CR of 91.3% across

all four data sets. Among the four datasets, the network

achieves the highest accuracy on the BioID dataset with

a CR of 95.4%. The MMI dataset contains images with

varied facial expressions. Since the gender recognition

network was not trained on different facial expressions,

its classification accuracy is affected slightly by these

varying facial expressions. On the other hand, the

FERET and FEI databases contain faces of subjects

from a variety of ethnic backgrounds, and some of the

subjects are wearing spectacles or have facial hair

(beards and moustaches). Based on the cross-database

evaluation, the gender network achieves a CR of 93.5%

on the FERET database when trained on our web im-

ages.

In a separate test, where the network was trained

and tested on the FERET images alone using five-fold

cross-validation, the CR reaches 98.5%. In Table 3, we

compare our CNN against other gender recognition al-

gorithms in terms of classification rate on FERET (al-

though with different subsets of that dataset), showing

that our network achieves competitive accuracy. This

further indicates that CNNs can achieve sufficiently high

accuracy levels for it to be worth the design effort re-

quired to further accelerate execution towards real-time

processing, if that high accuracy can be retained.

10 A. T.-Y. Chen et al.

Table 4 Execution Time and Classification Rate (across 14,929 images from four datasets)

Implementation
Total Execution
Time (s)

Execution Time
per Image (ms)

Classification
Rate (%)

Desktop PC (MATLAB) 1326.66 88.86 91.31
Desktop PC (C) 130.10 8.71 91.74
ARM Processor (HPS) Only 1955.52 130.99 91.74
HPS-FPGA Implementation 682.56 45.72 91.68

5.2 HW/SW Co-design Evaluation

We test the speedup achieved by our Hardware/Software

Co-design methodology by comparing the performance

of the network on the ARM Cortex-A9 processor alone

with the HPS-FPGA system. The ARM processor is

running at 400MHz, and the FPGA logic is clocked

at 100MHz. We use both cores of the ARM and two

copies of the filters on the FPGA in the HPS-FPGA

system. We have expanded our test set since [3], and

now use 14,929 images across four datasets. The im-

ages are resized to 32x32 pixels before processing be-

gins, then pre-loaded into memory for the purposes of

only testing the algorithm speed. For fair comparison,

the software optimisation from the gcc compiler is left

at the default -O0. As shown in Table 4, the final im-

plementation achieves a 2.9x speedup in comparison to

the ARM processor alone, without any adverse impacts

on the classification rate (accuracy). The classification

rate reported here is lower than in our previous pa-

per [3] because of the change in training and testing

datasets. We also provide the times and classification

rate for the Desktop PC (3.60GHz i7 processor with

8GB RAM and SSD) for comparison purposes.

As shown in Table 5, the speed-up is largely at-

tributable to the fact that the Gabor filters are now

performed in hardware. Since the filter operates com-

binationally, results are available one clock cycle after

all inputs are provided (i.e. 1/100MHz = 10ns). The fil-

ter executes concurrently while the HPS processes in-

structions that allow it to read from the AXI bridge.

The bottleneck is still the HPS-FPGA communication

rather than the computation itself, taking on average

≈ 200ns for each transaction, dominating the overall

execution time. Overall, the HPS-FPGA implementa-

tion speeds up the Gabor filter in comparison to the

HPS-only implementation by 3.5 times.

The execution time per image for the entire network

in the HPS-FPGA implementation is 45.72ms, imply-

ing that it is possible to process at least 20 frames

per second. This is fast enough for real-time applica-

tions, achieved with a fraction of the hardware cost

Table 5 Gabor Filter Timing (across 14,929 images)

Implementation
Filter
Time (s)

Time per Filter
Operation (ms)

Filter Total
Time (%)

Desktop PC (C) 57.85 0.10 70.46
ARM Processor
(HPS) Only

1441.72 2.41 73.73

HPS-FPGA
Implementation

408.70 0.68 59.31

and power consumption. Importantly, this significant

speed-up was achieved with relatively low development

time and cost when compared to a hypothetical pure

hardware implementation of the algorithm.

In Figure 8, we show that while the classification

rate is roughly similar between the MATLAB and HPS-

FPGA implementations, the loss in precision has in-

troduced some differences in the classification results

for each image. The average error of the HPS-FPGA

implementation in comparison to the MATLAB imple-

mentation is 0.0435 across all samples in terms of the

raw score, and the overall classification rate has sta-
tistically negligible error. The softmax activation func-

tion computes the probability of each class (male or

female), which is converted to an overall score between

-1 and 1 by subtracting the output of the female neu-

ron from that of the male neuron. Scores larger than 0

are male, and scores less than 0 are female. As the table

shows, the difference is very small; the error is generally

much smaller when the classification confidence is high

in comparison to the borderline cases. The network is

capable of working on a variety of image conditions,

with different face orientations/poses, as well as arte-

facts such as glasses and beards. When the image is not

cropped properly, contains either part of a single face

or part of more than one face, or lighting reflections ob-

scure part of the face, then the ability of the algorithm

to make a robust characterisation of gender decreases.

In Table 6 we briefly present a comparison of our

results with other gender recognition algorithms that

have been implemented on embedded platforms, as pre-

sented in the related works. This comparison should

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 11

Fig. 8 A sample of test face images and gender scores

Table 6 Comparison of Embedded Gender Recognition Sys-
tem Implementations

Implementation Accuracy
Execution
Time (ms)

Ours (CNN-based, 400MHz
dual-core ARM + FPGA at 100Mhz)

91.68% 45.7

SVM-based, 1.7GHz quad-core SoC [23] 95% 2.3
SVM-based, FPGA at 100MHz [24] 88% 0.9
ANN-based, FPGA [25] 83.3% 33.3
PC + myRio FPGA Kit [26] 78% 1900

be interpreted carefully, as each method uses different

datasets for training and testing, with different execu-

tion platforms of varying architectures and speeds, with

different underlying algorithmic approaches, and differ-

ent elements of the processing included in the timing

analysis. In general, our implementation approach of-

fers the advantage of finding efficient ways of perform-

ing HW/SW Co-design, enabling real-time performance

on resource-constrained embedded systems without los-

ing significant accuracy and with low design cost.

6 Conclusions and Future Work

In this paper, we present an approach for accelerating

Convolutional Neural Networks (CNNs) using a Hard-

ware/Software Co-design approach. Using a gender

recognition CNN as a case study, we investigate opti-

misations in two parts: in the design of the CNN itself,

and in the implementation of that CNN. In terms of the

CNN design, there is often a trade-off between the num-

ber of neurons and the classification rate of the system.

In this paper we report that increasing the number of

orientations and scales of the Gabor filters in the first

layer increases the amount of features extracted from

the face image and also increases the classification rate.

However, including too many scales and orientations

generates redundant features that produce diminishing

returns and slows down the training of the neural net-

work. Since the paper is about the development of hard-

ware/software co-design techniques, the most compact

network structure with the best classification perfor-

mance on the FERET database is chosen.

In terms of the implementation of the CNN, we use

four key steps that can be generally applied to CNNs.

Firstly, we partition the network using execution pro-

filing in order to identify bottlenecks, which is suit-

able for CNNs since they can generally be easily de-

composed into constituent parts. Secondly, we apply

data quantisation, which is particularly important in

the context of CNNs that often use computationally

expensive floating-point arithmetic. Thirdly, we allevi-

ate communication bottlenecks by intelligently organ-

ising the data transactions. Lastly, we leverage system

parallelism, which in general is only applicable if the

application/algorithm being implemented is parallelis-

able, and is therefore very important for CNNs which

are inherently parallelisable since each neuron within

a layer can be executed independently. Overall, these

approaches allow us to achieve a 2.9x speed up with-

out compromising the accuracy of the network in this

particular application.

Further acceleration can be achieved through ad-

dressing the communication constraints by investigat-

ing shared memory, and moving more components of

the CNN from software to hardware (as long as the

increased development and hardware cost is accept-

able and the performance gain is larger than any over-

head losses of transmitting data between the HPS and

FPGA). This paper shows how accelerating even a small

part of the algorithm can lead to significant speed im-

provements. This improvement process could also be-

come more automated [52], depending on the library of

hardware units available for parameterisation and au-

tomatic instantiation on the FPGA. The system is im-

12 A. T.-Y. Chen et al.

plemented on a SoC containing an ARM processor and

FPGA fabric, achieving 20 frames per second, thus sat-

isfying the real-time requirements of the embedded sys-

tem. This work demonstrates that HW/SW Co-design

can be used to bring algorithms, including CNNs, out

of compute-heavy research environments and into real-

world resource-constrained embedded systems.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean
J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M,
Levenberg J, Monga R, Moore S, Murray DG, Steiner B,
Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng
X (2016) TensorFlow: A System for Large-Scale Machine
Learning. In: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI).

2. Tivive FHC, Bouzerdoum A (2006) A Gender Recogni-
tion System using Shunting Inhibitory Convolutional Neu-
ral Networks. In: Intl. Joint Conf. on Neural Networks
(IJCNN), pp. 5336-5341.

3. Chen ATY, Biglari-Abhari M, Wang KIK, Bouzerdoum
A, Tivive FHC (2016) Hardware/Software Co-design for a
Gender Recognition Embedded System. In: Trends in Ap-
plied Knowledge-Based Systems and Data Science 9799, pp.
541-552.

4. de Michell G, Gupta RK (1997) Hardware/Software Co-
design. Proceedings of the IEEE 85(3):349-365.

5. Teich J (2012) Hardware/Software Codesign: The Past,
the Present, and Predicting the Future. Proceedings of the
IEEE 100:1411-1430.

6. Alt N, Clause C, Stechele W (2008) Hardware/software ar-
chitecture of an algorithm for vision-based real-time vehicle
detection in dark environments. In: Design, Automation,
and Test in Europe (DATE), pp. 176-181.

7. van der Wal G, Zhang D, Kandaswamy I, Marakowitz J,
Kaighn K, Zhang J, Chai S (2015) FPGA acceleration for
feature based processing applications. In: Conf. on Com-
puter Vision and Pattern Recogn. (CVPR), pp. 42-47.

8. Tasson D, Montagnini A, Marzotto R, Farenzena M
(2015) FPGA-based pedestrian detection under strong dis-
tortions. In: Conf. on Computer Vision and Pattern Recogn.
(CVPR), pp. 65-70.

9. Farabet C, Poulet C, Han JY, LeCun Y (2009) CNP:
An FPGA-based processor for Convolutional Networks. In:
Intl. Conf. on Field Programmable Logic (FPL), pp. 3237.

10. Sankaradas M, Jakkula V, Cadambi S, Chakradhar S,
Durdanovic I, Cosatto E, Graf HP (2009) A Massively Par-
allel Coprocessor for Convolutional Neural Networks. In:
20th Intl. Conf. on Application-specific Systems, Architec-
tures, and Processors (ASAP), pp. 53-60.

11. Farabet C, Martini B, Corda B, Akselrod P, Culurciello
E, LeCun Y (2011) NeuFlow: A runtime reconfigurable
dataflow processor for vision. In: Conf. on Computer Vision
and Pattern Recogn. Workshops (CVPR), pp. 109-116.

12. Cavigelli L, Gschwend D, Mayer C, Willi S, Muheim
B, Benini L (2015) Origami: A Convolutional Network
Accelerator. In: 25th Great Lakes Symposium on VLSI
(GLSVLSI), pp. 199-204.

13. Pham PH, Jelaca D, Farabet C, Martini B, LeCun Y,
Culurciello E (2012) NeuFlow: Dataflow vision processing
system-on-a-chip. In: 55th Midwest Symposium on Circuits
and Systems (MWSCAS), pp. 1044-1047.

14. Li X, Areibi S (2004) A hardware/software co-design ap-
proach for face recognition. In: 16th Intl. Conf. on Micro-
electronics (ICM), pp. 55-58.

15. Che M, Chang Y (2010) A Hardware/Software Co-design
of a Face Detection Algorithm Based on FPGA. In: Intl.
Conf. on Measuring Technology and Mechatronics Automa-
tion (ICMTMA), pp. 109-112.

16. Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang
T, Xu N, Song S, Wang Y, Yang H (2016) Going Deeper
with Embedded FPGA Platform for Convolutional Neural
Network. In: Intl. Symposium on Field-Programmable Gate
Arrays (FPGA), pp. 26-35.

17. Maclean WJ (2005) An evaluation of the suitability of
FPGAs for embedded vision systems. In: Conf. on Com-
puter Vision and Pattern Recogn. Workshops (CVPR), pp.
131-138.

18. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015)
Optimizing FPGA-based Accelerator Design for Deep Con-
volutional Neural Networks. In: Intl. Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 161-170.

19. Gupta S, Agrawal A, Gopalakrishnan K (2015) Deep
Learning with Limited Numerical Precision. In: 32nd Intl.
Conf. on Machine Learning (ICML), pp. 1737-1746.

20. Ng CB, Tay YH, Goi BM (2012) Recognizing Human
Gender in Computer Vision: A Survey. In: Pacific Rim Intl.
Conf. on Artificial Intelligence: Trends in Artificial Intelli-
gence (PRICAI), pp. 335-346.

21. Zheng J, Lu B (2011) A support vector machine classifier
with automatic confidence. Neurocomputing 74(11):1926-
1935.

22. Shan C (2012) Learning local binary patterns for gender
classification on real-world face images. Pattern Recogn.
Lett. 4(33):431-437.

23. Azarmehr R, Laganiere R, Lee WS, Xu C, Laroche D
(2015) Real-time embedded age and gender classification
in unconstrained video. In: Conf. on Computer Vision and
Pattern Recogn. Workshops (CVPR), pp. 56-64.

24. Irick KM, DeBole M, Narayanan V, Gayasen A (2008) A
hardware efficient support vector machine architecture for
FPGA. In: 16th Intl. Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 304-305.

25. Irick K, DeBole M, Narayanan V, Sharma R, Moon H,
Mummareddy S (2007) A unified streaming architecture
for real time face detection and gender classification. In:
Intl. Conf. on Field Programmable Logic and Applications
(FPL), pp. 267-272.

26. Ratnakar A, More G (2015) Real time gender recognition
on FPGA. Int. J. Sci. Eng. Res. 6(2):19-22.

27. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You
Only Look Once: Unified, Real-Time Object Detection. In:
Conf. on Computer Vision and Pattern Recogn. (CVPR),
pp. 779-788.

28. Tivive FHC, Bouzerdoum A, Phung SL, Iftekharuddin
KM (2010) Adaptive Hierarchical Architecture for Visual
Recognition. Applied Optics 49(10):B1-B8.

29. Fogel I, Sagi D (1989) Gabor filters as texture discrimi-
nator. Biological Cybernetics 61(2):103113.

30. Wu J, An G, Ruan Q (2009) Independent Gabor analysis
of discriminant features fusion for face recognition. IEEE
Signal Processing Lett. 16(2):97100.

31. Li W, Du Q (2014) Gabor-filtering-based nearest regular-
ized subspace for hyperspectral image classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 7(4):10121022.

32. Jones JP, Palmer L (1987) An evaluation of the two-
dimensional Gabor filter model of simple receptive fields in
cat striate cortex. Journal of Neurophysiology 58(6):1233-
1258.

Convolutional Neural Network Acceleration with Hardware/Software Co-Design 13

33. Daugman JG (1985) Uncertainty relation for resolution
in space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. Journal of the Opti-
cal Society of America A: Optics, Image Science, and Vision
2(7):1160-1169.

34. Naka KI, Rushton WAH (1966) S-potentials from Colour
Units in the Retina of Fish (Cyprinidae). The Journal of
Physiology 185:536-555.

35. Hagan MT, Menhaj M (1994) Training Feedforward Net-
works with the Marquardt Algorithm. IEEE Trans. on Neu-
ral Networks 5(6):989-993.

36. Cesur E, Yildiz N, Tavsanoglu V (2012) On an Improved
FPGA Implementation of CNN-based Gabor-type Filters.
IEEE Trans. Circuits and Systems 59(11):815-819.

37. Pauwels K, Tomasi M, Alonso JD, Ros E, van Hulle MM
(2012) A Comparison of FPGA and GPU for Real-time
Phase-based Optical Flow, Stereo, and Local Image Fea-
tures. IEEE Trans. on Computers 61(7):999-1012.

38. Han S, Mao H, Dally WJ (2016) Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. In: Intl. Conf. on Learn-
ing Representations (ICLR).

39. Chen Y, Xu W, Zhao R, Chen X (2014) Design and eval-
uation of a hardware/software FPGA-based system for fast
image processing. Photonic Sensors 4(3):274-280.

40. Gudis E, Lu P, Berends D, Kaighn K, van der Wal G,
Buchanan G, Chai S, Piacentino M (2013) An embedded vi-
sion services framework for heterogeneous accelerators. In:
Conf. on Computer Vision and Pattern Recogn. Workshops
(CVPR), pp. 598-603.

41. Albericio J, Judd P, Hetherington T, Aamodt T, Jerger
NE, Moshovos A (2016) Cnvlutin: Ineffectual-Neuron-Free
Deep Neural Network Computing. In: 43rd Intl. Symposium
on Comp. Arch. (ISCA), pp. 1-13.

42. Jesorsky O, Kirchberg KJ, Frischholz RW (2001) Robust
Face Detection Using the Hausdorff Distance. In: 3rd Int.
Conf. on Audio- and Video-Based Biometric Person Au-
thentication (AVBPA), pp. 90-95.

43. Pantic M, Valstar M, Rademaker R (2005) Web-based
Database for Facial Expression Analysis. In: Intl. Conf. on
Multimedia and Expo (ICME), pp. 317-321.

44. Phillips PJ, Moon H, Rauss PJ, Rizvi S (2000) The
FERET evaluation methodology for face recognition algo-
rithms. IEEE Trans. on Pattern Anal. and Machine Intelli-
gence 22(10):1090-1104.

45. Thomaz CE, Giraldi GA (2010) A New Ranking Method
for Principal Components Analysis and its Application
to Face Image Analysis. Image and Vision Computing
28(6):902-913.

46. Lee PH, Hung JY, Hung YP (2010) Automatic Gen-
der Recognition Using Fusion of Facial Strips. In: 20th Int.
Conf. on Pattern Recogn., pp. 1140-1143

47. Leng XM, Wang YD (2008) Improving generalization for
gender classification. In: 15th Int. Conf. on Image Process-
ing, pp. 1656-1659.

48. Moghaddam B, Yang MH (2002) Learning gender with
support faces. IEEE Trans. on Pattern Anal. and Machine
Intelligence 24(5): 707-711.

49. Lu L, Shi P (2009) A novel fusion-based method for
expression-invariant gender classification. In: Int. Conf. on
Acoustics, Speech, and Signal Processing, pp. 1065-1068.

50. Baluja S, Rowley HA (2007) Boosting sex identification
performance. Int. J. of Computer Vision 71(1): 111-119.

51. Buchala S, Loomes MJ, Davey N, Frank RJ (2005) The
role of global and feature based information in gender clas-
sification of faces: a comparison of human performance and
computational models. Int. J. of Neural Systems 15: 121-
128

52. Sahin I, Saritekin NK (2016) A Data Path Design Tool
for Automatically Mapping Artificial Neural Networks on to
FPGA-Based Systems. J Elec. Eng. Tech. 11(5):1921-1929.

Andrew Tzer-Yeu Chen received

the BE(Hons) degree in Computer

Systems Engineering with First

Class Honours and the BCom de-

gree from the University of Auck-

land, New Zealand, in 2015. He is

currently pursuing a Ph.D. degree

in Computer Systems Engineering, at The University

of Auckland, New Zealand. His research interests in-

clude embedded systems, computer vision, hardware/

software co-design, robotics, data analytics, and engi-

neering education.

Morteza Biglari-Abhari received

the M.Sc. degree in electrical and

electronic engineering from Sharif

University of Technology, Tehran,

Iran, and the Ph.D. degree from the

University of Adelaide, Australia.

He is currently a Senior Lecturer

with the Department of Electrical and Computer En-

gineering, The University of Auckland, Auckland, New

Zealand. His research interests include computer archi-

tecture, hardware/software co-design of real-time and

secure embedded systems, energy-efficient multiproces-

sor systems on chip, reconfigurable, and parallel archi-

tectures. He has been a reviewer for many conferences

in the embedded systems research area and several jour-

nals, including the IEEE Transactions on Computers,

IEEE Transactions on Circuits and Systems for Video

Technology, ACM Transactions on Embedded Comput-

ing Systems, Journal of Microprocessors and Micro Sys-

tems, Journal of Real Time Image Processing, and Jour-

nal on Embedded Systems.

Kevin I-Kai Wang received the

BE(Hons) degree in Computer Sys-

tems Engineering and the Ph.D. de-

gree in Electrical and Electronics

Engineering from the University of

Auckland, New Zealand, in 2004 and

2009 respectively. He was an R&D

Engineer designing home automation systems and traf-

fic sensing systems from 2009 to 2010. From 2011 to

2013, he was with The University of Auckland as a Post-

Doctoral Research Fellow and a Professional Teaching

Fellow. Since 2013, he has been a Lecturer with the

Department of Electrical and Computer Engineering,

at the University of Auckland. His current research in-

terests include distributed computational intelligence,

pervasive healthcare systems, industrial monitoring and

automation systems, and bio-cybernetic systems.

14 A. T.-Y. Chen et al.

Abdesselam Bouzerdoum gradu-

ated with MSEE and Ph.D. degrees

from the University of Washington,

Seattle, USA. In 1991, he joined

Adelaide University, South

Australia, and in 1998 he moved to

Edith Cowan University, Perth. In

2004, he was appointed Professor of

Computer Engineering and Head of School of Electri-

cal, Computer & Telecommunications Engineering at

the University of Wollongong. From 2007 to 2013, he

served as Associate Dean (Research), Faculty of Infor-

matics. In addition, Dr. Bouzerdoum held several Visit-

ing Professor Appointments at Institut Galile, Univer-

sit Paris-13, LAAS/CNRS, Toulouse, France, Villanova

University, USA, and the Hong Kong University of Sci-

ence and Technology. From 2009 to 2011, he was a mem-

ber of the ARC College of Experts and Deputy Chair

of the EMI panel (2010-2011).

Dr. Bouzerdoum is the recipient of the Eureka Prize

for Outstanding Science in Support of Defence or Na-

tional Security (2011), the Chester Sall Award of IEEE

Transactions on Consumer Electronics (2005), and a

Distinguished Researcher Award (Chercheur de Haut

Niveau) from the French Ministry (2001). He served

as Associate Editor for 4 International journals, includ-

ing IEEE Transactions on Systems, Man, and Cyber-

netics (1999-2006). He has published over 300 techni-

cal articles and graduated many Ph.D. and Research

Masters students. His research interest including radar

imaging and signal processing, image processing, vision,

machine learning, and pattern recognition.

Fok Hing Chi Tivive received the

BE(Hons) in Telecommunications

from Edith Cowan University and

the Ph.D degree in computer engi-

neering from the University of Wol-

longong, Australia, in 2001 and 2006

respectively. Since 2006, he has been

with the School of Electrical Com-

puter and Telecommunications Engineering, University

of Wollongong, as a Postdoctoral Research Fellow. His

research interests include machine learning, pattern

recognition, image processing, and through-the-wall

radar imaging.

