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Abstract This paper presents an approach for characterizing groups of data rep-
resented by Boolean vectors. The purpose is to find minimal set of attributes that
allow to distinguish data from different groups. In this work, we precisely defined
the multiple characterization problem and the algorithms that can be used to
solve its different variants. Our data characterization approach can be related to
Logical Analysis of Data and we propose thus a comparison between these two
methodologies. The purpose of this paper is also to precisely study the properties
of the solutions that are computed with regards to the topological properties of
the instances. Experiments are thus conducted on real biological data.

Keywords Logical analysis of data · Characterization of multiple groups of data

1 Introduction

Let us consider a set of observations Ω, whose elements are data expressed over a
set of Boolean attributes A. Given a partition of Ω into several groups -subsets- of
data, the Multiple Characterization Problem (MCP) consists in finding a subset
of attributes that discriminates these groups. A solution of this problem is thus a
reduction of the initial attributes set such that there does not exist two identical
observations in two different groups, with regards to these selected attributes. This
general problem has a lot of extensions like the Min −MCP which computes a
minimal solution in terms of number of attributes. MCP has many applications,
especially in the processing of biological data, where observations of individuals
(e.g., patients, plants, animals...) can be studied by means of groups according to
their characteristics (behavior, pathology, common phenotypic/genotypic proper-
ties...). Such observations may correspond to aggregation of biological attributes
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(e.g., presence or absence of genes or biological markers...). Therefore, the purpose
of MCP can be interpreted as the extraction of a signature that is sufficient to
explain a priori the membership of observations to groups initially provided by
the user/expert. This signature may also be used in order to assign groups to new
incoming observations.

Example 1 Let us consider the following instance of MCP, with 7 observations, 3
groups and 8 attributes ([a . . . h]).

Observations Groups
Attributes

a b c d e f g h

1
1

0 1 0 1 0 1 1 0
2 1 1 0 1 1 0 0 1
3 0 1 1 0 1 0 0 1

4
2

1 0 1 0 1 0 1 1
5 0 0 0 1 1 1 0 0

6
3

1 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0

The subset of attributes {f, g, h} can be used to discriminate the three groups.
Focusing on attributes {f, g, h}, no identical lines appear in two different groups
(even if the same line appears twice in the same group, for instance in Group
1). Turning now to the interpretation of the solution, one may observe that the
first group can be characterized, for instance, by the following Boolean formula
(f ∧ g) ∨ (f̄ ∧ ḡ), if attributes are seen as Boolean variables. This formula con-
stitutes a more compact representation of some informations contained in Group
1. This interpretation corresponds to the restriction of the initial problem to the
characterization of Group 1 against the other groups.

Therefore, the initial table (matrix) that represents the observations according
to the attributes, can be interpreted as a partially defined Boolean function that
has to be minimized. Of course, this consideration is only valid when considering
the characterization of one group against the others. In this case, this minimization
problem has been shown to be NP-hard [22]. When considering only two groups -
for instance a group of positive observations and a group of negative observation,
which is a very common problem in machine learning - the concept of Logical
Analysis of Data has been proposed in [8].

Related works

The feature selection problem [11,20] aims at selecting a subset of attributes
(features) that may efficiently describe the data. Therefore, our approach can be
related to this problem. Many different methods are available for feature selection,
for instance based on statistical evaluation of the relevance of the attributes. From
the machine learning point of view it is also important to assess the ability to
generalize to new incoming data. Feature selection methods are useful in order to
improve classifiers such as support vector machines. Note that feature selection
techniques are also relevant for data visualization and data compression. Here
our problem is different since we are mainly interested in finding attributes-based
explanations for given groups of data built by experts. No a posteriori validation
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is considered. In fact, the selected attributes ensure that the groups of data can be
identified by a logical combination of these attributes. We have indeed tested some
statistical feature selection methods on real data from biology [9] in order to filter
the initial set of attributes, without obtaining satisfactory results with regards
to our problem. The MCP solutions are mainly composed of attributes with low
scores with regards to the tested feature selection methods. We also observe that
attributes with highest scores do not participate to solutions. It suggests that
MCP solutions are not built with the attributes that are the most correlated to
the groups.

The Logical Analysis of Data (LAD) is a methodology that is mainly based
on the notion of pattern. Considering an instance constituted by two groups of
Boolean observations (called positive an negative observations), the LAD method
consists in finding a subset of attributes that have the similar values on some ob-
servations of the positive set while these values cannot be observed in the negative
group. This subset is called a pattern and the purpose is to find patterns that are
shared by as many positive observations as possible. Our approach differs from
LAD on several aspects:

– we simultaneously consider several groups to be mutually discriminated,
– the objective is to provide a formula that minimizes the number of used at-

tributes rather than patterns that covers observations.

Nevertheless, our proposal is clearly related to the general of LAD.

Examples of applications of MCP

Characterization of multiple groups of Boolean data has been applied in plant
biology in order to identify strains of the species Xanthomonas axonopodis [9], a
family of bacteria that cause different diseases on many plants. In this context,
groups consist of bacterial strains that share the same pathogenic behavior. Each
strain is identified by the presence or absence (1 or 0) of genes. Note that each
strain has a narrow range of potential hosts: for instance, genes that are necessary
to infect Bean are shared by all strains infecting Bean and another combination
of genes necessary to infect Tangerine is shared by all strains infecting Tanger-
ine. Similar examples may be found for bacterial pathogens on animals: strains of
Salmonella typhi are pathogenic on humans whereas strains of Salmonella enter-
itidis are pathogenic on chickens. Numerous genomes of pathogenic bacteria are
available in public databases, and presence or absence of genes can be expressed
into Boolean matrices.

This approach can also be used to identify biological markers that are useful in
order to predict the evolution of specific diseases on patients. In this paper, we use
biological data from patients that suffer from acute leukemia. The purpose is to
identify combination of mutated genes that can be used to predict if the patients
belong to a remission or to a relapse group and need a specific treatment.

Contributions of the paper

– Based on previous preliminary works [12,10], we propose here a new formula-
tion of the multiple characterization problem that allows us to clearly define
and study the properties of the instances as well as the properties of the solu-
tions that can be computed.
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– We propose a comparison with LAD methodology and compare how the solu-
tions provided by these two approaches could be related.

– Based on a set of real biological instances, we provide an experimental evalua-
tion of our approach using topological measures (i.e., Boolean distance based).
In particular we establish that classic clustering techniques are not efficient to
characterize those real data, since the groups formed by experts do not exhibit
classic similarity properties. Indeed, our method that compute combinations
of attributes instead of similarity based aggregations of attributes allows the
practitioners to discover alternative relationships between attributes within her
groups of data.

Organization of the paper

In Section 2, we recall the main concepts related to Logical Analysis of Data. In
Section 3 and 4 the multiple characterization problem is precisely formulated, using
two different possible formalisms. Its properties are studied in Section 5. Solving
algorithms are presented in Section 6. A comparison between the Logical Analysis
of Data methodology and our approach is proposed in Section 7. The experimental
setup is presented in Section 8, while results and analysis are described in Section
9.

2 Logical Analysis of Data

Logical Analysis of Data (LAD) [5,7,8,13,16] is a data analysis method that aims
to find some patterns playing an important role in the classification of data. Con-
trary to statistical data analysis techniques, LAD is mainly based on combinatorial
optimization and logics and, more specifically, on the concept of partially defined
Boolean functions. Hence, as presented in the introduction, LAD considers two
groups of observations, represented as Boolean vectors in an attributes space. LAD
has been applied to many domains: biology and medicine [19,3,4], engineering [6],
transportation [15].

Based on [16] and [7], we recall the main concepts related to LAD and more
especially, the notion of partially defined Boolean function.

Definition 1 A Boolean function of n variables, n ∈ N, is a mapping Bn 7→ B,
where B is the set {0, 1}.

Definition 2 A vector x ∈ Bn is a true vector (resp. false vector) of the Boolean
function f if f(x) = 1 (resp. f(x) = 0). T (f) (resp. F (f)) is the set of true vectors
(resp. false vectors) of a Boolean function f .

Definition 3 A partially defined Boolean function (pdBf) on Bn is a pair (P ,N)
such that P ,N ⊆ Bn and P ∩N = ∅.

P is thus the set of positive vectors, and N the set of negative vectors of the
pdBf (P,N). Let us remark that the condition P ∩N = ∅ may not be satisfied in
certain real world data sets of classification problems.

The notion of partially defined Boolean function is generalized by the following
notion of term used in [16,7].
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Definition 4 A term is a Boolean function tσ+,σ− whose true set T (tσ+,σ−) is of
the form

T (tσ+,σ−) = {x ∈ Bn|xi = 1 ∀i ∈ σ+ and xj = 0 ∀j ∈ σ−}

for some set σ+, σ− ⊆ {1, 2, ..., n}, σ+ ∩ σ− = ∅.

A term tσ+,σ− can be represented by an elementary conjunction, i.e. a Boolean
expression of the form

tσ+,σ−(x) = (
∧
i∈σ+

xi) ∧ (
∧
j∈σ−

x̄j)

We recall now a key concept for LAD: the notion of pattern, whose aim is to
identify a set of attributes that have identical values for several observations of
the positive group P . These common values constitute a pattern that must not
appear in the negative group N .

Definition 5 A pattern of a pdBf (P,N) is a term tσ+,σ− such that |P∩T (tσ+,σ−)| >
0 and |N ∩ T (tσ+,σ−)| = 0.

Definition 6 Given a term t, V ar(tσ+,σ−) is the set of variables defining the term
(V ar(tσ+,σ−) = {xi|i ∈ σ+ ∪ σ−}).

Given a pattern p of a pdBf (P,N), the set P ∩ T (p) is said to be covered by
the pattern p.

One goal of LAD is to compute optimal patterns pi = argmaxpi(|P ∩ T (pi)|),
i.e., patterns that cover as many observations as possible. This approach may be
related to data mining concepts such as frequent itemset identification [2].

Example 2 Let us consider the instance in Example 1, where Group 1 is the set of
positive observations and Group 2 and Group 3 are merged into the set of negative
observations.

Observations Groups
Attributes

a b c d e f g h

1
P

0 1 0 1 0 1 1 0
2 1 1 0 1 1 0 0 1
3 0 1 1 0 1 0 0 1

4

N

1 0 1 0 1 0 1 1
5 0 0 0 1 1 1 0 0
6 1 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0

p1 = ā ∧ b and p2 = f̄ ∧ ḡ are 2 patterns covering observations 1 and 3 for p1 and
2 and 3 for p2.

In Example 2, we note that p2 = f̄ ∧ ḡ and p3 = f ∧ g are 2 patterns using
identical attributes (σ+

p2 ∪ σ
−
p2 = σ+

p3 ∪ σ
−
p3).

3 The Multiple Characterization Problem

The purpose of this section is to formalize the Multiple Characterization Problem
(MCP) described in the introduction.
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3.1 Problem Definition

Definition 7 (MCP instance) An instance of the MCP is a tuple (Ω,A, D,G)
defined by a set of observations Ω, whose elements are data expressed over a set
of Boolean attributes A encoded by a Boolean matrix of data D|Ω|×|A| and a
function G : Ω → N, such that G(o) is the group assigned to the observation
o ∈ Ω.

The data matrix D is defined as follows:

– the value D[o, a] represents the presence/absence of the attribute a in the
observation o.

– a line D[o, .] represents thus the Boolean vector of presence/absence of the
different attributes in the observation o.

– a column D[., a] represents thus the Boolean vector of presence/absence of the
attribute a in all the observations.

In the following we are only interested in satisfiable MCP, i.e. such that D does
not contain two identical observations in two different groups (see [12]).

Property 1 A MCP instance (Ω,A, D,G) is satisfiable iff:

@(o, o′) ∈ Ω2 such that D[o, .] = D[o′, .] and G(o) 6= G(o′)

DA is the data matrix reduced to the subset of attributes A ⊂ A. Given a sat-
isfiable instance (Ω,A, D,G), D� is the matrix D where identical lines have been
deleted (even if two identical lines correspond indeed to two different observations
on real data, we reduce the matrix for computational purpose).

Example 3 Consider the instance (Ω,A, D,G) from Example 2. Consider the ma-
trix D{f,g} reduced to the subset of attributes {f, g}.

We have1 D{f,g}=

Observations Groups
Attributes

f g

1
P

1 1
2 0 0
3 0 0

4

N

0 1
5 1 0
6 1 0
7 0 1

Some observations coming from the same group are now identical. We can reduce
the matrix by considering only the observations in Ω{f,g} = {1, 2, 4, 5}.

Thus, we have D
{f,g}
� =

Observations Groups
Attributes

f g

1
P

1 1
2 0 0

4
N

0 1
5 1 0

1 Note that for simplicity, we present the full array that contains the data matrix (which
corresponds thus only the Boolean part of the array).
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3.2 Solutions

Solving an instance (Ω,A, D,G) consists in finding a subset of attributes S ⊆ A
such that two observations from two different groups are always different on at
least one attribute in S (i.e., DS� has no identical line). According to our previous
definition of satisfiability (Definition 1), it consists in finding a set S such that
(Ω,S,DS , G) is satisfiable.

Definition 8 Given an instance (Ω,A, D,G), a subset of attributes S ⊆ A is a
solution iff ∀(o, o′) ∈ Ω2, G(o) 6= G(o′) → DS [o, .] 6= DS [o′, .]. In this case, the
matrix DS is called a solution matrix.

An instance of the MCP may have several solutions of different sizes. It is
therefore important to define an ordering on solutions in order to compare and
classify them. In particular, for a given solution S, adding an attribute generates
a new solution S′ ⊃ S. In this case we say that S′ is dominated by S.

Definition 9 A solution S is non-dominated iff ∀s ∈ S, ∃(o, o′) ∈ Ω2 such that
G(o) 6= G(o′) and DS\{s}[o, .] = DS\{s}[o′, .].

Among these solutions, we are interested in computing solutions of minimal
size with regards to the attributes they involve.

Definition 10 A solution S is minimal iff @S′ with |S′| < |S| s.t. S′ is a solution.

According to our notion of dominance between solutions, a minimal solution
in not dominated by any other solutions.

Intuitively, a minimal (non dominated) solution cannot be reduced unless two
identical lines appear in two different groups (and consequently the reduced set of
attributes is not a solution).

According to these notions of solutions, given an MCP instance I = (Ω,A, D,G),
we may identify thus several problems :

– Sol −MCP : computing a solution of I (according to Definition 8)
– Min−MCP : computing a minimal solution of I (according to Definition 10)
– 1Min−MCP : computing a minimal solution for 1 group against the others

(in order to characterize a given group).
– NonDomAll−MCP computing all non dominated solutions of I (According

to Definition 9)
– MinAll−MCP computing all minimal solutions of I (According to Definition

9)

In the following, according to practitioners requirements, we are mainly inter-
ested in MinAll −MCP .

We propose to recall the main concepts and notations used in LAD and MCP
in Table 1.

4 Reformulation of the MCP

In the remaining of this paper, we use the classical Boolean notations: ∧ is the
conjunction, ∨ is the disjunction, ⊕ is the exclusive disjunction Xor and � is the
XNor logical operator ([0, 0, 1, 1]� [0, 1, 0, 1] = [1, 0, 0, 1]).
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Table 1 Notations

Notation Description
LAD Logical Analysis of Data
MCP Multiple Characterization Problem
pdBf Partially defined Boolean function
Ω Set of observations (Boolean vectors)
A Set of Boolean attributes
P Group of positive observations
N Group of negative observations
G Group function that assigns groups to observations
D Data matrix (possibly used with different superscripts and subscripts)
C Constraint matrix (possibly used with different superscripts and subscripts)
sim similarity function on observations (variants with different subscripts)
diff difference function on observations (variants with different subscripts)

4.1 Converting Characterization Requirements into Constraints

According to previous works on MCP [12], the minimum multiple characterization
problem can be formulated as a linear program. Given an instance (Ω,A, D,G),
let us consider the following 0/1 linear program.

min :

|A|∑
i=1

yi

s.t. :

C . Y t > 1t

Y ∈ {0, 1}|A|, Y = [y1, ..., y|A|]

where Y is a Boolean vector that encodes the presence/absence of the set of
attributes in the solution (and Y t is the transposed matrix of Y ). C is a matrix
that defines the constraints that must be satisfied in order to insure that Y is a
solution. Let us denote Θ the set of all pairs (o, o′) ∈ Ω2 such that G(o) 6= G(o′).
For each pair of observations (o, o′) that do not belong to the same group, defined
by an element of Θ, one must insure that the value of at least one attribute
differ from o to o′. This will be insured by the inequality constraint involving
the 1 vector (here a vector of dimension |Θ| that contains only 1 values). The
minimization objective function insures that we aim to find a minimal solution.

More formally, C is a Boolean matrix of size |Θ| × |A| constructed as follows:

– Each line is numbered by a couple of observations (o, o′) ∈ Ω2 such that
G(o) 6= G(o′) ((o, o′) ∈ Θ).

– Each column represents an attribute.
– C[(o, o′), a] = 1 if D[o, c] 6= D[o′, c], C[(o, o′), a] = 0 otherwise.
– We denote C[(o, o′), .] the Boolean vector representing the differences between

observations o and o′ on each attribute. This Boolean vector is called constraint
since one attribute a such C[(o, o′), a] = 1 must be selected in order to insure
that no identical observations can be found in different groups .

Note that the constraints matrix C can be deduced from the data matrix D and,
conversely, D can be deduced from C and a given vector D[o,.], o ∈ Ω (because C
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assure for each value D[o′,i] if this value is similar of different than the value D[o,i]).

As previously, CA is the constraints matrix projected on the set of attributes
A ⊂ A. We also define a notion of reduction of the constraints matrix C.

Definition 11 A vector C[(o, o′), .] is redundant if there exists a couple (k, k′) ∈ Θ
s.t. (C[(o, o′), .] ∧ C[(k, k′), .]) = C[(k, k′), .].

Using this notion of redundancy, C can be thus reduced.

Definition 12 The reduced constraints matrix, denoted C�, is the constraints
matrix projected on the set Θ′ where Θ′ ⊆ Θ the set of all pairs (o, o′) ∈ Θ such
that C[(o, o′), .] is not redundant.

Of course, C� is of size |Θ′| × |A|.

4.2 Solutions

The notion of solution can be redefined with regards to the new formulation of the
problem. In the following, we denote O the vector that contains only 0 values.

Definition 13 Given a solution S and a constraint C[(o, o′), .], S satisfies the
constraint C[(o, o′), .] if ∃a ∈ S such that C[(o, o′), a] = 1 (i.e. CS [(o, o′), .] 6= O).

A solution is a set of attributes such that each constraint is satisfied, i.e., there
is at least the value 1 in each line of CS . We have thus the following obvious
property.

Proposition 1 A set of attributes S ⊆ A is a solution iff @(o, o′) ∈ Θ such that
CS [(o, o′), .] = O.

Let us consider the following example in order to illustrate the notions of
solution and minimal solution in the context of constraints matrix.

Example 4 Let us consider the instance from Example 1. The matrix of constraints
C associated with this matrix is:

Observations pairs
Attributes

a b c d e f g h

(1,4) 1 1 1 1 1 1 0 1
(1,5) 0 1 0 0 1 0 1 0
(1,6) 1 0 0 0 0 0 1 1
(1,7) 0 1 1 1 1 1 0 0
(2,4) 0 1 1 1 0 0 1 0
(2,5) 1 1 0 0 0 1 0 1
(2,6) 0 0 0 0 1 1 0 0
(2,7) 1 1 1 1 0 0 1 1
(3,4) 1 1 0 0 0 0 1 0
(3,5) 0 1 1 1 0 1 0 1
(3,6) 1 0 1 1 1 1 0 0
(3,7) 0 1 0 0 0 0 1 1
(4,6) 0 1 1 1 1 1 1 0
(4,7) 1 0 0 0 0 0 0 1
(5,6) 1 1 0 0 1 0 0 1
(5,7) 0 0 1 1 0 1 1 0
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S = {f, g, h} is a non-dominated solution. If we compute the reduced con-
straints matrix CS� projected on S, we obtain:

Observations pairs
Attributes
f g h

(1,5) 0 1 0
(1,7) 1 0 0
(4,7) 0 0 1

We may remark that a solution is non dominated if the reduced constraints
matrix projected on this solution can be transformed by line permutation into a
diagonal matrix (i.e., each constraint is satisfied by exactly one attribute). Here
we can obtain the following diagonal matrix:

Observations pairs
Attributes
f g h

(1,7) 1 0 0
(1,5) 0 1 0
(4,7) 0 0 1

According to the previous remark, we can reformulate the concept of non-
dominated solution and minimal solution from the constraints matrix.

Proposition 2 A solution S is non-dominated iff ∀s ∈ S, ∃(o, o′) ∈ Θ such that
CS\{s}[(o, o′), .] = O

We have of course the same property concerning minimal solutions.

Proposition 3 A solution S is minimal iff @S′ with |S′| < |S| such that ∀(o, o′) ∈
Θ, CS

′
[(o, o′), .] 6= O.

5 Properties of the MCP

The purpose of this section is to exhibit properties and relationships between the
two representations of the problem. Note that these properties are used in order
to define our solving method.

5.1 Problem Properties

We describe now the properties of an instance (Ω,A, D,G), and its associated
constraint matrix C as defined above.

Proposition 4 Given an instance (Ω,A, D,G) with its constraint matrix C, a
set of attributes A ⊆ A has one of the following properties:

1. A is not a solution ⇔ CA� = O,
2. A is a non-dominated solution ⇔ there exists a particular permutation ϕ on A

such that C
ϕ(A)
� = Id (where Id is the identical matrix),

3. A is a dominated solution otherwise.



Logical Characterization of Groups Data: a Comparative Study 11

In Proposition 1, an instance of the MCP has a solution if and only if do not
exist two identical observations from two different groups (i.e., @(o, o′) ∈ Θ s.t.
CA[(o, o′), .] = O). Note that, if ∃(o, o′) ∈ Θ s.t. CA[(o, o′), .] = O, then CA� = O.
Moreover, using Proposition 2, it is clear that if A is a solution, CA contains one
vector per attributes where only this attribute is set to 1. Of course, in CA� , only
these vectors remain.

5.2 Reduction and Simplification of an Instance

In [12], it has been shown that if D[., a1] = D[., a2] then it is possible to restrict
the problem to DA\{a2} or DA\{a1}. In [10], the concept of domination between
attributes has been introduced. Given (a, b) ∈ A2, a dominates b, denoted a � b,
iff ∀S ⊆ A\{b}, if S ∪{b} is a non-dominated solution, then S ∪{a} is also a non-
dominated solution. Hence, we reformulate this property according to our new
framework.

Proposition 5 Given (a, b) ∈ A2. If (C[., a] ∨ C[., b]) = C[., a] then a � b.

Of course, all non-dominated solutions that contain at least one dominant
attribute may be used to generate another solution by changing each dominated
attribute by a non dominated attribute.

Given an instance (Ω,A, D,G), let us consider E ⊂ A the set of all dominated
attributes. Then the MCP (Ω,A\E , D′, G) has at least one minimal solution in
common with (Ω,A, D,G).

5.3 Topological Properties of Instances

In this section, we define different measures in order to study later the properties of
the observations and their distribution in the groups. Let us consider an instance
(Ω,A, D,G) and its constraints matrix C.

The following definition presents the notion of similarity between two observa-
tions.

Definition 14 Given (o, o′) ∈ Ω2, A ⊆ A, the similarity sim(DA, (o, o′)) between
o and o′ is the mean of values of the vector DA[o,.] �D

A
[o′,.]:

sim(DA, (o, o′)) =
1

|A| ×
∑
a∈A

(DA[o, a]�DA[o′, a])

Using the previous definition, we may now define a notion of intragroup simi-
larity for a group of a given MCP instance.

Definition 15 The intragroup similarity of a group is defined as the average of
the similarities between the observations in this group.

For A ⊆ A and a group Gg ⊂ Ω s.t. Gg = {o|G(o) = g},

simg(DA) =
1

|Gg|!
×

∑
o,o′∈Gg

sim(DA, (o, o′))
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The intragroup similarity of an instance is defined as the average similarity
between observations of the same group.

Definition 16 For A ⊆ A,

simintra(DA) =
1

|Ω2\Θ| ×
∑

(o,o′)∈Ω2\Θ

sim(DA, (o, o′))

The overall similarity of an instance is defined as the average of the similarities
between all observations within the set of attributes A = A.

Definition 17

simover(D
A) =

1

|Ω2| ×
∑

(o,o′)∈Ω2

sim(DA, (o, o′))

We want now to evaluate the difference between observations of different
groups.

Definition 18 Given (o, o′) ∈ Ω2, A ∈ A, the difference between o and o′, de-
noted diff(Da, (o, o′)) , is the mean value of the vector DA[o, .]⊕DA[o′, .]:

diff(DA, (o, o′)) =
1

|A| ×
∑
a∈A

(DA[o, a]⊕DA[o′, a])

Definition 19 The intergroup difference of an instance is defined as the average
of the differences between observations from different groups.

For A ∈ A,

diffinter(D
A) =

1

|Θ| ×
∑

(o,o′)∈Θ

diff(DA, (o, o′))

We have the following property.

Proposition 6 Given A ∈ A,

diffinter(D
A) =

1

|Θ| ×
∑

(i,j)∈Θ

∑
c∈C

CA[(i,j),c]

Computing of the intergroup difference use actually the average number of
differences between the observations of the set Θ.

6 Solving the MCP

Based on [10], we present algorithms in order to address the NonDomAll−MCP
and MinAll −MCP problems.
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6.1 Computation of all Non-dominated Solutions

Algorithm 1 aims at computing the set of all non-dominated solution according
to Definition 9. Based on Proposition 4 (property 2), we may reformulate this
algorithm as the search for subsets of attributes S such that CS� is the identity
matrix (i.e., S is a non-dominated solution). The idea is thus to select attributes a
such that there exists a couple of observations (o, o′) ∈ Θ2 satisfying C[(o, o′), a] =
1 in the constraints matrix C and C[(o, o′), a′] = 0 for any attributes a′ 6= a.

Data: C: Constraints matrix of size |Θ| × |A|.
Result: Sol: Non-dominated solutions set.

Sol = ∅
for i = 1 to |Θ| do

//Build a subset of solutions NDi
NDi = ∅
forall j ∈ A s.t. C[θi, j] = 1 do

forall S ∈ Sol\NDi do
if j ∈ S then

NDi = NDi ∪ {S}

//Build a subset of solutions ESi
ESi = ∅
forall j ∈ A s.t. C[θi, j] = 1 do

forall S ∈ Sol\NDi do
if @S′ ∈ NDi s.t. S′ ⊆ S ∪ {j} then

ESi = ESi ∪ {S ∪ {j}}

Sol = NDi ∪ ESi
return Sol;

Algorithm 1. Computation of non-dominated solutions (NDS).

Algorithm 1 builds incrementally the set of non-dominated solutions Sol with
each element of Θ such that Θ = {θ1, θ2, ..., θ|Θ|}. At each iteration, the solutions
are updated in order to satisfy the constraint corresponding to θi. The main idea
consists in distinguishing between solutions that already satisfy this constraint
(they are put in a set of non dominated solution NDi ) and those that need to
be modified in order to satisfy the constraint, (they are put in the set ESi, an
extended set where an attribute is added to a solution). Note that the modification
of these latest solutions is performed by adding one attribute but keeping the non-
domination property.

6.2 Computation of all Minimal Solutions

In order to compute the set of all minimal solutions S, we introduce a bound B
such that ∀s ∈ S, |s| ≤ B. If no solution satisfying this bound is found we increase
the value of B. In this case, the problem of dominance is not addressed since a

2 Remind that Θ is a set of couples of observations defined in 4.1 for indexing lines of the
constraint matrix C.
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minimal solution is always non-dominated (see subsection 3.2). However, we must
avoid to compute identical solutions.

In [10], the notion of negative attributes was introduced. The representation
of a set of solutions Sol = {S1, S2, .., Sn} is extended as Sol = {< S1|NEGS1

>
,< S2|NEGS2

>, ..., < Sn|NEGSn
>}, where NEGSi

⊆ {¬a|a ∈ A}. The main
idea is to never consider an attribute a in a solution Si if ¬a ∈ NEGSi

.

Data: C: Constraints matrix of size |Θ| × |A|.
nbg: number of groups.
Result: Sol: Minimal solutions set.

b = dlog2(nbg)e; //upper bound
Sol = ∅
do

for i = 1 to |Θ| do
//Build a subset of solutions NDi
NDi = ∅
forall j ∈ A s.t. C[θi, j] = 1 do

forall < S|NEGS >∈ Sol\NDi do
if j ∈ S then

NDi = NDi ∪ {< S|NEGS >}

//Build a subset of solutions ESi
ESi = ∅
forall < S|NEGS >∈ Sol\NDi do

if |S| < b then
//Progressive construction of a set NEG
NEG = NEGS
forall j ∈ A s.t. C[θi, j] = 1 do

if ¬j /∈ NEGS then
ESi = ESi∪ < S ∪ {j}|NEG >
//Increment the set NEG
NEG = NEG ∪ {¬j}

Sol = NDi ∪ ESi
if Sol = ∅ then

b = b+ 1
break

while Sol = ∅;
return Sol;

Algorithm 2. Computation of minimal solutions (MWNG).

Algorithm 2 uses the same principle as Algorithm 1. At each iteration i, a set
NDi of non-dominated solutions that satisfy the constraint θi is built as well as
a set ESi of solutions that must be incremented, if the size of these solutions is
lower than the bound. Example 5 shows how the negative attributes avoid getting
identical solutions.

Example 5 Given a set of attributes A = {a, b, c, d} and solution S = {b, c} that
satisfies the i − 1 first constraints, let us consider the next three constraint lines
θi, θi+1, θi+2 in the constraints matrix C such that:
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Constraints
Attributes

a b c d

θi 1 0 0 1
θi+1 1 0 0 0
θi+2 0 0 0 1

The solution S = {b, c} does not satisfy the constraint θi and we must incre-
ment S with a new attribute. Two cases can be considered for generating two new
solutions:

– S1 = S ∪ {a}
– S2 = S ∪ {d}.

S1 and S2 satisfy now θi. Note that S1 satisfies θi+1 and not θi+2 while S2

satisfies θi+2 but not θi+1. We need to increment S2: S′2 = S2 ∪ {a} = {a, b, c, d}
and S1: S′1 = S1 ∪ {d} = {a, b, c, d} and we get S′1 = S′2.

Using the concept of negative attributes, we have to create couples of solutions
< S1|NEGS1

>=< S ∪ {a}|∅ > and < S2|NEGS2
>=< S ∪ {d}|¬a >in order to

satisfy θi. Thus, < S1|NEGS1
> satisfies θi+1, but < S2|NEGS2

> does not. S2

needs to be incremented as S′2 = S2∪{a} but since ¬a ∈ NEGS2
we must remove

S2.

When we increment S1 as S′1 = S1 ∪ {d} in < S1|NEGS1
> in order to satisfy

θi+2, we get a unique S′1 = {a, b, c, d}.
Negative attributes aim thus at avoiding redundancy in solutions computation.

7 Comparing LAD and MCP Approaches

In this section, we compare our approach for solving the MCP with the LAD
methodology, described in Section 2.

To this aim, we need to restrict instances of MCP to only two groups, since
LAD has been originally defined for two groups P and N (positive and negative
observations). According to Definition 3, a pdBf is defined by a pair (P,N),P,N ⊆
Bn and corresponds to a MCP instance (Ω,A, D,G) where:

– Ω = P ∪N
– G : Ω 7→ {P,N}, P = {o ∈ Ω|G(o) = P} and N = {o ∈ Ω|G(o) = N}.

In LAD, the aim is to find a pattern that covers a maximum number of obser-
vations of P and such that no observation of N has this pattern. From our MCP
point of view our notion of solution is rather different. Given a solution S of a
MCP instance (Ω,A, D,G) defined as above with only two groups, the variables
on S do not in general correspond to a pattern for the observations in P unless
simP (DS) = 1. In this case the minimal solution of the MCP and the maximal
pattern obviously coincide in term of attributes.

Conversely, given {pk|k ∈ N} a set of patterns completely covering the group
P = {o ∈ Ω|G(o) = P}, then

⋃
k V ar(pk) is a solution of the corresponding

instance of MCP with two groups P and N .

Remind that, a pattern p completely covers a group if all observations in this
group are similar on V ar(p).
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Remark 1 Let us consider the smallest pattern p that completely covers the group
P (i.e. @p′ s.t. |V ar(p′)| < |V ar(p)| completely covering the group), then V ar(p)
is a non-dominated solution of the corresponding instance of MCP, but not nec-
essarily of minimal size.

In order to highlight the differences between the two approaches, let us consider
the following example.

Example 6

Observations Groups
Attributes

a b c d e f g h

1
P

0 1 0 1 0 1 0 0
2 0 1 0 1 0 0 1 0
3 0 1 0 1 0 0 0 1

4

N

0 1 0 1 1 0 0 0
5 0 1 0 0 0 0 0 0
6 0 1 1 1 0 0 0 0
7 0 0 0 1 0 0 0 0
8 1 1 0 1 0 0 0 0

p = ā∧ b∧ c̄∧ d∧ ē is a pattern covering the entire group P . However, {f, g, h} is
a solution and |{f, g, h}| = 3 < |{a, b, c, d, e}| = 5

Definition 20 Given an instance (Ω,A, D,G) and a set A ⊂ A, OA ⊂ Ω is a set
{o ∈ Ω|@o′ 6= o s.t. DA[o, .] = DA[o′, .] and G(o) = G(o′)}.

OA is the set of all observations where identical lines projected on A have been
deleted.

Remark 2 Let S be a solution of an instance of the MCP and P = {o ∈ OS |G(o) =
P}. |P | is therefore the number of patterns pk composed by attributes of S (∀k
V ar(pk) = S) such that

∨
k pk completely covers the group P . However, the pat-

terns pk are not necessarily of minimum size.

Thus, the canonical writing of solutions is a set of patterns covering the entire
group.

Remark 3 Given S a non-dominated solution of an instance of the MCP with two
groups (P and N), P = {o ∈ OS |G(o) = P} and {pk|k ∈ N} the set of patterns
covering the group P s.t. ∀k V ar(pk) ⊂ S, we have

⋃
k V ar(pk) = S.

Remark 4 Given S a minimal solution to the MCP, there exists {pk|k ∈ N} a
set of patterns covering all groups such that

⋃
k V ar(pk) is minimal, we have⋃

k V ar(pk) = S

Thus, the Min-MCP determines the smallest set of characters necessary to
build patterns covering all groups.

Example 7
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Observations Groups
Attributes
a b c

1
P

1 1 1
2 1 1 0
3 0 0 0

4
N

0 0 1
5 1 0 1
6 0 1 1

The smallest solution is S = {a, b, c}. We have 3 patterns p1 = a∧b∧c, p2 = a∧b∧c̄
and p3 = ā ∧ b̄ ∧ c̄ completely covering the group. However there exists p4 and p5

such that p4 = a∧ b and p5 = b̄∧ c̄, two patterns such that V ar(p4), V ar(p5) ⊂ S
and such that p4∨p5 completely covers the group P . Moreover, we have V ar(p4)∪
V ar(p5) = S = {a, b, c}.

8 Experimental Setup

The purpose of our experiments is to precisely study the properties of the solutions
found for the MCP according to topological properties of the instances and in
particular the characteristics of the groups defined in the instances. Since the
purpose is to characterize groups of data, we consider classic methods that can
be used to group data into cluster using distances. Our purpose is to study the
properties of groups with regards to their similarity as well as the properties of the
solutions that we compute with regards to different groups functions on similar
observations.

8.1 Clustering Approaches

Clustering algorithms are non-supervised machine learning methods that aim at
gathering data into clusters according to their similarity. Among the numerous
algorithms that can be used for clustering (see [1]), K-means [21,17] is certainly
one of the most popular. Given a set Ω of observations the K-means method
aims at building k clusters S1, · · · , Sk such that

⋃
1≤i≤k Si = Ω, optimizing the

following objective function:

min
k∑
i=1

∑
o∈Si

||o− µi||2

where µi is the centroid (mean value of the points) of Si.
The purpose of this method is thus to gather similar observations into clusters

centered around a centroid. This method tends to maximize the similarity of each
cluster. K-means clustering is a NP-hard optimization problem [14]. Here, we use
a classic heuristic algorithm [17]. The centroids may be fixed and the clusters are
thus built around these given centroids (supervised approach).

The K-medoids method [18] is a clustering method, close to K-means, which
gather the observations around a real observation (i.e., the centroids belong to the
observation set Ω).
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8.2 Ranking Solutions

Using the algorithms described in Section 6, many non dominated solutions can
be computed. Therefore, selecting the most suitable solution is a difficult prob-
lem since we lack of objective criteria. Nevertheless, since the purpose of solving
a MCP is to characterize groups of observations, we may analyze the influence
of the selected attributes of a solution on the topology of the group. Using the
measures defined in Section 5.3, given an instance (Ω,A, D,G), a solution S could
be preferred to a solution S′ if:

– observations of a given group with regards to S are more similar than with S′

(i.e., simintra(DS) > simintra(DS
′
), or

– observations of different groups with regards to S are more different than with
S′ (i.e. diffinter(D

S) > diffinter(D
S′).

The first case corresponds to solutions that tend to focus on attributes that
have similar values for the observations of a same group. Note that, the intragroup
similarity has an impact on the patterns that can be computed from the LAD point
of view. Therefore, with regards to this criterion, for an instance (Ω,A, D,G)
and a set of solution Sol, we denote S̄ ∈ Sol the solutions such that ∀S′ ∈
Sol, simintra(DS̄) ≥ simintra(DS

′
), and S ∈ Sol the solutions such that ∀S′ ∈

Sol, simintra(DS) ≤ simintra(DS
′
).

8.3 Comparing Group Functions

In this section, we are interested in comparing different possible groupings of ob-
servations, i.e. comparing two instances (Ω,A, D,G) and (Ω,A, D,G′). A group
function G will be close to another function G′ if they tend to group observations
similarly regardless of the names (e.g., the associated numbers) of the groups. In
our experiment we will compare different group functions and we want to define
a clear notion of similarity between these functions with regards to the resulting
groups.

Unfortunately indicators such as the Jaccard index is not sufficient to evaluate
this similarity because they take into account the value of the groups. Hence, it is
difficult to use such indexes if there are more than two groups.

Let us consider two instances (Ω,A, D,G) and (Ω,A, D,G′). ∆G,G′ is the
contingency matrix for group functions G and G′ , i.e., ∆G,G′ [i, j] = k if and only
if there are k observations that belongs to groups i according to G and to group
j according to G′. Note that the contingency matrix is sensitive to the value of
the group (i.e., index of the group). In order to avoid this drawback we have to
consider permutations of this contingency matrix.

Let Φn be the set of all integer permutation functions on 1 . . . n (n being the
number of groups). Given ϕ ∈ Φ, ∆ϕG,G′ is the contingency matrix whose rows
have been rearranged according to ϕ.

We define our similarity index between G and G′ as:

σG,G′ =
maxϕ∈Φ diag(∆ϕG,G′)

|Ω|
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where diag(M) is the function that returns the sum of the values of the main
diagonal of a matrix M .

Note that argmaxϕ∈Φ diag(∆ϕG,G′) returns the perfect transformation between

G and G′. Note that, for a given contingency matrix of size |n| × |n|, there are n!
possible permutations. Therefore, in presence of many groups, computing σ can
be very time consuming.

Example 8 Let us consider G,G′, G′′ three group functions. We represent here
these functions by the following vectors,G = [1, 1, 1, 1, 2, 2, 2, 2, 3],G′ = [2, 2, 2, 2, 3, 3, 3, 3, 1]
and G′′ = [1, 1, 2, 2, 1, 2, 3, 3, 3]. G([o]) (resp. G′[o] and G′′[o]) represents the group
index assigned to observation o. In this example |Ω| = 9.

We have ∆G,G′ =

0 4 0
0 0 4
1 0 0


There exists ϕ ∈ Φ such that ∆ϕG,G′ =

1 0 0
0 4 0
0 0 4


diag(∆ϕX,Y ) = 4 + 4 + 1 = 9 and thus σX,Y = 9

9 = 1.

We have ∆G,G′′ =

2 2 0
1 1 2
0 0 1

 and σG,G′′ = 4
9 .

Therefore, we observe that G and G′ are similar (see their definition, despite
the values of the assigned groups) while G and G′′ are more different.

Note that, for an instance (Ω,A, D,G), with G : Ω → {1, · · · , nbG} (i.e., nbG
is the number of groups), and another group function G′ : Ω → {1, · · · , nbG}, the
similarity between G and G′ is bounded:

σG,G′ ∈ [
d|Ω|/nbGe
|Ω| , 1]

8.4 Description of the Studied Instances

Real Instances
As mentioned in Introduction, the instances used here have been prepared in
cooperation with biologists.

Instances xanthostgen, ra rep1, ra rep2, ra phy, ra phv, ra100 phy, ra100 phv
and ralstophy2s are datasets corresponding to bacterial strains of phytopathogenic
bacteria. Each observation is a bacterial strain, and attributes can be housekeeping
gene, resistance gene or type III effectors. Groups are pathovar and the objective
of the characterization is to determine the delimitations of species more accurately
than with a phylogenetic approach (see [9] for more details).

Instance Leukemia is a dataset based on patients suffering from leukemia.
Observations are mutated human genomes that are suspected to play a role in
leukemia. The objective of the characterization is to identify combination of genes
in order to predict the risk of relapse of a patient. The human genome is larger
than a bacterium, we have then a number attributes of more important in this
instance.
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These instances are described in the Table 2, which gives their number of
observations and attributes and number of groups. These instances are matrices
built from biological data 3.

Table 2 Biological instances

Instances Observations×Attributes # Groups
xanthostgen 173×107 33

ra rep1 112×155 7
ra rep2 112×155 7
ra phy 113×155 4
ra phv 109×155 8

ra100 phy 113×99 4
ra100 phv 109×99 8

ralstophy2s 112×34 4
Leukemia 35×8389 2

Handmade instances
In order to consider particular cases with specific extremal properties, we build
two instances. Let us consider |Ω| = 34 and |A| = 17 (A = {a, b, c, d, ..., p, q}).

0 1 · · · 1

1
. . .

. . .
...

...
. . .

. . . 1
1 · · · 1 0
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1


We consider two group functions G1, G2 : Ω 7→ {1, 0} such that:

– G1(i) = 1 if i < 18, G1(i) = 2 if i ≥ 18.
– G2(i) = 1 if i is odd, G2(i) = 2 if i is even.

We have the following values:

Gg Minimal simover intragroup intergroup
sol size similarity difference

G1 3 0.485 0.882 0.889

G2 8 0.485 0.478 0.508

Note that the patterns p1 = a ∧ b and p2 = c ∧ d cover together the group 1 with
the group function G1.
The patterns p3 = b∧d∧f ∧h∧ j∧ l∧n∧p and p4 = ā∧ c̄∧ ē∧ ḡ∧ ī∧ k̄∧ m̄∧ ō∧ q̄
cover together the group 1 with the group fuction G2.

Here we can see that for the same data matrix, a group of observations giving
a high intragroup similarity and high intergroup difference will give us smaller
solutions.

3 http://www.info.univ-angers.fr/˜gh/Idas/Ccd/ce f.php
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8.5 Experimental Protocol

Figure 1 presents our experimental protocol in order to precisely examine the
notion of solution in the context of MCP. In particular we are interested in studying
if the attributes identified in solutions as well as the size of the solutions can be
related to structural properties of the instance.

Fig. 1 Experimental protocol
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(Ω)
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S
(Ω)
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For each instance (Ω,A, D,G) we consider several group functions:

– the original group function G corresponding to groups defined by experts in
real cases (G on top left and top right in Figure 1);

– group functions obtained by clustering methods on initial data (kmeansD
on bottom left in Figure 1) and on data reduced to attributes in solutions
(kmeansS on bottom right in Figure 1). The following variants are considered:
– group function corresponding to groups generated by a K-means method

(see Section 8.1);
– group function corresponding to groups generated by a K-means with fixed

centroids, called here center k-means;
– group function corresponding to groups generated by a K-medoid method

(see Section 8.1);
– randomly generated group function.

Note that all these functions consider the same number of groups, which cor-
responds to the original group function provided in the initial instances.

The purpose of this first analysis, corresponding to comp1 in Figure 1, is to
assess the impact of the group function on the size of solutions as well as on the
similarity of the groups.
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For each instance with the above-mentioned group functions, we compute solu-
tions (MCP arrow in Figure 1). From these solutions, we consider again the same
groups but restricted to the set of attributes that appear in the solutions.

The comparisons comp2 and comp3 correspond therefore to the analysis of the
impact of the solutions attributes on the groups issued from the different group
functions with regards to the original group function (comp3) and with the group
functions resulting from other classification methods (comp2).

9 Experimental Results

The following subsections are directly related to the different steps of our experi-
mental protocol (represented by arrows on Figure 1). Therefore, it will be recalled
when relevant.

9.1 Computation of Minimal Solutions

Experimetal protocol : it corresponds to the MCP arrow on Figure 1 but the
computation of MCP solutions is also performed on groups obtained by the k-
means algorithm (denoted kmeansD(Ω)).

Table 3 provides the size of the minimal solutions for each instance with dif-
ferent group functions.

We observe that randomly generated groups are more difficult to characterize
and require thus more attributes, since as expected no regularity can be exploited
from the data. The other results show that the original groups and the groups
obtained by the classification algorithm are not so different in terms of MCP
solution sizes. Therefore, further analysis must be performed on these groups.

9.2 Comparison of Group Functions

Experimental protocol : it corresponds to the comp1 arrow on Figure 1.

In order to compare the different group functions presented in Section 8.5, we
use the objective function of k-means method (see Section. 8.1). Note that the
value k is set to the number of groups given by the original group function. The
purpose is to evaluate the coherence of the groups with regards to classic classi-
fication criteria. Given an instance, for each group, we compute the value of the
objective function of the k-means method. This value provides us informations
about the structure of the groups in terms of concentration of observations. Note
that, the higher the size of the data matrix is (i.e., in terms of number of ob-
servations and attributes), the higher the value of the objective function is. We
normalize these values according to the number of observations and the number
of attributes. These values are reported in Table 4.
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Table 3 Size of minimal solutions

Instances Group Function Minimal solution size

xanthostgen Original 13
xanthostgen K-medoid 11
xanthostgen K-means 12
xanthostgen center k-means 12
xanthostgen Random 33

ra rep1 Original 12
ra rep1 K-medoid 9
ra rep1 K-means 7
ra rep1 center k-means 7
ra rep1 Random 16

ra rep2 Original 12
ra rep2 K-medoid 9
ra rep2 K-means 8
ra rep2 center k-means 8
ra rep2 Random 16

ra phy Original 6
ra phy K-medoid 8
ra phy K-means 6
ra phy center k-means 6
ra phy Random 15

ra phv Original 6
ra phv K-medoid 9
ra phv K-means 8
ra phv center k-means 7
ra phv Random 16

ra100 phy Original 7
ra100 phy K-medoid 8
ra100 phy K-means 7
ra100 phy center k-means 7
ra100 phy Random 16

ra100 phv Original 9
ra100 phv K-medoid 10
ra100 phv K-means 9
ra100 phv center k-means 10
ra100 phv Random 16

ralstophy2s Original 8
ralstophy2s K-medoid 7
ralstophy2s K-means 5
ralstophy2s center k-means 3
ralstophy2s Random 13

Leukemia Original 2
Leukemia K-mdoid 4
Leukemia K-means 3
Leukemia center k-means 3
Leukemia Random 2

Table 5 provides the similarity between group functions with the original group
function according to the similarity index defined in Section 8.3 (comp1 in Fig 1).
Note that for xanthostgen, the number of groups is too high to compute the index.
Of course the similarity is 1 for the original group functions.

As expected, the random group functions are very different from the original
group functions. We may observe that group functions obtained by classification
are indeed rather different from the original group functions, while we have ob-
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Table 4 Value of k-means objective function.

Instances Group functions Minimal Initial k-means Normalized k-means
solution size objective function objective function

xanthostgen Original 13 186.500 0.019
xanthostgen K-medoid 11 136.768 0.014
xanthostgen K-means 12 155.385 0.016
xanthostgen center k-means 12 154.393 0.016
xanthostgen Random 33 990.117 0.103

ra rep1 Original 12 755.022 0.092
ra rep1 K-medoid 9 583.971 0.071
ra rep1 K-means 7 570.379 0.070
ra rep1 center k-means 7 570.379 0.070
ra rep1 Random 16 982.077 0.120

ra rep2 Original 12 754.501 0.092
ra rep2 K-medoid 9 583.971 0.071
ra rep2 K-means 8 590.362 0.072
ra rep2 center k-means 8 575.717 0.070
ra rep2 Random 16 981.837 0.120

ra phy Original 6 795.025 0.097
ra phy K-medoid 8 694.224 0.085
ra phy K-means 6 665.324 0.081
ra phy center k-means 6 665.324 0.081
ra phy Random 15 1003.030 0.123

ra phv Original 6 542.583 0.072
ra phv K-medoid 9 487.656 0.065
ra phv K-means 8 500.239 0.066
ra phv center k-means 7 480.067 0.064
ra phv Random 16 892.476 0.118

ra100 phy Original 7 516.776 0.097
ra100 phy K-medoid 8 416.205 0.078
ra100 phy K-means 7 405.415 0.076
ra100 phy cent kmeans 7 418.636 0.078
ra100 phy Random 16 594.883 0.111

ra100 phv Original 9 373.076 0.074
ra100 phv K-medoid 10 300.570 0.060
ra100 phv K-means 9 304.891 0.060
ra100 phv cent kmeans 10 295.815 0.059
ra100 phv Random 16 546.836 0.108

ralstophy2s Original 8 205.019 0.122
ralstophy2s K-medoid 7 169.080 0.101
ralstophy2s K-means 5 162.639 0.097
ralstophy2s cent kmeans 3 162.482 0.097
ralstophy2s Random 13 247.306 0.147

Leukemia Original 2 8798.400 0.144
Leukemia K-mdoid 4 8756.820 0.143
Leukemia K-means 3 8734.740 0.143
Leukemia cent kmeans 3 8717.610 0.143
Leukemia Random 2 8813.620 0.144

served previously that these group functions generate groups whose cohesions are
rather similar (according to the k-mean objective function).

In order to further investigate the characteristics of the groups induced by the
group functions, we evaluate instances with more topological criteria presented in
Section 5.3.
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Table 5 Similarity σG,O between the different group methods and the initial group function
(O).

Instance Group Function Minimal similarity σG,O
G solution size with original group function

ra rep1 Original 12 1
ra rep1 K-medoid 9 0.437
ra rep1 K-means 7 0.536
ra rep1 center k-means 7 0.536
ra rep1 Random 16 0.232

ra rep2 Original 12 1
ra rep2 K-medoid 9 0.429
ra rep2 K-means 8 0.420
ra rep2 center k-means 8 0.5
ra rep2 Random 16 0.214

ra phy Original 6 1
ra phy K-medoid 8 0.589
ra phy K-means 6 0.562
ra phy center k-means 6 0.562
ra phy Random 15 0.321

ra phv Original 6 1
ra phv K-medoid 9 0.667
ra phv K-means 8 0.722
ra phv center k-means 7 0.796
ra phv Random 16 0.259

ra100 phy Original 7 1
ra100 phy K-medoid 8 0.457
ra100 phy K-means 7 0.514
ra100 phy center kmeans 7 0.619
ra100 phy Random 16 0.505

ra100 phv Original 9 1
ra100 phv K-medoid 10 0.584
ra100 phv K-means 9 0.505
ra100 phv center kmeans 10 0.594
ra100 phv Random 16 0.396

ralstophy2s Original 8 1
ralstophy2s K-medoid 7 0.575
ralstophy2s K-means 5 0.697
ralstophy2s center kmeans 3 0.644
ralstophy2s Random 13 0.370

Leukemia Original 2 1
Leukemia K-medoid 4 0.514
Leukemia K-means 3 0.543
Leukemia center kmeans 3 0.571
Leukemia Random 2 0.771

9.3 Deeper Analysis of Group Functions

Table 6 sumarizes characteristics for the instances with the different groups func-
tions as previously defined. We consider the instances xanthostgen, ra100 phy,
ra100 phv, ralstophy2s and Leukemia. For each group function, the following char-
acteristics are recorded : minimal solution size, overall similarity of the observa-
tions, intragroup similarity and intergroup difference (see definitions in Section
5.3).
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Table 6 Similarities (as defined in Section 5.3) for the different group functions

Instances Group functions minimal solution size simover simintra diffinter

Ex. G1 3 0.485 0.882 0.889
Ex. G2 8 0.485 0.478 0.508

xanthost Original 13 0.719 0.942 0.289
xanthost K-med 11 0.719 0.960 0.289
xanthost K-means 12 0.719 0.954 0.289
xanthost center K-means 12 0.719 0.954 0.288
xanthost Random 33 0.719 0.708 0.281

ra rep1 Original 12 0.747 0.793 0.270
ra rep1 K-med 9 0.747 0.855 0.273
ra rep1 K-means 7 0.747 0.870 0.280
ra rep1 center K-means 7 0.747 0.870 0.280
ra rep1 Random 16 0.747 0.742 0.253

ra rep2 Original 12 0.747 0.792 0.269
ra rep2 K-med 9 0.747 0.855 0.273
ra rep2 K-means 8 0.747 0.857 0.277
ra rep2 center K-means 8 0.747 0.865 0.277
ra rep2 Random 16 0.747 0.741 0.252

ra phy Original 6 0.747 0.808 0.303
ra phy K-med 8 0.747 0.830 0.285
ra phy K-means 6 0.747 0.837 0.284
ra phy center K-means 6 0.747 0.837 0.284
ra phy Random 15 0.747 0.747 0.253

ra phv Original 6 0.748 0.847 0.293
ra phv K-med 9 0.748 0.867 0.273
ra phv K-means 8 0.748 0.871 0.281
ra phv center K-means 7 0.748 0.878 0.280
ra phv Random 16 0.748 0.742 0.251

ra100phy Original 7 0.757 0.808 0.303
ra100phy K-med 8 0.757 0.839 0.270
ra100phy K-means 7 0.757 0.843 0.271
ra100phy center K-means 7 0.757 0.838 0.278
ra100phy Random 16 0.757 0.774 0.255

ra100phv Original 9 0.757 0.833 0.271
ra100phv K-med 10 0.757 0.872 0.263
ra100phv K-means 9 0.757 0.871 0.262
ra100phv center K-means 10 0.757 0.878 0.264
ra100phv Random 16 0.757 0.764 0.246

ralsto Original 8 0.676 0.854 0.253
ralsto K-med 7 0.676 0.790 0.363
ralsto K-means 5 0.676 0.797 0.370
ralsto center K-means 3 0.676 0.795 0.366
ralsto Random 13 0.676 0.678 0.326

Leuk Original 2 0.694 0.695 0.309
Leuk K-med 4 0.694 0.696 0.308
Leuk K-means 3 0.694 0.697 0.309
Leuk center K-means 3 0.694 0.697 0.309
Leuk Random 2 0.694 0.693 0.304

Note that the overall similarity is computed on the whole set of observations
and is of course identical for all different group functions. We first remark that
this overall similarity is rather high, which may be explained by the fact that the
observations are not randomly generated and share similar values on a sufficient
number of attributes. This assumption is rather reasonable in particular when
attributes are genes, whose presence/absence is indeed often similar for different
individuals.
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Note that the intragroup similarity of random group functions is close to the
overall similarity. This is coherent since random group functions gather initial
observations uniformly, keeping thus their initial similarity.

The intragroup similarity is high for initial group functions as well as for k-
means based group functions, which corroborates the previous analysis. In fact,
these group functions have similar topological properties in terms of group simi-
larity and solution length. Nevertheless the resulting groups are different.

Concerning the intergroup difference, the scores are rather low. This can be
explained by the high global similarity of the observations. It is indeed difficult to
generate very different groups of observations.

Note that the Leukemia instance is slightly different. For each group function,
even for the random group function, the intragroup similarity and intergroup dif-
ference are much closer. We may observe that minimal solutions sizes are very
small, especially with respect to the set of initial attributes which is very large.
We will discuss these results later.

We have observed that original group functions have topological properties
close to groups generated by k-means algorithms. Nevertheless, the resulting groups
are very different in terms of observations. Therefore, we may conclude that the
initial groups cannot be obtained using k-means algorithms with a classic Ham-
ming distance metric. We could try to modify this distance but we have a priori
no available information that can be used to select the most suitable attributes.

A remaining question is thus: Does our attribute reduction approach allow
us to characterize groups that could be obtained by clustering algorithms if the
suitable attributes had been identified a priori ?

9.4 Analysis of Solutions

Experimental protocol : it corresponds to the comp2 and comp3 arrows on Figure 1.
comp2 corresponds to the comparison between groups obtained by clustering on the
initial observations and groups obtained by clustering on the observations reduced
to the attributes of optimal solutions. comp3 corresponds to the comparison of
the groups obtained by clustering on the observations reduced to the attributes of
optimal solutions and the original groups.

In this part, we focus on the solutions computed for the different instances, us-
ing different group functions. According to our experimental protocol presented in
Figure 1, we are interested in analyzing if attributes of solutions may be exploited
by k-means algorithms in terms of similarity.

To this aim, we apply the clustering algorithm on the observations restricted
to the attributes that appear in solutions (obviously the distance values change).
Then, we compare the similarity of the resulting groups obtained by clustering
with the original group functions.

Before considering these comparisons, we have to analyze solutions. Given in-
stance (Ω,A, D,G), solving the minimum multiple characterization problem lead
to many optimal solutions. For each solution, the resulting intragroup similarity
can be different.

Table 7 shows intragroup similarity, overall similarity and intergroup difference
for the solution S̄ that maximizes the intragroup similarity and for the solution
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S that minimizes this intragroup similarity. The last column corresponds to the
solution S′ that provides the highest similarity of a group, i.e.
S′ = argmaxS∈Sol(maxgsimg(DS

′
)) (see Definition 15).

Table 7 Solutions similarity
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Example G1 3 0.882 0.485 0.889 0.882 0.485 0.889 0.882
Example G2 8 0.485 0.485 0.516 0.485 0.485 0.516 0.485
xanthostgen 13 0.958 0.664 0.346 0.908 0.646 0.363 1

ra rep1 12 0.671 0.603 0.422 0.636 0.595 0.420 0.75
ra rep2 12 0.691 0.637 0.382 0.605 0.561 0.454 0.917
ra phy 12 0.869 0.725 0.392 0.843 0.594 0.607 0.906
ra phv 12 0.883 0.630 0.474 0.815 0.565 0.538 0.921

ra100 phy 7 0.841 0.710 0.388 0.701 0.576 0.516 0.875
ra100 phv 9 0.782 0.620 0.439 0.670 0.549 0.494 1

ralstophy2s 8 0.736 0.638 0.422 0.650 0.562 0.493 0.770
Leukemia 2 0.992 0.889 0.5 0.537 0.503 0.629 1

Obviously, we have simintra(DS̄) ≥ simintra(DS). In all cases, except for

ra rep1, we observe that diffinter(D
S) ≥ diffinter(D

S̄). Moreover, the overall

similarity value is higher for DS̄ than for DS.
Note that when the similarity of a group is high, it means that we may expect

that the group can be covered by a few patterns (see Section 7).
The k-means algorithm used here is based on the Euclidean distance between

observations. But we have seen that the initial group functions cannot be explained
by distance-based similarity. We now want to investigate if, once projected on the
attributes selected in the solutions obtained for the MCP, the resulting groups of
observations exhibit different characteristics with regards to clustering approaches.
In other words, we want to check if groups obtained by clustering on the reduced
set of attributes are similar to initial groups.

Table 8 presents the similarity σ between group functions. The smaller the min-
imal solution size is, the larger the similarity between the original group function
and the k-means based group functions computed on solutions is. The similarity
between k-means based group functions and the original group function is close to
the similarity between initial k-means based group functions and k-means group
functions on solutions.

9.5 Experimental Conclusions

We summarize now our main observations :

– The similarity σ between the original groups and those obtained by the k-
means method presented in Section 8.1 (comp1 and comp3 in Fig 1) is very
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Table 8 Comparison of group functions

Instances Group functions Similarity σ with Similarity σ with Similarity σ with
method original k-means on sol center k-means on sol

Example G1 1 1 1
Example K-means 1 1 1
Example center k-means 1 1 1

ra rep1 Original 1 0.339 0.455
ra rep1 K-means 0.536 0.464 0.464
ra rep1 center k-means 0.536 0.464 0.464

ra rep2 Original 1 0.375 0.411
ra rep2 K-means 0.420 0.491 0.455
ra rep2 center k-means 0.5 0.562 0.509

ra phy Original 1 0.652 0.875
ra phy K-means 0.562 0.491 0.634
ra phy center k-means 0.562 0.491 0.634

ra phv Original 1 0.787 0.889
ra phv K-means 0.722 0.694 0.713
ra phv center k-means 0.796 0.778 0.843

ra100 phy Original 1 0.743 0.771
ra100 phy K-means 0.514 0.581 0.619
ra100 phy center k-means 0.619 0.667 0.762

ra100 phv Original 1 0.545 0.663
ra100 phv K-means 0.505 0.475 0.564
ra100 phv center k-means 0.594 0.465 0.594

ralstophy2s Original 1 0.534 0.644
ralstophy2s K-means 0.699 0.644 0.740
ralstophy2s center k-means 0.644 0.699 0.808

Leukemia Original 1 0.943 1
Leukemia K-means 0.543 0.543 0.543
Leukemia center k-means 0.571 0.514 0.571

low (despite close rates of intra-group similarity and very close rates of inter-
group difference).

– The same observation is valid if k-means is applied on the initial set of at-
tributes (comp1 in Fig 1) or only on attributes used in the best solutions
(comp3 in Fig 1).

– Except for the Leukemia instance, using the attribute of the minimal MCP
solutions does not allow to find the original groups with k-means (comp3 in
Fig 1).

– Classifications on attributes that belong to solutions remain different from
initial groups (comp2 in Fig 1).

Logical data characterization provides thus an alternative knowledge on groups.
This methodology rather provides a combinatorial identification of groups signa-
tures that may reveal alternative relationships between attributes than classic
models based on statistical occurrences of values.

10 Conclusion

In this paper we have presented a complete methodology for the characterization
of multiple groups of Boolean observations using minimal set of attributes (i.e.,
Boolean variables). This methodology allows the user to identify combinations of
attributes that cannot be easily extracted or observed with regards to topological
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measures. In particular, we have observed on different sets of real biological data
that groups of observations identified by experts cannot be simply obtained nor
explained using classic clustering techniques. While these instances have grouping
properties that are closed to groups resulting from clustering algorithms, more
complex relationships between attributes can be identified between observations.
Instead of computing common patterns that are present in observations, our ap-
proach rather consists in identifying a characterization formula that can be used
to explain the properties of a group of observations or to predict the membership
of new incoming observations to existing groups.

We have proposed algorithms that allows the expert to compute complete
sets of possible solutions and thus that could help him in better identifying and
understanding hidden relationships within data.
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2. Agrawal, R., Imieliński, T., Swami, A., 1993. Mining association rules between sets of
items in large databases. In: Acm sigmod record. Vol. 22. ACM, pp. 207–216.

3. Alexe, G., Alexe, S., Axelrod, D., Hammer, P. L., Weissmann, D., 2005. Logical analysis
of diffuse large b-cell lymphomas. Artificial Intelligence in Medicine 34 (3), 235 – 267.

4. Alexe, G., Alexe, S., Axelrod, D. E., Bonates, T. O., Lozina, I. I., Reiss, M., Hammer,
P. L., 2006. Breast cancer prognosis by combinatorial analysis of gene expression data.
Breast Cancer Research 8 (4), 1–20.

5. Alexe, G., Alexe, S., Bonates, T. O., Kogan, A., 2007. Logical analysis of data - the vision
of Peter L. Hammer. Annals of Mathematics and Artificial Intelligence 49 (1-4), 265–312.

6. Bennane, A., Yacout, S., 2012. Lad-cbm; new data processing tool for diagnosis and prog-
nosis in condition-based maintenance. Journal of Intelligent Manufacturing 23 (2), 265–
275.

7. Boros, E., Crama, Y., Hammer, P. L., Ibaraki, T., Kogan, A., Makino, K., 2011. Logical
analysis of data: classification with justification. Annals of Operations Research 188 (1),
33–61.

8. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., 1997. Logical analysis of numerical data.
Mathematical Programming 79, 163–190.

9. Boureau, T., Kerkoud, M., Chhel, F., Hunault, G., Darrasse, A., Brin, C., Durand, K.,
Hajri, A., Poussier, S., Manceau, C., Lardeux, F., Saubion, F., Jacques, M.-A., 2013.
A multiplex-pcr assay for identification of the quarantine plant pathogen xanthomonas
axonopodis pv. phaseoli. Journal of Microbiological Methods 92 (1), 42 – 50.

10. Chambon, A., Boureau, T., Lardeux, F., Saubion, F., Le Saux, M., 2015. Characterization
of multiple groups of data. In: Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th
International Conference on. IEEE, pp. 1021–1028.

11. Chandrashekar, G., Sahin, F., 2014. A survey on feature selection methods. Computers &
Electrical Engineering 40 (1), 16 – 28, 40th-year commemorative issue.

12. Chhel, F., Lardeux, F., Saubion, F., Zanuttini, B., 2013. Application du problème de
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