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1 Introduction 

In this article, we deal with the Stochastic Non-linear Fractional Equality 
Knapsack (NFEK) Problem which is the central underlying problem perti­
nent to allocating resources based on incomplete and noisy information. Such 
situations are not merely hypothetical - rathe1� they constitute the vast ma­
jority of allocation problems in the real-world. Resource allocation problems 
which involve such incomplete and noisy information are particularly in­
h·iguing. They cannot be solved by traditional optimization techniques, ren­
dering them ineffective. 

The Stochastic NFEK Problem has attracted research attention due to its 
ability to provide a model for some real-life problems under uncertainty where 
the dynamics of the environments are affected by the actions of the decision 
maker. In [5, 6], the web polling problem was addressed and modelled as 
Stochastic NFEK. The aim was to maximize the number of changes detected 
given limited polling capacity. The frequency of changes of the web pages 
are supposed to be m1known. In [5, 6], it was shown that the probability to 
uncover an update monotonically decreases as the polling probability of the 
web page increases. In the literature, there is a large class of multi-armed 
bandit problems that can be modelled as Stochastic NFEK Problem where the 
reward probability decreases as the probability of polling the arm increases. 
Examples of those problems include congestion monitoring under limited 
bandwidth [1], adaptive link monitoring in software defined networks [10] 
and dynamic probing for intrusion detection under resource constraints [8]. 

In a nutshell, the Stochastic NFEK problem has two main characterizing 
facets, namely, that the unit volume values of each material are stochastic vari­
ables with unknown distributions, and that the expected value of a material 
could decrease as additions are made to the knapsack. 

Few optimal solutions to the NFEK problem have been suggested in the 
literature. The first reported optimal solution [5,6] utilizes a hierarchy of two­
action discretized Learning Automata (LA). Although this solution is elegant, 
its implementation is complex because it involves updates at different levels 
of a balanced binary tree. It is worth mentioning that the latter work rep­
resents the first optimal solution reported in the literature to the Stochastic 
NFEK problem. A subsequent solution was recently reported in (25] and was 
devised by the authors of the current manuscript. The latter solution tries 
to reduce the complexity of the aforementioned hierarchical solution (5, 6]. 
It is based on the traditional family of Reward-Inaction Learning Automata 
(LR - I). The LR - I based solution [25] reckoned as the Continuous Multi­
action Learning Automata Solution (CMLS) can be seen as the counter-part 
solution of the work [5, 6] but in continuous probability space rather than in 
discretized space. Moreove1� both legacy solutions hierarchical solution [5, 6] 
and CMLS [25] fall under the family of Reward-Inaction LA which means 
that the actions probabilities are only updated in case of Reward. Therefore 
CMLS solution does not use the whole history of feedback from the envi­
ronment and rather incorporates only the last feedback in case of reward. In 
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simple terms, no update is performed whenever the last feedback does not 
correspond to a reward and thus the action probabilities are left unchanged. 
Such an update form seems counterproductive as very limited information is 
used: 1) only information based on only the last feedback 2) and whenever 
the last feedback is penalty no update is performed. In order to circumvent 
those advantages, we propose in this paper a solution that resorts the whole 
feedback history from each action. As we will obsenre in the experimental re­
sults, our solution yields higher performance. The theoretical fundamentals 
of our solution are based on the theory of two-time scale separation. 

The contributions of this paper are the following: 

- We propose a solution called the Two-Time Scale based Leaming Au­
tomata Solution (TIS-LA) which introduces the concept of two-time scale
to the field of LA. According to our solution, the polling probabilities are
updated on the "slower time scale" while the feedback is estimated on a
"faster time scale". We hope that this concept can boost more research in­
terest in this type of LA design specially for non-stationary environments.

- The proposed two-time scale paradigm exploits much more information
than the classical NFEK solutions proposed in the literature [5, 6, 25]. In
fact, the available solutions to the NFEK problem fall both under the class
of under the family of Reward-Inaction LA which means that the actions
probabilities are only updated in case of reward. In contrast, our solution
not only uses both reward and penalty to update the action probabilities
but also the whole feedback history.

- We prove that the TIS-LA is is asymptotically optimal based on the theory
of stochastic approximation [2].

- Our experimental results show TIS-LA is not only robust to the choice
of the tuning parameters but also superior to legacy solution in terms of
accuracy.

The paper is organized as follows. In Section 2 we survey the state-of­
the-art solutions to the Stochastic NFEK problem. In Section 3 we present the 
novel ITS-LA solution to the problem, and prove its asymptotic optimality. 
We proceed in Section 4 to empirically verify that the TIS-LA solution pro­
vides superior convergence results to H-TRAA and CMLS. Furthermore, we 
also compare our proposed solution to two legacy hetu-istic solutions: pro­
portional LA and LAKG. Finally, we conclude the paper in Section 5. 

2 Stochastic NFEK: State-of-the-Art 

In this Section, we survey the state-of-the-art solutions to the Stochastic NFEK 
problem. It is worth mentioning that the only available legacy solutions [5, 
6, 25] as well as the current proposed solution are based on the principles 
of Leaming Automata (LA) [11]. LA are stochastic machines that have been 
used to model biological systems [24]. They have attracted considerable in­
terest in the last few decades because they are able to learn the optimal ac-
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tions when operating in (or interacting with) unknown stochastic environ­
ments. Furthermore, they combine rapid and accurate convergence with low 
computational complexity. The theory of LA has found numerous applica­
tions in the field of computer science. One of the most recent applications of 
LA include sampling algorithms for stochastic graphs [19], trust propagation 
in online social networks [22], allocation hub location problem [4], selecting 
caching nodes in delay tolerant networks [9] and feature subset selection [23] 
to mention a few. For an updated overview over the theory and applications 
of LA we refer the reader to the following book [20] and to a recent special 
issue [21] dedicated to the applications of LA. 

The state-of-the-art scheme for hierarchically solving n-material problems 
[5, 6] involves a primitive module, namely the Twofold Resource Allocation 
Automaton (TRAA) for the two-material problem. This module has been proven 
to be asymptotically optimal. The authors of [5, 6] then used the primitive 
TRAA as a building block, and arranged a set of TRAAs in a hierarchy so as 
to solve multi-material Stochastic NFEK Problems. 

The hierarchy of TRAAs, referred to as H-TRAA, assumes that n = 2,, 'YE 
N+ . If the number of materials is less than this, one trivially assumes the ex­
istence of additional materials whose values are "zero", and which are, thus, 
not able to contribute to the final optimal solution. The hierarchy is organized 
as a balanced binary tree with depth D = log2(n). Each node in the hierar­
chy can be related to three entities: (1) a set of materials, (2) a partitioning 
of the material set into two subsets of equal size, and (3) a dedicated TRAA 
that allocates a given amount of resources among the two subsets. At depth 
D, then, each individual material can be separately assigned a fraction of the 
overall capacity by way of recursion, using a subtle mechanism described, in 
detail, in [6]. The principal theorem that guarantees the convergence of the 
H-TRAA [5,6] has cleverly shown that if all the individual TRAAs converge
to their local optimum, the overall system attail1s to the global optimum.

The CMLS method [25] can be seen as the counter part of the discretized 
H-TRAA solution but in continuous probability space. The update form of
the CMLS is based on the prmciples of the Linear Reward-Inaction (LRJ )
scheme. The main difference with classical LRI is that the CMLS solution
enforces a mmimal value on the action probability that is strictly positive.
Therefore, the CMLS introduces artificial baniers that have the effect that
they prevent the instantaneous allocation's probability vector from getting
b·apped in a n  exclusive choice of one of the actions.

The LA Knapsack Game (LAKG) proposed in [7] is considered the first 
reported solution m the literature to the NFEK problem. The amount :i;i ma­
terial i is defined in the LAKG approach as xi(t) = si(t)' /N' where si(t) 
takes values from the set of N + l values: {l, 2, ... , N - l, N}. Here N con­
b·ols the resolution of the scheme while 'Y > 0 conb·ols the non-linearity of the 
discretized solution space. It is easy to observe that xi(t) takes values from 
{1/N', 2, /N', ... , (N - l)' /N', 1} where the value O is excluded in order to 
ensure that each material will be chose with non zero probability. Further­
more, each material i is accessed with a probability proportional to x; by way 
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of normalization. We should underline that LAKG is a heuristic solution for 
solving the Stochastic NFEK problem in contrast to the H-TRAA and CMLS 
solutions which are proven to be asymptotically optimal. 

When it comes to resource polling under noisy environment with incom­
plete information as in the settings of NFEK, an inh1itive strategy is to allo­
cate resources to materials according to the concept of proportionality. In this 
perspective, Papadimitriou and his collaborators [12-16, 18] proposed a pro­
portional allocation strategy that found a large set of applications and which 
operates according to two in tandem operations: one involving updating the 
reward probability and the other involving choosing the next resource to be 
polled. Whenever a resource is accessed, based on the feedback from the envi­
ronment, the reward probability is estimated according to some LA inspired 
incremental update form. Subsequently, the next resource to be accessed is 
chosen with a probability that it is proportional to its estimated reward prob­
ability. However, the latter proportional solution is not guaranteed to con­
verge to the optimal allocation vector. 

3 A Two-Time Scale Solution to Resource Allocation 

The Stochastic NFEK problem involves n materials, 1 ::;; i ::;; n, where each 
material is available in a certain amount xi ::;; bi. Let h;(xi) denote the value of 
the amount x; of material ·i [26]. The problem is to fill a knapsack of fixed vol­
ume c with the material mix x = [x1,,.,, xn] of maximal value I:;�1 hi(x.;) [3]. 
The material value per unit volume for any x; is a probability function Pi(x;), 
and to render the problem non-trivial, the distribution of Pi(xi) is assumed to 
be unknown. 

From this perspective, the expected value of the amount :c; of material i, 
1 ::;; i ::;; n, is given by h; (x;) = f

o
x; Pi ( u )du1

. At each time instant, an amount 
x; of material i is placed in the knapsack. The complexity of the problem 
arises because we are only allowed to observe an instantiation of p;(x;) at x;, 
and not Pi(xi) itself. The solution should be able to converge to a mixhlre of 
the materials of maximal expected value, through a series of informed guesses. 

The rest of this section is dedicated to presenting the design and the theo­
retical fundaments of our TIS-LA solution that optimally solves the Stochas­
tic NFEK problem. For the sake of clarity, we separate the presentation of 
the algorithm from the formal analysis. Section 3.1 describes the TIS-LA al­
gorithm while Section 3.2 presents the theoretical results together with their 
corresponding formal analysis. 

3.1 Description of the TIS-LA Solution 

The Stochastic Environment for then materials case can be characterized by: 

1 We hereafter use h\(x;) to denote the derivative of the expected value function h;(x;) with
respect to x;. Accordingly, the expected value per unit volume of material i becomes h;(x;) = 
Pi(x;), 
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1. The capacity c = 1 of the knapsack; 
2. n - material unit volume value probability functions [p1 ( x1), ... , Pn (xn)].

Note that we allow only instantiations of the material values per unit vol­
ume to be observed. In brief, if the amount Xi of material i is suggested to the 
Stochastic Environment, the Environment replies with a unit volume value 
Vi = l with probability Pi(xi) and a unit volume value vi = 0 with proba­
bility 1 - p.;(xi)- To render the problem both interesting and non-trivial, we 
assume thatpi(:ci) is unknown to the LA. 

The Stochastic NFEK problem is described formally as: 

n 

maxirnizef(x) = L h;(xi), 
1 

where hi(xi) = 1
x

; Pi(u)du, and P-i(xi) = h�(xi),
n 

subject to LXi = c and 1::/i E {l, ... ,n},xi :2 0. 
1 

(1) 

(2) 

(3) 

Before, we proceed to the solution, we shall characterize the optimal solu­
tion of the Stochastic NFEK problem. 

Lemma 1 The material mix x = [x1, ... , ,xn] is a solution to a given Stochastic
NFEK Problem if (1) the derivatives of the expected material amount values are all 
equal at x, (2) the mix fills the knapsack, and (3) even; material amount is positive,
i.e.:

h� (x1) = · · · = h:
1 
(xn) 

I:�1 :ci = c and 1::/·i E {l, ... , n}, :r;. :2 0. 

The above lemma is based on the well-known principle of Lagrange Multi­
pliers, and its proof is therefore omitted here for the sake of brevity [5, 6]. 

The idea behind our TIS-LA is to resort to a two-time scale based ap­
proach, where the polling probabilities Xi are updated on the "slower time 
scale" while Pi(xi) are estimated on a "faster time scale". In practice, the up­
dating parameter (in this case 8) used for updating the probabilities Xi should 
be much smaller than the corresponding updating parameter A for the task 
of estimation of the Pi· Thus, we can say that the fast-evolving dynamics of p; 
sees Xi as almost constant, while the slowly evolving dynamics of x.i sees Pi 
as almost equilibriated [2]2 . 

We denote the decision variable for selecting an action at time instant t,
R(t) that is, for i E [l..n]. We say that the event { R(t) = i} has occurred if the 
action i is polled. 

2 Another possible manner to implement a two-time scale approach is to execute one update
on the slower time scale loop for every few iterations on the faster time scale loop, i.e., the slower 
time scale loop is run less frequently. 
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Once the action i is polled, the estimate Pi(t + 1) of the reward probabil­
ity of the polled action is immediately updated using an adaptive estimator, 
namely exponential moving average: 

Pi(t + 1) = Pi(t) + >.(vi(t) - Pi(t)) (4) 

where vi(t) is a random variable that takes a value 1 withpi(xi (t)) and O with 
1 - Pi(xi(t)). 

The reward estimates for the other actions are left unchanged, i.e., 

PJ (t + l) = PJ (t) for j =/c i, j E [l, n] (5) 

Now, we proceed to presenting the update equations for the polling prob­
abilities xi for i E [l..n]. 

(1 n )Xi(t + 1) = Xi(t) - 0 � �Pk(t) - Pi(t) (6) 

To start with, we initialize the probabilities of all actions at time O to 
:ri(O) = ¼ for 1 :::; i :::; n. In the absence of prior information about the es­
timates of the reward probabilities, i.e., the p/s, can be merely initialized to 
0.5. For the sake of clarity, we give an algorithmic description of the TTS-LA 
in Algorithm 1. As any LA algorithm, we proceed in step 1 of Algorithm 1 to 
polling an action according to the action probability vector. We suppose that 
the chosen action is the one with index i. Once this action is chosen, the Envi­
ronment returns either reward or penalty. In step 2, we update the estimate of 
the reward probability P·i of the chosen action using an exponential moving 
average update. In simple terms, Pi is either incremented or decremented de­
pending on whether the feedback was a reward or penalty respectively. The 
estimates for rest of the actions with index j =I i,j E [1, n] are not updated 
and thus they are left unchanged. In the next step 3, we update recursively 
the polling probabilities for all actions by directly incorporating the reward 
estimates into the update formula. The update form is designed such that, for 
an action j, the polling probability x1(t + 1) at the next time step is increased 
or decreased depending on whether the corresponding reward estimate p1 (t)
at the previous time step tis smaller or larger than the average of the instan­
taneous reward estimates of all actions given by¼ I:::,,

1 
Pi(t). In this manne1� 

the update form h·ies to equalize the PJ(t)'s and the quantity¼ I:::,,
1 

Pi(t). As 
a consequence, the the polling probabilities will converge to a point for which 
all the reward estimate probabilities are equal to the latter fixed quantity as 
time proceeds and for certain conditions on the update parameters guaran­
teeing two-time scale separation as will be seen in Theorem 1. 
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Algorithm 1 The Two-Time Scale based Learning Automata Solution (TTS­
LA) 

Loop 
1. Poll an action at time instant t according to the probability vector
[x1, x2, ... , x11], suppose R(t) = i, observe vi(t).
2. Updating the reward estimates.
- Update reward estimate of the chosen action:

p.;(t + 1) = p.;(t) + -\(vi(t) - p;(t)) 

- The reward estimates for the other actions are kept unchanged, i.e.,

Pj(t + 1) = pj(t) for j =/- i,j E [1, n] 

3. Update the polling probabilities for the next time instant t + 1 according
to:

x1(t + 1) = x1(t) - B ( ¾ tPi(t) -fti(t))

x2(t + 1) = x2(t) - 0 ( ¾ tp;(t) -P2(t))

Xn(t + 1) = Xn(t) - B ( ¾ tPi(t) - p-;,,(t))

3.2 Theoretical Results and Formal Analysis 

In the previous subsection, we have presented the the details of the TTS-LA 
algorithm. In this subsection, we proceed to characterizing the convergence 
of the TIS-LA paradigm. We provide the main theorem of this paper doc­
umenting the convergence of the TTS-LA to the solution of the Stochastic 
NFEK problem. 

Theorem 1 Algorithm 1 describing the update equations for xi(t) and the updates 
equations for Pi(t), for 1 :::; i :::; n, converges to the fixed point characterized by: 

p;(x;) = Pj(,'E;), i =f-j, Jori E [1,n] 

For B > 0 much smaller that A and for A ➔ 0. 

According to Theorem 1 presented above, the TIS-LA algorithm given in 
Algorithm 1 converges asymptotically to the optimal solution of Stochastic 
NFEK characterized by Lemma 1. The convergence takes place whenever B is 
much smaller that,\ and for,\ approaching zero. Since 0 is much smaller that 
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>., the x/s evolve at a slower time scale compared to p/s and thus the two­
time scale separation. At this jLmcture, we shall proceed to prove the theorem. 
As a part of the proof, we will give insights into the intuition behind invoking 
the two-time scale separation in the update form of the the TIS-LA algorithm 
and how this leads to convergence to an optimal fixed point. 

Proof The proof of Theorem 1 is based on the two-time scale approach [2] and 
includes two main steps. In the first step, we investigate the convergence of 
the reward estimates using two-time scale separation technique. In the sec­
ond step, we establish the convergence of action probabilities using a deter­
ministic ODE equation. 

Pa rt 1 of the proof We proof that for 1 ::; i :S n , P i ( t) converges to Pi ( xi ( t)). 
The proof of the two-time scale approach is based on the theory of stochas­

tic approximation [2]. Let us consider the reward estimation scheme. We can 
write, for a positive integer M and for 1 ::; i ::; n 

M-l 

Pi(t + M) = Pi(t) + A L I{R(t+k+l)=l} (vi(t + k) - Pi(t + k))
k=O 

where vi(t), for 1 ::; i ::; n is binomial random variable that takes value 1 
with probability Pi(t) and O with probability 1 - Pi(t). 

Whenever A is small enough, the vector [15'1 (t),h(t), .... ,pJ\T(t)] is assumed 
to remain almost unchanged in the discrete interval {t, t+ 1, ... , t+ M}. Thus, 
we can write the following approximate equations for 1 ::; i::; n 

Pi(t + M) ::::: Pi(t) + M>.(Si(t, M) - Qi(t, M)pi(t)) (7) 

For i E [1, n] when the values of estimates p1 (.), p2(. ), ... , Pn(-) are consid­
ered fixed at p1 ( t), p2 ( t), ... , p-:,,_ ( t), and M is large, we will try to approximate 
the quantities 

as well as 

°"'M-1
( ) 8-(t M) = L.,k=O l{R(t+k+l)=i} Vi t + k 

' ' lvl 

°"'M-1 

Q·(t M) = L.,k=O J{R(t+k+l)=i}
i ) 

lv[ 

The probability vector :z;1(.),x2(.), ... ,xn(-), too, can be regarded essen-
tially constant in the interval {t, t + 1, . . .  , t + M}, because we supposed that 
x i evolves at slower time scale compared to Pi and since the probabilities are 
continuous functions of the reward estimates. Note that the fact that 0 is much 
smaller that A permits the separation in time scale. The informed reader ob­
serves that by virtue of the two-time scale separation we are able to extend the 
deterministic NFEK solution presented in [26] to solve the Stochastic NFEK 
problem. 
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Now, assuming that Mis large enough such that the law of large numbers 

takes place the average Q-(t M) = I:�':_-;;' 1inu+Hr)=iJ which is the fraction, i , lvl , 

of time the action i was chosen in the interval [t, t + M] converges to xi(n). 
With the actions probabilities fixed, the reward processes vi(-), can con­

verge to a stationa1y distribution, with the mean being denoted by Pi(xi(n)). 
Further, the quantities S;(t, lvI) = I;�:_-;;' 1inc•+,�_71

i=qv,(t+k) can be approx­
imated by xi(n)pi(xi(t)). 

Employing the approximations as described above, we notice from Eq. (7) 
that the evolution of the vector [ft1 (.), p2 (.), ... , p�1 (.)] reduces to the following 
ODE system when ,\ is small enough: 

p��) 
= Xi(t).(Pi(Xi(t)) - 'Pi(t)) (8) 

Eq. (8), reduces to having the reward estimates [p1 (.), p2 
(.), ... , p� (.)] con­

verging to a steady state [p1 (x1 (t)), p2 (x2 (t) ), Pn(Xn (t) )] whenever >- tends to 
0. This ends the first part of the proof.

Part 2 of the proof Therefore using the ODE approximation obtained in the 
first part of the proof, we can approximate the system of equations (6) using 
a deterministic ODE equation: 

xi(t + 1) = :i;i(t) - B ( � tPi(xi(t)) - Pi(:i;i(t))) (9) 

It is easy to note that any fixed point of the above systems is characterized 
by: 

Pi(x;) = Pj(xj), i =f j, fori E [l, n] (10) 

We shall prove that the above ODE equation (Eq. (9) ) admits a unique 
fixed point that is stable and attracting. 

Uniqueness of the fixed point: The uniqueness of x* is proven by contradiction. 
Suppose there exists y* = (yl, y2, ... , y�) that verifies Eq. (10) such that x* =f 
y*. 

Without loss of generality since x* and y* are two probability vectors such 
that :i:* =f y*, we are guaranteed3 that they have at least two components i and 
j such that x; > y; and x; < y;. Intuitively this means, that if we increase 
any one component of a probability vector, we should decrease another com­
ponent so as to ensure that the stun of the components is still unity. 

Suppose now that x;: > y1. Then, by invoking the sh·ict monotonicity of 
the function Pi(-), we obtain that Pi(x:) < Pi(y:). On the other hand, the con­
dition xj < y; implies that Pi(xj) > PJ(YJ), where this is obtained by virtue 

3 Please note that the result is general and applies for any two distinct probability vectors.
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of the monotonicity of Pj(-). But since x* and y* are equilibrium points , we 
know that Pi(xt) = Pj(xJ) and that Pi(y:) = Pj(yJ). This forces a contradic­
tion since it is impossible to simultaneously maintain that: Pi(xt) < Pi(Y:) 
which is equivalent to Pj(x;) < Pi(Y;) and pj{x;) > Pi(YJ). 

Therefore x* is unique. 

Jacobian Properties at x* Let w(x(t)) = x(t + 1) - x(t). The Jacobi matrix of 
w(x(t)) at a point x = (x1, x2, ... , Xn) is given by 

ax, ax2 ax,, 
�� ... � 

Jw(x) = l� � ... �jax, ax2 axn 

. . 
. 

. 
. . . . 
. . . . 

£J!l.n_ £J!l.n_ . .  . £J!l.n_ 
ax, ax2 ax,, 

Hence the Jacobi matrix has the form 

[

1 + (n�
1
l)B �(x1) -¾�(x2) .. · -¾�(xn) 1

_Q!}__p_j__ (x ) 1 + (n-l)O !2h(x ) .. · _Q!2.fu (x )n ax 1 
1 n ax2 2 n ax n n 

_Q� (x ) _Q� (x ) .-:-. 1 + (n-l)� !2.fu(x ) n ax, l n ax2 2 n 8xn 
n 

We will now look at the structure of this matrix, let 

f} 8p · 
E· 

= ___ J (x·)
J n axj J 

Hence the structure of the Jacobi matrix is 

MJ,n = l
l -

(
:,-

I)
,, I -(:'_ I),, 

: 

� j E1 E2 · • · 1 - (n - l)En 

It is easy to note that the matrix MJ,n has (at least) one eigenvalue equals 
1. Now, we will resort to a perturbation argument.

Let us assume that Ei � Ej for all 1 :::; i, j :::; n. Define E to be the average of
Ei, 1 :S: i :S: n, 

and define the matrix M,,n by 

1 n 

E = - LEi 
n 

i=l 

]\
J
e,n

= 
l
l-(

:
-1),

l-(�-1), : j
c E ···1-(n-l)c
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Clearly ]\![e,n is symmeh·ic, that is, J\l[,,11 = lvl�n · We know that 01 = 1 is an 
eigenvalue with with eigenvector u1 = (1, 1, 1, ... , 1). Furthermore, f) = 1-ru: 
is an eigenvalue of algebraic multiplicity n - 1, hence we have 

02 = 03 = · · · = 011 = 1 - nc 

We claim that the geomeh·ic multiplicity is n - 1. To see this, let 

Uj = (-1,0,0, ... ,1,0, ... ,0) where 2::; j::; n

where the first component is -1, the j-th component is 1 and all other com­
ponents is 0 in Uj. Consider Me,nUJ, then a simple calculation shows that 

This shows that 1 - nc is an eigenvalue with associated eigenvector Uj 
for 2 '.S j '.S n. Furthermore, the set { u;} r=l forms a basis for �n , in fact 
det(U) = n, where U is the matrix with ui as columns. Hence we conclude 
that 0 = 1 - m is an eigenvalue with algebraic and geometric multiplicity 
n-1.

The fixed point equations, for 1 ::; i ::; n, are given by

1 n 
- LPJ(xJ(t)) - Pi(xi(t)) = 0
n j=l 

independent of the parameter 0.
However, we note that each element in the matrix Jw(x) is dependent on 0. 
We have obtained that 6 = 1 is always an eigenvalue, and that the other 
eigenvalues are approximated by fi = 1 - m where E -+ o+ when 0 -+ o+. 

Therefore, one of the eigenvalues of Jw(x) at the fixed point is equal to 
1 while the rest are less than 1 in norm. As the eigenspace corresponding to 
1 is h·ansversal to the invariant hyperplane, it follows that the fixed point is 
stable and attracting which concludes the proof. □ 

4 Empirical Results

In this Section, we perform a systematic comparison of the performance of 
the TTS-LA, H-TRAA and CMLS algorithms to solve the Stochastic NFEK 
Problem. We measure performance against the true optimal solution that can 
be found using Lemma 1. Furthermore, we will compare our scheme against 
two other heuristic solutions, namely, the LA based proportional allocation 
due to Papadimih-iou [17] and LAKG [7]. 
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4.1 Problem Specification 

We have tested our algorithm against some datasets used in the past so that 
they can serve as benchmarks. We consider two different objective functions 
wi (:i;i) and refer to them as Ei (xi) and L;(:i;i)- Ei (xi) and Li (:i;i) were used in 
the literature as benchmarks as reported in [5,6,25] and are particularly useful 
in the sense that they appropriately model a large family of distinct material 
wut value functions. Furthermore, they are representative of the class of con­
cave objective functions addressed here. 

Ei (xi) = 
0
._
7 

(1 - e-ix,) 
i 

1. 
L·(x·) = 0 7 • x· - -i • x2 

, , · , 
2 

., , 

0.72 

i 

0.7 
If Xi�-.­

'l 

0.7 
Ifxi > -. .

i 

(11) 

(12) 

(13) 

To ease the readability, we have used the notation that the profitability of 
materials that have a smaller index decreases slower than the profitability of 
materials that have hlgher indices. 

The constants in the above functions (Eq. (11)-(13)) are based on the bound­
ary conditions due the contributions of xi at the boundary values, and are 
not crucial in the optimization process. This is because the corresponding 
tuut value functions are the respective derivatives of the functions, and these 
derivatives fall exponentially and linearly as per Eq. (14) and (15) respec­
tively: 

EHx;) = 0.7 · e-i·x, 
L� = Ma,"{ [0.7 - i · Xi, 0]. 

(14) 
(15) 

It is expedient to glean some input about the significance of these wut value 
functions. To understand this, consider the functions E/(xi), where the rela­
tive profitability of material i decreases with Xi, its presence in the mixture, 
exponentially. Indeed, if x2 = 0.3 (i.e., material 2 fills 30% of the knapsackt 
the marginal profitability of increasing the amount of x2 is e-2 •(o.3) = e-0-6. 

Unlike the exponential function, the linear function, L'; (xi) has an interest­
ing peculiarity that the function for material i intersects the X-axis at a fuute 
point, implying that the function being optimized is quadratic. Thus, it attains 
a maximum value at this point, after wluch it remains constant. Clearly, after 
this intersection point, it is futile to add any additional quantity of material i. 

4.2 Experimental seh1p 

We consider the case of quaternary and hexadecimal number of primitive 
materials. We assume a dynanuc system, whlch means that the reward prob­
abilities for the different materials vary with time. More specifically, after a 
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Environment type Periodicity type 
Environment Switch 
Instant 

Fast Fixed EachT = 2000 
Slow Fixed Each T = 2 · 10" 

Next change is either after 2000, 8000 
Rand Variable Periodicity or 4 • 104 iterations with prob 20/26, 5/26

and 1/26 respectively 

Table 1 Summary of the different types of dynamically changing environments. 

period of T iterations, the reward for the different materials are randomly 
switched. For example, let's assume a quaternary number of materials, and 
that the rewards for materials 1, 2, 3 and 4 are given by E1 (:r1), E2 (x2), E3 (:i;3) 
and E4 (x4), respectively. After the period T, we randomly switch the reward 
functions such that the rewards for material 1, 2, 3 and 4 are given by e.g. 
E3 (x1), E1 (x2), E4 (x3) and E2 (x4), respectively. Please note that the switch is 
implemented by shuffling randomly the indexes of the reward functions. 

We consider three different cases for the period T between every switch: 

- T = 2000 iterations. We refer to this scenario as SHORT below. 
- T = 2 • 104 iterations which is referred to as LONG below.
- We assume that Tis a stochastic variable with possible outcomes 2000, 8000

and 4 • 104 • The probabilities are P(T = 2000) = 20/26, P(T = 8000) =
5/26 and P(T = 4 • 104) = 1/26 which means that, in average, the esti­
mation process spends an equal amount of time in each of the states 'fast'
(T = 2000), 'medium' (T = 8000) and 'slow' (T = 4 • 104). We refer to
this scenario as RAND below. In fact, the average time to spend in a fast
environment before a switch takes place is 2000 • 20/26 = 4 • 104 /26 itera­
tions, which is the same average time for the case of medium environment
8000 • 5/26 = 4 • 10'1 /26 and the same average time as well for a slow en­
vironment 4 • 104 • 1 /26 = 4 • 104 /26.

The motivation for the RAND scenario, is that an algorithm should be able 
handle environments where the dynamics change arbitrarily with time, i.e. 
changing between slowly and fast variations. Naturally, the optimal values 
of tuning parameters of an algorithm depend on the dynamics of the en­
vironment, but ideally the performance of the algorithm should not be too 
sensitive with respect to these dynamics. Table 1 summarizes the three types 
of dynamically changing environments used in the experiments. Similarly, 
Algorithm 2 gives the pseudo-code that describes the simulation procedure. 
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Algorithm 2 Simulation Steps 

Pick Initial Periodicity T 

Initialize instant SwitchT to T (SwitchT = T) 

loop For time +- 0 to ]\If ax iterations 

Poll an action according to the probability vector [x1, x2, ... , xn] 
Receive Envirornnent Feedback, reward or penalty 

15 

Update action probability vector according to corresponding algorithm 
Update error based on distance between x(t) and the optimal x*

Increment time 

if time == SwitchT then 
Pick new Periodicity T (Random variable if Environment is Rand) 
Update next switch instant SwitchT = t + T 

Shuffle the indexes of the objective function (E or L according to 
model type) 

Update optimal x* corresponding to shuffled objective function 
end if

end loop 

We started the algorithm with initial material amounts as outcomes from 
the Dirichlet distribution with all parameter values equal to one. This is re­
ferred to as the flat Dirichlet distribution and the probability distribution is 
uniformly distributed over the simplex of possible material amounts, i.e. the 
vectors satisfying X1, x2, ... , Xn > 0 and ��=l Xi= l.

In a dynamic envirornnent the aim is to achieve as precise estimate as 
possible in every iteration. We compute estimation error using the root mean 
squared error (RMSE) over all iterations. 

1 n 
L(x,:i:;B) = - L 

n i=l 
(16) 

where R refers to the nmnber of iterations while Xit refers the true and op­
timal amount of material i at iteration t (computed using Lemma 1) and Xit 
denotes the estimate. We computed the RMSE for each material and then took 
the average. To remove Monte Carlo error, we ran the experiment for R = 107 

iterations for every case and for every choice of the tuning parameters in the 
algorithms. 

Based on the two-time scale theory described in this paper, we expect that 
using a low value of ,\ compared to 0 would be the best alternative. In the 
experiments we tried the following values for the ratio >./0: 1/50, 1/20, 1/10, 
1/5, 1/3 and 1. 

Let p( 0) denote a probability distribution for our prior belief on the tuning 
parameter 0 in the algorithms. As a total representation of the performance 
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of an algorithm, we define the Bayesian expected loss 

Eo (L (x, x; 0)) = fo
1 

L (x, x; 0) p(0) d0 (17) 

The Bayesian expected loss computes the expected loss where our uncer­
tainty in the knowledge about the tuning parameter is taken into account. 
Thus if the performance of an algorithm is sensitive to the choice of the tun­
ing parameter and our prior knowledge is limited, we expect the Bayesian 
expected loss to be high. However, if the performance of the algorithm is high 
for a wide range of values of the tuning parameter or if we have good knowl­
edge about the optimal value of the tuning parameter, the Bayesian expected 
loss typically will be small. 

4.3 Comparison against legacy optimal solutions 

We report here comparison results of our proposed TTS-LA solution against 
the only two available optimal solutions to the Stochastic NFEK problem re­
ported in the literature, namely CMLS and H-TRAA. 

Figures 1 and 2 show the results of the algorithms for all possible values 
of the tuning parameters. For both the exponential and linear decay reward 
functions (Figures 1 and 2, respectively) and for all the six cases, we see that 
the TIS-LA algorithm outperforms both the H-TRAA and CMLS algorithms 
with respect to peak performance. Optimal performance of the TIS-LA al­
gorithm is achieved using a value of 0 arotmd 0.2. Please note that the error 
curves for the H-TRAA have a global minimum for a small value of the tun­
ing parameter (interval width) and a local minimum for an interval width 
around 0.5. This is not due to Monte Carlo estimation error, but is an actual 
effect. 

Table 2 shows the Bayesian expected loss in Eq. (17) assuming no prior 
knowledge of the ttming parameter, i.e. p(0) in Eq. (17) is the uniform distri­
bution on the [O, l] interval. For the abbreviation in the second column, e.g. 
EXP4 refers to exponential decay reward case (E;(xi)) with n = 4 materi­
als. We see that by using a low value of the ratio >./0, the TTS-LA algorithm
outperforms both the H-TRAA and CLMS algorithms with a clear margin. 
This documents that the performance of the TIS-LA algorithm is far less sen­
sitive to the choice of the tuning parameter H than the H-TRAA and CLMS 
algorithms. Such a robustness in performance is important since the optimal 
values of the tuning parameters generally are unknown in a dynamical envi­
ronment. 

The conclusion is that the TTS-LA documents better peak performance 
than both the CMLS and H-TRAA algorithms for all the six cases. In addition, 
using a small >./H ratio, the performance of the performance of the TTS-LA
algorithm is far more robust than the CMLS and H-TRAA algorithms for all 
the six cases. 
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Case SHORT, n = 4 materials 

--ns.1.A,a:O•t/50 
------TTS-1.A11:oa\f20 

.:·:�·:::·�: ���:::�
o 

----- TT5-lA.-.:O,.I/J 
===fl!0"1 
--C'-!.S 

Case LOIIG, n = 4 materials 

--TTS-lAr1:0,.\1!,0 
------ TTS-lAr1�•1!20 
···········•TTS-LA.r;ito11110 
·-·-·---- TTS-Lf.,r;1t<;l•115 
----- TTS-lAr1to,.1fl 
:==��tato"I 

- -m.s 

Case RAUO, n c 4 materiJi!s 

--TTS-l.Ano:0•1150 
------ TT5-lA,,a�c1/'20 

• • •••••••. TTS-U.,ra:0,.1110 
------·-·TTS-lA.<.:0•11'5 
----- TT5-lA,Q!i:l"lll 

====��r.a�•I 

- -0.,.S 

Case SHORT, n "' 16 materials 

--TTS-lA,""�"1/50 
------ TTs-tA.rri:1•112!J 

••••TTS-!A�•IIIO 
•-·-·-·-· TfS.lA.IT�•lr.i 
----- TTS-i.Arri:1•1/J 
---·-·- TTS-i.A11to•1 
--H-rnM 
- - �"-'

Case LOUG, n = 16 materials 

--rrs-u..�o•tf.'iO 

---:=�-� �==:� 
----·-·-· TTS-lAflto•115 
----- lTS-V..'1':0•1/l 
------·-TTS-i.ABSo• 1 
- - 0>~ 

--a.s 

Case RAtlD, n = 16 materials 

--TTS-lA,<ae.o•IISO 
------ TTS-lAra:0•1120 

·········· TTS--lA.r•�•l/10 
------·-· TTS-lA.r1:0•115 
----- TTSU.n!O•t/3 
----TTS-lA.<ED•I 
--H-TRM 
--'"'-5 

17 

Fig. 1 Exponential decay reward case (E;(x;)): Estimation error (RMSE) for the TIS-LA, H­
TRAA and CMLS algorithms for a wide range of values of the tuning parameters. The tuning 
parameter on the x axis refers to the interval width (inverse of the leaf node resolution) for the 
H-TRAA algorithm and to 0 for the CMLS and TIS-LA algorithms. The left and right columns
refer to cases with 4 and 16 materials, respectively. The rows from top to bottom refer to the cases
SHORT, LONG and RAND, respectively.
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Case SHORT, n: ◄ materials 

--TTS-LA.••�•11!-0 
------ JTS.tAr.,!,Oz1/'20 

···········TTS-tAr.1�-11,0 
·-----·-· TTS-lAta!.0•1� 
----- TTS-LA�"I/J 
·----- TTS-L\,�•1 
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case SHORT, n" 16 materials 

--TTs.l.A.-C.O•ll!-0 
------ TTS,lA.,.!0;!•1/'20 
•••·•·•·•••• TTS-tA.r.,!os\/1D 

--·-----· TTS-LA,.!0•11'5 
----- TTs.lA.ra:.i•lfl 

----·- TllH.Ar•!o•1 

� '-,---�--�- -+=---=-=- --=-�.'"""_, __ _ ! '-,- --�- -�- -+=..::--=-=---=-�.:..
"""

'--·--_J

T,rin;p.,r-

Case LONG, n" 4 materials 

. 
, 

, 

f / / -::��:��-::: 
/ ,,.,, 

, , 

,I ,,,,." .. , .. 

I ,,/: .... ,

)_,.,. 

CaseR.AJ/D,nz◄mattria!.s 

Cue LONG. n: 16 materials 

Case RAtlO, n • 16 materi;ils 

--TTS.U..r.1!.0•1/50 
------ TTS-IA.r.:i:1•1/20 

•·• TTs-tAra!.0•1/10 
------·-· TTS-tA.13!.0•115 
----- TTS-IAr.i!.0•113 
--·-·- TTSUra!<i•I 

--�-

- -m . .s 

Fig. 2 Linear decay reward case (L; (x.,)): Estimation error (RMSE) for the TIS-LA, H-TRAA and 
CMLS algorithms for a wide range of values of the tuning parameters. The tuning parameter 
on the x axis refers to the interval width (inverse of the leaf node resolution) for the H-TRAA 
algorithm and to 0 for the CMLS and TIS-LA algorithms. The left and right columns refer to 
cases with 4 and 16 materials, respectively. The rows from top to bottom refer to the cases SHORT, 
LONG and RAND, respectively. 
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Ratio 
H-TRAA CMLS 1/50 1/20 1/10 1/5 1/3 1 

EXP4 21.32 40.35 11.43 13.66 16.28 19.48 21.89 26.55 

SHORT 
EXP16 9.90 21.40 6.35 7.18 8.02 8.98 9.73 11.24 
LINE4 19.04 26.70 9.73 11.07 12.82 15.02 16.93 22.50 
LINE16 9.46 16.36 5.88 6.77 7.72 8.87 9.80 11.88 
EXP4 21.10 36.36 8.45 11.42 14.51 18.07 20.67 25.72 

LONG 
EXP16 9.75 20.25 5.27 6.37 7.37 8.46 9.29 10.91 
LINE4 18.68 24.06 6.21 8.32 10.49 13.01 15.14 21.36 
LINE16 9.23 15.47 4.48 5.71 6.90 8.24 9.31 11.56 
EXP4 21.13 37.17 8.79 11.64 14.68 18.19 20.78 25.79 

RAND 
EXP16 9.78 20.34 5.39 6.45 7.43 8.51 9.33 10.94 
LINE4 18.71 24.51 6.63 8.58 10.69 13.17 15.29 21.45 
LINE16 9.27 15.54 4.63 5.81 6.97 8.30 9.35 11.59 

Table 2 Bayesian expected loss based on Eq. (17). E.g. the abbreviation EXP4, refers to exponen-
tial decay reward case (Ei (xi)) with n = 4 materials. The values in the table are the computed 
Bayesian expected loss multiplied by 100. 

4.4 Comparing against heuristic solutions 

At this juncture, after having compared our TIS-LA solution against the only 
two available optimal solutions to the Stochastic NFEK problem namely CMLS 
and H-TRAA, we compare our solution to two heuristic solutions. The heuris­
tic solutions we shall compare to are the LA based proportional allocation due 
to Papadimitriou [17] and the LAKG algorithm [7]. We consider a static en­
vironment and we ran an ensemble of 1000 experiments, each experiment 
consisting of 105 iterations. We shall report the peak performance [25] of 
each scheme which is obtained by running each scheme for a set of tuning 
parameters and report too the parameter and corresponding performance 
yielding the smallest root mean square error. When it comes to the LAKG, 
there are two tuning parameters as seen in Section 2, the resolution N and 
the non-linearity parameter"/ which makes the tuning more difficult than the 
case of unique tuning parameter. As done in [7] for the case of a static en­
vironment, we nm our simulation for the same configuration parameters as 
Granrno and Oommen, namely, [N = 1500, "/ = 1.3], [N = 2500, "/ = 1.2] and 
[N = 5000, "/ = 1.2]. For our proposed scheme TIS-LA, the tuning parameter 
0 is chosen in [O, 1] while>- depends on the choice of 0 to ensure the time scale 
separation by constraining the ratio >-/0 to admit one of the following values: 
1/50, 1/20, 1/10, 1/5, 1/3 and 1 also used in the previous experiments above. 
We have chosen 10 discrete values of 0, namely {0.1, 0.2 ... , 1 }. W hen it comes 
to the LA based proportional allocation due to PapadiJ.nitriou [17], the only 
tuning parameter is the learning factor which takes values from [O, l] which 
we denote by >- here. We have tested 10 values for >- for the proportional LA 
scheme contained in the set {0.1, 0.2 ... , 1 }. 

The tests are performed for 8 materials and 4 materials for both linear 
and exponential decaying functions resulting into the four cases: LIN4, EXP4, 
LINS and EX8 which are reported in Table 3, Table 4, Table 3 and Table 6 
respectively. Interestingly, we observe that our TIS-LA outperforms the two 
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LAKG Proportional LA TIS-LA 
Error 0.323 0.0898 0.041 

Optimal tuning 
[N = 2500, ')' = 1.2] >- = 0.1 

>-/0 = 1/50, 
parameter(s) 0 = 0.1 

Table 3 Peak performance for a static environment for the case of LIN4 for two heuristic solu­
tions and the proposed TIS-LA. 

LAKG Proportional LA TTS-LA 
Error 0.4383 0.1934 0.047 

Optimal Tuning 
[N = 2500, ')' = 1.2] >- = 0.1 

>-/0 = 1/50, 
parameter(s) 0 = 0.1 

Table 4 Peak performance for a static environment for the case of EXP4 for two heuristic solu­
tions and the proposed TIS-LA. 

LAKG Proportional LA TIS-LA 
Error 0.3699 0.1481 0.037 

Optimal tuning 
[N = 2500, ')' = 1.2] >- = 0.1 

>-/0 = 1/50, 
parameter(s) 0 = 0.1 

Table 5 Peak performance for a static environment for the case of LINS for two heuristic solu­
tions and the proposed TIS-LA. 

LAKG Proportional LA TIS-LA 
Error 0.438 0.2228 0.035 

Optimal tuning 
[N = 2500, ')' = 1.2] >- = 0.1 

>-/0 = 1/50, 
parameter(s) 0 = 0.2 

Table 6 Peak performance for a static environment for the case of EXP8 for two heuristic solu­
tions and the proposed TIS-LA. 

heuristics by a large margin. The optimal tuning parameters for TTS-LA are 
>-/0 = 1/50, 0 = 0.1 for all the cases except for EXP8 (Table 6) where 0 =
0.2 yields the peak performance. The proportional LA performs better than 
LAKG and yields its peak performance for a value of the tuning parameter 
equal to 0.1. 

5 Conclusion 

In this pape1� we present an optimal solution to the Stochastic Non-linear 
Fractional Equality Knapsack (NFEK) Problem based on the two-time scale 
paradigm. Our solution exploits much more feedback information than the 
classical NFEK solutions proposed in the literature [5, 6, 25]. In fact, while 
the polling probabilities are updated based on only the last feedback in all 
classical NFEK solutions including H-TRAA and CMLS, our approach uses 
incremental averaging of the whole history of the feedback. Furthermore, we 
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provide sound theoretical results that show that our solution is asymptot­
ically optimal. Through comprehensive experimental results, we show that 
our devised TIS-LA scheme outperforms the legacy solutions in terms of 
peak performance and robustness to the choice of the hming parameters. 
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