
Abstract Reinforcement learning (RL) methods learn optimal decisions in the presence of a stationary
environment. However, the stationary assumption on the environment is very restrictive. In many real
world problems like traffic signal control, robotic applications, etc., one often encounters situations with
non-stationary environments and in these scenarios, RL methods yield sub-optimal decisions. In this paper,
we thus consider the problem of developing RL methods that obtain optimal decisions in a non-stationary
environment. The goal of this problem is to maximize the long-term discounted reward accrued when the
underlying model of the environment changes over time. To achieve this, we first adapt a change point
algorithm to detect change in the statistics of the environment and then develop an RL algorithm that
maximizes the long-run reward accrued. We illustrate that our change point method detects change in
the model of the environment effectively and thus facilitates the RL algorithm in maximizing the long-run
reward. We further validate the effectiveness of the proposed solution on non-stationary random Markov
decision processes, a sensor energy management problem and a traffic signal control problem.

Keywords Markov decision processes, Reinforcement Learning, Non-Stationary Environments, Change
Detection.

ar
X

iv
:1

90
5.

03
97

0v
4 

 [
cs

.L
G

] 
 1

9 
M

ay
 2

02
0



Noname manuscript No.
(will be inserted by the editor)

Reinforcement Learning in Non-Stationary Environments

Sindhu Padakandla · Prabuchandran K. J · Shalabh
Bhatnagar

1 Introduction

Autonomous agents are increasingly being designed for sequential decision-making tasks under uncertainty
in various domains. For e.g., in traffic signal control [34], an autonomous agent decides on the green signal
duration for all lanes at a traffic junction, while in robotic applications, human-like robotic agents are
built to dexterously manipulate physical objects [3, 29]. The common aspect in these applications is the
evolution of the state of the system based on decisions by the agent. In traffic signal control for instance,
the state is the vector of current congestion levels at the various lanes of a junction and the agent decides
on the green signal duration for all lanes at the junction, while in a robotic application, the state can be
motor angles of the joints etc., and the robot decides on the torque for all motors. The key aspect is that
the decision by the agent affects the immediate next state of the system, the reward (or cost) obtained
as well as the future states. Further, the sequence of decisions by the agent is ranked based on a fixed
performance criterion, which is a function of the rewards obtained for all decisions made. The central
problem in sequential decision-making is that the agent must find a sequence of decisions for every state
such that this performance criterion is optimized. Markov decision processes, dynamic programming (DP)
and reinforcement learning (RL) [5, 35, 40] provide a rich mathematical framework and algorithms which
aid an agent in sequential decision making under uncertainty.

In this paper, we consider an important facet of real-life applications where the agent has to deal with
non-stationary rewards and non-stationary transition probabilities between system states. For example, in
vehicular traffic signal control, the traffic inflow rate in some (or all) lanes is quite different during peak and
off-peak hours. The varying traffic inflow rates makes some lane queue length configurations more probable
compared to other configurations, depending on the peak and off-peak traffic patterns. It is paramount that
under such conditions, the agent selects appropriate green signal duration taking into account the different
traffic patterns. Also, in robotic navigation [29], the controller might have to vary robotic arm/limb joint
angles depending on the terrain or weather conditions to ensure proper locomotion, because the same joint
angles may give rise to different movement trajectories in varying terrains and weather conditions. When
environment dynamics or rewards change with time, the agent must quickly adapt its policy to maximize the
long-term cumulative rewards collected and ensure proper and efficient system operation as well. We view
this scenario as illustrated in Fig. 1, where the environment changes between models 1, 2, . . . , n dynamically.
The epochs at which these changes take place are unknown to (or hidden from) the agent controlling the
system. The implication of the non-stationary environment is this: when the agent exercises a control at at
time t, the next state st+1 as well as the reward rt are functions of the active environment model dynamics.
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Fig. 1: Non-Stationary RL Framework

Motivated by the real-world applications where changing environment dynamics (and/or rewards, costs)
is frequently observed, we focus on developing a model-free RL method that learns optimal policies for non-
stationary environments.

1.1 Our Contributions

– The primary contribution of this paper is to propose a model-free RL algorithm for handling non-
stationary environments. In this work, we adapt Q-learning (QL) [44] to learn optimal policies for
different environment models.

– The new method is known as Context Q-learning (see Section 5.5). It is a continual learning [18]
algorithm that is designed for dynamically changing environments.

– Context Q-learning utilizes data samples collected during learning to detect changes in the model. To
achieve this, it leverages a novel change detection algorithm [33] for these samples. Using results of
change detection, the method estimates policy for the new model or improves the policy learnt, if the
model had been previously experienced. In this manner, our method avoids catastrophic forgetting [19].

– Context Q-learning is an online method which can learn and store the policies for the different envi-
ronment contexts. We assume that model-change patterns are known. Our method is novel in the sense
that we utilize state and reward samples to detect these changes, unlike previous works which need
model information. Thus, our method is model-free and can be used in real-world applications of RL.

– The experimental results (see Section 6) show the performance of Context QL on standard problems
as well as on interesting problems in traffic signal control and sensor networks. The performance is
evaluated on metrics like mean detection delay as well as precision and recall. This is in addition to
the main performance metric, which is the reward collected by the algorithm in presence of dynamic
environments. The results are compared with recent relevant works and the advantages of Context
Q-learning are highlighted.

1.2 Organization of the Paper

The rest of the paper is organised as follows. In the following Section, we discuss prior approaches to this
problem. In Section 3, we give a brief background of Markov decision process (MDP) framework. This
section describes the basic definitions and assumptions made by the DP algorithms for solving MDPs.
Section 4 describes the problem in mathematical terms. Additionally, it also introduces the notation that
will be used in the rest of the paper. We propose an RL method for non-stationary environments in Section
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5. Section 6 shows numerical results on different application domains and analyzes the results. Finally,
Section 7 provides the concluding remarks.

2 Related Work

Very few prior works have considered the problem of developing RL algorithms for non-stationary environ-
ment models. [8, 7] proposed modeling changing environments in terms of hidden-mode MDPs (HM-MDPs),
wherein each mode (or context) captures a stationary MDP setting and mode transitions are hidden. All
modes share the state and action spaces, but differ either in transition probability function of system states
and/or reward function. The methods described in [7] require information about these functions for each
of the modes. Additionally, algorithms which find optimal policies for systems modeled as HM-MDP are
computationally intensive and are not practically implementable.

A context detection based RL algorithm (called RLCD) is proposed in [39]. The RLCD algorithm
estimates transition probability and reward functions from simulation samples, while predictors are used
to assess whether these underlying MDP functions have changed. The active context which could give rise
to the current state-reward samples is selected based on an error score. The error score of all contexts is
estimated till the current epoch. The context which minimizes this error score is designated as the current
active model. If all the contexts have a high error score, a new context is estimated. RLCD does not require
apriori knowledge about the number of environment contexts, but is highly memory intensive, since it
stores and updates estimates of transition probabilities and rewards corresponding to all detected contexts.
Moreover, the predictor which allows detection of new contexts is heuristic and is not easy to interpret.

Theoretical framework for RL in fast changing environments based on (ε, δ)-MDP is developed in [9].
In this framework, if the accumulated changes in transition probability or reward function remain bounded
over time and are insignificant, then [9] shows that changes in the optimal value function are also negligible.
However, this work does not provide a control algorithm which adapts to the changes in environment.

Regret minimization algorithms proposed in [14, 17, 30] study MDPs with varying transition probability
and reward functions. These works consider a finite horizon T and minimize the regret over this horizon,
when the environment changes utmost K times (in [14, 17]) or arbitrarily (in [30]). In both cases, the
objective of algorithm proposed in [14], the UCRL2 algorithm [17] and variation-aware UCRL2 [30] is to
reduce the sum of missed rewards compared to the rewards yielded by optimal policies in the periods
during which the environment parameters remain constant. However, the optimal policies defined in these
works differ with respect to the performance criterion. In [17], the optimal policies are stationary and
average-reward optimal, while [14, 30] considers an optimal (possibly non-stationary) optimal policy to
be total-reward optimal. [14] considers a non-stationary optimal policy, which is time-ordered using as
components total-reward optimal policies of all contexts.

[14] considers the setting wherein the time horizon T is divided into H episodes, with an MDP context
picked at the start of each episode. After the context is picked (probably by an adversary), a start state for
the episode is also selected. The context is selected from a finite set C, (|C| = K) but is hidden from the RL
controller. The algorithm clusters the observed episodes into one of the K ≤ T − 1 models and classifies an
episode as belonging to one of these clusters. Depending on the cluster chosen, the context is explored and
rewards are obtained.

The UCRL2 and variation-aware UCRL2 algorithms estimate the transition probability function as
well as the reward function for an environment, and when the environment changes, the estimation restarts
leading to a loss in the information collected. The objective of these algorithms is to minimize the regret
during learning and not to find the appropriate policies for the different environment settings. Hence if the
environment pattern alternates between two different settings (say A and B), i.e., if the change pattern
is A-B-A-B, then these algorithms restart estimation of transition probability and reward functions from
scratch for both environments A and B when the second time these environments are encountered. In
contrast, the objective of our method is to learn appropriate policies for each of the environments without
discarding the previously gathered information.

A model-based method for detecting changes in environment models was proposed in [4], while [13]
proposes an extension to the RLCD method. Both these works employ quickest change detection [38]
methods to detect changes in the transition probability function and /or reward function. The approach
in [13] executes the optimal policy for each MDP, while parallely using cumulative sum (CUSUM) [31]
technique to find changes. [4] shows that such an approach leads to loss in performance with delayed
detection. It designs a two-threshold switching policy based on Kullback-Leibler (KL) divergence that
detects changes faster, although with a slight loss in rewards accrued. However, [4] is limited in scope, since
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it assumes that complete model information of all the contexts is known. Hence, the work is not applicable
in model-free RL settings. Moreover, [4] does not specify any technique for selecting the threshold values
used in the switching strategy, even though the method proposed is completely reliant on the threshold
values chosen.

A variant of Q-learning (QL), called the Repeated Update QL (RUQL) was proposed in [1]. It essentially
repeats the updates to the Q values of a state-action pair and is shown to have learning dynamics which is
better suited to non-stationary environment tasks, on simulation experiments. However, the RUQL faces
the same issues as QL - it can learn optimal policies for only one environment model at a time. QL and
RUQL update the same set of Q values, even if environment model changes. Additionally, unlike [39, 4, 13],
QL and RUQL do not incorporate mechanisms for monitoring changes in environment. So, the RL agent
utilizing QL or RUQL to learn policies cannot infer whether the model has changed. This leads to the
scenario that when the environment parameters change, the RL agent starts learning policy for the new
environment by completely discarding the policy learnt using samples obtained from the environment before
the change.

A related problem is concept drift detection [15, 16, 24, 36], which has been well-studied in supervised
learning [15], semi-supervised learning and data mining [16]. This area too addresses the problem of learning
in dynamic environments. In supervised and semi-supervised learning, all instances of the training data are
usually assumed to be generated from the same “source” or “concept” (though samples may be noisy).
However, in domains like recommendation systems, bio-signals, concept drift occurs, wherein the same
labelled dataset has different sources. This is very similar to the problem we address in this work. However,
unlike the supervised and semi-supervised learning approaches, concept drift in RL environment has not
been explored in the literature. A recent work [24] formulates agent model retraining in presence of concept
drift as a RL problem. [36] is a recent work on concept drift in Markov chains. The authors propose
concept drift detection mechanisms which is limited to finding the change in transition probabilities of
Markov chains. However, this work can be used for concept drift in model-based RL, as highlighted in
Section 6.

While all the prior works have provided significant insights into the problem, there are still issues with
computational efficiency. Moreover, a model-free RL technique is needed which can retain past information
and utilize it to learn better policies for all observed contexts. In the next section, we describe the underlying
mathematical formulation for RL and the assumptions which are the basis of all classical RL algorithms.

3 Preliminaries

A Markov decision process (MDP) [5] is formally defined as a tuple M = 〈S,A, P,R〉, where S is the set
of states of the system, A is the set of actions (or decisions) and P : S × A × S → [0, 1] is the transition
probability function. The transition function P models the uncertainty in the evolution of states of the
system based on the action exercised by the agent. The evolution is uncertain in the sense that given
the current state s and the action a, the system evolves into the next state according to the probability
distribution P (s, a, ·) over the set S. Actions are selected at certain decision epochs by the agent based on
their feasibility in the given state. A decision epoch is the time instant at which the agent selects an action
and the number of such epochs determines the decision horizon of the agent. When the number of decision
epochs is infinite, we refer to M as an infinite-horizon MDP. Depending on the application, each action
yields a numerical reward (or cost), which is modeled by the function R : S×A→ R. Transition function P
and reward function R define the environment model in which the system operates and the agent interacts
with this environment. The interaction comprises of the action selection by the agent for the state and the
environment presenting it with the future state and reward (or cost) for the action selected.

A deterministic decision rule d : S → A maps a state to its feasible actions and it models the agent’s
action choice for every state. The agent picks a decision rule for every decision epoch. A stationary deter-
ministic Markovian policy π = (d, d, . . .) for an infinite-horizon MDP is a sequence of decision rules, where
the deterministic decision rule does not change with the decision epochs. The value function V π : S → R
associated with a policy π is the expected total discounted reward obtained by following the policy π and
is defined as

V π(s) = E

[ ∞∑
t=0

γtR(st, d(st))|s0 = s

]
, (1)

for all s ∈ S. Here, 0 ≤ γ < 1 is the discount factor and it measures the current value of a unit reward
that is received one epoch in the future. The value function is the performance criterion to be optimized in
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the sequential decision-making problem modeled as MDP. Thus, the objective is to find a stationary policy
π∗ = (d∗, d∗, . . .) such that

V π
∗
(s) = max

π∈ΠSD
V π(s), ∀s ∈ S (2)

where ΠSD is the set of all stationary deterministic Markovian policies. An optimal stationary deterministic
Markovian policy satisfying (2) is known to exist under the following assumptions:

Assumption 1 |R(s, a)| ≤ C <∞, ∀a ∈ A ∀s ∈ S.

Assumption 2 Stationary P and R, i.e., the functions P and R do not vary over time.

Dynamic programming (DP) [5] techniques iteratively solve (2) and provide an optimal policy and the
optimal value function for the given MDP based on the above assumptions, when model information in
terms of P , R is known. Model-free reinforcement learning (RL) [40] algorithms on the other hand obtain the
optimal policy when Assumptions 1 and 2 hold, but model information is not available (and not estimated).
In the non-stationary environment scenario, as we consider, Assumption 2 is invalid. Clearly, classical RL
algorithms cannot help in learning optimal policies when Assumption 2 does not hold true. In the next
section, we formally describe the problem of non-stationary environments and develop an RL algorithm
which can tackle non-stationary environments.

4 Problem Formulation

In this section, we formulate the problem of learning optimal policies in MDP environments with model
changes and introduce the notation that will be used in the rest of the paper. We define a family of MDPs
{Mθ}, where θ takes values from a finite index set Θ. For each θ ∈ Θ, we define Mθ = 〈S,A, Pθ, Rθ〉, where
S and A are the state and action spaces, while Pθ is the transition probability kernel and Rθ is the reward
function as defined before. The agent observes a sequence of states {st}t≥0, where st ∈ S. For each state,
an action at is chosen based on a policy. For each pair (st, at), the next state st+1 is chosen according to
the active environment model. Changepoints refer to the decision epochs at which the environment model
changes. We denote the changepoints using the set of times {Ti}i≥1. Here {Ti}i≥1 form an increasing
sequence of random integers. Thus, for example, at time T1, the environment model will change from say
Mθ0 to Mθ1 , at T2 it will change from Mθ1 to say Mθ2 and so on, where θ0, θ1, . . . ∈ Θ. With respect to
these model changes, the non-stationary dynamics for t ≥ 0 will be

P (st+1 = s′|st = s, at = a) =


Pθ0(s, a, s′), for t < T1

Pθ1(s, a, s′), for T1 ≤ t < T2
...

(3)

and the reward for (st, at) = (s, a) will be

R(s, a) =


Rθ0(s, a), for t < T1

Rθ1(s, a), for T1 ≤ t < T2
...

(4)

We define the randomized history-dependent decision rule at time t as ut : Ht → P(A), where Ht is the set
of all possible histories at time t and P(A) is the set of all probability distributions on A. An element of
Ht is of the form ht = (s0, a0, s1, a1, . . . , st). ut is history dependent since the distribution ut(ht) ∈ P(A)
picked is dependent on the sequence of states and actions observed upto time t. Given this rule, the next
action at current state st is picked by sampling an action from ut(·). If the decision rule is dependent on the
current state only, irrespective of the history upto time t−1, then st suffices in place of ht and the decision
rule is Markovian. Deterministic Markovian decision rule dt : S → A defined earlier in the previous section,
is then equivalent to ut when Ht is replaced with St and P(A) is replaced with the class of degenerate
probability distributions over A.

Given the family of MDPs {Mθ}, the objective is to learn a policy π = (u1, u2, . . .) such that the long-

run expected sum of discounted rewards, i.e., E
[ ∞∑
t=0

γtR(st, ut(Ht))|H0 = h0

]
is maximized for all initial

histories h0 ∈ H0. However, multiple issues arise when Assumption 2 is not satisfied which are compounded
by the lack of model information:
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1. With changes in environment parameters, a stationary Markovian deterministic policy may not be
optimal with respect to the above objective. Thus, any algorithm operating in this scenario needs to
search over the space of randomized history-dependent policies which is an intractable problem.

2. When model information is not available, only samples of state and reward from simulation are available.
A major problem is to use the state and reward samples to design an approximately optimal policy for
non-stationary environments. Moreover, it is not clear as to which policy we must follow during the
learning phase.

In the next section, we explore these issues and provide solutions to address them. We mainly provide
solutions for the RL setting when model information is unavailable, suggesting what policies to be used
while learning and how to detect changes. Hence, our method can also be utilized in the setting when model
information is available. In this case, as we will reason out later, since the agent can compute the optimal
policies individually for all MDP models/contexts, it needs to only learn when the context change occurs.

5 Our Approach

In this section, we describe the RL method to deal with changes in environment models. The method
adapts a change detection algorithm [33] to find changes in the pattern of state-reward tuples observed
while learning a policy.

5.1 Experience Tuples

The change in P and R ultimately manifests itself in a change in sample paths. Taking a cue from this, we
consider change detection on state-reward sequences. By tracking variations in the state-reward sequence,
our method captures variations in the occurrences of states and rewards, unlike previous works [4, 13]. We
call each sample of state and reward in this sequence as an experience tuple. Formally, an experience tuple
et at epoch t is the triplet consisting of the current state st, current immediate reward (or cost) obtained
rt and the next state st+1. So, et = 〈st, rt, st+1〉. The set of experience tuples {et : 1 ≤ t ≤ B}, where B is
a batch size, is input to the changepoint detection algorithm [33].

For the proposed solution, we assume some structure in how the context changes occur. These assump-
tions are broadly mentioned below:

Assumption 3 The environment model changes at least once. Additionally, the pattern of model change(s)
is also known and the number of such changes is finite.

Assumption 4 The environment context changes are not too frequent, i.e., we get sufficient state-reward
samples for every context before the environment switches to some other context.

5.2 Change Detection using Experience Tuples

We adapt the changepoint detection algorithm proposed in [33] for data consisting of experience tuples.
[33] describes an online parametric Dirichlet changepoint (ODCP) algorithm for unconstrained multivari-
ate data. The ODCP algorithm transforms any discrete or continuous data into compositional data and
utilizes Dirichlet parameter likelihood testing to detect change points. Multiple changepoints are detected
by performing a sequence of single changepoint detections.

ODCP uses an appropriate metric while detecting change points. One can also adapt other change
detection algorithms like E-Divisive Change Point detection (ECP) [25]. However, ECP uses Euclidean
distance based metric to detect change points, which may not be suitable for discrete and compositional
data that do not follow Euclidean geometry. Thus, ODCP reliably estimates change points compared to
ECP.

ODCP requires the multivariate data to be i.i.d samples from a distribution. However, we utilize it in
the Markovian setting, where the data obtained does not consist of independent samples. But the following
justification helps in understanding why adapting ODCP for experience tuples might still be a good idea: Let
us suppose we choose the actions according to a stationary Markovian randomized policy π = {u, u, . . . , },
where u(s) ∈ P(A). With an abuse of notation, we denote each decision rule as π, with π(s) ∈ P(A).
Let ψ(a|s) be the probability that action a is selected in state s according to the decision rule π(s). Let
φπ(·) denote the steady state distribution under policy π. If we assume that the Markov reward process
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{Pπ, Rπ} is fast mixing [23], then we get experience tuples based on the steady-state distribution φπ. Under
this condition, the tuple (s, r, s′) namely the current state, reward and the next state will be distributed as
follows:

(s, r, s′) ∼ φπ(s)ψ(·|s)P (s, ψ(·|s), s′).

The tuples (st, rt, st+1) are identically distributed under data and utilize the ODCP algorithm.
We now provide some insight into the number of samples required for detecting changes in environment

parameters using experience tuples. This is related to Assumption 4. The number of samples required is
dictated by the size of the state and action space of the MDP. Let m = |S|, the size of the state space
and n = |A|, the size of action space. Additionally, suppose Rπ(s, a) ∈ R, ∀(s, a) ∈ S × A, where R is a
finite set. The number of possible state-reward-state tuples will be m×m× |R|. For efficient detection and
reduced false alarm probability, we need to get enough number of samples such that the state occupation
probabilities are close to the actual steady-state probabilities.

The ODCP algorithm [33] computes candidate changepoints by randomly permuting the given data
samples. These candidate changepoints are ranked based on their statistical significance (see [33] for more
details). The number of permutations to be tested with a candidate changepoint is prefixed and is chosen
based on the number of data samples. Thus, more the number of samples, higher is the number of permu-
tations tested. Hence the number of permutations to be fixed is based on the number of experience tuples
the agent obtains for every context.

5.3 Sampling Mechanism for Collecting Experience Tuples

In Section 4, we identified issues which arise when Assumption 2 is violated. To address the issue of sampling
experience tuples, we design a policy that the agent can follow to collect the experience tuples. The RL
method must detect a change in environment model (if it occurs) when the agent is in the process of
learning a policy for controlling the MDP model. Thus, the behaviour policy which the agent utilizes to
explore the MDP model (like in QL [44], SARSA [40]) during learning, should also help the agent to get
information about context (i.e., environment) changes. With this idea, we describe three mechanisms for
exploration through behaviour policy:

1. ε-policy: Suppose the model information pertaining to all environment contexts is known, i.e., the agent
knows Pθ, Rθ, ∀θ ∈ Θ. Hence, the optimal policies corresponding to all contexts is also known to the
agent. However, in order to detect changes, there is a need for the agent to follow a policy which is
approximately optimal. The reason to adopt an approximately optimal policy will be clear with the
following example. Suppose that context changes from MDP M0 to M1 such that the probability and
reward functions are same under the optimal policy of M0, i.e., P0(s, π∗0(s), s′) = P1(s, π∗0(s), s′) and
R0(s, π∗0(s), s′) = R1(s, π∗0(s), s′), but π∗1 6= π∗0 and π∗1 is optimal for M1. Then by following the optimal
policy π∗0 for M0, the agent will not be able to detect changes in the environment. This is because, the
distribution of state-reward samples does not change under this policy π∗0 . So there is reason to explore
other actions even though the optimal policy of both contexts is known. So, a sampling mechanism needs
to explore actions other than the optimal action in order to detect changes. However, such exploration
should be appropriately controlled, because there is the risk of following non-optimal actions quite
often while controlling the MDP system. As part of our solution we prescribe that experience tuples
be collected using the following specific randomized policy when model information is known: at each
state s, the agent should follow optimal action prescribed by π∗i with probability (1− ε) and a random
action with probability ε, where ε > 0. Thus, the policy used is π = (u, u, . . .), where u : S → P(A),
qu(π∗i (s)) = 1−ε and qu(a) = ε

|A|−1 , a ∈ A\{π∗i (s)}. We call this an ε-policy. Here, based on Assumption
3, the agent knows the active context i.

2. Model-free RL policies: The model information of contexts is not known. In this case, the agent can
collect experience tuples while simultaneously following a model-free learning algorithm to learn an
approximately optimal policy. We propose the use of Q-learning (QL) [44], a model-free iterative RL
algorithm to obtain the experience tuples. QL estimates the optimal Q-values for all state-action pairs
of an MDP. The Q-value of a state-action pair w.r.t policy π is defined as the expected discounted return
starting from state s, taking action a and following policy π thereafter. The QL iteration [44] requires
that all state-action pairs be explored for an infinite number of times, so that the optimal Q-value of
each pair can be accurately estimated, based on the reward obtained at each step of the algorithm. To
ensure this, an exploration strategy is used. As part of our solution, we prescribe that experience tuples
be collected using either of the following strategies:
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– ε-greedy: In state s, with probability (1− ε), the action maximizing the Q-value estimate of state s
at iteration k, i.e., arg maxbQk(s, b) is selected, while with probability ε, a random action in A is
selected.

– UCB [43]: In state s, an action a is selected as follows:

a = arg max
b

(
Qk(s, b) + C

√
logNk(s)

Nk(s, b)

)
,

where Qk(s, ·) is the estimate of the Q-value at iteration k, Nk(s) tracks the number of times state s
is visited until k and Nk(s, b) is the number of times action b has been picked when state s is visited
until k. Also, C is a positive constant.

Using the samples collected, the RL agent can detect changes, which can be carried out in an online fashion.
In the following subsection, we describe how ε-policy combined with ODCP can efficiently control an MDP
system when model information is known.

5.4 Leveraging Knowledge of Context Information

When model information is known, the agent can compute a policy which will be optimal with respect to
the objective defined in Section 4. However, as noted earlier, when Assumption 2 is violated, a stationary
Markovian policy need not be optimal when model parameters P and R change. Computing a non-stationary
or non-Markovian policy is computationally infeasible, since this will involve search over an infinite set of
policies. Moreover, the agent cannot employ standard dynamic programming techniques like value iteration
and policy iteration [35] to compute the optimal policy, since these iterative methods have been designed
based on the fact that optimal policies for stationary MDPs are stationary and Markovian.

Our method is geared towards an alternate possibility. The autonomous agent can detect changepoints
from the data comprising of experience tuples using the ε-policy as described above. It can further use
this information to compute the optimal policies for non-stationary MDP environments. The exact form of
this non-stationary policy can also be described. The agent (based on Assumption 3), knows exactly which
MDP context is active at the starting decision epoch. It begins to collect experience tuples using ε-policy
and simultaneously analyzes these samples for changes using ODCP algorithm. When the agent can sense
that the context has changed, it switches to the optimal policy of the MDP context which is next in the
known pattern of changes and which it presumes to be the current active context (based on the changepoint
computed). After the policy switch, the agent continues to analyze the samples for changes. Then similar
technique of switching continues for other contexts in the pattern as well. It is clear that this switching
of policies gives rise to a non-stationary policy when all the individual policies are ordered together. Our
method does not search over the large space of non-stationary, non-Markovian policies and instead gives a
piecewise stationary policy that the agent can easily compute.

5.5 Context Q-learning

For the scenario where model information of all contexts is known, the method just described is useful
to obtain a piecewise stationary policy. However, in the case when context information is not known, we
need to design a method for finding the optimal policy. Such a method should be sensitive to environment
changes as well. We design Context Q-learning (Context QL), which is a method that can handle the
learning task when model/context information is not known. The concept of Context QL is in one respect
similar to RLCD [39]. Both methods instantiate new models whenever a change is detected. However, unlike
RLCD which utilizes a heuristic quantity for tracking and declaring changepoints, our method works in
tandem with a changepoint detection algorithm, ODCP, to get information about the changes in contexts.
Furthermore, Context QL updates Q values of the relevant model whenever a change is detected and does
not attempt to estimate the transition and reward functions for the new model. Additionally, if the method
finds that samples are obtained from a previously observed model, it updates the Q values corresponding
to that model. Thus, in this manner, the information which was learnt and stored earlier (in the form of Q
values) is not lost. The Context QL pseudocode is given in Algorithm 1.

The Context QL algorithm takes as input the pattern of changes in the environment models M1, . . . ,Mk,
so that the Q values of the right model are updated. It is to be noted that only the change pattern is known
and not the context information. However, when these model changes occur, the changepoints T1, . . . , Tn
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are not known to Context QL. For example, suppose the agent knows that model changes from say M0 to
M1 and then to M2. This implies that the agent knows that dynamics change from M0 to M1, but it does
not know P0, R0, P1, R1 etc. Based on the pattern information, Context QL updates Q values pertaining
to model M0 initially. Later when first change is detected, it updates Q values of M1, followed by updates
to Q values of M2 when another change is detected. The algorithm initializes a context counter c, which
keeps track of the current active context, according to the changes detected. It maintains Q values for
all known contexts 1, . . . , k and initializes the values to zero. The learning begins by obtaining experience
tuples et according to the dynamics and reward function of context Mθ1 . The state and reward obtained are
stored as experience tuples, since model/context information is not known. The samples can be analyzed
for context changes in batch mode or online mode, which is denoted as a function call to ODCP in the
algorithm pseudocode. If ODCP detects a change, then the counter c is incremented, signalling that the
agent believes that context has changed. The lines 6-16 represent this learning phase when context Mθ1 is
active. Similar learning takes place for other contexts as well. In line 1, the input uses the notation Mθi

Algorithm 1 Context QL

1: Input: Model change pattern, Mθ1 → Mθ2 , Mθ2 → Mθ3 , . . . ,Mθn−1
→ Mθn , where Mθi ∈ {M1,M2, . . . ,Mk} and

θi ∈ Θ = {1, 2, . . . , k}
2: Fix learning rate α
3: Initialization: Context number, c = 1, Q values Q(m, s, a) = 0, ∀m ∈ 1, . . . , k, ∀(s, a) ∈ S ×A
4: Initialization: Initial state s1 = s, τ∗ = 1, T0 = 0
5: for L = 1 to n do
6: for i = TL−1 to TL do
7: Follow action ai according to ε-greedy or UCB exploration
8: Obtain next state si+1 according to MθL dynamics
9: Get reward ri according to MθL reward function

10: Update Q value Q(jc, si, ai) as follows:

Q(θc, si, ai) := (1− α)Q(θc, si, ai) + α(ri + γmax
b
Q(θc, si+1, b))

11: ei = 〈si, ri, si+1〉
12: τ = ODCP({et : τ∗ ≤ t ≤ i})
13: if τ is not Null then
14: Increment c
15: τ∗ = τ
16: end if
17: i = i+ 1
18: end for
19: end for

to indicate that the system can initially evolve according to any of the k models and context M0 need
not be the initial active context. Thus, 1 ≤ θi ≤ k. The information T1, T2, . . . , Tn is known only to the
environment. In Algorithm 1 it is shown as though the RL agent is aware of it. But this is not so, it has
been included only to indicate that at decision epochs independent of the agent, the context changes.

Remark 1 In Section 4 and here, we have mentioned that given a family of contexts, {Mθ}, the objective
is to learn a policy π = (u1, u2, . . .) such that the expected sum of discounted rewards accumulated over

the infinite horizon i.e., E
[ ∞∑
t=0

γtR(st, ut(Ht))|H0 = h0

]
is maximized for all initial histories h0 ∈ H0.

In this Section, we described our method, Context QL, which finds optimal policies for each environment
context that maximizes (or minimizes) the long-run discounted reward (or cost) criterion. It should be noted
that, if, instead we have the average reward criterion for the policy wherein the objective is to maximize

gπ(s) = lim
N→∞

1
N E

[
N∑
t=1

R(st, d(st))|s0 = s

]
, ∀s ∈ S, over all policies π ∈ ΠSD, then our method can still be

utilized. This is possible if we adapt the relative Q-value iteration algorithm [2] to non-stationary settings.
The Context QL method can be easily extended to the average reward per step setting in this manner.

5.6 Performance Evaluation and Policies

To evaluate our method, we need a performance metric. In the classical case of stationary MDPs, the RL
algorithms learn a policy (maybe deterministic or randomized) and the algorithms are evaluated based on
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the rewards these policies yield when they are used to control the MDP model. So, for the non-stationary
algorithms proposed, in a similar fashion, we compute the rewards garnered by the algorithms. Sections 6.1-
6.3 show the performance of Context QL w.r.t the cumulative reward gathered when the model information
is not available. This is in contrast with prior works like UCRL2 [17], variation-aware UCRL [30], where
regret is the performance metric (see [17, 30] for a formal definition). Regret is a measure of the rewards
which are missed by the policies yielded by these algorithms when compared to the optimal policy. In order
to compute this performance metric, we ought to know the optimal policy and its performance. Clearly, the
idea of computing regret is not applicable to model-free RL, where model information is not known. Thus,
in our view, measuring regret is not apt for the problem we consider. However, when model information is
known, regret can be computed. We show some results for this case in Section 6.1.

With non-stationary environments, Assumption 2 does not hold true. Hence, there is no reason to
believe that a stationary policy is optimal when this assumption is not satisfied in a system. There is a
need to search the large space of non-stationary policies for ensuring optimal behaviour of the MDP system
model in dynamic environments. An exhaustive search over this large space is computationally expensive
and we require an algorithm which can find an approximately optimal policy over a smaller, restricted
set. The Context QL algorithm discussed in Section 5.5 does the same. The smaller, restricted set of non-
stationary policies we are interested in is the set of piecewise-stationary policies, as described in Section
5.4. We evaluate the experience tuples for changes in the underlying distribution and find the changepoints.
Before the change occurs, the RL agent follows a stationary optimal policy learnt for the respective context.
After the change, the RL agent switches and learns another stationary policy. Also, if the environment was
previously observed, then the RL agent updates the policy learnt for the same environment, by utilizing
the additional samples obtained.

5.7 Scalability of Context QL

Context QL (Algorithm 1) stores Q values for every context. From the learnt Q values, a policy is de-
rived [44] and followed. However, this memory requirement is independent of the number of changes in the
environment. For e.g., if θi ∈ Θ = {1, 2} and the model change pattern is Mθ1 → Mθ2 → Mθ1 → Mθ2 →
Mθ1 → Mθ2 , the number of Q tables stored will be two, one for each of the models Mθ1 and Mθ2 . In this
example the number of changes is 5, which does not affect learning of either of the two models. However,
the learning accuracy and the policy learnt is directly dependent on how many samples are obtained for
each of the contexts/models.

6 Experimental Results

In this section, we evaluate our method for accuracy in the changepoints detected and the reward accrued.
The experience tuples are collected from randomly-generated MDPs (in Section 6.1), from a sensor appli-
cation (see Section 6.2) and a traffic application (see Section 6.3). All numerical experiments are carried
out using R statistical package and Python programming language.

We also compare the accuracy of changepoints detected by ODCP [33] and E-Divisive (ECP) [25] for the
data consisting of experience tuples. ECP is a changepoint detection algorithm. It is seen to perform well
on many synthetic multivariate datasets. Numerical simulations described in [25] show that it can detect
changes in mean, variance and covariance of dataset. Additionally, it is seen to perform well on many real
datasets [25].

6.1 Random MDP

We test our method on different Random MDP models generated using MDPtoolbox 1. First, the methods
are tested for single changepoint detection followed by multiple changepoints detection. The results below
are grouped according to this. In all experiments, the discount factor γ is set to 0.9.

1https://cran.r-project.org/web/packages/MDPtoolbox
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6.1.1 Single Changepoint Detection

We consider model change from M0 to M1 and collect 2000 samples (i.e., the three-dimensional experience
tuples). The actual model change occurs at T1 = 1000. The first 1000 state-reward samples are from M0

and the rest 1000 samples are from M1. Let τ∗ be the changepoint detected by the various methods. Table
1 summarizes the changepoints detected when we assume that model information is known and the agent
needs to determine when the environment switches from M0 to M1. Note that, as remarked in Section 5,
the best possible alternative to using a non-stationary policy in this scenario is to switch to an appropriate
stationary policy. Since model information is known, optimal policies for both environments are also known
and the agent can switch between these optimal policies if it can reliably determine the changepoint. In
order to detect changes, the samples are collected using a randomized policy with ε = 0.1, as described in
Section 5.3.

Table 2 summarizes the changepoints detected when we assume that model information is not known.
Thus, in addition to determining the changepoints, the agent also needs to estimate the optimal policies for
the environments. In order to detect changes, the samples are collected using ε-greedy and UCB policies.

Change Detection Algorithm Mean of τ∗ SD of τ∗ Median of τ∗

ODCP with ε-policy 999.3 25.88659 1001.5
ECP with ε-policy 1008.65 32.21029 1002

Table 1: Performance comparison of ODCP and ECP in changepoints detected when model information is known.

Method Mean of τ∗ SD of τ∗ Median of τ∗

ODCP, QL with UCB 1001.11 31.86 997
ECP, QL with UCB 1006.22 36.65 1001

ODCP, QL with ε-greedy 986.9444 34.769 999
ECP, QL with ε-greedy 1027.833 59.69 1002

Table 2: Performance comparison of ODCP and ECP in changepoints detected when model information is not known.

In Tables 1 and 2, the mean, median and standard deviation of τ∗ (over 20 sample trajectories) is
presented. It can be observed from Table 1 and Table 2 that ODCP and ECP detect change in model using
just tuples (changes manifest in tuples), promising that experience tuples can be utilized to detect changes
in environment contexts. As can be inferred from these results, the average and median of τ∗ found by
ECP and ODCP are very close, but mean ODCP performance is better compared to ECP. However, it is
observed that when experience tuples are analyzed for changepoints, ECP has a higher standard deviation
in the changepoints detected when compared to ODCP. In Table 2, ODCP with QL and ECP with QL
utilize QL to learn policies, but these do not maintain separate Q-values for the environments. This table
also shows results with two exploration strategies. In Table 2, UCB exploration is much better than ε-
greedy in both ODCP and ECP algorithms. This is because of the constant value of ε. Even after optimal
actions are learnt for the various states, exploratory actions would continue to be chosen. This is not so
with UCB-based algorithms. Also, ODCP shows better results on the whole as compared to ECP.

For the case when model information is not known, we also implemented RLCD [39] and its extension
[13] to detect changes in the environment. These algorithms rely on tracking the quality of the model
learnt. If the quality crosses some threshold, a new model is instantiated and estimated. The choice of this
threshold is crucial. In our simulations, we observed that RLCD instantiates more than four environment
models, even though there is a single change in the context. The same results were observed with [13]. Due
to this reason, the results pertaining to RLCD and [13] were not included in Table 2.

In Tables 3, 4 we analyze the precision and recall [42] metric for algorithms proposed in [4, 36] and
compare it with the performance of Context QL with respect to this metric. For this, the model information
is known and all policies are computed based on the context information. The two-threshold switching
strategy proposed in [4] utilizes the known transition probabilities of all contexts to compute the Shiryaev-
Roberts statistic (SR) [38] for every decision epoch. This value is initialized to 0 and is updated as follows:

SRt+1 = (1 + SRt)
Pθ1(s, a, s′)

Pθ0(s, a, s′)
, ∀t > 0.

12



If SR is lower than a prefixed threshold B, then optimal policy π∗θ0 corresponding to the MDP model Mθ0

is followed. However, if SR is greater than B, but lower than another prefixed threshold A > B, then a
policy πKL as designed below is followed:

πKL(s) = arg max
a∈A

∑
s′

Pθ1(s, a, s′) ∗ log

(
Pθ1(s, a, s′)

Pθ0(s, a, s′)

)
, ∀s ∈ S.

The above policy πKL is designed for better detection of changes, though it may not be an optimal policy
for model Mθ0 . Once SR crosses the threshold A, the optimal policy π∗θ1 is followed. The key feature of
the two-threshold strategy is to prefix appropriate values of A and B. [4] does not provide any method for
identifying these values and hence in the experiments, we have shown results of precision and recall with
multiple sets of these values. The P-CDM and NP-CDM algorithms proposed in [36] detect changes in the
transition probability of discrete-time Markov chains (DTMCs). We adapt these to find concept drift in
MDPs when context information is known. MDP context information being known implies that the optimal
policies of each MDP model can be computed. When an optimal policy is followed, we obtain a Markov
chain for the corresponding MDP model. For this chain, we further adapt the algorithms P-CDM and
NP-CDM to find the changepoints. P-CDM and NP-CDM algorithms compute the stationary distribution
ξj for context Mθj , ∀j ∈ {1, 2, . . . , k}. Both algorithms consider the non-overlapping sequences of states
which evolve based on the known transition probabilities. A moving window wi of state samples at epoch
i comprises of the states {s(wi−1+1), . . . , swi}. P-CDM and NP-CDM differ only in the manner in which
this sequence is picked. For the sequence picked, P-CDM and NP-CDM compute the log-likelihood ratio

li = log
(

Pθ1 (wi)
Pθ0 (wi)

)
, where

Pθj (wi) = ξj(s(wi−1+1))

wi−1∏
k=wi−1+1

Pθj (s, π
∗
θj , s

′).

These algorithms track the sign of li and compute mi = max(0,mi−1 + sign(li)). If mi ≥ K where K is a
pre-fixed threshold value, then a change is declared. In the numerical simulations, we vary K and note the
performance of P-CDM and NP-CDM w.r.t the precision and recall metric. For the numerical experiments
in Tables 3, 4 a datapoint being labelled as a changepoint is said to be correct if it lies within a pre-defined
window size W = 100, W = 50 respectively, of the actual, true changepoint. Based on this criterion, for
each of the algorithms, the results in Tables 3, 4 are obtained by averaging over 20 Monte Carlo simulations,
i.e., we sample 20 sample paths randomly for performing Monte-Carlo averaging.

P-CDM NP-CDM Two-threshold Switching Strategy Context QL
K Prec. Recall K Prec. Recall A B Prec. Recall Prec. Recall
5 1 0.7 5 0.1 1 100 50 0.05 1
10 1 0.05 10 0.6 0.642 1000 500 0.706 0.8 1 0.75
15 0 0 15 0.8125 0.7647 10000 5000 0.75 0.333
20 0 0 20 0.8235 0.8235 100000 50000 1 0.2

Table 3: The precision and recall metric for the algorithms P-CDM, NP-CDM proposed in [36], Two-threshold Switching
Strategy proposed in [4] and Context QL with window size W = 100. Variation of the precision and recall metric is seen
based on the variation in the threshold values K for P-CDM and NP-CDM and A and B for [4].

From Table 3, we observe that P-CDM shows very poor performance, when compared to the other
algorithms. With a smaller window size, this performance is only expected to degrade and hence results of
P-CDM are not included in Table 4. It is seen that with increase in the value of K, the performance of NP-
CDM improves. However, similar to [4], where values of A , B are fixed after trial and error, the values of
K are also pre-fixed in a similar manner - this implies there is no single value of K which gives good results
for all sizes of state-action space. This can be inferred from Table 5, where we used K = 20 for NP-CDM.
Though this value gives good precision and recall values with |S| = |A| = 5, the same value, when used
for larger state-action space MDPs degrades the performance of NP-CDM. This can be observed in Table
5. With a smaller window, the precision and recall values are expected to decrease, which is observed in
Table 4. Note that, since Context QL has no threshold values to be tuned, we have a single row for Context
QL in both Tables 3 and 4. The identical row for Context QL in both Tables 3 and 4 indicates that the
changepoints detected by Context QL lies within the smaller window size of 50.

Table 5 shows the variation in precision and recall metric of Context QL, two-threshold switching
strategy and NP-CDM with respect to the variation in the size of state-action space of MDPs. We have
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NP-CDM Two-threshold Switching Strategy Context QL
K Prec. Recall A B Prec. Recall Prec. Recall
5 0.1 1 100 50 0.05 1
10 0.6 0.642 1000 500 0.533 0.6154 1 0.75
15 0.8125 0.7647 10000 5000 0.6 0.1667
20 0.4 0.1176 100000 50000 0 0

Table 4: The precision and recall metric for NP-CDM, Two-threshold Switching Strategy and Context QL with window
size W = 50. Variation of the precision and recall metric is seen based on the variation in the threshold values K for
NP-CDM and A and B for the two threshold switching strategy.

set a window size of W = 100 for these simulations. Based on Table 3, we set K = 20 for NP-CDM and
A = 1000, B = 500 for two-threshold switching strategy. Though we have inferred that no single value of
K, A, B is apt for these algorithms, we have used a single value for the experiments in Table 5, since our
focus is to show the changes in precision and recall metric with changes in state-action space. In Table 5,

|S| |A| Context QL Two-threshold Switching Strategy NP-CDM
Prec. Recall Prec. Recall Prec. Recall

5 5 1 0.75 0.706 0.8 0.8235 0.8235
8 8 1 1 0 0 0.8 0.706
12 12 1 1 0 0 0.723 0.632

Table 5: The precision and recall metric for the algorithms Context QL, Two-Threshold Switching Strategy [4] and
NP-CDM proposed in [36] for various sizes of state and action spaces.

we see that performance of two-threshold switching strategy and NP-CDM degrades with increase in size
of state-action space. This degradation is gradual in NP-CDM, however with two-threshold strategy, there
is a drastic decrease in the performance. This is due to the fact that the pre-fixed threshold values which
are apt for |S| = |A| = 5, are not apt for |S| = |A| = 8 and |S| = |A| = 12. However, for other sizes of
state-action space, we do not know how to pre-determine and fix appropriate threshold values.

Next, in Table 6, we provide results for the rewards collected by QL, Context QL, UCRL2 [17], RLCD [39]
and RUQL [1] when the model information is not known. These results show the performance of these
algorithms when there is a change in the environment from M0 to M1 at T1 = 1000 with total number
of experience tuples collected being 2000. As a reference, we also provide the reward collected by ODCP-
based and ECP-based methods when model information (and hence optimal policies) is known for both
environments. The ODCP-based and ECP-based methods use ε-policy for detecting changes and control
MDP using optimal policy of M0 followed by that of M1 after a change is detected. Suppose the changepoint
detected by ODCP is τ∗. Let π∗0 and π∗1 be the optimal policies of M0 and M1 respectively. The ODCP
and ECP methods with ε-policy, control the MDP using policy π∗0 from epoch 1 to epoch τ∗ − 1 and from
epoch τ∗ these pick actions according to π∗1 .

QL does not detect changepoints and instead updates the same set of Q values, unlike Context QL
(as described in Algorithm 1). RUQL is similar to QL, but its exploration strategy and step-size schedule
differ from QL. UCRL2 estimates the upper confidence bounds on the transition probability and reward
functions as described in [17]. Also, we restart UCRL2 algorithm when the number of steps satisfies the
criterion described in Theorem 6 of [17].

Method Mean ± SD Median
ODCP ε-policy 538.67± 14.28 538.0404
ECP ε-policy 515.1421± 23.26 520.2686
Context QL 365.6± 64.14 362.06

QL 287.4± 69 284.4
UCRL2 176.83± 11.25 178.3511
RUQL 103.41± 26.6 99
RLCD 91.3341± 20.77 97.41

Table 6: Rewards collected by UCRL2, RLCD, RUQL, QL and Context QL. ODCP and ECP collected samples using
ε-policy.

As observed from Table 6, RLCD and RUQL perform poorly when compared to QL, UCRL2 and Context
QL in terms of the total reward obtained. In UCRL2 though the reward obtained is less when compared
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to QL and Context QL, the standard deviation is much lower when compared with QL and Context
QL. However, unlike QL and Context QL, it has high space complexity, since it maintains estimates of
probability and reward function along with various state-action counters required for the upper confidence
bounds.

In the numerical experiments of Table 6, we used ε-greedy policy exploration for QL and Context QL.
QL utilizes one set of Q values to learn optimal policies for contexts M0 and M1. It does not detect changes,
but updates Q values using rewards from both the environments. This is where the issue arises. When the
environment changes at T1 from model M0 to M1, the Q values would have been updated using rewards
from M0. Once the environment starts providing samples from context M1, the action choice of the agent
is biased by the already updated Q values. This does not occur in the Context QL, since once a change is
detected, Context QL starts updating another set of Q values for the new environment.

The performance of algorithms w.r.t the regret criterion is shown in Table 7, when the changepoints
obtained are analyzed by ODCP and ECP. The regret is computed for each sample trajectory comprising
of 2000 experience tuples, with a changepoint at T1 = 1000. The results in Table 7 are computed over 20
such sample trajectories.

Method Mean ± SD Median
Model-based, ODCP ε-policy 20± 15 16.6
Model-based, ECP ε-policy 39± 26 52

Table 7: Regret of ECP and ODCP ε-policy based method.

6.1.2 Multiple Changepoints Detection

We evaluate the accuracy of ODCP [33] and ECP [25] on MDP for multiple changepoints. In the experi-
ments, the model alternates thrice between M0 and M1 starting with M0. With 2000 samples, changepoints
are fixed at T1 = 500, T2 = 1000 and T3 = 1500. Averaged over 20 Monte Carlo simulations, mean of
τ∗1 = 520, mean of τ∗2 = 1059 and mean of τ∗3 = 1510 for our method, while ECP identifies only the first
changepoint with mean 855. More importantly, ECP fails to detect the second and third changepoints. The
reliability with which ODCP detects changepoints is better compared to ECP. In this setting of multiple
changepoints, we also compared the performance of RLCD [39] with ODCP. The RLCD algorithm detects
more than 3 changepoints in this scenario.

In Table 8, we show the total reward gained by the policies learnt by algorithms QL, UCRL2, RUQL
and Context QL. For this, the samples were obtained from a Random MDP system. The MDP environment
alternates between M0 and M1 twice, i.e., the sequence of context changes is M0 → M1 → M0 → M1.
QL and RUQL maintain a single set of Q values to learn the policy and UCRL2 is simulated with restarts
as described in Theorem 6 of [17]. Context QL maintains two different estimates of the Q values - one for
each MDP environment and resumes updating the appropriate Q values when a change is detected. For
the numerical experiments, we get T = 4000 (s, s′, r) samples, with T1 = 1000, T2 = 2000 and T3 = 3000.
Thus, at T1, the MDP model changes from M0 to M1. At T2, it again flips to M0 and so on.

Method Mean ± SD Median
Context QL 945.94± 146.54 959.92

QL 866.9± 89 882.2
UCRL2 439.78± 27.31 436.98
RUQL 253.18± 40 255.54

Table 8: Rewards collected by UCRL2, RUQL, QL and Context QL. The environment model alternates between contexts
M0 and M1.

6.2 Energy Management in a Single Sensor Node with Finite Buffer

We consider the model described in [32] which proposes an energy management (EM) MDP model for a
sensor node with energy harvesting capabilities. Sensor node has a finite energy buffer to store the energy
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harvested from the ambient environment and a finite data buffer to store the data generated. The authors
assume that energy units are harvested at a mean rate of λE , while data bits are generated at a mean
rate of λD. The state of the system comprises of the current levels of energy and data buffers and the RL
agent needs to decide on the number of energy units to be used for transmission. The actual number of
data bits transmitted is a non-linear function of the number of energy units utilized. The RL agent needs
to minimize the long-term discounted cost by finding a suitable policy. The immediate cost per step is the
queue length of data buffer after successful transmission. In [32], model information is unknown and hence
QL is used to find optimal EM policies.

Data Buffer

Sensor
Node

Energy Buffer

Energy
Source Energy Units

Energy, T

Data Bits, g(T )

To Server

Fig. 2: Energy harvesting model with a single sensor node with finite energy and data buffers

A sensor which is designed to harvest energy from the ambient environment, like for e.g., solar energy,
has to appropriately modify its policy based on how λE changes with day timings. We assume that the
sensor monitors a physical system which generates data at a fixed rate that does not change over time.
A change in λE gives rise to non-stationary environments. We consider this scenario and show that our
method is effective in handling changing mean rate of energy harvest, when compared to QL, repeated
update QL (RUQL) [1]. In our experiments, the exploration strategy used is ε-greedy with ε = 0.1. We
analyze our method and QL, RUQL for regret when the environmental model changes once. The number
of iterations for learning phase is set to 4000 with a changepoint at 2000. The long-run discounted cost

Method Mean ± SD Median
Context QL 498.75± 48.78 500

RUQL 803.7± 121.3673 800.5
QL 675.5± 50.96 677

Table 9: Long-run discounted cost obtained by Context QL, RUQL and QL with ε-greedy exploration.

obtained by our method, QL and RUQL is shown in Table 9. We are unable to compute the regret of these
algorithms since model is unknown.

From Table 9, it is clear that Context QL does better compared to other model-free non-stationary
algorithms like RUQL. The purpose of evaluating policy learnt by QL in non-stationary environments is
that if policy learnt by QL has performance which is comparable to Context QL, then it is easier to use
QL albeit with a slight loss in performance. However, from Table 9, we observe that by using QL, RUQL,
there is considerable loss in performance when environment contexts change. This is an implication of the
fact that Context QL remembers policies for the environment models and updates the right set of Q values
corresponding to the model. QL, RUQL on the other hand update the same set of Q values for the two
different contexts. This means the policy learnt by QL, RUQL is good only for the context which was the
last to be observed in the sequence of contexts Mθ1 ,Mθ2 , . . . ,Mθn , where n = 2 in the above experiments.
For the same sequence of models, ContextQL learns a good policy for each of these contexts and stores
them in the form of Q values. While evaluating, we detect the change in context and follow the appropriate
policy for the next model in the sequence.
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6.3 Traffic Signal Control

As highlighted in Section 1, vehicular traffic signal control is a sequential decision-making problem. In the
experiments, we show that our method is effective in finding changes in vehicular patterns and learn the
optimal policies for the same. The experimental setup consists of a single junction with four incoming lanes.
The traffic junction is illustrated in Fig. 3, 4 which are snapshots of the simulations carried out in VISSIM
1. The junction is controlled by a signal. We model the traffic signal duration control as a MDP following
[34]. The state of the junction is the information consisting of queue lengths of all incoming lanes and
the current phase. The phase indicates which incoming lane should be given the green signal. In order to
tackle the state space dimensionality, we aggregate the queue lengths of lanes as low = 0, medium = 1 and
high = 2. Hence, if a lane congestion level is one-third of its length, then we say that the aggregated state
of that lane is 0. If the lane congestion level is higher than one-third of the lane distance but lower than
two-thirds the distance, then aggregated state of that lane is 1. For high congestion levels, the aggregated
state is 2. With this lane queue length aggregation scheme, the state space dimensionality is reduced to
34 × 4. The actions for the signal controller correspond to the set of green signal durations {20, 25, . . . , 70}
in seconds. The immediate cost is the sum of the lane queue lengths and the RL agent must minimize the
long-term discounted cost.

Fig. 3: Illustration of the vehicular traffic junction - the junction has four incoming lanes, each having a lane
distance of 150 m. The green coloured areas at the junction indicate conflict zones, while the red coloured
areas indicate reduced-speed zones. As seen, the vehicular input volume on the lanes is low.

The traffic RL agent learns a policy using QL. We train the traffic RL agent for 106 simulation seconds
with a change in vehicular input volumes after the simulation has run for half the time. A change in
the input vehicular volumes causes a change in the environment dynamics. The long-run discounted costs
obtained by QL and Context QL are shown in Table 10.

Method Mean ± SD Median
Context QL 1100.022± 34 1000

QL 1400.1± 67 1300

Table 10: Long-run discounted cost obtained by Context QL and QL with ε-greedy exploration.

6.4 Summary of Results

As observed in Tables 1-10, the results of our method are promising. Tables 1, 2 show the detection delay
of the model-based ODCP and ECP algorithms when adapted to the RL setting. Their performance is

1http://vision-traffic.ptvgroup.com/
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Fig. 4: Illustration of the vehicular traffic junction when the vehicular input volume on the lanes is high.
This scenario is observed when environment model dynamics (P ) changes due to a change in vehicular
input volumes.

comparable for both settings - when model information is known and when it is not known. Both methods
detect changes with least detection delay as can be judged from the mean, median and standard deviation
values shown in these tables. The false positive, false negative errors and the true positive values can be
inferred from Tables 3, 4 and 5 which indicate the precision and recall metric for NP-CDM [36], two-
threshold switching strategy [4] and Context QL. It can be seen that Context QL is quite robust to the size
of state-action space, has good performance and does not require tuning of any threshold values, unlike
NP-CDM or the two-threshold switching strategy. Tuning these values requires model information and
lot of trial and error. With real-life applications, one may not have model information. Tuning the values
by trial and error may not be even feasible in real-life applications. Thus, Context QL presents a great
advantage when the algorithm is to be used in real-world applications.

Tables 6, 8 show the average total reward obtained by QL, RUQL, UCRL2, RLCD and Context QL.
The gap in total reward obtained by QL and Context QL is explicit in the multiple changepoints case where
the contexts change in the fashion M0 → M1 → M0 → M1. This is because, Context QL has separate Q
value data structure for each environment. So, after the second and third changepoints, it faces the same
environment that was observed earlier. The samples obtained after 2nd changepoint (i.e., after τ∗2 ) are used
to update Q values of M0 again. Similarly, after the 3rd changepoint (i.e., after τ∗3 ), the reward samples
are used to update Q values of M1 again. Hence even though the environment alternates between M0 and
M1 twice, for each environment, we get almost equal number of reward samples.

In the experiments, we tested Context QL on two realistic applications - one in energy management
in energy harvesting sensors and the other in traffic signal duration control. These are applications where
the effect of changing environment parameters or system operating conditions is clearly visible. It is seen
in Tables 9 and 10 that Context QL performs much better when compared to classical QL. Context QL
captures the change in joint distribution of (s, a, r) tuples. When this distribution changes, the ODCP
indicates that a changepoint is detected. This detection is based on permutation tests in ODCP and is
hence flexible. It should be noted that Assumptions 3, 4 are important for our method. These assumptions
are reasonable, because it is often observed that in applications like traffic signal control and sensor energy
management, although the operating conditions change, they do not change very frequently. For e.g., in
traffic signal control, the conditions change when vehicular inflow rate changes. It is observed that the
vehicular rate remains constant for at least three to four hours in a single day before changing, depending
on rush-hour traffic and early morning or late night traffic. Hence before every change, we get sufficient
number of state and reward samples for our method. Additionally, in applications, the pattern of context
changes is also usually known.

7 Conclusions

This work develops a model-free RL method known as Context QL for learning optimal policies in changing
environment models. A novel change detection algorithm for experience tuples is used to determine changes
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in environment models in conjunction with QL. The numerical experiments in realistic applications show
that Context QL is promising, since, the policies learnt by the method are seen to perform well in varying
operating conditions and give better return, when compared to classical QL and other non-stationary learn-
ing algorithms like RUQL and RLCD. We additionally showed the statistical performance of Context QL
with respect to the precision and recall metric, which is an important metric in time series and changepoint
literature.

Future enhancements to this work can focus on detecting changes in the context of large and continuous
state space models. Such an extension will indeed be useful in robotics and intelligent transportation
systems. Also, if the sequence of context changes is not known, then we require some changes to the
proposed method. An interesting extension involves meta-learning [28] which can be adapted to continuous
and large state-action space MDPs.
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