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Abstract Linear Discriminant Analysis (LDA) is a well-known technique for fea-
ture extraction and dimension reduction. The performance of classical LDA, how-
ever, significantly degrades on the High Dimension Low Sample Size (HDLSS) data
for the ill-posed inverse problem. Existing approaches for HDLSS data classification
typically assume the data in question are with Gaussian distribution and deal the
HDLSS classification problem with regularization. However, these assumptions are
too strict to hold in many emerging real-life applications, such as enabling person-
alized predictive analysis using Electronic Health Records (EHRs) data collected
from an extremely limited number of patients who have been diagnosed with or
without the target disease for prediction.
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In this paper, we revised the problem of predictive analysis of disease using
personal EHR data and LDA classifier. To fill the gap, in this paper, we first
studied an analytical model that understands the accuracy of LDA for classify-
ing data with arbitrary distribution. The model gives a theoretical upper bound
of LDA error rate that is controlled by two factors: (1) the statistical convergence
rate of (inverse) covariance matrix estimators and (2) the divergence of the train-
ing/testing datasets to fitted distributions. To this end, we could lower the error
rate by balancing the two factors for better classification performance. Hereby,
we further proposed a novel LDA classifier De-Sparse that leverages De-sparsified
Graphical Lasso to improve the estimation of LDA, which outperforms state-of-the-
art LDA approaches developed for HDLSS data. Such advances and effectiveness
are further demonstrated by both theoretical analysis and extensive experiments
on EHR datasets.

1 Introduction

Linear Discriminant Analysis (LDA) [1] is a well-known technique for feature ex-
traction and dimension reduction. It has been widely used in many applications
[2l[3] such as face recognition, image retrieval, etc. Typically, LDA finds the pro-
jection directions such that for the projected data, the between-class variance has
been maximized relative to the within-class variance, thus achieving maximum dis-
crimination. An intrinsic limitation of classical LDA is that its objective function
requires the nonsingularity of one of the scatter matrices. For many applications,
such as the microarray data analysis, all scatter matrices can be singular or ill-
posed since the data is often with high dimension but low sample size (HDLSS) [4].

Recently, many efforts have been devoted to bear on such HDLSS problems.
For example, Krzanowski et al. proposed a pseudo-inverse LDA to approximate
the inverse covariance matrix, when the sample covariance matrix is singular.
However, the accuracy of pseudo-inverse LDA is usually low and not well guar-
anteed [5]. Another technique to alleviate this problem is a two-stage algorithm,
i.e., PCA+LDA [6l[7]. More popularly, regularized LDA approaches are proposed
to solve the problem and improve the performance [§]. For example, researchers
proposed a series of algorithms to regularize the covariance matrix estimation [2]
59]. The regularized linear discriminant hyperplane was studied in [I0J11L4]. All
regularized LDA approaches intend to improve LDA through regularizing the es-
timation of key parameters used in LDA, such as the covariance matrix and/or
the linear coefficients for discrimination.

One representative regularized LDA approach is Covariance Regularized Dis-
criminant Analysis (CRDA) proposed in [9] based on the sparse inverse covariance
estimation leveraging Graphical Lasso [12]. CRDA was originally proposed to es-
timate the inverse covariance matrix via a shrunken estimator, so as to achieve
“superior prediction”. Intuitively, through replacing the sample covariance matrix
used in LDA with the regularized estimation, the HDLSS problem can be well
addressed since the regularized estimators usually outperform the sample covari-
ance matrix estimator [13]. To better elucidate the performance of LDA classifiers
with uncertain covariance matrix estimates for Gaussian data classification, [I4]
studied a model of error rate by matching the estimated vs. true covariance ma-
trices, and the estimated ws. true means. While it is reasonable to assume that
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Fig. 1: Medicare visits and Electronic Health Records (EHRs). EHRs of a patient
consist of the records of diagnoses and treatments. In this example, totally m
medical visits have been placed. For every medical visit, the patient would receive
a set of ICD/CPT codes [I§] referring the diseases/treatments that have been
diagnosed/carried out. One can enable the early diagnosis/detection of diseases
through classifying the EHR data, with big data and machine learning techniques.

the estimated mean can easily converge to the population/true mean, the popu-
lation/true covariance matrix is usually unknown and can be very different with
the estimated one [I3]. For example, the largest eigenvalue of the sample covari-
ance matrix, which represents the principle component of the data distribution, is
not consistent with the population one and the eigenvectors of the sample covari-
ance matrix can be almost orthogonal to the truth under HDLSS [I5,16]. Further,
the data for classification is usually Non-Gaussian. Thus, it is highly desirable to
develop a new analytical model to characterize the error rate for the data with
arbitrary distribution (both Gaussian and Non-Gaussian). Two “known factors”
of covariance matrix estimation are useful for developing such analytical models,
one is the convergence rate and the other one is the sparsity/density of (inverse)
covariance matrix estimators [I3]. The sparsity/density is already known once the
(inverse) covariance matrix is estimated. The convergence rates reflect the maximal
error of estimation, and for some estimators, they are well bounded under certain
assumptions, such as spectral-norm convergence rate of Graphical Lasso [17].
Among a wide range of HDLSS data classification tasks, in this work, we fo-
cus on the problem of using LDA to classify EHR [19] for personalized predictive
analytics of target disease. EHRs play a critical role in modern health information
management and service innovations. A patient’s EHR contains his/her histories
of medical visit, medication, diagnoses, treatment plans, allergies and so on as
shown in Fig 1. Per each visit a diagnosis record would be updated indicating the
disease state, i.e., a set of codes referring to the diseases that diagnosed at a time of
visit. One significant feature is the interchangeability of EHR, as a standard pro-
tocol for medical/health data generation, storage and communication. The health
information is built and managed by authorized institutions in a unified digital
format (e.g., ICD-9/10, CPT-9/10 used in EHR standards) such that researchers
and scientists can share and analyze the EHR data to enable innovative health
services, such as providing computer-assisted diagnosis and offering medication
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advice. Among these services, predictive analytics of diseases (or namely early
detection of diseases) using patients’ past longitudinal health information of the
EHR system, has recently attracted significant attention from research communi-
ties. There has been a series of works [20[19,211[221[231[24125126], which attempt
to predict future disease of patients, through data mining techniques using EHR
data. Prior literature usually first selected important features, such as diagnosis-
frequencies [19], pairwise diagnosis transitions [22], and graphs of diagnosis se-
quences [24], to represent the EHR data of the patients. Then, a wide range of
supervised learning algorithms were adopted to build predictive models for early
disease detection, on top of well-represented EHR data.

In this paper, we first propose a novel analytical model for LDA error rate,
based on the statistical convergence of (inverse) covariance matrix estimators and
the divergence to the Gaussian distributions. Guided by the proposed analytical
model, we propose a novel LDA classifier leveraging the (inverse) covariance matrix
estimators with faster convergence rate. We apply our model to a large-scale EHR
dataset for the predictive analytics of diseases and demonstrate the advantage of
the proposed algorithms over other state-of-the-arts. Specifically, in this paper, we
made contributions as follows.

1. We studied the problem of high-dimensional linear classification using LDA
models and proposed a novel analytical model, derived from the existing LDA
models on Gaussian data [27/[T4], to understand the LDA error rate for both
Gaussian and Non-Gaussian data, with respect to the statistical error of co-
variance matrices estimation and the divergence between fitted Gaussian dis-
tribution and the data.

2. On top of the analytical model, we proposed De-Sparse, which extends the
well-known baseline approach — Cowvariance Regularized Discrimiant Analysis
(CRDA) [9,28], using De-sparsified Graphical Lasso [29]. Theoretical analy-
sis based on the proposed analytical model shows that De-Sparse can bound
the maximal error rate, under mild conditions. Compared to CRDA, De-Sparse
could achieve lower error rate, due to the faster convergence rate of De-sparsified
Graphical Lasso.

3. To show the practical contribution of the proposed method, we evaluated
De-Sparse extensively through experiments with large-scale, real-world EHR
datasets [30]. In the experiments, we used De-Sparse to predict the risk of
mental health disorders in college students from ten U.S. universities, using
their EHR data from primary care visits. We compared De-Sparse with seven
baseline algorithms including other regularized LDA models and downstream
classifiers. The evaluation result shows that De-Sparse outperforms all base-
lines, and further validates our theoretical analysis.

The paper is organized as follows. In Section 2, we review the problem of high-
dimensional linear classification using LDA models and summarize the existing
work on EHR-based predictive analytics of diseases. In Section 3, we first introduce
the existing covariance-regularized discriminant analysis (CRDA) based on Graph-
ical Lasso, then present de-sparsified covariance regularized LDA algorithms, based
on novel de-sparsified inverse covariance matrix estimators, to classify EHR sam-
ples for the predictive analytics. In Section 4, we validate the proposed algorithms
with real-world datasets through extensive experiments. Finally, we conclude the
paper in Section 5.
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2 Preliminaries
2.1 LDA for Binary Classification

To use Fisher’s Linear Discriminant Analysis (FDA), given N labeled data pairs
(z1,01), (z2,12), (z3,13) ... (zn,ly) and Vz;, 1 < i < N refers to a d-dimensional
vector, we first estimate the sample covariance matrix (an symmetric d x d matrix)
using maximized likelihood estimator:

L
L= ~ ;(Iz‘ — i) — )| (1)

where fi refers to the d-dimensional mean vector of all N training samples (z1,11),
(z2,12)...(zN,IN). Then, 4+ and p— are estimated as the mean vectors of the
positive training samples and negative training samples in the N training samples,
respectively.

Corollary 1 (Fisher’s Discriminant Analysis for Binary Classification [1])
Given all estimated parameters X, Jiy, and i, the FDA model classifies a new data
vector = as the result of Eq.[d as follows.

=

(2)

Te—1- 1-T -1
. r XNy — gpy X7 g +logmy
J5(@) = sign (zogﬂ e
where sign(-) : R — {£1} refers to the signal function, T+ and w— refer to the (fore-
known) frequencies of positive samples and negative samples in the whole population.

To present LDA with other covariance matrix estimator, based on the LDA paradigm
listed in Eq. [2] we use the notations as follows.
Notations. Note that, in the rest of this paper, we denote fg (z) as an LDA classifier
with a specific covariance matriz estimator 2, using the sample estimated mean vectors
n— and ji4. When 5= X, then the classifier [s(x) becomes the traditional Fisher’s
Linear Discriminant Analysis. When S =6""and O is the Graphical Lasso estimator
[12], then fg_.(x) refers to the covariance regularized LDA [9[2§].

Apparently, the performance of LDA depends on (1) whether the realistic train-
ing/testing datasets follow Gaussian distributions and (2) how the mean vectors
and inverse covariance matrices are estimated from the datasets.

2.2 Electronic Health Records and Predictive Analytic of Disease

Prior to learning a predictive analytic model for certain diseases, one needs to
model the EHR data with a suitable data representation. The most simple yet
effective way to represent EHR data is to use diagnosis-frequency vector [311[321[33],
which is similar to Term Frequency (TF) or Term Frequency-Inverse Document
Frequency (TF-IDF) approach that deals with traditional NLP data [341[351/36].
Given each patient’s EHR data (shown in Fig , this representation method first
retrieves the diagnosis codes [37] recorded during each visit. Inspired by some Nat-
ural Language Processing (NLP) and text mining practices [38], researchers also
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proposed using some deep learning based NLP approaches to embed EHR records
for data representation learning [3940[411[42//43/44]. For example, [40] studied
“Patient2Vec” which embeds patients’ past EHR records into vectors while pre-
serving structural information for personalized predictive analysis. [42] focuses on
the interpolation and interpretability of EHR representation learning, where au-
thors well-balanced the performance of predictive analysis and the understanding
to the longitude disease progress of each individual patient, both using the EHR
data with the learned representation. Comprehensive surveys could be found in [45]
18,46].

In our work, we follow the line of research that uses diagnosis-frequency vec-
tor of each patient for EHR-based predictive analysis [31[321[33], as the diagnosis-
frequency in a certain duration could well characterize the health status of patients
while the coefficient of LDA can represent the significance of every diagnosis code.
The frequency of each diagnosis appearing in all past visits (of the last two years)
is counted here, followed by further transformation on the frequency of each diag-
nosis into a vector of frequencies. For example, a diagnosis-frequency vector can be
illustrated as (1,0,...,3), where 0 means the second diagnosis does not exist in all
past visits. Note that the dimension d > 15,000 when using original ICD-9 codes,
d = 295 even when using clustered ICD-9 codes [47], while the number of samples
for training N in our experiment is significantly smaller than d.

2.3 Discussion on Preliminaries

In our work, we revisited the linear discriminant analysis as a classifier and learner
for High-Dimensional and Low Sample Size (HDLSS) settings. Indeed, many ef-
forts have been made in the literature for HDLSS data classification. For example,
in addition to LDA-type methods, a number of feature extraction or variable
selection methods have been studied [48/[3]. Lin et al., [49] proposed a feature se-
lection algorithm to classify the high-dimensional gene expression data through
incorporating the neighborhood entropy-based uncertainty measures. Over the
rough set, the same group of authors [50] adopted a joint feature selection ap-
proach that incorporates neighborhood entropy and the fisher scores, for tumor
classification. Further, some automatic feature weighting paradigm has been pro-
posed to select features for gene expression data classification [51]. These studies
demonstrate that the feature selection algorithms could significantly improve the
accuracy of HDLSS data classification, while avoiding the full set of features. The
over-reduction problem of LDA has been studied in [52]. In addition to the EHR
data, similar regularized projection methods have been used for early diagnosis of
diseases for biomedical health data [53][54].

In terms of methodologies, the most close work to this study is covariance-
regularized linear discriminant analysis (CRDA) [9], Graphical Lasso [I7], and the
de-sparsified Graphical Lasso [29/55]. CRDA regularizes the estimation of (inverse)
covariance matrices inside the estimation of LDA, while improving the performance
of LDA for both prediction and inference. Authors in [28] were the first to bring
CRDA for EHR classification and early detection of diseases. We included the algo-
rithms in [28] for comparison and found that De-Sparse outperformed CRDA with
higher accuracy and Fl-score. Compared to the Graphical Lasso estimator [I7]
that has been frequently used to enhance the inverse covariance matrices estima-
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tion, our work followed the ideas of de-biased estimator [56] and used de-sparsified
Graphical Lasso estimator [29] to improve the LDA for EHR classification. We
would provide a comprehensive discussion on the performance comparisons be-
tween Graphical Lasso and de-sparsified one from the perspectives of predictive
analytics based on EHR data and LDA.

3 De-Sparse: De-Sparsified Covariance-Regularized Discriminant Analysis

In this section, we first introduce the baseline algorithm based on Covariance-
Regularized Discriminant Analysis (CRDA) that is derived from [28]. Then, we
present the proposed algorithm De-Sparse, an extended Covariance Regularized
Discriminant Analysis via De-sparsified Graphical Lasso [29]. Then, using our pro-
posed analytical model of LDA error rate, we compare two methods and demon-
strate the advantages of De-Sparse.

3.1 CRDA: The Baseline of Covariance-Regularized Discriminant Analysis via
Graphical Lasso Inverse Covariance Matrix Estimator

Compared to the sample LDA introduced in Section 2, CRDA [928] was pro-
posed to use f1-penalized inverse covariance matrix estimator to replace the in-
verse of sample covariance matrix. Given the labeled data pairs for training (z1, 1),
(x2,12) ... (zx,ln), the algorithm first estimates the sample covariance matrix %
and the sample mean vectors iy, fi— using the algorithms introduced in Section
2.1. With the sample covariance matrix ¥, this method estimates a sparse inverse

covariance matrix © using the Graphical Lasso estimator [12] as follows.

Corollary 2 (Graphical Lasso Estimator [12]) Given the sample estimation of the
covariance matriz X, the Graphical Lasso estimator provides an {1-reqularized sparse
positive-definite approximation to the inverse covariance matriz (denoted as ©) as fol-
lows.

O = argmin | tr(£0) — log det(0) + A Z 19kl |, (3)
©>0 £k

where © > 0 refers to the constraint of symmetric positive definiteness (SPD), the term
tr(20) —log det(O) refers to the negative log-likelihood of the optimization objective ©
over the sample estimate X, the term Zﬁék |©;| refers to the sum of absolute values
of the non-diagonal elements in the matriz © (which is the same as the £1-norm of
© without diagonal elements considered), and X\ refers to tuning parameter that makes
trade-off between the sparsity and the fitness to samples. Please refer to [12] for the
implementation of the algorithms.

Corollary 3 (Statistical Convergence of Graphical Lasso [17]) Suppose the
random vector X is with d-dimensions and zero mean (i.e., X € RY and E (X)=0),
where the population estimate of the covariance matriz is ¥ = E (XXT) and the in-
verse of population covariance matriz is © = X1, Given N samples x1,%2,%3, ..., TN
randomly and independently drawn from X, the sample estimate of the covariance ma-
triz here should be ¥ = & Zfil vz .
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With the increasing number of samples (N) given and growing number of dimen-
stons of the data (d), the graphical lasso estimate O based on the sample covariance
matriz converges to the population estimate © at the rate of Frobenius-norm under mild
sparsity conditions, as follows [17].

||é—@|F=O( (d“}vk’gp> (1)

where s = maxy<;<q||O;|lo refers to the maximal degree of the graph in O, || -|lo refers
to the £o-norm of the input vector, and ©; refers to the it" column vector (1<i<d)
of the matriz ©;.

To the end, the classification rule of CRDA is written as follows

T6o. _1:THn
(&) — 51,6 I
CRDA(z) = sign (logz A+~ 5P+ 08+ + 08 7T+> (5)

21O — 3T O +logm_

which can be viewed as an LDA classifier using 67! as the covariance matrix.
Apparently, the accuracy of CRDA depends on how the covariance matrices and
the mean vectors are estimated. We are going to interpret the performance of
CRDA in the Section 3.3.

3.2 De-Sparse: The Improved Algorithm of Covariance-Regularized LDA via
De-Sparsified Graphical Lasso

As shown in Eq. [3] the estimator of sparse inverse covariance matrix induced #;-
penalization and might hurt the estimation due to the over-penalization or over-
sparsification. To address this issue, we proposed a de-sparsified Graphical Lasso
estimator [29] to replace the vanilla Graphical Lasso.

Corollary 4 (De-sparsified Graohical Lasso [29]) Given the Graphical Lasso esti-
mator @ and the sample estimation X, we consider the inverse of Graphical Lasso 6!
as an approximation to the covariance matriz. In this way, the bias of éfl, caused by
the sparsity reqularizer of Graphical Lasso, for covariance estimation could be written
as follows.

Z=5-67" (6)

Using the Kronecker product, authors in [29] consider the potential bias term of 6
against the inverse of population covariance matriz as follows.

Bias(£,0) = 626 = 656 — 6. (7

Z’he de-sparsified Graphical Lasso estimator T de-biases the Graphical Lasso estimator
© through remouving the potential bias term caused by the sparsity requarlizer, as follows.
T = 6 — Bias(£,0) = 20 — 6L6. (8)

On top of the Graphical Lasso, the de-sparsified Graphical Lasso estimator can effi-
ciently approximate an estimation of inverse covariance matrix using the data with
faster convergence rate in a mild condition.
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Corollary 5 (Statistical Convergence of De-sparsified Graphical Lasso [29])

Suppose the random wvector X is with d-dimensions and zero mean (i.e., X € R?

and E (X) = 0), where the population estimate of the covariance matriz is X =

E (XXT) and the inverse of population covariance matriz is @ = XY ~'. Given N

samples x1,x2,x3,...,xN randomly and independently drawn flrom X, the sample es-
1 \m—

timate of the covariance matriz here should be ¥ = LS xzxj The Graphical

Lasso estimator and the de-sparsified estimator are denoted as © and T, respectively.

With the increasing number of samples (N) given and growing number of dimen-
sions of the data (d), the De-sparsified Graphical Lasso estimator T converges to the
population estimate © at the rate of {oo-norm under mild sparsity conditions, as fol-
lows [29].

~ logd
||@—@|oo=0< ng> (9)

Note that, above convergence rate of de-sparsified Graphical Lasso was obtained under
stmilar sparsity assumptions as [17)], while the £2-norm or Lso-norm convergence rates
of Graphical Lasso remain unknown yet.

Based on Notations, we denote the De-sparsified Covariance Regularized Dis-

criminant Analysis (namely De-Sparse) as Desparse(z), using the De-sparsified
Graphical Lasso T and the mean vectors fi4+, ji—.

(10)

o' Thy — 3 Thy +logmy
e T Th_ — %ﬁjfﬂf +logm_

Desparse(z) = sign (log

With the de-sparsified inverse covariance matrix estimator T enjoying better sta-
tistical properties, De-Sparse is expected to outperform CRDA with better classi-
fication accuracy. Detailed comparison will be discussed in the following sections.

3.3 Performance Analysis of LDA, CRDA, and De-Sparse

In this section, we first review the previous studies on the LDA error rate estima-
tion for Gaussian data [27.[14], then we generalize LDA error rate from Gaussian
data to non-Gaussian data. Finally, we provide a discussion on the classification
accuracy comparison among vanilla LDA, CRDA, and De-Sparse.

3.8.1 LDA Error Rate for Gaussian Data via Random Matriz Theory

We first assume the data for binary classification follow two (unknown) Gaussian
distributions with the same covariance matrix X but two different means p4+ and
pw—, ie., N(py,X) for positive samples and N (u—,X) for negative samples, re-
spectively. Given the LDA classifier fi(x) based on the sample estimated mean
vectors i—, ji4+ and a specific covariance matrix 5, the expected error rate of a lin-
ear discriminant analysis (i.e., probability of | # fg(x)) on the data of N(u4,X),
N(u—,X) is modeled as follows.
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Corollary 6 (RMT-based LDA Error Rate Estimation [14]) According to the
random matriz theory, [T4)] models the ezpectation of classification error rate of LDA
(using estimated parameters fii, fi—, and E) on Gaussian distributions N (u4,X) and
N( ) Z) as 5(”’4’7“*’ E y Mt H— 2)7 as follows.

(py = EFENTE Gy — i)
Vi — i) TE S8 g — )

5(/1-‘!-7,["—727/»"-‘1-7#—72) =T+ P

o R (11)
(= PN T8 e — i)
\/(m — i) TESE (g — i)

where & refers to the CDF function of a standard normal distribution.

+7_ P

According to Corollary 6 and [I4], we could conclude that the expected er-
ror rate is sensitive with the parameters py,u—, Y, 4+, i— and 2‘, while the true
parameters py,p—, % are assumed unknown. Compared to the (inverse) covari-
ance matrices estimation, the error of sample mean vector estimation is relatively
small [57]. Thus, we adopt the settings in studies [27.[2[5] as follows.

Assumption 1 In this paper, we make no assumptions on the mean vectors pi4, fi—, ft
and always use the sample mean j4+,pu—,n to estimate p4,pu—, . Even under the
HDLSS settings, with a certain number of samples, it is reasonable to assume the sam-
ple estimation of mean vectors iy and ji— should be close to the population mean
vectors, i.e., |uy — 4| = 0, |u— —p—| = 0, and |p — p| — 0.

Lemma 1 Thus, based on Theorem 1 and the sample mean relaxation (Assumption
1), the expected error rate of fg. (z) can be reduced to

(Exyms| (B =B) I (A — o)
2/ — )T S8 s o)

In this way, to improve the LDA classifier with the sample mean vectors, there needs
an estimator 5 to minimize or lower the expected error rate 5(2 X).

(12)

Lemma 2 Furthermore, when the estimated covariance matriz 5 is set to the oracle
one X (the LDA is perfectly fitted with the data), the expected error rate reaches the
optimal error rate

B Vs — i) TS (g — o)
2

f(E,5)=a (13)

Above result suggests that when the covariance matrix 5 is perfectly estimated S5z
and 571X 1, the LDA classifier would approach to its optimal error rate.

The estimate in Eq. reduces the estimation of LDA classification error rate
to the divergence between the population covariance matrix X and the estimated
one Y. On the other hand, Eq. [L3|models the generalization error of a model with
“perfectly-fitted” covariances [14].
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3.8.2 Performance Comparisons

We compare the convergence rate of T and O to the inverse population covariance
matrix ©* = 2*71, so as to understand the accuracy of De-Sparse and CRDA.
Since the divergence of the datasets to the nearest Gaussian distributions should
be the same for both algorithms, we mainly compared the Gaussian error terms
for De-Sparse and CRDA, i.e., z—:(f*l,E*) vS. s(éfl,E*). More specifically, [14]
demonstrated the connections between the Gaussian data error terms and the
spectral properties of T and 6. Considering Lemma 2, we hope to understand (1)
how close the matrices 7X* and ©X* would approach to I matrix and (2) how
the spectrum of these matrices behaves [59], such that

ITS* = Ill2 = (T = ©)X*||2 < Amax ()T = 67|z, and

N N N 14

10X —Ill2 = I(6 = ") X7|l2 < Amax(Z7)[|0 — €72, ()
where Amax(-) refers to the largest eigenvalue of the input matrix. Obviously, the
terms of Amax (%), |T—©*||2 and ||©—6*||2 are non-negative. When || T—0* |3 — 0
and H@ ©*[|2 — 0, then optimal error rates would be achieved asymptotically.
In this way, we are wondering whether T would converge to ©* faster than O in
the spectrum-norm distance.

Considering Corollaries 3 and 5, the sharp spectrum-norm statistical conver-
gence rate of Graphical Lasso is not known in any of the previous studies [I7,
60,29,[13], while the spectrum-norm statistical convergence rate of de-sparsified
Graphical Lasso could be easily derived from the £oo-norm rate. In this way, we
compare CRDA and De-Sparse through the ¢2-norm statistical convergence rate
of their inverse covariance matrix estimators. Thus, we can derive the £s-norm

convergence rate as:
= * dlogd
|T—@||z—o< ~ ) (15)

On the other side, [I7] demonstrated that the f2-norm convergence rate for the
Graphical Lasso estimator © is

16— 6|2 =0 ( <d+3>1°gd>

N

where s has been defined in Corollary 3. We conclude the convergence rate of T is
faster than ©. In this way, we consider De-Sparse would outperform CRDA as it
adopts a better inverse covariance matrix estimator.

4 Experiments

In this section, we first introduce the design of the experiments to evaluate the su-
periority of the proposed De-Sparse framework. Then, we present the experimental
results, including the performance comparison between the De-Sparse framework,
existing LDA baselines, and other predictive models, followed by a comparison be-
tween inverse covariance matrix to support our theoretical analysis of De-Sparse.
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4.1 Experiment Setups

In this study, to evaluate De-Sparse, we use predictive analytics of disease based
on Electronic Health Records (EHR) data.

— Predictive Analytics of Diseases - Given N training samples (i.e., the EHR
data of each patient) along with corresponding labels i.e., (z1,01), (z2,02)...
(zn,In) where I; € {—1,+1} refers to whether the patient i is diagnosed with
the target disease or not (i.e., positive sample or negative sample), the predic-
tive analytics task is to determine whether a new patient would develop into
the target disease via classification of the vector z to +1 (diagnosed as the
positive result) or —1 (diagnosed as the negative result).

— Performance Metrics - To demonstrate the effectiveness of predictive ana-
lytics of diseases, we compared all these methods with other competitors using
Accuracy and Fl-score. Specifically, Accuracy characterizes the proportion
of patients who are accurately classified by the algorithms. F1-Score measures
both correctness and completeness of the prediction. Of-course, we also include
other metrics such as sensitivity and specificity to evaluate the performance of
predictive analytics through addressing the medical concerns.

— Data for Evaluation - In the experiments, we use the de-identified EHR data
of 200,000 students from ten U.S. universities [30]. Among all diseases recorded,
we choose mental health disorders, including anziety disorders, mood disorders,
depression disorders, and other related disorders, as one targeted disease for early
detection [61]. We represent each patient using his/her diagnosis-frequency
vector based on the clustered codeset (d = 295).

Note that, to prepare the training and testing sets, we use the complete EHR data
of the patients who haven’t been diagnosed with any of mental health disorders
(negative samples). For patients having been diagnosed with any mental health
disorders (positive samples), we collect their EHR data from the first visit to the
last visit that was 90 days before the diagnosis of mental health disorders. Thus,
we can simulate the early detection of diseases with 90 days in advance.

4.2 Design of Experiment

To understand the performance impact of De-Sparse beyond classic LDA, we first
propose four LDA baseline approaches to compare against De-Sparse, then, three
discriminative learning models are used for the comparison:

— LDA Derivatives: LDA, Shrinkage, DIAG and Ye-LDA — The first three algo-
rithms are all based on the common implementation of generalized Fishier’s
discriminant analysis listed in Eq. Specifically, LDA uses the sample covari-
ance estimation, and inverts the covariance matrix using pseudo-inverse [62]
when the matrix inverse is not available; Shrinkage is based on LDA, using a
sparse estimation of sample covariance as follows,

Y5 =pB%X+(1-p)+diag(X) and O3 = Egl, (16)

where diag(X) refers to the diagonal matrix of the sample estimation X. DIAG
is a special Shrinkage approach with 8 = 0.0. Ye-LDA is derived from [7.[62].
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In our research, we focus on studying the improvement of LDA classification
caused by (inverse) covariance matrix regularization, thus we don’t compare
our method to linear-coefficient-regularized LDA classifiers [L0J11l[4] or heuris-
tic LDA derivation [6].

— Downstream Classifiers: Support Vector Machine (SVM), Logistic Regression (Logit.
Reg.) and AdaBoost — Inspired by the previous studies [211[63] in EHR data min-
ing, we use a linear binary SVM classifier with fine-tuned parameters as well
as the Logistic Regression classifier. Further, we compare our algorithm to Ad-
aBoost, where AdaBoost-10 refers to the AdaBoost classifier using 10 Logistic
Regression instances and AdaBoost-50 leverages 50 instances.

With the seven baseline algorithms, we perform experiments with training sets of
varying sizes and cross-validation. To train the classifiers, we randomly selected 50,
100, 150, 200, and 250 positive patients, and randomly selected the same number
of negative patients. Then, we test the classifiers, using a testing set with 1000
randomly selected positive patients and the same number of negative patients.
Note that there is no over-lap between training set and the paired testing set. All
algorithms used in our work are implemented with JSAT E| and glasso in R ﬂ

4.3 Overall Comparison

We include the comparison results of De-Sparse evaluation in Tables|[T] [ and[f]
for models learned from 50 ~ 250 x 2 labeled samples respectively. All experiments
are done with cross validation using random sampling without replacement and
repeated 10 times. Specifically, we compare the performance using various experi-
mental settings, such as the varying parameters for model training and number of
days in advance for early detection(e.g., 30 days, 60 days and 90 days). We carry
out the experiments with varying Days in Advance settings, so as to evaluate the
performance of algorithms for predictive analytics. As was addressed, we actually
need to use the past EHR data (before the diagnoses of mental disorders) as the
features for prediction. More specific, for positive samples in both training and
testing datasets, we backtracked their EHR data from their prediction dates. For
every positive sample, the prediction date is set as 30, 60 and 90 days before the
medicare visit that the patient received his/her first diagnoses of “anxiety disor-
ders, mood disorders, depression disorders, and other related disorders”. In this
way, we carry out the experiments in three categories according to the varying
days in advance.

4.8.1 Comparisons on Accuracy and F1-Score

As can be seen from the results in Tables M and [B] De-Sparse clearly
outperforms the baseline algorithms in terms of overall accuracy and F1l-score.
Specifically, De-Sparse achieves 18.6%—-21.3% increase in accuracy and 22.9%—32%
increase in Fl-score over LDA; De-Sparse achieves 17.9% increase in accuracy and
31.5%-40.6% increase in F1-score over DIAG. Compared to Shrinkage and CRDA,

L https://github.com/EdwardRaff/JSAT
2 https://cran.r-project.org/package=glasso
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the accuracy and Fl-score of De-Sparse in most parameter settings are 0.3%—
18.9% higher and 0.14%-71.8% higher, respectively. Compared to SVM, Logistic
Regression, and AdaBoost, De-Sparse can achieve 2.3%-19.4% higher accuracy
and 7.5%-43.5% higher Fl-score. In this case, we can conclude that the classic
LDA model cannot perform as well as many other predictive models such as SVM
and AdaBoost. However, De-Sparse significantly outperforms these methods in all
settings. Thus, we can conclude that De-Sparse overall outperforms the baseline
algorithms in all experimental settings. Note that, though De-Sparse outperforms
CRDA marginally, De-Sparse enjoys a more tight upper bound of error rate.

4.8.2 Trade-off between Sensitivity and Specificity

We also intend to compare De-Sparse with baseline methods with respect to the
needs of medicines. Specifically, in addition to accuracy and F1-score, we focus on
two more metrics [64]:

— Sensitivity - In medical diagnosis, the sensitivity measures the ability of the
prediction algorithms to correctly identify the patients with the disease (true pos-
itive rate). More specific, we estimate sensitivity as

# Patients with the diseases N Patients predicted as positive
#Patients with the diseases )

Sensitivity =

(17)

— Specificity - In contrast, the specificity metric characterizes the ability of the

algorithms to correctly identify ones without the disease (true negative rate). More
specific, we estimate specificity as

Specificity — # Patients without the diseases N Patients predicted as negative
P v = #Patients without the diseases ’
(18)

Please see also Tables[I] 2] B} [ and [5} In terms of specificity, the baseline algo-
rithms outperform De-Sparse, in the most of cases. However, in terms of sensitivity
and specificity trade-off, De-Sparse on average gains 19.5% higher sensitivity while
sacrificing 8.2% specificity, when compared to typical LDA. On opposite side of
the trade-off, when compared to CRDA (based on graphical lasso), De-Sparse on
average gains 2.3% higher specificity while sacrificing 1.4% sensitivity.

4.8.8 Discussion on the Performance Comparison

We consider testing accuracy and Fl-score as two primary metrics for the evalu-
ation, as these two metrics well characterize the performance of classifiers. Thus,
we conclude that De-Sparse overall outperforms the baseline algorithms, including
both LDA, SVM, Logistic Regression, and other classifiers, in all experimental
settings. In terms of the trade-off between sensitivity and specificity, we argue
that De-Sparse still outperforms the original LDA classifier and CRDA classifiers,
considering the requests of predictive analytics of diseases and the early diagnosis.
While the original LDA classifier well-balances the sensitivity and specificity, both
CRDA and De-Sparse would incorporate slightly higher sensitivity, compared to
the original LDA, while having lower specificity. In this way, CRDA and De-Sparse
could discover more patients potentially with the diseases, but also slightly raise
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Table 1: Performance Comparison with Training Set:50x 2, Testing Set: 2000x2

Accuracy F1-Score Sensitivity Specificity

Days in Advance: 30
AdaBoost (x10) 0.637 £ 0.028 0.571 £ 0.057 0.491 £ 0.085  0.783 % 0.053
AdaBoost (x50) 0.640 £ 0.024 0.570 £ 0.061 0.487 £ 0.093  0.792 4+ 0.053
CRDA (A =1.0) 0.662 £+ 0.017 0.692 £ 0.028 0.762 £ 0.069  0.563 % 0.058
CRDA (A =10.0) 0.670 £+ 0.017 0.713 £ 0.010 0.819 £ 0.023  0.520 + 0.047
CRDA (A =100.0) 0.664 £+ 0.020 0.713 £ 0.008 0.834 4 0.033  0.494 £ 0.068
LDA 0.555 £ 0.026 0.565 £ 0.033 0.579 £ 0.048  0.531 % 0.040
Logistic Regression 0.615 £ 0.055 0.469 £ 0.206 0.395 £ 0.200  0.835 + 0.094
De-Sparse (A = 1.0) 0.658 £+ 0.019 0.677 + 0.034 0.723 £ 0.073  0.592 £ 0.050
De-Sparse (A = 10.0) 0.672 £+ 0.015 0.713 &£ 0.010 0.813 £ 0.025  0.532 £ 0.042
De-Sparse (A =100.0) 0.668 + 0.018 0.714 + 0.008 0.830 £ 0.026  0.506 + 0.056
SVM 0.611 £ 0.026 0.619 £ 0.034 0.632 £ 0.050  0.590 + 0.029
DIAG 0.568 + 0.014 0.515 £ 0.026 0.460 £ 0.042  0.676 + 0.046
Shrinkage (8 = 0.25) 0.574 + 0.014 0.538 £ 0.025 0.499 £ 0.041  0.649 £ 0.045
Shrinkage (8 = 0.5) 0.560 + 0.033 0.438 + 0.220 0.413 +£ 0.210  0.708 £ 0.152
Shrinkage (8 = 0.75) 0.560 £+ 0.025 0.480 £ 0.163 0.448 £ 0.158 0.672 + 0.118

Days in Advance: 60
AdaBoost (x10) 0.646 + 0.021 0.596 + 0.054 0.531 £ 0.095 0.762 £+ 0.057
AdaBoost (x50) 0.639 £ 0.027 0.569 £ 0.083 0.491 £ 0.111  0.788 % 0.060
CRDA (A =1.0) 0.654 £ 0.016 0.690 £ 0.016 0.774 £ 0.067  0.535 4+ 0.088
CRDA (A =10.0) 0.653 + 0.019 0.706 £ 0.010 0.833 £ 0.053  0.474 £+ 0.083
CRDA (A =100.0) 0.643 £ 0.024 0.701 £ 0.028 0.844 £ 0.098 0.443 + 0.124
LDA 0.556 + 0.028 0.550 £ 0.042 0.547 £ 0.072  0.565 + 0.065
Logistic Regression 0.631 £ 0.031 0.535 + 0.108 0.447 £ 0.132  0.814 £ 0.073
De-Sparse (A =1.0) 0.655 £ 0.012 0.675 £ 0.023 0.723 £ 0.070  0.587 4+ 0.074
De-Sparse (A = 10.0) 0.661 + 0.016 0.708 £+ 0.009 0.823 £ 0.051  0.499 £ 0.077
De-Sparse (A =100.0)  0.649 + 0.021 0.705 £ 0.020 0.844 £ 0.082  0.454 + 0.110
SVM 0.627 + 0.019 0.625 £ 0.027 0.625 £+ 0.053  0.629 £ 0.056
DIAG 0.565 £+ 0.011 0.514 + 0.046 0.468 £ 0.076  0.662 + 0.072
Shrinkage (8 = 0.25) 0.568 £ 0.012 0.530 £ 0.040 0.492 £+ 0.069 0.644 4+ 0.063
Shrinkage (8 = 0.5) 0.567 £+ 0.013 0.528 + 0.038 0.489 £ 0.067 0.646 + 0.059
Shrinkage (8 = 0.75) 0.561 + 0.025 0.477 £+ 0.164 0.444 £ 0.163  0.677 + 0.120

Days in Advance: 90
AdaBoost (x10) 0.627 £+ 0.034 0.572 £ 0.063 0.507 £ 0.091  0.747 + 0.054
AdaBoost (x50) 0.632 £+ 0.035 0.575 £ 0.054 0.504 £ 0.077  0.759 % 0.058
CRDA (A =1.0) 0.641 + 0.018 0.663 £ 0.041 0.716 £ 0.106  0.566 + 0.091
CRDA (A =10.0) 0.651 £+ 0.018 0.693 + 0.034 0.797 £ 0.093  0.505 % 0.096
CRDA (A = 100.0) 0.634 + 0.040 0.675 £ 0.101 0.808 £ 0.188  0.459 + 0.173
LDA 0.546 + 0.025 0.532 £ 0.038 0.518 £ 0.058  0.574 & 0.046
Logistic Regression 0.597 £ 0.058 0.423 £ 0.217 0.351 £ 0.207  0.843 £ 0.096
De-Sparse (A = 1.0) 0.642 £ 0.022 0.663 £ 0.035 0.710 £ 0.078  0.574 £ 0.060
De-Sparse (A = 10.0) 0.658 + 0.016 0.696 + 0.022 0.787 + 0.073  0.528 £ 0.084
De-Sparse (A =100.0) 0.641 + 0.031 0.683 £ 0.081 0.808 £ 0.164 0.475 £ 0.148
SVM 0.597 £+ 0.034 0.600 £ 0.036 0.606 £ 0.047  0.587 % 0.046
DIAG 0.568 £+ 0.023 0.514 4+ 0.048 0.464 £ 0.074  0.672 £ 0.066
Shrinkage (8 = 0.25) 0.569 + 0.020 0.530 £ 0.041 0.490 £ 0.065  0.648 + 0.054
Shrinkage (8 = 0.5) 0.565 £ 0.021 0.519 £ 0.041 0.473 £ 0.059  0.657 4+ 0.044
Shrinkage (8 = 0.75) 0.559 + 0.019 0.511 £ 0.040 0.465 £ 0.061  0.653 % 0.050
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Table 2: Performance Comparison with Training Set:100x 2, Testing Set: 2000x 2

Accuracy F1-Score Sensitivity Specificity

Days in Advance: 30
AdaBoost (x10) 0.632 £ 0.029 0.541 £ 0.095 0.452 £ 0.117  0.812 £ 0.065
AdaBoost (x50) 0.631 £ 0.032 0.538 £ 0.099 0.447 £ 0.120  0.814 4+ 0.062
CRDA (A =1.0) 0.674 £ 0.012 0.708 £ 0.019 0.792 £ 0.043  0.556 + 0.029
CRDA (A =10.0) 0.675 £ 0.006 0.722 £ 0.008 0.844 £ 0.022 0.507 £+ 0.017
CRDA (A =100.0) 0.664 £ 0.010 0.718 £ 0.004 0.858 £ 0.031  0.469 £ 0.048
LDA 0.594 £ 0.016 0.592 £ 0.019 0.591 £ 0.027  0.597 + 0.018
Logistic Regression 0.593 + 0.054 0.394 + 0.200 0.305 + 0.180 0.881 4+ 0.075
De-Sparse (A = 1.0) 0.674 £ 0.018 0.700 £ 0.025 0.765 £ 0.050  0.582 % 0.026
De-Sparse (A = 10.0) 0.681 + 0.006 0.724 4+ 0.006 0.838 £+ 0.018 0.524 + 0.020
De-Sparse (A =100.0) 0.668 + 0.009 0.720 £ 0.006 0.854 £ 0.028 0.481 £ 0.041
SVM 0.636 £ 0.016 0.642 £ 0.024 0.655 £ 0.044 0.618 £ 0.025
DIAG 0.594 £+ 0.019 0.562 £ 0.034 0.524 £ 0.050  0.663 % 0.033
Shrinkage (8 = 0.25) 0.600 £ 0.020 0.582 £ 0.031 0.559 £ 0.045 0.641 £ 0.022
Shrinkage (8 = 0.5) 0.581 £ 0.044 0.467 £ 0.235 0.449 £ 0.228 0.714 4+ 0.144
Shrinkage (8 = 0.75) 0.599 £ 0.014 0.582 £ 0.020 0.559 £ 0.029 0.639 £ 0.022

Days in Advance: 60
AdaBoost (x10) 0.633 £ 0.024 0.537 £ 0.076 0.439 £ 0.110  0.827 £+ 0.067
AdaBoost (x50) 0.623 £ 0.024 0.507 £ 0.065 0.396 £ 0.089  0.850 % 0.052
CRDA (A =1.0) 0.676 £+ 0.016 0.711 £ 0.015 0.797 £ 0.041  0.555 4 0.052
CRDA (A =10.0) 0.672 £ 0.019 0.719 £ 0.015 0.837 £ 0.025 0.508 % 0.039
CRDA (A =100.0) 0.668 £ 0.017 0.716 £ 0.013 0.838 £ 0.038  0.498 + 0.054
LDA 0.603 £ 0.024 0.599 £ 0.026 0.595 £ 0.033  0.610 £ 0.032
Logistic Regression 0.613 £ 0.042 0.462 £ 0.164 0.362 £ 0.147  0.863 £ 0.069
De-Sparse (A =1.0) 0.679 £+ 0.011 0.707 £ 0.014 0.776 £ 0.041  0.582 4 0.043
De-Sparse (A = 10.0) 0.676 £ 0.016 0.720 + 0.012 0.834 £ 0.026  0.518 + 0.039
De-Sparse (A =100.0) 0.671 + 0.017 0.718 £ 0.012 0.838 £ 0.029  0.504 % 0.045
SVM 0.644 £ 0.016 0.645 £ 0.020 0.650 £ 0.038  0.637 £ 0.037
DIAG 0.596 £ 0.015 0.562 £ 0.033 0.522 £ 0.058  0.670 %+ 0.054
Shrinkage (8 = 0.25) 0.600 £ 0.016 0.580 £ 0.024 0.554 £+ 0.040 0.645 4+ 0.038
Shrinkage (8 = 0.5) 0.596 £ 0.035 0.532 £ 0.178 0.513 £ 0.174  0.680 £+ 0.113
Shrinkage (8 = 0.75) 0.596 + 0.039 0.532 £+ 0.179 0.513 £ 0.175 0.678 + 0.115

Days in Advance: 90
AdaBoost (x10) 0.626 + 0.022 0.519 £ 0.061 0.412 £ 0.093  0.840 % 0.058
AdaBoost (x50) 0.631 £ 0.017 0.523 £ 0.056 0.413 £ 0.087  0.849 £ 0.053
CRDA (A =1.0) 0.674 £ 0.013 0.709 £ 0.020 0.796 £ 0.052  0.552 £ 0.047
CRDA (A =10.0) 0.674 £+ 0.010 0.721 £ 0.006 0.845 £ 0.021  0.502 £ 0.034
CRDA (A = 100.0) 0.666 £+ 0.015 0.719 £ 0.006 0.856 £ 0.025  0.477 £+ 0.052
LDA 0.605 £+ 0.017 0.607 £ 0.026 0.612 £ 0.045 0.598 + 0.028
Logistic Regression 0.611 £ 0.036 0.453 £ 0.130 0.345 £ 0.136  0.876 & 0.067
De-Sparse (A = 1.0) 0.675 £ 0.013 0.700 £ 0.026 0.764 £ 0.061  0.587 % 0.045
De-Sparse (A = 10.0) 0.682 £+ 0.007 0.725 + 0.007 0.840 + 0.025 0.523 £ 0.030
De-Sparse (A =100.0) 0.669 £ 0.013 0.721 £ 0.006 0.853 £ 0.023  0.486 + 0.046
SVM 0.632 £+ 0.017 0.638 £ 0.023 0.649 £ 0.039  0.616 + 0.026
DIAG 0.597 £ 0.015 0.574 £ 0.039 0.549 £ 0.072  0.644 £ 0.063
Shrinkage (8 = 0.25) 0.593 £ 0.034 0.531 £ 0.179 0.517 £ 0.182  0.668 £+ 0.120
Shrinkage (8 = 0.5) 0.602 £+ 0.015 0.589 + 0.028 0.575 £ 0.053  0.628 4 0.043
Shrinkage (8 = 0.75) 0.599 £ 0.015 0.586 £ 0.025 0.570 £ 0.045  0.629 % 0.037
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Table 3: Performance Comparison with Training Set:150x 2, Testing Set: 2000x 2

Accuracy F1-Score Sensitivity Specificity

Days in Advance: 30
AdaBoost (x10) 0.615 £ 0.010 0.484 £ 0.033 0.363 £ 0.039  0.867 + 0.024
AdaBoost (x50) 0.615 £ 0.007 0.482 + 0.025 0.359 £ 0.032  0.871 4+ 0.023
CRDA (A =1.0) 0.682 £+ 0.008 0.723 £ 0.008 0.829 £ 0.021 0.534 £+ 0.019
CRDA (A =10.0) 0.671 £ 0.013 0.721 £ 0.008 0.851 £ 0.016  0.490 + 0.035
CRDA (A =100.0) 0.662 £+ 0.014 0.718 £ 0.007 0.861 £ 0.020 0.464 + 0.044
LDA 0.613 £ 0.012 0.611 £ 0.018 0.610 £ 0.038  0.615 % 0.037
Logistic Regression 0.581 + 0.045 0.352 + 0.189 0.255 + 0.142  0.908 + 0.053
De-Sparse (A = 1.0) 0.681 £ 0.009 0.712 £ 0.012 0.790 £ 0.028 0.572 £+ 0.020
De-Sparse (A = 10.0) 0.681 £ 0.007 0.727 + 0.006 0.849 £+ 0.013 0.512 + 0.019
De-Sparse (A =100.0) 0.667 + 0.013 0.720 £ 0.007 0.857 £ 0.020 0.478 £ 0.041
SVM 0.650 £ 0.012 0.660 £ 0.014 0.680 £ 0.024 0.620 £ 0.023
DIAG 0.619 + 0.014 0.610 £ 0.031 0.600 £ 0.056  0.637 &+ 0.037
Shrinkage (8 = 0.25) 0.599 £ 0.051 0.500 £ 0.251 0.503 £ 0.256  0.696 + 0.156
Shrinkage (8 = 0.5) 0.611 £ 0.039 0.562 £ 0.189 0.566 £ 0.195 0.656 £+ 0.121
Shrinkage (8 = 0.75) 0.615 £+ 0.009 0.611 £ 0.024 0.608 £ 0.051  0.623 £ 0.045

Days in Advance: 60
AdaBoost (x10) 0.625 £+ 0.039 0.512 £ 0.131 0.424 £ 0.156  0.826 £ 0.081
AdaBoost (x50) 0.637 £+ 0.024 0.554 £ 0.072 0.466 £ 0.113  0.809 =+ 0.068
CRDA (A =1.0) 0.677 £ 0.017 0.717 £ 0.015 0.818 £ 0.028  0.536 4 0.032
CRDA (A =10.0) 0.671 £ 0.012 0.721 £ 0.008 0.848 £ 0.022 0.494 £+ 0.038
CRDA (A =100.0) 0.662 £ 0.014 0.718 £ 0.006 0.861 £ 0.031  0.463 % 0.055
LDA 0.623 £+ 0.014 0.621 £ 0.023 0.619 £ 0.040 0.627 £ 0.023
Logistic Regression 0.600 £ 0.054 0.412 £ 0.217 0.331 £ 0.195  0.869 % 0.090
De-Sparse (A =1.0) 0.681 + 0.016 0.711 £ 0.016 0.787 £ 0.033  0.574 4+ 0.036
De-Sparse (A = 10.0) 0.678 £ 0.011 0.724 4+ 0.009 0.843 £ 0.017 0.513 % 0.023
De-Sparse (A =100.0) 0.667 + 0.014 0.720 £ 0.007 0.856 £ 0.028  0.477 £ 0.050
SVM 0.649 £ 0.017 0.654 £ 0.025 0.665 £ 0.042 0.633 £ 0.024
DIAG 0.615 £ 0.018 0.597 £ 0.032 0.574 £ 0.054  0.656 + 0.045
Shrinkage (8 = 0.25) 0.618 £ 0.018 0.605 £ 0.031 0.587 £ 0.051  0.649 4+ 0.039
Shrinkage (8 = 0.5) 0.608 £ 0.039 0.548 £ 0.184 0.533 £ 0.181  0.683 £+ 0.110
Shrinkage (8 = 0.75) 0.618 + 0.015 0.602 £ 0.027 0.581 £ 0.045 0.655 + 0.033

Days in Advance: 90
AdaBoost (x10) 0.630 £ 0.023 0.531 £ 0.075 0.436 £ 0.123  0.824 + 0.082
AdaBoost (x50) 0.630 £ 0.023 0.534 £ 0.078 0.441 £ 0.126  0.820 £ 0.083
CRDA (A =1.0) 0.674 £ 0.012 0.708 £ 0.017 0.794 £ 0.045 0.553 %+ 0.039
CRDA (A =10.0) 0.671 £+ 0.011 0.720 £ 0.007 0.845 £ 0.021  0.498 £ 0.035
CRDA (A = 100.0) 0.663 £ 0.013 0.718 £ 0.004 0.857 £ 0.025  0.470 % 0.050
LDA 0.611 £ 0.020 0.610 £ 0.025 0.608 £ 0.039  0.614 + 0.024
Logistic Regression 0.614 £ 0.045 0.463 £ 0.174 0.374 £ 0.180 0.853 £ 0.098
De-Sparse (A = 1.0) 0.672 £ 0.018 0.693 £ 0.030 0.745 £ 0.065  0.600 % 0.042
De-Sparse (A = 10.0) 0.678 + 0.010 0.722 + 0.009 0.836 + 0.026  0.521 £ 0.033
De-Sparse (A =100.0) 0.668 £ 0.010 0.720 £ 0.005 0.851 £ 0.022  0.485 % 0.039
SVM 0.639 £ 0.015 0.645 £ 0.020 0.657 £ 0.035  0.622 + 0.026
DIAG 0.610 £ 0.012 0.602 £ 0.022 0.590 £ 0.042 0.631 £ 0.031
Shrinkage (8 = 0.25) 0.613 £ 0.011 0.608 £ 0.019 0.601 £ 0.036  0.626 + 0.027
Shrinkage (8 = 0.5) 0.602 £ 0.036 0.547 £ 0.183 0.540 £+ 0.183  0.665 4+ 0.114
Shrinkage (8 = 0.75) 0.601 £ 0.036 0.545 £ 0.183 0.536 £ 0.182  0.665 + 0.113
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Table 4: Performance Comparison with Training Set:200x 2, Testing Set: 2000x 2

Accuracy F1-Score Sensitivity Specificity

Days in Advance: 30
AdaBoost (x10) 0.618 £ 0.026 0.485 £ 0.082 0.373 £ 0.115  0.863 + 0.064
AdaBoost (x50) 0.618 £ 0.022 0.491 + 0.064 0.377 £ 0.092  0.859 4+ 0.052
CRDA (A =1.0) 0.688 £+ 0.006 0.725 £ 0.007 0.824 £ 0.017  0.553 + 0.016
CRDA (A =10.0) 0.680 £ 0.005 0.725 £ 0.005 0.847 £ 0.013  0.513 + 0.013
CRDA (A =100.0) 0.669 £ 0.011 0.721 £ 0.003 0.855 £ 0.026  0.483 £ 0.047
LDA 0.637 £ 0.006 0.644 £ 0.010 0.655 £ 0.021  0.620 £ 0.020
Logistic Regression 0.598 + 0.046 0.411 £ 0.175 0.313 £+ 0.159  0.883 + 0.070
De-Sparse (A = 1.0) 0.686 £ 0.007 0.717 £ 0.007 0.794 £ 0.017  0.578 + 0.019
De-Sparse (A = 10.0) 0.684 £ 0.006 0.729 + 0.005 0.850 £ 0.007 0.519 % 0.010
De-Sparse (A =100.0) 0.673 + 0.009 0.723 £ 0.004 0.852 £ 0.024 0.494 £+ 0.038
SVM 0.660 £ 0.012 0.671 £ 0.012 0.693 £ 0.014 0.626 £+ 0.015
DIAG 0.623 £+ 0.013 0.603 £ 0.024 0.575 £ 0.041  0.671 & 0.029
Shrinkage (8 = 0.25) 0.628 £ 0.013 0.621 £ 0.023 0.610 £ 0.039  0.646 4 0.024
Shrinkage (8 = 0.5) 0.619 £ 0.042 0.565 £ 0.190 0.560 £ 0.190  0.678 + 0.110
Shrinkage (8 = 0.75) 0.633 £ 0.012 0.629 £ 0.019 0.624 £ 0.034 0.642 £ 0.022

Days in Advance: 60
AdaBoost (x10) 0.605 £ 0.023 0.445 £ 0.085 0.325 £ 0.074  0.885 + 0.033
AdaBoost (x50) 0.616 £ 0.010 0.479 £ 0.038 0.356 £ 0.048  0.876 + 0.032
CRDA (A =1.0) 0.684 £+ 0.006 0.721 £ 0.006 0.818 £ 0.019  0.549 4+ 0.023
CRDA (A =10.0) 0.674 £ 0.008 0.722 £ 0.006 0.844 £ 0.019 0.505 £ 0.026
CRDA (A =100.0) 0.673 £+ 0.010 0.721 £ 0.006 0.845 £ 0.021  0.502 % 0.035
LDA 0.626 £ 0.009 0.622 £ 0.013 0.616 £ 0.028 0.635 £ 0.031
Logistic Regression 0.589 £ 0.038 0.380 £ 0.151 0.270 £ 0.113  0.908 + 0.038
De-Sparse (A = 1.0) 0.684 £ 0.010 0.710 £ 0.012 0.773 £ 0.027  0.595 4+ 0.023
De-Sparse (A = 10.0) 0.682 £ 0.006 0.726 + 0.007 0.844 £+ 0.017 0.520 = 0.014
De-Sparse (A =100.0) 0.675 + 0.008 0.722 £ 0.006 0.843 £ 0.022  0.508 + 0.031
SVM 0.651 £ 0.006 0.659 £ 0.010 0.675 £ 0.026  0.626 £ 0.028
DIAG 0.627 £ 0.012 0.615 £ 0.023 0.597 £ 0.045  0.657 + 0.039
Shrinkage (8 = 0.25) 0.618 £ 0.041 0.562 £ 0.188 0.553 £ 0.187 0.683 4+ 0.111
Shrinkage (8 = 0.5) 0.620 £ 0.040 0.565 £ 0.189 0.557 £ 0.187  0.683 + 0.110
Shrinkage (8 = 0.75) 0.616 + 0.039 0.557 £ 0.186 0.544 £ 0.183  0.688 + 0.109

Days in Advance: 90
AdaBoost (x10) 0.626 £ 0.033 0.507 £+ 0.107 0.411 £ 0.153  0.840 & 0.088
AdaBoost (x50) 0.632 £ 0.028 0.533 £ 0.092 0.441 £ 0.135  0.823 £ 0.080
CRDA (A =1.0) 0.682 £ 0.008 0.722 £ 0.008 0.825 £ 0.017  0.540 £+ 0.020
CRDA (A =10.0) 0.664 £ 0.012 0.718 £ 0.006 0.856 £ 0.025 0.472 £ 0.044
CRDA (A = 100.0) 0.656 £ 0.016 0.715 £ 0.005 0.865 £ 0.029  0.447 £ 0.058
LDA 0.631 £+ 0.014 0.630 £ 0.018 0.631 £ 0.034  0.630 &+ 0.032
Logistic Regression 0.605 £ 0.060 0.424 £ 0.232 0.353 £ 0.222  0.857 £+ 0.107
De-Sparse (A = 1.0) 0.684 + 0.010 0.714 £ 0.014 0.789 £ 0.031  0.579 £+ 0.020
De-Sparse (A = 10.0) 0.676 £ 0.008 0.724 + 0.004 0.852 £ 0.019  0.500 + 0.030
De-Sparse (A =100.0) 0.658 £ 0.015 0.716 £ 0.005 0.863 £ 0.029  0.452 % 0.057
SVM 0.657 £ 0.009 0.669 £ 0.015 0.693 £ 0.031  0.621 4+ 0.024
DIAG 0.625 £ 0.013 0.614 £ 0.029 0.601 £ 0.055 0.648 £ 0.045
Shrinkage (8 = 0.25) 0.627 £ 0.014 0.617 £ 0.030 0.604 £ 0.056  0.651 % 0.043
Shrinkage (8 = 0.5) 0.626 £ 0.013 0.616 £ 0.027 0.603 £ 0.051  0.650 4 0.042
Shrinkage (8 = 0.75) 0.626 £+ 0.014 0.617 £ 0.023 0.604 £ 0.045 0.649 + 0.043
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Table 5: Performance Comparison with Training Set:250x 2, Testing Set: 2000x 2

Accuracy F1-Score Sensitivity Specificity

Days in Advance: 30
AdaBoost (x10) 0.620 £ 0.037 0.484 £ 0.110 0.380 £ 0.147  0.860 % 0.076
AdaBoost (x50) 0.625 £ 0.033 0.499 + 0.097 0.394 £+ 0.138  0.856 4+ 0.074
CRDA (A =1.0) 0.689 + 0.010 0.726 &+ 0.009 0.824 £ 0.021  0.553 + 0.025
CRDA (A =10.0) 0.677 £+ 0.012 0.722 £ 0.009 0.840 £ 0.020  0.513 £ 0.029
CRDA (A =100.0) 0.666 + 0.014 0.719 £ 0.007 0.853 £+ 0.027  0.479 £ 0.050
LDA 0.644 4+ 0.009 0.645 + 0.012 0.648 £ 0.023  0.640 % 0.020
Logistic Regression 0.605 £+ 0.057 0.424 £ 0.204 0.339 £ 0.200  0.870 % 0.089
De-Sparse (A = 1.0) 0.690 + 0.007 0.719 + 0.007 0.791 £ 0.022  0.589 % 0.027
De-Sparse (A = 10.0) 0.684 £ 0.009 0.726 + 0.008 0.837 £ 0.015 0.531 &+ 0.012
De-Sparse (A =100.0) 0.671 + 0.012 0.721 £ 0.008 0.848 4+ 0.026  0.494 £ 0.039
SVM 0.663 £ 0.013 0.673 £ 0.015 0.694 £ 0.024 0.632 £+ 0.023
DIAG 0.633 £+ 0.011 0.619 £ 0.028 0.599 £ 0.055  0.668 + 0.046
Shrinkage (8 = 0.25) 0.625 £+ 0.044 0.569 + 0.192 0.562 £ 0.193  0.689 % 0.108
Shrinkage (8 = 0.5) 0.626 + 0.044 0.569 + 0.192 0.561 £ 0.192  0.691 + 0.106
Shrinkage (8 = 0.75) 0.639 + 0.011 0.633 £+ 0.022 0.624 £+ 0.039  0.653 £ 0.025

Days in Advance: 60
AdaBoost (x10) 0.635 £+ 0.026 0.539 £ 0.087 0.449 £ 0.141  0.820 £+ 0.091
AdaBoost (x50) 0.634 £+ 0.027 0.536 £ 0.089 0.445 + 0.144  0.823 £ 0.091
CRDA (A =1.0) 0.692 £ 0.006 0.729 £ 0.006 0.827 £ 0.014  0.557 4+ 0.015
CRDA (A =10.0) 0.682 + 0.008 0.730 £ 0.004 0.860 £ 0.019  0.504 % 0.031
CRDA (A =100.0) 0.674 £+ 0.014 0.726 £ 0.005 0.864 £ 0.025  0.483 & 0.051
LDA 0.642 £+ 0.011 0.643 £ 0.015 0.645 + 0.025  0.638 £ 0.017
Logistic Regression 0.623 + 0.048 0.489 + 0.184 0.411 £ 0.195 0.835 £ 0.105
De-Sparse (A =1.0) 0.691 £+ 0.008 0.717 £ 0.009 0.781 £ 0.019 0.601 &+ 0.017
De-Sparse (A = 10.0) 0.689 + 0.004 0.733 + 0.004 0.854 £+ 0.013  0.524 + 0.017
De-Sparse (A =100.0) 0.676 + 0.013 0.727 £ 0.005 0.863 £ 0.024  0.488 £ 0.048
SVM 0.662 + 0.008 0.668 + 0.012 0.681 £ 0.023  0.642 + 0.017
DIAG 0.634 £+ 0.012 0.613 £ 0.026 0.582 £ 0.053  0.687 % 0.049
Shrinkage (8 = 0.25) 0.627 £ 0.044 0.565 £ 0.189 0.545 £ 0.185  0.709 4+ 0.101
Shrinkage (8 = 0.5) 0.642 £+ 0.010 0.634 £+ 0.015 0.620 £ 0.028  0.663 + 0.028
Shrinkage (8 = 0.75) 0.641 + 0.010 0.636 £ 0.012 0.627 £ 0.021  0.655 + 0.022

Days in Advance: 90
AdaBoost (x10) 0.633 £+ 0.027 0.536 £ 0.089 0.447 £ 0.140  0.818 & 0.086
AdaBoost (x50) 0.631 £ 0.026 0.535 £ 0.087 0.445 £ 0.137  0.818 £ 0.085
CRDA (A =1.0) 0.686 £ 0.006 0.721 £ 0.009 0.813 £ 0.029  0.558 + 0.026
CRDA (A =10.0) 0.675 £+ 0.007 0.720 £ 0.006 0.838 £ 0.021  0.512 + 0.028
CRDA (X = 100.0) 0.671 + 0.009 0.719 £ 0.004 0.844 £ 0.028  0.497 £ 0.043
LDA 0.648 £ 0.009 0.648 £ 0.018 0.651 £ 0.037  0.644 £+ 0.025
Logistic Regression 0.628 £ 0.028 0.520 £ 0.095 0.427 £ 0.146  0.828 £ 0.090
De-Sparse (A = 1.0) 0.687 + 0.009 0.713 £ 0.014 0.778 £ 0.033  0.597 & 0.022
De-Sparse (A = 10.0) 0.683 £ 0.006 0.725 + 0.008 0.839 £ 0.021  0.527 + 0.018
De-Sparse (A =100.0) 0.673 £ 0.008 0.720 £ 0.005 0.841 £ 0.024  0.505 % 0.037
SVM 0.666 £+ 0.009 0.672 £+ 0.014 0.687 £ 0.030  0.644 + 0.023
DIAG 0.635 + 0.015 0.621 £ 0.030 0.601 £ 0.053  0.668 % 0.032
Shrinkage (8 = 0.25) 0.638 4+ 0.012 0.631 £+ 0.027 0.621 £ 0.051  0.656 + 0.032
Shrinkage (8 = 0.5) 0.642 £+ 0.011 0.635 £ 0.026 0.626 £+ 0.050 0.657 4+ 0.032
Shrinkage (8 = 0.75) 0.641 + 0.010 0.635 £ 0.024 0.628 £ 0.046  0.655 % 0.030
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Fig. 2: Comparison on ¢2-norm Estimator Error Reduction of Inverse Covariance
Matrices Estimation (the higher the better)

the frequency of false alarms. We believe, compared to the marginal increase of
false alarms, the improvement of sensitivity should be appreciated in medical con-
texts. Compared De-Sparse to CRDA, the de-sparsified Graphical Lasso here helps
De-Sparse achieve higher overall accuracy and F1-score with a more balanced pair
of sensitivity and specificity.
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4.4 Empirical Convergence of Parameter Estimation

We hypothesize De-Sparse improves LDA because that the de-sparsified Graphical
Lasso used in De-Sparse approaches to the inverse of population covariance matrix
has a tighter error bound than the inverse of sample covariance matrix used in
simple LDA models, when the training sample size is limited. In order to verify our
hypothesis, we compare the inverse covariance matrix estimators used in De-Sparse,
CRDA, and other LDA baselines, using the EHR data. Specifically, we (1) learned
a “ground truth” covariance matrix Ygr (and its inverse Ogr = Z‘é%) using
diagnosis-frequency vectors of 10,000 patients (w/o the target disease, balanced)
randomly retrieved from all patients of 22 U.S. university healthcare systems, (2)
randomly selected another 50 to 250 samples (w/o the target disease, balanced) to
train LDA, De-Sparse, CRDA and Shrinkage, (3) estimated the error between the
inverse covariance matrix (denoted as ©, © = o for CRDA, 6 = T for De-Sparse,
and © = O for Shrinkage LDA) learned in each classifier versus the inverse of
“ground truth” covariance matrix Ygr, all in £3-norm, and (4) further estimated
the error reduction of © from the inverse of sample covariance estimation (i.e.,
6=3""as

R(©) = |6 - 6|3 - [6ar — 63, (19)

where © = 6 for CRDA, 6 = T for De-Sparse, and © = Og for Shrinkage LDA.
We repeated above (1)—(4) steps for 100 times, and illustrated the average error
reduction R(O) in Fig. 2fa), with varying parameters and settings.

Fig. [2(a) demonstrates that, estimators used in De-Sparse (T) and CRDA
((9) outperform the sample estimation in all settings, while DIAG and Shrink-
age estimators (i.e., ©g and 8 = 0.0, 0.25, 0.5, and 0.75) may cause even higher
estimation error (with negative error reduction) when the number of samples in-
creases. Fig.[2[(b) illustrates the trend of error reduction with CRDA and De-Sparse.
Though the difference between these two algorithms is not visible in such scale,
we can observe that these two algorithms achieve the maximal error reduction
when number of samples is 150 in our experiments, while the error reduction is
low when the number of samples is relatively small (50) or large (250). Because,
when the sample size is small, both sample-based estimation (6) and the regu-
larized estimation (T and 8) work poorly, though T and O still outperform 6.
With the increasing sample size, the advantage of CRDA and De-Sparse becomes
more and more significant. However, when sample size is large, both sample-based
estimation and the regularized estimation converge well, thus the error reduction
becomes marginal.

5 Conclusion

In this paper, we study the long existing problem of covariance-regularized discrim-
inant analysis for classification under high-dimensional low sample sizes (HDLSS)
settings. More specific, we take care of the applications to the predictive analytics
of diseases using Electronic Health Records (EHRs) data and common diagnosis-
frequency data representation. To understand the performance of LDA, we extend
the existing theory [27l[14] and propose a novel analytical model characterizing
the error rate of LDA classification under the uncertainty of parameter estima-
tion. Based on the analytical model, we propose De-Sparse — a novel LDA classifier
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using de-sparsified Graphical Lasso. Our analysis shows that the proposed algo-
rithm could outperform the existing Covariance-regularized discriminant analysis
(CRDA) based on common Graphical Lasso. The experimental results on real-
world Electronic Health Record (EHR) datasets show De-Sparse outperforms all
baseline algorithms. We interpret the comparison of results and demonstrate the
advantage of proposed methods in medicare settings. Further, the empirical studies
on estimator comparison validate our analysis.
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