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Abstract The sequences of users’ behaviors generally indicate their prefer-
ences, which can be used to improve next item prediction in sequential rec-
ommendation. Unfortunately, the users’ behaviors may change over time, and
it remains a great challenge to capture the user’s dynamic preference directly
from her/his recent behaviors sequence. Traditional methods such as Markov
Chains, Recurrent Neural Networks, and Long Short-Term Memory (LSTM)
Networks only consider the relative order of items in sequence, but ignore some
important time information, such as the time interval and duration in the se-
quence. In this paper, we propose a novel sequential recommendation model,
named Interval and Duration aware LSTM (IDLSTM), which leverages the
interval and duration information to accurately model users’ long-term and
short-term preferences. In particular, the IDLSTM model incorporates the
global context information of the sequence in the input layer to make better
use of long-term memory. Furthermore, we also present an improved version
of IDLSTM, namely IDLSTM with Embedding layer and Coupling input and
output gates (IDLSTM-EC), which introduces the coupled input and forget
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gates and embedding layer to improve the efficiency and effectiveness. Exper-
iments on real world datasets show that the proposed approaches outperform
the state-of-the-art baselines, and is able to handle the problem of data spar-
sity effectively.

Keywords Recommendation · Sequence Modeling · Time-aware · Long
Short-Term Memory

1 Introduction

Nowadays, people are severely influenced by the overwhelming massive infor-
mation due to the rapid development of the Internet and Information Technol-
ogy (IT), which is known as information overload problem [3]. Consequently, it
becomes increasingly difficult to find the information they really need. There-
fore, recommender systems have been proposed to help users find the contents
that they want, such as research articles [8], Point-of-Interest [20,32], question
[4] and music [23,24]. Existing recommendation methods include collaborative
filtering-based recommendations [12,29], content-based recommendations [16],
social network-based recommendations [13,1], and hybrid recommendation [7].

For many real-world applications, such as music listening and game play-
ing, users usually make a series of actions within a period of time, which form
behavior sequences. Such behavior sequence can be used to discover users’ se-
quential patterns and help to predict users’ next new action (or item), which
is called sequential recommendation, one of the typical applications of recom-
mender system. The traditional sequential recommendation models are mainly
based on sequential pattern mining [31] and Markov Chain models [5]. The
advent of deep learning has significantly boosted the performance of sequen-
tial recommendation [30,22]. For example, Recurrent Neural Networks (RNN)
has been successfully applied in sequence modeling and next item predic-
tion/recommendation [9]. Furthermore, as a variant of RNN, Long Short-Term
Memory (LSTM) Networks solves the problem of gradient disappearance in
RNN and provides better recommendation results. However, both RNN and
LSTM focus only on relative order information of items in sequence, and ignore
some important sequential information. Especially, items (or actions) that are
close to each other in behavior sequence have strong correlations. In fact, this
rule is not always true in sequential recommendation, because users may have
some haphazard behaviors which do not indicate their preferences.

In this paper, we propose to model the sequences of items information,
interval information and duration information in the users’ behavior sequences
to predict their next new items (or actions). Specifically, the next item refers
to a new item that the user appears in other users’ historical records instead of
the target user’s behavior sequence. For example, for a user’s event sequence
{A,B,A,C}, we will use {A,B,A} to predict “C” instead of {A,B} to predict
“A”. This is because “A” has already appeared in the sequence and repeated
predictions are meaningless. In this sequence, “C” is a new item. Obviously, in
sequential recommender systems, it is more meaningful (and also difficult) to
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Fig. 1: Sequential behaviors with intervals and durations. ik represents the kth

item in the sequence, ∆tk represents the interval between ik and ik+1, and dk
represents duration of ik.

recommend items that users may be interested in but they haven’t interacted
with, which are called new items for users. The scenario of this work is shown
in Figure 1. The length of time (time interval) between two adjacent items
indicates the correlation between them. In other words, the time information,
in addition to the order information, reveals rich context for users’ dynamic
preferences modeling. Besides, the duration of users’ actions or behaviors is
also related to their preferences for corresponding items. For example, a user
may be very interested in a game (or similar games) if he/she plays it for very
long time (duration).

In order to make better use of items as well as time information, we present
a novel recommendation model, namely Interval and Duration LSTM (IDL-
STM). Specifically, an interval gate and a duration gate are firstly introduced
to preserve users’ short-term and long-term preferences, respectively. Then,
the information of the two gates is seamlessly combined to improve next new
item recommendation. Afterwards, an embedding layer is used after the input
layer to incorporate the global context information and long-term memory.
The main contributions of this paper are listed as follows:

– We propose a novel next new item recommendation model, which can make
better use of important time information in sequences, such as interval and
duration.

– We further improve the model’s effectiveness and efficiency by adding an
embedding layer and using coupled input and forget gates.

– Experiment results on real world datasets show that the proposed models
outperform the state-of-the-art baselines, and is able to handle the problem
of data sparsity effectively.

The rest of this paper is structured as follows. The related works are intro-
duced in Section 2. Then we illustrate the motivation of this work with data
statics and analysis in Section 3. Section 4 discusses the proposed methods
in detail, and Section 5 demonstrates the experimental results and analysis.
Finally, Section 6 concludes the paper and outlines the future work.
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2 Related Works

2.1 Traditional Sequence Models

The traditional sequential models can be further divided into sequential pat-
tern mining [31] and Markov Chain models [5]. Recommender systems based
on sequential pattern mining first mine frequent patterns of data on sequence
data, and then recommend via sequential pattern matching. For the sake of
efficiency, these models may filter some infrequent but important patterns,
which limits the recommendation performance, especially in coverage. Markov
Chains (MC) methods are also used for sequence modeling. The main idea of
such sequential recommendation models is to use the MC to model the prob-
ability of users’ interaction events in the sequence and then predict the next
event based on probability. Specifically, the Markov Chain model assumes that
the current user interaction depends on one or more recent interaction events.
Therefore, it can only capture local information of the sequence and ignore
the global information of the sequence. Rendle et al. proposed Factorized Per-
sonalized Markov Chains (FPMC) model [19] and introduced an adaption of
the Bayesian Personalized Ranking (BPR) [18] framework for sequential data
modeling and recommendation. However, the Markov Chain model mainly fo-
cuses on the relationships between items in the short term, and it is not able
to incorporate important information in long sequences.

2.2 Latent Representation based Sequential Models

Latent representation models learn the potential representation of each user or
item, which contains some latent dependencies and features. The main cate-
gories in the latent representation model are the factorization machine [10] and
the embedding model [26]. Sequential recommendation methods based on fac-
torization machine usually use matrix factorization to factorize the observed
user-item interaction matrix into potential vectors of users and items. Nisha
et al. [14] used networks representation learning methods to capture implicit
semantic social information and improve the performance of recommender sys-
tems. Wang et al. [25] proposed a Hierarchical Representation Model (HRM)
based on the user’s overall interests and final behaviors. Pan et al. [15] com-
bined factorization and neighborhood-based methods, and proposed a novel
method called matrix factorization with multiclass preference context (MF-
MPC). Shi et al. [20] used factorization machine to construct a recommenda-
tion model, which effectively reduces the model parameters and improves the
performance of the recommendation. Yu et al. [32] used the information based
on users’ context behaviors semantics on the POI recommendation model to
solve the data sparse problem. However, sequential recommendation meth-
ods based on factorization are easily affected by the sparse observation data.
The sequential recommendation model based on the embedded model usually
maps all user interactions in the sequence into a potential low-dimensional
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Table 1: Strengths and weaknesses of traditional methods

Methods Strengths Weaknesses
Sequential pattern mining 1. effective for fixed sequen-

tial patterns;
2. very efficient

1. losing some infrequent
but important modes
2. low coverage or diversity
of recommendation results

Markov Chain models capturing local information
of the sequence very well

ignoring the global infor-
mation of the sequence

Factorization machine good representation of the
inherent characteristics of
the event

easily affected by data
sparsity

Embedding model reducing the dimension of
event representation and
suitable for many tasks

cannot modeling the fea-
tures in sequence adap-
tively

Recurrent Neural Networks well suited for modeling
complex dynamics in se-
quences

1. relying on the sequence
information
2. cannot preserve the
user’s interest for a long
time

space through a new coding method. The embedding model is used in many
fields, such as word2vec, and GloVe [17]. Among them, the vector obtained
by embedding the model is usually used for the input of the neural networks.
It should be noted that the representation vector is obtained by the order
of interaction between users or items, which is completely different from the
vector in collaborative filtering. The embedding models make the models tend
to use global information rather than local information.

2.3 Deep Learning based Sequential Models

In recent years, the most commonly used deep learning method in sequential
recommendation is the Recurrent Neural Networks (RNN). Recurrent Neural
Networks is well suited for modeling complex dynamics in sequences due to
its special structure [11,21,33] Zhang et al. [33] proposed a novel framework
based on Recurrent Neural Networks which can model user sequence informa-
tion through click events. Twardowski et al. [21] combined context information
to propose a recommender that can handle the long-term and short-term in-
terests of users in the news domain. Hu et al. [11] proposed a neural networks
model using item context to better model the purchasing behaviors of users. In
order to improve the session-based recommender system, Wang et al. [27] de-
signed effective Mixture-Channel Purpose Routing Networks (MCPRNs) and
improved the accuracy and diversity of recommendations. The RNN-based
recommendation methods rely too much on the sequence information, and at
the same time cannot save the user’s interest for a long time.
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3 Data Analysis and Motivation

Table 2: Examples of game playing data

Record# Timestamp UserId Game Duration(s)
1 2016-09-01 01:00:47 386576 League of Legends 8700
2 2016-09-01 18:45:25 386576 QQGame 600
3 2016-09-03 17:31:28 386576 League of Legends 1500
4 2016-09-03 20:22:21 386576 CrossFire 1200
5 2016-09-16 21:57:25 386576 QQ Speed 600
6 2016-09-16 22:52:33 386576 CrossFire 2400
7 2016-09-17 00:27:34 386576 League of Legends 12300
8 2016-09-17 18:37:48 386576 League of Legends 1740
9 2016-09-18 02:08:41 386576 CrossFire 6780
10 2016-09-19 01:17:36 386576 Call of Duty Online 900
11 2016-07-17 10:47:08 635033 DNF 3000
12 2016-07-18 09:57:07 635033 DNF 1800
13 2016-07-18 11:22:07 635033 DNF 4500
14 2016-07-18 14:47:08 635033 QQ Speed 3000
15 2016-07-19 10:37:07 635033 QQ Speed 2700

In this section, we will introduce the motivation of this works, which is
further explained via data analysis. We use the game dataset as a case to
explain the role of time interval and duration, and then present some samples
of game-playing data in Table 2. For example, Record 1 in Table 2 indicates
that the user with the user ID of 386576 played “League of Legends” at 2016-
09-01 01:00:47 (timestamp) for 8700 seconds (duration).

The interval represents the difference between two adjacent records’ times-
tamps of the same user. For example, the interval between Record 2 and
Record 1 in Table 2 is 63878 seconds. Zhu et al. [34] showed that the shorter
the interval is, the greater the impact of the current item has on the next
item. One reason is that users may repeatedly play similar games in a short
period of time, which represents their short-term preferences. For example,
the user with the user ID of 386576 frequently plays “League of Legends” in
a short period of time. Besides, the information in Figure 2a shows that the
proportion of adjacent games are different in the sequence increases overall
when the time interval is longer. In other words, longer interval indicates low
correlation between adjacent items, which also influence the modeling of users’
preferences.

Besides, duration is also an important feature in sequence modeling and
sequential prediction/recommendation. As shown in Table 2, the duration in-
dicates how long a user plays a game. Generally, duration can reflect the degree
of the users’ preferences for corresponding items. When the user plays a game
for a longer duration, he/she will play the game more frequently, and in other
words, he/she is more interested in the corresponding game. For example, in
Table 2, the frequently played games, “League of Legends” and “CrossFire”,
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game playing.

Fig. 2: Statistics of game data sets

have longer durations. As shown in Figure 2b, we further illustrate the rela-
tionship between the average duration of the game and the frequency of game
being played with data analysis. The results show that longer duration indi-
cates that users are interested in corresponding games and tend to play them
more frequently and spend more time (duration). In other words, the users’
preferences for the game are reflected in the duration.

In general, users have both long-term and short-term preferences [28].
Specifically, long-term interest refers to the users’ long-term and static in-
terest. For example, some users only like role-playing games, so they may be
playing this type of game most of the time. But in fact, the users’ preferences
may change over time, and the next item or action is more likely to depend on
users’ recent behaviors, which is called short-term interest. For example, some
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users only like role-playing games, but they may try some popular strategy
games. In order to better capture users’ long-term and short-term interests,
we need to make better use of both the time interval information and du-
ration information. Therefore, we propose a novel recommendation model to
incorporate the interval and duration information into next new item recom-
mendation.

4 The Proposed Method (IDLSTM-EC)

Input

IDLSTM
(-EC) cell

IDLSTM
(-EC) cell

IDLSTM
(-EC) cell

...

...

softmax function

GAME LIST OF PREDICTION  
 

GAME_PRED-1       5.43%
GAME_PRED-2       1.12%
GAME_PRED-3       0.65%

...

？

Output

Fig. 3: The architecture of the proposed model in sequential recommen-
dation. In architecture, a game sequence is taken as an example, where
{game1, game2, · · · , gamek} is the sequence, x is the one-hot vector of the
game, ∆t is the time interval, d is the duration. IDLSTM(-EC) is the pro-
posed model in this paper.

The time information in this work includes both time interval and duration.
Specifically, interval indicates correlation between current item and next item
in the sequence and the duration affects the user’s preferences for correspond-
ing events (similar to the rating). Inspired by the analysis and motivation in
Section 3, we propose a novel next new item recommendation method namely
Interval and Duration aware LSTM (IDLSTM), as well as its improved ver-
sion, namely IDLSTM with Embedding layer and Coupling input and output
gates (IDLSTM-EC).

Figure 3 shows how the proposed model perform prediction and recommen-
dation based on users’ sequences. In the process, we firstly extract the interval
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∆t, duration d, and x from the sequence {game1, game2, · · · , gamek}, where
x is the one-hot vector of the game. Then, we feed the obtained information
into the IDLSTM(-EC) cell. Finally, the result output by the IDLSTM(-EC)
cell is passed through the softmax function to obtain the probability of each
game to be played next. Compared with Recurrent Neural Networks (RNN) or
Long Short-Term Memory (LSTM) Networks, the proposed model can incor-
porate three kinds of inputs (item, time interval and duration) into sequence
modeling and recommendation in a unified way.

The architectures of the proposed models as well as LSTM are shown in
Figure 4. Specifically, in order to illustrate the improvement of the proposed
model, we use different colored lines to highlight the improvement. In addition,
parameters that appear in Section 4 are explained in Table 3. Next, we will
introduce IDLSTM as well as the improved model IDLSTM-EC in details. The
following mainly introduces the models used in the IDLSTM(-EC) cell part.

4.1 IDLSTM

As shown in Figure 4b, IDLSTM introduces an interval gate I and a duration
gate D into the LSTM model. As shown in the figure, we use purple lines
to highlight processing of time interval and duration with the time interval
gate and duration gate. Specifically, the interval gate models the impact of
the current event on the next event based on time interval information, while
the duration gate is used to model users’ long-term interest in various items
based on duration information.

The equation for the interval gate Ik and the duration gate Dk are formally
defined as follows:

Ik = σti
(
Wtixk + σ′ti (Sti∆tk) + bti

)
, (1)

Dk = σtd
(
Wtdxk + σ′td (Stddk) + btd

)
. (2)

Further, the interval gate Ik and the duration gate Dk are added to IDL-
STM, which is defined as follows:

ik = σi(Wixk + Uihk−1 + Pi ◦ ĉk−1 + bi), (3)

fk = σf (Wfxk + Ufhk−1 + Pf ◦ ĉk−1 + bf ), (4)

ck = ik ◦ σc(Wcxk + Uchk−1 + bc), (5)

ĉk = fk ◦ ĉk−1 +Dk ◦ ck, (6)

c̃k = ĉk + Ik ◦ ck, (7)
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(a) LSTM

(b) IDLSTM (the proposed model)

(c) IDLSTM-EC (the proposed model)

Fig. 4: Architectures of models (a) LSTM, (b) IDLSTM and (c) IDLSTM-
EC. IDLSTM has a time gate Ik and a duration gate Dk. Ik is designed to
model time interval ∆t for the impact of the current event on the next event
and Dk is designed to model duration d for users’ interests. IDLSTM-EC is
a variant of IDLSTM using coupled input and forget gates and input x has
been converted to x̂ by embedding layer. To illustrate our improvement on the
LSTM model, we use purple lines to highlight the improvements in IDLSTM.
Besides, to clarify the improvement of IDLSTM-EC, we use red lines to mark
the difference from IDLSTM.
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Table 3: Parameter Description

Parameter Description
xk one-hot vector of gamek
x̂k embedding of gamek
∆tk time interval between gamek and gamek+1

dk duration of gamek
Ik time interval gate
Wti weight of input xk in Ik
Sti weight of interval ∆tk
bti bias of interval gate Ik
Dk duration gate
Wtd weight of input xk in Dk

Std weight of duration dk
btd bias of interval gate Dk

σti , σtd sigmoid function
σ′
ti
, σ′

td
hyperbolic tangent (tanh) function

ik input gate vector
fk forget gate vector
ok output gate vector
ck cell state vector
ĉk new cell with duration gate information based on ck
c̃k new cell with interval gate and duration gate information based on ĉk
hk hidden state vector
Wi weight of input gate
Wf weight of forget gate
Wc weight of cell
Wo weight of output gate
Ui weight of hidden unit of input gate
Uf weight of hidden unit of forget gate
Uo weight of hidden unit of output gate
bi bias of input gate
bf bias of forget gate
bo bias of output gate
bc bias of cell
σi, σf , σo sigmoid function
σc, σh hyperbolic tangent (tanh) function
◦ operator denotes element-wise product (Hadamard product)

ok = σo(Woxk + Vo∆tk + Uohk−1 + Po ◦ c̃k + bo), (8)

hk = ok ◦ σh(c̃k). (9)

The input of the duration gate Dk is added to ĉk to associate the input
vector xk with both the input gate and the duration gate. Besides, we add
the interval gate Ik to c̃k so that c̃k incorporates both the information of the
interval gate Ik and the duration gate Dk.

The cell ĉk is used to further model the user’s interest by adding the infor-
mation of the duration gate Dk. We also add cell c̃k to combine duration and
interval information for recommendation.



12 Dongjing Wang et al.

Specifically, a small interval (large time interval gate Ik) means that the
current item has a great influence on the next item. Correspondingly, ĉk−1
will be relatively small, and the next item is more influenced. In this way,
IDLSTM can combine the duration and interval information to perform a
more precise recommendation. On the other hand, c̃k is directly connected to
the output gate and is used to control the output together with the output
gate. In addition, ∆t is added to the output gate to control the output better
with other parameters in the output gate, and Vo is the weight coefficient of the
input gate. IDLSTM combines the information of time interval and duration
well, and the use of interval gate and duration gate enables the two kinds of
time information to be preserved for a longer period of time.

4.2 IDLSTM-EC

In order to further improve the effectiveness and efficiency of the proposed
model, we propose IDLSTM-EC, which introduces an embedding layer to uti-
lize more sequence information and uses coupled input and forget gates. The
structure of IDLSTM-EC is shown in Figure 4c and we use red lines to mark
main improvements.

– Adding embedding layer: In the IDLSTM model, all inputs are con-
verted into one-hot vectors, which may lose some important information,
such as the correlation between different items. In fact, the co-occurrence
and context relationships between the inputs play important roles in se-
quential recommendation. However, IDLSTM only employs part of the
context information but fail to utilize the global context. In order to in-
corporate more context information, an embedding layer is added after
the input to transform the original one-hot vectors into low dimensional
real-valued vectors (embeddings), which can effectively capture important
features of items and their relationships in the training data. Specifically,
the Global Vectors (GloVe) [17] method is used to train the embedding vec-
tor. GloVe model is a popular embedding method, which obtains vectors
through unsupervised learning. Unlike other embedding methods, GloVe
model incorporates global information and contextto capture more impor-
tant information.

– Using coupled input and forget gates: The parameters of the proposed
model are reduced by using coupled input and forget gates. Thus, Eq. 4
will be removed and Eq. 6 is modified as follows:

ĉk = (1− Ik ◦ ik) ◦ ĉk−1 +Dk ◦ ck. (10)

Specifically, ĉk is the main cell and the input is affected by both Ik and the
input gate, fk is replaced with (1− Ik ◦ ik) in ĉk. The IDLSTM-EC model
coupling input and forget gate increase the efficiency by reducing model
parameters. At the same time, the reduction of parameters prevents the
model from overfitting to some extent.
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5 Experiments

In this section, we will evaluate the proposed models as well as state-of-the-art
baselines on two real-world datasets. The First dataset is the game-playing
records collected from the word-leading Internet bar which has the largest
number of game players in China. The second one is a public music listen-
ing dataset LastFM-1K1, which include all the music listening sequences and
timestamps of nearly 1,000 listeners up to May 5, 2009. We have made prepro-
cess on the two datasets and delete users and items with only a few records.
The statistics information of the final datasets is shown in Table 4, where #(∗)
indicates the number of ∗, and Average (Item) indicates the average number
of interactions by all users.

Table 4: Statistics of Two Datasets

#(Records) #(Users) #(Item) Average(Item)
Game dataset 955,377 2,153 1,003 952.5

LastFM 769,674 967 5,000 795.9

5.1 Compared Methods

The proposed models are compared with the state-of-the-art recommendation
methods, including traditional recommendation methods and the variants of
LSTM mentioned above.

5.1.1 Baselines

We adopt two kinds of recommendation methods as baselines, including gen-
eral recommendation models and sequence-based recommendation models.
Specifically, general models mainly perform traditional, non-sequential rec-
ommendation, while sequence-based models can perform next item recom-
mendation via machine learning or neural networks. Besides, we also compare
different versions of the proposed models to show the effectiveness of each
improved component.

General recommendation models:

– POP: Popularity predictor which recommends the most popular items to
users.

– UBCF: User-Based Collaborative Filtering.
– BPR: Bayesian personalized ranking [18].

Sequence-based next item recommendation models:

1 http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
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– FPMC: Factorizing Personalized Markov Chains [19].
– Session-RNN: A variant of traditional RNN which can capture the user’s

short-term interest.
– Peephole-LSTM: A variant of LSTM which adds “peephole connection”

to allow all gates to accept input from the state [6].
– Peephole-LSTM with time: This model adds the time information to

Peephole-LSTM for a fair comparison.
– Time-LSTM: A variant of LSTM that adds two time gates to the tradi-

tional LSTM [34].

5.1.2 The proposed methods1

– IDLSTM: The proposed model which has the interval gate and the dura-
tion gate.

– IDLSTM-C: An improved model of IDLSTM, which employs the coupled
input and forget gates.

– IDLSTM-E: An improved model of IDLSTM, which adds an embedding
layer.

– IDLSTM-EC: An improved model of IDLSTM, which adds an embedding
layer, and couples the input and forget gates.

5.2 Experiment Setup

In the experiment, the task is to predict the next new item users will be most
likely to interact with according to the existing behavior sequences. During
the training phase, an improved stochastic gradient descent method called
Adagrad [2] is used, which is able to adapt the learning rate to the parameters.
Specifically, Adagrad can improve the convergence ability of the model by
increasing the learning rate of sparse parameters. In addition, the cross-entropy
is chosen as the loss function, which is defined as follows:

Loss = − 1
M

∑
(posi × yi log ŷi), (11)

where M is the number of training samples, yi is the value of the real item, ŷi
is the value of the predicted item, and posi is the new-item indicator. When
yi corresponds to a new item, posi = 1. Otherwise posi = 0.

All experiments are conducted on the PC with Intel(R) Core(TM) i9-7900X
@ 3.30GHz and GeForce GTX 1080 Ti, 64GB memory, and Ubuntu 16.04.

5.3 Evaluations Metrics

The proposed models are evaluated with two metrics, including Recall and
MRR.

1 https://github.com/vallzey/IDLSTM
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– Recall: Recall (aka sensitivity) is defined as follows:

Recall@n = #(n,hit)
#(all) , (12)

where #(n, hit) is the number of predicted results in the top-n of the
recommended list, and #(all) is the number of all test samples. Recall
is a common evaluation criterion and is usually used to evaluate if the
recommendation lists contain the target item.

– MRR: MRR (Mean Reciprocal Rank) is a ranking evaluation metrics
which indicates the average of the reciprocal ranks of the target items
in recommendation list. Formally, it is defined as follows:

MRR@n = 1
#(all) ×

∑
1

ranki
, (13)

where ranki denotes the ranking of the i-th test target item in the recom-
mendation list. If ranki > n, 1

ranki
= 0. The MRR is the average of the

reciprocal levels of the target items. When the Recall@n of several models
are similar (different models have similar proportion of target items ap-
pearing recommendation list), we can use MRR to further evaluate them.
Especially, MRR@n is the same with Recall@n when n = 1.

5.4 Results and Analysis

Table 5: Recall of the proposed methods and baselines

Game dataset Recall@1 Recall@5 Recall@10 MRR@1 MRR@5 MRR@10
POP 0.0170 0.1246 0.1756 0.0170 0.0526 0.0594
UBCF 0.0170 0.0652 0.1160 0.0170 0.0323 0.0387
BPR 0.0595 0.1501 0.3116 0.0595 0.0916 0.1121
FPMC 0.0142 0.1246 0.2040 0.0142 0.0493 0.0597

Session-RNN 0.0312 0.1983 0.3683 0.0312 0.0873 0.1298
Peephole-LSTM 0.1246 0.3654 0.5127 0.1246 0.2085 0.2278

Peephole-LSTM with time 0.1417 0.3768 0.5270 0.1416 0.2266 0.2463
Time-LSTM 0.1671 0.4165 0.5581 0.1671 0.2634 0.2831
IDLSTM 0.2323 0.4844 0.6034 0.2323 0.3232 0.3484

IDLSTM-C 0.2351 0.4844 0.5836 0.2351 0.3291 0.3427
IDLSTM-E 0.2720 0.5099 0.6176 0.2720 0.3576 0.3720
IDLSTM-EC 0.2663 0.5071 0.6204 0.2663 0.3604 0.3752

LastFM Recall@1 Recall@5 Recall@10 MRR@1 MRR@5 MRR@10
POP 0.0103 0.0182 0.0213 0.0103 0.0117 0.0193
UBCF 0.0121 0.0187 0.0226 0.0121 0.0149 0.0216
BPR 0.0297 0.0452 0.0554 0.0297 0.0335 0.0489
FPMC 0.0153 0.0228 0.0282 0.0153 0.0182 0.0254

Session-RNN 0.0292 0.0448 0.0529 0.0292 0.0322 0.0482
Peephole-LSTM 0.0680 0.0831 0.0871 0.0680 0.0781 0.0802

Peephole-LSTM with time 0.0691 0.0769 0.0926 0.0691 0.0702 0.0809
Time-LSTM 0.0810 0.1040 0.1259 0.0810 0.1161 0.1209
IDLSTM 0.0943 0.1635 0.1642 0.0943 0.1290 0.1327

IDLSTM-C 0.0931 0.1622 0.1658 0.0931 0.1210 0.1389
IDLSTM-E 0.1099 0.1648 0.1978 0.1099 0.1328 0.1428
IDLSTM-EC 0.1124 0.1758 0.2088 0.1124 0.1350 0.1431
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The comparisons between the proposed model and baseline models are
presented in Table 5. The results show that the proposed model has the best
performance in sequential recommendation. Besides, models with neural net-
work structure have better performance than models without considering se-
quence factors. Specifically, IDLSTM-EC achieves 11.1% and 32.5% improve-
ments than the best baseline method in terms of Recall@10 and MRR@10,
respectively on game datasets. Besides, the improvements of IDLSTM-EC on
LastFM datasets are 65.8% (Recall@10) and 18.3% (MRR@10), separately.
Next, we will analysis the performance of each model in details.

– POP, UBCF, BPR and FPMC: POP only recommends items with
high popularity, which results in low coverage. UBCF and BPR ignore
the dependence of items in sequences and they cannot model users’ short-
term preferences. However, in the sequential recommendation, the recent
items usually have large in decision making. Meanwhile, FPMC method
achieves better performance than POP and UBCF because it combines
matrix factorization and Markov chains to model users’ behavior sequences.
However, FPMC have difficulty retaining information in the sequence for
a long time and it does not fit well with long sequences.

– Session-RNN: Session-RNN mainly captures the user’s short-term inter-
ests, but does not consider the user’s long-term interests, which limits its
performance. However, in sequential recommendation, both users’ long and
short-term preferences play important roles in sequential recommendation.

– Peephole-LSTM and Peephole-LSTM with time: The Peephole-
LSTM does not work well due to the lack of time information. Compared
to Peephole-LSTM, the Peephole-LSTM with time incorporates time in-
formation into the input, an achieves slightly better performance in most
cases. However, it is not quite effective to add time information directly
to the input. In addition, and those two approaches cannot capture or
preserve users’ long-term preferences accurately.

– Time-LSTM: Time-LSTM incorporate time information into the sequences
modeling process in a more effective way, so it achieves better performance
than Peephole-LSTM and Peephole-LSTM with time. Especially, the lack
of duration information in Time-LSTM decreases its ability to fully utilize
time information or capture the users’ preferences accurately, which limits
its performance.

– IDLSTM and IDLSTM-E: IDLSTM and IDLSTM-E perform better
than all baselines in Recall and MRR. This shows that it is better to
use the duration gate and the interval gate at the same time to perform
recommendation. Besides, the performance of IDLSTM-E is much better
than that of IDLSTM. The reason is that the proposed methods can uti-
lize both time interval and duration with gate mechanisms effectively to
perform better recommendation. Besides, the results also show both inter-
val and duration information is important in sequence modeling as well
as capturing users’ long and short-term preferences. The performance of
IDLSTM-E is better than IDLSTM. The reason is that the embedding layer
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based on GloVe can effectively capture the global information in users’ be-
havior sequences, which enables the proposed methods to achieve better
performance in sequential recommendation.

– IDLSTM, IDLSTM-C and IDLSTM-EC: Extensive experiments have
shown that IDLSTM using coupled input and forget gates (IDLSTM-C)
has no significant improvement than IDLSTM in accuracy evaluation. The
efficency comparisons of each model to run an epoch are listed in Ta-
ble 6, which shows that IDLSTM-C and IDLSTM-EC are approximately
6% faster than IDLSTM and IDLSTM-E. Therefore, the efficiency of the
proposed models is improved via using coupled gates to reduce the param-
eters that need to be trained. Besides, traditional method cannot achieve
accurate results although they require much less time due to their concise
structure. In addition, in actual applications, the recommendation mod-
els are generally pre-trained offline, so the comparison test time is more
meaningful. Specifically, all recommendation methods can perform recom-
mendation in test phase within close and reasonable time.

In conclusion, traditional recommendation methods (such as UBCF and
BPR) do not consider the dynamic changes in user interests, which results in
poor results. The sequence-based methods (such as Session-RNN, Peephole-
LSTM, Peephole- LSTM with time, Time-LSTM, and IDLSTM(-EC)) achieves
better performance than traditional recommendation methods due to the effec-
tiveness of Recurrent Neural Network in modeling users’ behavior sequences.
Especially, the proposed models can make better use of the time interval
and duration information, which is very important for sequence modeling
and sequential prediction/recommendation. In addition, the improvement of
IDLSTM-EC over IDLSTM shows that the global information (related to
users’ long-term preference) captured by IDLSTM-EC is quite important in
sequential recommendation.

5.5 Effect of units’ number

In this subsection, we evaluate the influence of the number of cell units and the
number of embedding layer units with two experiments. In the first experiment,
the effect of the number of cells is evaluated. Then, the best number of units
in the first experiment is used in the second experiment to evaluate the effect
of the number of embedding layer units.

5.5.1 Effect of cell units’ number

We first set the number of cell units to (16, 32, 64, 128, 256, 1024) and evaluate
the impact of the number of cell units of IDLSTM and IDLSTM-C in terms of
Recall and MRR. As shown in Figure 5, two models have similar performance
in Recall@10 and MRR@10. In addition, IDLSTM-C takes less time than
IDLSTM with the increase of number of cell units. Meanwhile, the promotion



18 Dongjing Wang et al.

Table 6: Time for each model to run an epoch

Game dateset Training time (s/epoch) Testing time (s)
POP Memory-based 0.01

UBCF Memory-based 0.31
BPR 0.10 0.97

FPMC 0.43 0.40
Session -RNN 45.23 1.91

Peephole-LSTM 51.65 1.93
Peephole-LSTM with time 53.72 1.94

Time-LSTM 65.82 1.95
IDLSTM 65.37 1.98

IDLSTM-E 65.29 1.97
IDLSTM-C 56.84 1.96

IDLSTM-EC 59.90 1.97

LastFM Training time (s/epoch) Testing time (s)
POP Memory-based 0.01

UBCF Memory-based 0.15
BPR 0.08 0.58

FPMC 0.34 0.23
Session -RNN 42.24 0.93

Peephole-LSTM 44.95 1.10
Peephole-LSTM with time 45.04 1.11

Time-LSTM 53.22 1.15
IDLSTM 54.45 1.11

IDLSTM-E 51.47 1.03
IDLSTM-C 54.47 1.16

IDLSTM-EC 51.54 1.09
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Fig. 5: The effect of different numbers of cell units on Recall@10, MRR@10
and time of an epoch.
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Fig. 6: The effect of different numbers of embedding units on Recall@10,
MRR@10 and time of an epoch.

of Recall@10 and MRR@10 becomes gradually stable. In particular, after the
number of cell units is larger than 128, the performance of Recall@10 and
MRR@10 are not much improved. Thus, the best number of cell units is set as
128, which enable the proposed model to capture most important information.

5.5.2 Effect of embedding units’ number

The effect of different numbers of embedding units is further investigated where
the number of cell units is set to 128, and the results are shown in Figure 6.
Especially, the results without embedding layer are also added at 0-abscissa
for comparison. When the number of cells in the embedding layer is less than
32, the performance of the proposed models is lower than that without the
embedding layer model. Therefore, it is necessary to have enough units in
embedding layer to ensure that the sequence information is well preserved in
recommendation model.

As shown in Figures 6c and 6f, although the time varies, the overall fluctu-
ation is not large, because the number of embedding layer units’ parameters
only accounts for a small part of the model. Therefore, different numbers of
embedding layer units do not have much impact on the efficiency of the pro-
posed approach.

Besides, as shown in Figures 6a, 6b, 6d and 6e, when the number of em-
bedding layer units increases from 16 to 128, Recall@10 and MRR@10 are
also improved. However, when the number of embedding units becomes larger
than 128, Recall@10 and MRR@10 have no significant increase, even result
in a downward trend. The reason is that excessive unit may cause overfitting.
Therefore, the number of embedding layer units is set as 128.
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Fig. 7: Comparison of different models on data with different sparsity.

5.6 Impact of data sparsity

We further evaluate the proposed methods against baselines on datasets with
different sparsity to verify their ability of dealing with sparse data. Specifically,
the items with frequency less than d are removed in the dataset, where d is set
to (0, 5, 10, 15, 20, 30, 40, 50) respectively, and the sparsity of corresponding
datasets are (97.04%, 94.50%, 93.38%, 92.65%, 91.87%, 90.73%, 90.15%, 89.61%)
for Game dataset and (99.72%, 98.68%, 97.87%, 96.15%, 94.74%, 88.89%, 86.23%, 85.71%)
for LastFM. As shown in Figure 7, the performance of the various methods
is not significantly decreased as the sparsity increases, because our task is
to recommend next new items that users may be interested in but haven’t
interacted with. Especially, some items with low frequency are excluded to
change the sparsity of dataset, which may also remove some key items or
correlations. For example, if “C” is removed from sequence, next new item
recommender system (our work) performs one predictions, {A,A}− >“B”.
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The performance will decrease if “C” is key item for prediction of “B”. But
even so, the proposed method achieves better performance than baselines in
terms of Recall@10 and MRR@10. In conclusion, our methods can deal with
data with different sparsity effectively.

6 Conclusions

In the paper, we propose a novel time-aware sequence modeling method and
apply it to next new item recommendation. Specifically, the proposed method
introduced two gates, i.e., a duration gate for modeling users’ preferences and
an interval gate for modeling the impact of the current item on the next
item in sequences. In addition, we adopt GloVe to take advantage of global
context information and further improve its efficiency by using coupled input
and forgot gate. Experiments on real world datasets show that the proposed
models outperform state-of-the-art baselines, including LSTM and its variants.
Besides, the experimental results also demonstrate the effectiveness of the
proposed methods when handing sparse data.

In the future, we will try utilizing attention mechanism to extract key
features and their relevance from sequences. Besides, it is general agreed
that users’ personalized interests play an important role in recommendations.
Therefore, we will try enhancing the model’s ability of adapting to users with
different preferences. In addition, we will also consider incorporating content
information such as text and description to further improve the performance
of sequential recommendation.
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