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Abstract. We present a novel theoretical framework for computing large,
adaptive learning rates. Our framework makes minimal assumptions on
the activations used and exploits the functional properties of the loss
function. Specifically, we show that the inverse of the Lipschitz constant
of the loss function is an ideal learning rate. We analytically compute
formulas for the Lipschitz constant of several loss functions, and through
extensive experimentation, demonstrate the strength of our approach
using several architectures and datasets. In addition, we detail the com-
putation of learning rates when other optimizers, namely, SGD with mo-
mentum, RMSprop, and Adam, are used. Compared to standard choices
of learning rates, our approach converges faster, and yields better results.

Keywords: Lipschitz constant · adaptive learning · machine learning · deep
learning

1 Introduction

Gradient descent[6] is a popular optimization algorithm for finding optima for
functions, and is used to find optima in loss functions in machine learning tasks.
In an iterative process, it seeks to update randomly initialized weights to min-
imize the training error. These updates are typically small values proportional
to the gradient of the loss function. The constant of proportionality is called the
learning rate, and is usually manually chosen in the gradient descent rule.

When optimizing a function f with respect to a parameter w, the gradient
descent update rule is given by

w := w− α · ∇wf (1)

The generalization ability of stochastic gradient descent (SGD) and various
methods of faster optimization have quickly gained interest in machine learning
and deep learning communities.
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Several directions have been taken to understand these phenomena. The in-
terest in the stability of SGD is one such direction[22] [14]. Others have proven
that gradient descent can find the global minima of the loss functions in over-
parameterized deep neural networks [49] [7].

More practical approaches in this regard have involved novel changes to the
optimization procedure itself. These include adding a “momentum” term to the
update rule [39], and “adaptive gradient” methods such as RMSProp[42], and
Adam[20]. These methods have seen widespread use in deep neural networks[27]
[45] [1]. Other methods rely on an approximation of the Hessian. These include
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [5] [9] [12] [32] and L-BFGS[23]
algorithms. However, our proposed method does not require any modification
of the standard gradient descent update rule, and only schedules the learning
rate. Furthermore, for classical machine learning models, this learning rate is
fixed and thus, our approach does not take any extra time. In addition, we only
use the first gradient, thus requiring functions to be only once differentiable and
L-Lipschitz.

Recently, several adaptive learning rate methods have been proposed. Zeiler
[46] proposed AdaDelta, a per-dimension learning rate scheme that relies on
computing the Hessian of the loss function. Zhou et al. [48] propose AdaShift,
an improvement over the Adam algorithm. Wu et al. [44] propose WNGrad,
an adaptive learning rate based on weight normalization. Reddi et al. [28] pro-
pose AMSGrad improve upon Adam by incorporating long-term memory into
the update. Luo et al. [24] propose AdaBound and AMSBound, which rely on
estimating the moment to find an adaptive learning rate.

However, we note several issues with the above approaches. For example,
several methods rely on computing the Hessian of the loss function, which can
be computationally expensive, and is typically estimated, using methods (for an
example of such a method, see Martens et al. [25]). In addition, a general trend
that can be observed is to improve upon previous algorithms such as Adam.
Finally, some of the methods above are specifically tuned for neural networks,
and as such, are limited to deep learning.

Our approach alleviates the issues discussed above. Because our approach
does not rely on computing the Hessian, it is computationally cheaper. Comput-
ing the first order derivatives (which is a significantly weaker condition to hold
for commonly used loss functions) suffices for our approach. Further, as will be
discussed in Section 9, modern frameworks include functions that allow us to
compute our lipschitz adaptive learning rate in a significantly faster way. Our
approach is also algorithm-independent; we describe our adaptive learning rate
approach for SGD, SGD with momentum, and Adam. Further, while Wu et al.
[44] note that ”Thus in the stochastic setting, there is no ’best choice’ for the
learning rate”, we disagree. Our learning rate is computed taking the mini-batch
data into consideration, and therefore is truly adaptive in that it is tailored to
each mini-batch. Finally, we argue in this paper that larger learning rates than
typically used can work well, in agreement with Smith and Topin [36].
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1.1 Deep learning

Deep learning [13] is becoming more omnipresent for several tasks, including
image recognition and classification [33] [40] [31] [47], face recognition [41], and
object detection [10], even surpassing human-level performance[15]. At the same
time, the trend is towards deeper neural networks [19] [15].

Despite their popularity, training neural networks is made difficult by several
problems. These include vanishing and exploding gradients [11] [4] and overfit-
ting. Various advances including different activation functions [21] [26], batch
normalization [19], novel initialization schemes [15], and dropout [37] offer solu-
tions to these problems.

However, a more fundamental problem is that of finding optimal values for
various hyperparameters, of which the learning rate is arguably the most im-
portant. It is well-known that learning rates that are too small are slow to
converge, while learning rates that are too large cause divergence [3]. Recent
works agree that rather than a fixed learning rate value, a non-monotonic learn-
ing rate scheduling system offers faster convergence [30] [34]. It has also been
argued that the traditional wisdom that large learning rates should not be used
may be flawed, and can lead to “super-convergence” and have regularizing ef-
fects [36]. Our experimental results agree with this statement; however, rather
than use cyclical learning rates based on intuition, we propose a novel method
to compute an adaptive learning rate backed by theoretical foundations.

Recently, there has been a lot of work on finding novel ways to adaptively
change the learning rate. These have both theoretical [30] and intuitive, empirical
[36] [34] backing. These works rely on non-monotonic scheduling of the learning
rate. [34] argues for cyclical learning rates. Our proposed method also yields a
non-monotonic learning rate, but does not follow any predefined shape.

2 Our Contribution

In this paper, we propose a novel theoretical framework to compute large, adap-
tive learning rates for use in gradient-based optimization algorithms. We start
with a presentation of the theoretical framework and the motivation behind it,
and then derive the mathematical formulas to compute the learning rate on each
epoch. We then extend our approach from stochastic gradient descent (SGD) to
other optimization algorithms. Finally, we present extensive experimental results
to support our claims.

Our experimental results show that compared to standard choices of learning
rates, our approach converges quicker and achieves better results. During the ex-
periments, we explore cases where adaptive learning rates outperform fixed learn-
ing rates. Our approach exploits functional properties of the loss function, and
only makes two minimal assumptions on the loss function: it must be Lipschitz
continuous[29] and (at least) once differentiable. Commonly used loss functions
satisfy both these properties.

In summary, our contributions in this paper are as follows:
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– We present a theoretical framework based on the Lipschitz constant of the
loss function to compute an adaptive learning rate.

– We provide an intuitive motivation and mathematical justification for using
the inverse of the Lipschitz constant as the learning rate in gradient-based
optimization algorithms, and derive formulas for the Lipschitz constant of
several commonly used loss functions. We note that classical machine learn-
ing models, such as logistic regression, are simply special cases of deep learn-
ing models, and show the equivalence of the formulas derived.

– We argue that the use of Lipschitz constants to determine learning rate
accelerates convergence many-fold in comparison with standard learning rate
choices. We present empirical evidence of our claims in Section 6. This is a
departure from the approach of manually tuning learning rates.

– Through extensive experimentation, we demonstrate the strength of our re-
sults with both classical machine learning models and deep learning models.

The rest of the paper is organized as follows. The paper begins with our the-
oretical framework based on the properties of several loss functions, in Section
3. Section 4 provides mathematical justification for setting the learning rate as
the inverse of the Lipschitz constant and argues that such setting shall provide
an estimate for number of iterations to converge to the global optima. Section
5 derives the Lipschitz constant for regression problems. Section 6 deals with
derivation of learning rate in classification problems. In Section 7, we extend the
framework to algorithms that extend SGD, such as RMSprop, momentum, and
Adam. Section 8 details our experiments and discusses their results. Section 9
discusses some practical considerations of our approach. We conclude in section
10 with a brief discussion.

3 Theoretical Framework

3.1 Introduction and Motivation

For a function, the Lipschitz constant is the least positive constant L such that

‖f(w1)− f(w2)‖ ≤ L ‖w1 −w2‖ (2)

for all w1, w2 in the domain of f . From the mean-value theorem for scalar
fields, for any w1,w2, there exists v such that

‖f(w1)− f(w2)‖ = ‖∇wf(v)‖‖w1 −w2‖
≤ sup

v
‖∇wf(v)‖‖w1 −w2‖

Thus, sup
v
‖∇wf(v)‖ is such an L. Since L is the least such constant,

L ≤ sup
v
‖∇wf(v)‖ (3)
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In this paper, we use max‖∇wf‖ to derive the Lipschitz constants. Our
approach makes the minimal assumption that the functions are Lipschitz con-
tinuous and differentiable up to first order only 4. Because the gradient of these
loss functions is used in gradient descent, these conditions are guaranteed to be
satisfied.

By setting α = 1
L , we have ∆w ≤ 1, constraining the change in the weights.

We stress here that we are not computing the Lipschitz constants of the gradi-
ents of the loss functions, but of the losses themselves. Therefore, our approach
merely assumes the loss is L-Lipschitz, and not β-smooth. We argue that the
boundedness of the effective weight changes makes it optimal to set the learning
rate to the reciprocal of the Lipschitz constant. This claim, while rather bold, is
supported by our experimental results.

4 Mathematical Justification of the Learning Rate
Setting

A typical Gradient Descent algorithm is in the form of

wk+1 = wk − ηk∇wf (4)

for k ∈ Z and stop if ‖∇wf‖ ≤ ε
∀v, w,∃L such that ‖f(v)− f(w)‖ ≤ L ‖v−w‖. The assumption that gra-

dients cannot change arbitrarily fast is fairly weak. So, for f ∈ C2, the Lipschitz
condition can be written as∇2f(w) ≤ LI, where I represents the Identity matrix
and L be the Lipschitz constant (Note, for scalar functions, f ∈ C2,∇2f(w) ≤
L). ∇2f(w) ≤ LI =⇒

vT∇2f(u)v ≤ vT (LI)v => vT∇2f(u)v ≤ L ‖v‖2 (5)

for any u, v, w where u is a convex combination of v, w. By the Taylor series
and using (5),

f(v) = f(w) +∇f(w)T (v − w) +
1

2
(v − w)T∇2f(w)(v − w)

f(v) ≤ f(w) +∇f(w)T (v − w) +
L

2
‖v − w‖2 (6)

This provides a convex quadratic upper bound which can be minimized using
gradient descent with the learning rate ηk = 1

L . Consider wk+1 = wk− ηk∇wf .
Substituting wk and wk+1 for w and v respectively in 6 and using 4, we obtain

4 Note this is a weaker condition than assuming the gradient of the function being
Lipschitz continuous. We exploit merely the boundedness of the gradient.
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f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) +
L

2

∥∥wk+1 − wk
∥∥2

f(wk+1) ≤ f(wk)− 1

L
∇f(wk)T∇f(wk) +

L

2

∥∥∥∥−1

L
∇f(wk)

∥∥∥∥2
f(wk+1) ≤ f(wk)− 1

L

∥∥∇f(wk)
∥∥2 +

1

2L

∥∥∇f(wk)
∥∥2

f(wk+1) ≤ f(wk)− 1

2L

∥∥∇f(wk)
∥∥2

Therefore, Gradient Descent decreases f(w) if ηk = 1
L and ηk <

2
L . This

proof also enables one to derive the rate of convergence with Lipschitz adaptive
learning rate.

4.1 Convergence rate

A choice of learning rate ηk = 1
L and ηk <

2
L ensures that f(w) converges to

a global optimum. In order to prove that, we must prove that
∥∥∇f(wk)

∥∥ ≤ ε
such that the rate of convergence can be found. The following assumptions are
made, which are consistent with the computation of Lipschitz constant- ∇f is
Lipschitz continuous, the gradient descent rule follows a step size,ηk = 1

L and f
is bounded below. Most loss functions satisfy all of these properties.

Let n represent the number of iterations. We know that,

f(wk+1) ≤ f(wk)− 1

2L

∥∥∇f(wk)
∥∥2∥∥∇f(wk)

∥∥2 ≤ 2L(f(wk)− f(wk+1))
n∑
k=1

∥∥∇f(wk)
∥∥2 ≤ 2L

n∑
k=1

(f(wk)− f(wk+1))

n∑
k=1

∥∥∇f(wk)
∥∥2 ≤ 2L(f(w0)− f(wn+1))

The RHS of the above inequality follows from a simple telescoping sum.
Moreover, since

n∑
k=1

min
j∈1,2,..n

∥∥∇f(wj)
∥∥2 ≤ n∑

k=1

∥∥∇f(wk)
∥∥2
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It follows that,

n∑
k=1

min
j∈1,2,..n

∥∥∇f(wj)
∥∥2 ≤ 2L(f(w0)− f(wn+1))

n min
j∈1,2,..n

∥∥∇f(wj)
∥∥2 ≤ 2L(f(w0)− f(wn+1))

n min
j∈1,2,..n

∥∥∇f(wj)
∥∥2 ≤ 2L(f(w0)− f(w∗))wheref(w∗) < f(wn+1)

min
j∈1,2,..n

∥∥∇f(wj)
∥∥2 ≤ 2L(f(w0)− f(w∗))

n
= O(

1

n
)

If,

2L(f(w0)− f(w∗))

n
≤ ε

n ≥ 2L(f(w0)− f(w∗))

ε

Therefore, Gradient Descent requires, at least, n = O( 1
ε ) iterations to achieve

the error bound:
∥∥∇f(wk)

∥∥ ≤ ε 5

4.2 Significance of Lipschitz constant (LC)

The Lipschitz constant (LC) has found a variety of uses in computing and ap-
plications. The central condition to the existence and uniqueness of solutions to
first order system of differential equations of the form y′(t) = f(t, y(t) is LC of
f . The existence of LC guarantees contraction and eventually a fixed point i.e.
solution to the above system[2] and saves the trouble of computing an analytical
solution to the system above. Finding an LC is equivalent to to the fact that the
function, f possesses Lipschitz continuity. Given, f : R −→ R, there exists an L
such that

‖f(x)− f(y)‖ ≤ L ‖x− y‖

Consequently,
‖f(x)− f(y)‖
‖x− y‖

≤ L

This implies, the slope of the secant line connecting x, y is bounded above. This
is equivalent to stating that computing a LC of a function (loss function, in our
case) is identical to computing the maximum of the derivative of f . This also
establishes the relation between finding LC and the Mean Value Theorem. Note,
however, that Lipschitz continuity is not synonymous to uniform continuity, a

5 Since f ∈ C2 is a condition for obtaining lower bound on the number of iterations
to converge for the choice of Lipschitz learning rate, Mean Absolute Error can’t be
used as loss function.
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much stronger condition. For loss functions which are differentiable, we can easily
compute LCs and therefore find the bound on the derivatives to be used in deep
neural network training. Our paper focuses on loss functions that satisfy the
conditions of differentiability and hence Lipschitz continuity. We compute LCs
of those loss functions in the subsequent sections and arrive at adaptive learning
rate formulation.

4.3 Notation

We use the following notation:

– (x(i), y(i)) refers to one training example. The superscript with parentheses
indicates the ith training example. X refers to the input matrix.

– Where not specified, it should be assumed that m indicates the number of
training examples.

– For deep neural networks, whenever unclear, we use a superscript with square
brackets to indicate the layer number. For example, W [l] indicates the weight
matrix at the lth layer. We use L to represent the total number of layers,
being careful not to cause ambiguity with the Lipschitz constant.

– We use the letter w or W to refer to weights, while b refers to a bias term.
Capital letters indicate matrices; lowercase letters indicate scalars, and are
usually accompanied by subscripts–in such a case, we will adequately de-
scribe what the subscripts indicate.

– We use the letter a to denote an activation; thus, a[l] represents the activa-
tions at the lth layer.

– Where not specified, the matrix norm is the Frobenius norm, and ‖z‖ = z
when z ∈ R.

4.4 Deriving the Lipschitz constant for neural networks

For a neural network that uses the sigmoid, ReLU, or softmax activations, it is
easily shown that the gradients get smaller towards the earlier layers in back-
propagation. Because of this, the gradients at the last layer are the maximum

among all the gradients computed during backpropagation. If w
[l]
ij is the weight

from node i to node j at layer l, and if L is the number of layers, then

max
h,k

∥∥∥∥∥ ∂E

∂w
[L]
hk

∥∥∥∥∥ ≥
∥∥∥∥∥ ∂E

∂w
[l]
ij

∥∥∥∥∥∀ l, i, j (7)

Essentially, (7) says that the maximum gradient of the error with respect to
the weights in the last layer is greater than the gradient of the error with respect
to any weight in the network. In other words, finding the maximum gradient
at the last layer gives us a supremum of the Lipschitz constants of the error,
where the gradient is taken with respect to the weights at any layer. We call this
supremum as a Lipschitz constant of the loss function for brevity.



LipschitzLR 9

We now analytically arrive at a theoretical Lipschitz constant for different
types of problems. The inverse of these values can be used as a learning rate
in gradient descent. Specifically, since the Lipschitz constant that we derive is
an upper bound on the gradients, we effectively limit the size of the parameter
updates, without necessitating an overly guarded learning rate. In any layer, we
have the computations

z[l] = W [l]Ta[l−1] + b[l] (8)

a[l] = g(z[l]) (9)

a[0] = X (10)

Thus, the gradient with respect to any weight in the last layer is computed via
the chain rule as follows.

∂E

∂w
[L]
ij

=
∂E

∂a
[L]
j

·
∂a

[L]
j

∂z
[L]
j

·
∂z

[L]
j

∂w
[L]
ij

=
∂E

∂a
[L]
j

·
∂a

[L]
j

∂z
[L]
j

· a[L−1]i (11)

This gives us

max
i,j

∣∣∣∣∣ ∂E∂w
[L]
ij

∣∣∣∣∣ ≤ max
j

∣∣∣∣∣ ∂E∂a
[L]
j

∣∣∣∣∣ ·max
j

∣∣∣∣∣∂a
[L]
j

∂z
[L]
j

∣∣∣∣∣ ·max
j

∣∣∣a[L−1]j

∣∣∣ (12)

The third part cannot be analytically computed; we denote it as Kz. We now
look at various types of problems and compute these components. Note that we
use the terms “cost function” and “loss function” interchangeably.

5 Least-squares cost function

For the least squares cost function, we will separately compute the Lipschitz
constant for a linear regression model and for neural networks where the output
is continuous. We will then prove the equivalence of the two results, deriving the
former as a special case of the latter.

5.1 Linear regression

We have,

g(w) =
1

2m

m∑
i=1

(
x(i)w− y(i)

)2
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Thus,

g(w)− g(v) =
1

2m

m∑
i=1

(
x(i)w− y(i)

)2
−
(
x(i)v− y(i)

)2
=

1

2m

m∑
i=1

(
x(i)(w + v)− 2y(i)

)(
x(i)(w− v)

)
=

1

2m

m∑
i=1

(
(w + v)Tx(i)T − 2y(i)

)(
x(i)(w− v)

)
=

1

2m

m∑
i=1

(
(w + v)Tx(i)Tx(i) − 2y(i)x(i)

)
(w− v)

The penultimate step is obtained by observing that (w + v)Tx(i)T is a real
number, whose transpose is itself.

At this point, we take the norm on both sides, and then assume that w and
v are bounded such that ‖w‖ , ‖v‖ ≤ K. Taking norm on both sides,

‖g(w)− g(v)‖
‖w− v‖

≤ K

m

∥∥∥XTX
∥∥∥+

1

m

∥∥yTX
∥∥

We are forced to use separate norms because the matrix subtraction 2KXTX−
2yTX cannot be performed. The RHS here is the Lipschitz constant. Note that
the Lipschitz constant changes if the cost function is considered with a factor
other than 1

2m .

5.2 Regression with neural networks

Let the loss be given by

E(a[L]) =
1

2m

(
a[L] − y

)2
(13)

where the vectors contain the values for each training example. Then we have,

E(b[L])− E(a[L]) =
1

2m

((
b[L] − y

)2
−
(
a[L] − y

)2)
=

1

2m

(
b[L] + a[L] − 2y

)(
b[L] − a[L]

)
This gives us,

‖E(b[L])− E(a[L])‖
‖b[L] − a[L]‖

=
1

2m
‖b[L] + a[L] − 2y‖

≤ 1

m
(Ka + ‖y‖) (14)
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where Ka is the upper bound of ‖a‖ and ‖b‖. A reasonable choice of norm is
the 2-norm.

Looking back at (12), the second term on the right side of the equation is
the derivative of the activation with respect to its parameter. Notice that if the
activation is sigmoid or softmax, then it is necessarily less than 1; if it is ReLu,
it is either 0 or 1. Therefore, to find the maximum, we assume that the network
is comprised solely of ReLu activations, and the maximum of this is 1.

From (12), we have

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
1

m
(Ka + ‖y‖)Kz (15)

5.3 Equivalence of the constants

The equivalence of the above two formulas is easy to see by understanding the
terms of (15). We had defined in (12),

Kz = max
j

∥∥∥a[L−1]j

∥∥∥ (16)

Because a linear regression model can be thought of as a neural network with
no hidden layers and a linear activation, and from (10), we have,

a[L−1] = a0 = X

and therefore
Kz = max

j

∥∥∥a[L−1]j

∥∥∥ = ‖X‖ (17)

Next, observe that Ka is the upper bound of the final layer activations. For a
linear regression model, we have the “activations” as the outputs: ŷ = WTX.
Using the assumption that ‖W‖ has an upper bound K, we obtain

Ka = max
∥∥∥a[L]

∥∥∥ = max
∥∥∥WTX

∥∥∥ = max‖W‖ · ‖X‖ = K‖X‖ (18)

Substituting (17) and (18) in (15), we obtain

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
1

m
(Ka + ‖y‖)Kz

=
1

m
(K‖X‖+ ‖y‖) ‖X‖

=
K

m

∥∥∥XTX
∥∥∥+

1

m

∥∥yTX
∥∥

�
This argument can also be used for the other loss functions that we discuss

below; therefore, we will not prove equivalence of the Lipschitz constants for
classical machine learning models (logistic regression and softmax regression)
and neural networks. However, we will show experiments on both separately.
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6 Classification

6.1 Binary classification

For binary classification, we use the binary cross-entropy loss function. Assuming
only one output node,

E(z[L]) = − 1

m

(
y log g(z[L]) + (1− y) log(1− g(z[L]))

)
(19)

where g(z) is the sigmoid function. We use a slightly different version of (12)
here:

max
i,j

∣∣∣∣∣ ∂E∂w
[L]
ij

∣∣∣∣∣ = max
j

∣∣∣∣∣ ∂E∂z[L]j

∣∣∣∣∣ ·Kz (20)

Then, we have

∂E

∂z[L]
= − 1

m

(
y

g(z[L])
g(z[L])(1− g(z[L]))− 1− y

1− g(z[L])
g(z[L])(1− g(z[L]))

)
= − 1

m

(
y(1− g(z[L]))− (1− y)g(z[L])

)
= − 1

m

(
y− yg(z[L])− g(z[L]) + yg(z[L])

)
= − 1

m

(
y− g(z[L])

)
(21)

It is easy to show, using the second derivative, that this attains a maxima at
z[L] = 0:

∂2E

∂w
[L]2
ij

=
1

m
g(z[L])(1− g(z[L]))a

[L−1]
j (22)

Setting (22) to 0 yields a
[L−1]
j = 0 ∀j, and thus z[L] = W

[L]
ij a

[L−1]
j = 0. This

implies g(z[L]) = 1
2 . Now whether y is 0 or 1, substituting this back in (21), we

get

max
j

∥∥∥∥∥ ∂E

∂z
[L]
j

∥∥∥∥∥ =
1

2m
(23)

Using (23) in (20),

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
Kz

2m
(24)

We simply mention here that for logistic regression, the Lipschitz constant is

L =
1

2m
‖X‖
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6.2 Multi-class classification

While conventionally, multi-class classification is done using one-hot encoded
outputs, that is not convenient to work with mathematically. An identical form
of this is to assume the output follows a Multinomial distribution, and then
updating the loss function accordingly. This is because the effect of the typical
loss function used is to only consider the “hot” vector; we achieve the same effect
using the Iverson notation, which is equivalent to the Kronecker delta. With this
framework, the loss function is

E(a[L]) = − 1

m

k∑
j=1

[y = j] log a[L] (25)

Then the first part of (12) is trivial to compute:

∂E

∂a[L]
= − 1

m

m∑
j=1

[y = j]

a[L]
(26)

The second part is computed as follows.

∂a
[L]
j

∂z
[L]
p

=
∂

∂z
[L]
p

(
ez

[L]
j∑k

l=1 e
z
[L]
l

)

=
[p = j]ez

[L]
j
∑k
l=1 e

z
[L]
l − ez

[L]
j · ez

[L]
p(∑k

l=1 e
z
[L]
l

)2
=

[p = j]ez
[L]
j∑k

l=1 e
z
[L]
l

− ez
[L]
j∑k

l=1 e
z
[L]
l

· ez
[L]
p∑k

l=1 e
z
[L]
l

=
(

[p = j]a
[L]
j − a

[L]
j a[L]p

)
= a

[L]
j ([p = j]− a[L]p ) (27)

Combining (26) and (27) in (11) gives

∂E

∂W
[L]
p

=
1

m

(
a[L]p − [y = p]

)
Kz (28)

It is easy to show that the limiting case of this is when all softmax values are

equal and each y(i) = p; using this and a
[L]
p = 1

k in (28) and combining with (12)
gives us our desired result:

max
j

∥∥∥∥∥ ∂E

∂W
[L]
j

∥∥∥∥∥ =
k − 1

km
Kz (29)

For a softmax regression model, we have

L =
k − 1

km
‖X‖
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6.3 Regularization

This framework is extensible to the case where the loss function includes a reg-
ularization term.

In particular, if an L2 regularization term, λ
2 ‖w‖

2
2 is added, it is trivial to

show that the Lipschitz constant increases by λK, where K is the upper bound
for ‖w‖. More generally, if a Tikhonov regularization term, ‖Γw‖22 term is added,
then the increase in the Lipschitz constant can be computed as below.

L(w1)− L(w2) = (Γw1)T (Γw1)− (Γw2)T (Γw2)

= wT
1 Γ

2w1 −wT
2 Γ

2w2

= 2wT
2 Γ

2(w1 −w2) + (w1 −w2)TΓ 2(w1 −w2)

‖L(w1)− L(w2)‖
‖w1 −w2‖

≤ 2 ‖w2‖
∥∥Γ 2

∥∥+ ‖w1 −w2‖
∥∥Γ 2

∥∥
If w1,w2 are bounded by K,

L = 2K
∥∥Γ 2

∥∥
This additional term may be added to the Lipschitz constants derived above

when gradient descent is performed on a loss function including a Tikhonov
regularization term. Clearly, for an L2-regularizer, since Γ = λ

2 I, we have L =
λK.

6.4 A Note on Sigmoid activation and cross-entropy loss

Suppose that y∗ is a latent, continuous random variable. In the case of logistic
regression, (leading to binary cross entropy), we assume that y ∗ f(x) + e where
e ∼ logit(mean = 0) pdf. We can see that sigmoid is the CDF of logit distribution
(or conversely, sigmoid is a valid CDF, and its derivate is the logit distribution),
where f(x) is the mean. Define y = I(y∗ > 0). Then,

p(y = 1) = p(y∗ > 0)

= 1− p(f(x) + e < 0)

= 1− cdflogit(−f(x))

= 1− σ(−f(x))

But 1− σ(−x) = σ(x) due to symmetry. Therefore,

p(y = 1) = σ(f(x))

The negative log-likelihood under the above generative model results in the
binary cross entropy.
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7 Going Beyond SGD

The framework presented so far easily extends to algorithms that extend SGD,
such as RMSprop, momentum, and Adam. In this section, we show algorithms
for some major optimization algorithms popularly used.

RMSprop, gradient descent with momentum, and Adam are based on ex-
ponentially weighted averages of the gradients. The trick then is to compute
the Lipschitz constant as an exponentially weighted average of the norms of the
gradients. This makes sense, since it provides a supremum of the “velocity” or
“accumulator” terms in momentum and RMSprop respectively.

7.1 Gradient Descent with Momentum

SGD with momentum uses an exponentially weighted average of the gradient as
a velocity term. The gradient is replaced by the velocity in the weight update
rule.

Algorithm 1: AdaMo

1 K ← 0; V∇L ← 0;
2 for each iteration do
3 Compute ∇WL for all layers;
4 V∇L ← βV∇L + (1− β)∇WL;
5 // Compute the exponentially weighted average of LC

6 K ← βK + (1− β) max‖∇WL‖ ;
7 // Weight update

8 W ←W − 1
KV∇L ;

9 end

Algorithm 1 shows the adaptive version of gradient descent with momentum.
The only changes are on lines 6 and 8. The exponentially weighted average of the
Lipschitz constant ensures that the learning rate for that iteration is optimal.
The weight update is changed to reflect our new learning rate. We use the symbol
W to consistently refer to the weights as well as the biases; while “parameters”
may be a more apt term, we use W to stay consistent with literature.

Notice that only line 6 is our job; deep learning frameworks will typically take
care of the rest; we simply need to compute K and use a learning rate scheduler
that uses the inverse of this value.

7.2 RMSprop

RMSprop uses an exponentially weighted average of the square of the gradi-
ents. The square is performed element-wise, and thus preserves dimensions. The
update rule in RMSprop replaces the gradient with the ratio of the current gra-
dient and the exponentially moving average. A small value ε is added to the
denominator for numerical stability.

Algorithm 2 shows the modified version of RMSprop. We simply maintain an
exponentially weighted average of the Lipschitz constant as before; the learning
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rate is also replaced by the inverse of the update term, with the exponentially
weighted average of the square of the gradient replaced with our computed ex-
ponentially weighted average.

Algorithm 2: Adaptive RMSprop

1 K ← 0; S∇L ← 0;
2 for each iteration do
3 Compute ∇WL on mini-batch;
4 S∇L ← βS∇L + (1− β)(∇WL)2;
5 // Compute the exponentially weighted average of LC

6 K ← βK + (1− β) max
∥∥(∇WL)2

∥∥ ;
7 // Weight update

8 W ←W −
√
K+ε

max‖∇WL‖ ·
∇WL√
S∇L+ε

;

9 end

7.3 Adam

Adam combines the above two algorithms. We thus need to maintain two expo-
nentially weighted average terms. The algorithm, shown in Algorithm 3, is quite
straightforward.

Algorithm 3: Auto-Adam

1 K1 ← 0; K2 ← 0; S∇L ← 0; V∇L = 0;
2 for each iteration do
3 Compute ∇WL on mini-batch;
4 V∇L ← β1V∇L + (1− β1)∇WL;
5 S∇L ← β2S∇L + (1− β2)(∇WL)2;
6 // Compute the exponentially weighted averages of LC

7 K1 ← β1K1 + (1− β1) max‖∇WL‖ ;

8 K2 ← β2K2 + (1− β2) max
∥∥(∇WL)2

∥∥ ;
9 // Weight update

10 W ←W −
√
K2+ε
K1

· V∇L√
S∇L+ε

;

11 end

In our experiments, we use the defaults of β1 = 0.9, β2 = 0.999.

In practice, it is difficult to get a good estimate of max
∥∥(∇WL)2

∥∥. For this
reason, we tried two different estimates:

–
∥∥(max∇WL)2

∥∥ =
∥∥∥(k−1km Kz + λ‖w‖

)2∥∥∥ – This set the learning rate high

(around 4 on CIFAR-10 with DenseNet), and the model quickly diverged.

– (max‖∇WL‖)2 = (k−1)2
k2m2 maxK2

z + λ2(max‖w‖)2 + 2λ(k−1)
km Kz(max‖w‖) –

This turned out to be an overestimation, and while the same model above
did not diverge, it oscillated around a local minimum. We fixed this by
removing the middle term. This worked quite well empirically.
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7.4 A note on bias correction

Some implementations of the above algorithms perform bias correction as well.
This involves computing the exponentially weighted average, and then dividing
by 1− βt, where t is the epoch number. In this case, the above algorithms may
be adjusted by also dividing the Lipschitz constants by the same constant.

8 Experiments and Results

In this section, we show through extensive experimentation that our approach
converges faster, and performs better than with a standard choice of learning
rate.

8.1 Faster convergence

For checking the rate of convergence, we use classical machine learning models. In
each experiment, we randomly initialize weights, and use the same initial weight
vector for gradient descent with both the learning rates. In all experiments, we
scale each feature to sum to 1 before running gradient descent. This scaled data
is used to compute the Lipschitz constants, and consequently, the learning rates.
Normalizing the data is particularly important because the Lipschitz constant
may get arbitrarily large, thus making the learning rate too small.

The regression experiments use a multiple linear regression model, the bi-
nary classification experiments use an ordinary logistic regression model, and
the multi-class classification experiments use a softmax regression model with
one-hot encoded target labels. For MNIST, however, we found it quicker to train
a neural network with only an input and output layer (no hidden layers were
used), a stochastic gradient descent optimizer, and softmax activations.

We compare the rate of convergence by setting a threshold, TL for the value of
the loss function. When the value of the cost function goes below this threshold,
we stop the gradient descent procedure. A reasonable threshold value is chosen
for each dataset separately. We then compare E0.1 and E1/L, where Eα represents
the number of epochs taken for the loss to go below TL. For the Cover Type data,
we considered only the first two out of seven classes. This resulted in 495,141
rows. We also considered only ten features to speed up computation time.

For the least-squares cost function, an estimate of K is required. A good
estimate of K would be obtained by running gradient descent with some fixed
learning rate and then taking the norm of the final weight vectors. However,
because this requires actually running the algorithm for which we want to find a
parameter first, we need to estimate this value instead. In our experiments, we
obtain a close approximation to the value obtained above through the formula
below. For the experiments in this subsection, we use this formula to compute
K.
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a =
1

m

n∑
j=1

m∑
i=1

x
(i)
j

b =
1

n

n∑
j=1

max
i
x
(i)
j

K =
a+ b

2

In the above formulas, the notation x
(i)
j refers to the jth column of the ith

training example. Note that a is the sum of the means of each column, and b is
the mean of the maximum of each column.

Fig. 1: Loss function over iterations for California housing prices dataset

Table 1 shows the results of our experiments on some datasets. Clearly, our
choice of α outperforms a random guess in all the datasets. Our proposed method
yields a learning rate that adapts to each dataset to converge significantly faster
than with a guess. In some datasets, our choice of learning rate gives over a 100x
improvement in training time.

While the high learning rates may raise concerns of oscillations rather than
convergence, we have checked for this in our experiments. To do this, we con-
tinued running gradient descent, monitoring the value of the loss function every
500 iterations. Figure 1 shows this plot, demonstrating that the high learning
rates indeed lead to convergence.

8.2 Better performance

We tested the performance of our approach with both classical machine learning
models and deep neural networks. In this section, we discuss the results of the

6 We restricted the data to the first 100K rows only.
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Table 1: Comparison of speed of convergence with α = 0.1 and α = 1
L . The

speed of convergence under the influence of adaptive learning rate, α = 1
L is

evident. L is the Lipschitz constant.

Dataset TL 1/L E0.1 E1/L

Boston housing prices 200 9.316 46,041 555
California housing prices 2.8051 5163.5 24,582 2
Energy efficiency [43] 100 12.78 489,592 3,833
Online news popularity [8] 73,355,000 1.462 10,985 753
Breast cancer 0.69 4280.23 37,008 2
Covertype6 0.69314 17.48M 216,412 2
Iris 0.2 1.902 413 49
Digits 0.2 0.634 337 2

former. To compare, we ran the models with different learning rates for a fixed
number of epochs, NE , and compared the accuracy scores A0.1 and A1/L, where
Aα is the accuracy score after NE epochs with the learning rates 0.1 and 1/L
respectively.

Table 2: Comparison of performance with α = 0.1 and α = 1
L . A1/L denotes

adaptive learning rate proposed in the paper.

Dataset NE 1/L A0.1 A1/L

Iris 200 1.936 93.33% 97.78%
Digits 200 0.635 91.3% 94.63%
MNIST 200 10.24 92.7% 92.8%
Cover Type7 1000 189.35M 43.05% 57.21%
Breast cancer 1000 4280.22 43.23% 90.5%

Table 2 shows the results of these experiments. Figure 2 shows a comparative
plot of the training and validation accuracy scores for both learning rates on the
MNIST dataset. In both the plots, the red line is for α = 0.1, while the green
line is for α = 1

L . Although our choice of learning rate starts off worse, it quickly
(< 100 iterations) outperforms a learning rate of 0.1. Further, the validation

7 The inverse Lipschitz constant is different here because the number of rows was
not restricted to 100K. Also, the inverse Lipschitz constant here is not a typo. The
learning rate was indeed set to 189.35 million.
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Fig. 2: Comparison of training and validation accuracy scores for different α on
MNIST

accuracy has a decreasing tendency for α = 0.1, while it is more stable for
α = 1/L.

8.3 Better performance in deep neural networks

We compared the performance of our approach with deep neural networks on
standard datasets as well. While our results are not state of the art, our focus
was to empirically show that optimization algorithms can be run with higher
learning rates than typically understood. On CIFAR, we only use flipping and
translation augmentation schemes as in [16]. In all experiments the raw image
values were divided by 255 after removing the means across each channel. We
also provide baseline experiments performed with a fixed learning rate for a fair
comparison, using the same data augmentation scheme.

Table 3: Summary of all experiments: abbreviations used - LR: Learning Rate;
WD: weight decay; VA: validation accuracy

Dataset Architecture Algorithm LR Policy WD VA.

MNIST Custom SGD Adaptive None 99.5%
MNIST Custom Momentum Adaptive None 99.57%
MNIST Custom Adam Adaptive None 99.43%

CIFAR-10 ResNet20 SGD Baseline 10−3 60.33%
CIFAR-10 ResNet20 SGD Fixed 10−3 87.02%
CIFAR-10 ResNet20 SGD Adaptive 10−3 89.37%
CIFAR-10 ResNet20 Momentum Baseline 10−3 58.29%
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CIFAR-10 ResNet20 Momentum Adaptive 10−2 84.71%
CIFAR-10 ResNet20 Momentum Adaptive 10−3 89.27%
CIFAR-10 ResNet20 RMSprop Baseline 10−3 84.92%
CIFAR-10 ResNet20 RMSprop Adaptive 10−3 86.66%
CIFAR-10 ResNet20 Adam Baseline 10−3 84.67%
CIFAR-10 ResNet20 Adam Fixed 10−4 70.57%
CIFAR-10 DenseNet SGD Baseline 10−4 84.84%
CIFAR-10 DenseNet SGD Adaptive 10−4 91.34%
CIFAR-10 DenseNet Momentum Baseline 10−4 85.50%
CIFAR-10 DenseNet Momentum Adaptive 10−4 92.36%
CIFAR-10 DenseNet RMSprop Baseline 10−4 91.36%
CIFAR-10 DenseNet RMSprop Adaptive 10−4 90.14%
CIFAR-10 DenseNet Adam Baseline 10−4 91.38%
CIFAR-10 DenseNet Adam Adaptive 10−4 88.23%

CIFAR-100 ResNet56 SGD Adaptive 10−3 54.29%
CIFAR-100 ResNet164 SGD Baseline 10−4 26.96%
CIFAR-100 ResNet164 SGD Adaptive 10−4 75.99%
CIFAR-100 ResNet164 Momentum Baseline 10−4 27.51%
CIFAR-100 ResNet164 Momentum Adaptive 10−4 75.39%
CIFAR-100 ResNet164 RMSprop Baseline 10−4 70.68%
CIFAR-100 ResNet164 RMSprop Adaptive 10−4 70.78%
CIFAR-100 ResNet164 Adam Baseline 10−4 71.96%
CIFAR-100 DenseNet SGD Baseline 10−4 50.53%
CIFAR-100 DenseNet SGD Adaptive 10−4 68.18%
CIFAR-100 DenseNet Momentum Baseline 10−4 52.28%
CIFAR-100 DenseNet Momentum Adaptive 10−4 69.18%
CIFAR-100 DenseNet RMSprop Baseline 10−4 65.41%
CIFAR-100 DenseNet RMSprop Adaptive 10−4 67.30%
CIFAR-100 DenseNet Adam Baseline 10−4 66.05%
CIFAR-100 DenseNet Adam Adaptive 10−4 40.14%8

A summary of our experiments is given in Table 3. DenseNet refers to a
DenseNet[18] architecture with L = 40 and k = 12.

MNIST On MNIST, the architecture we used is shown in Table 4. All activa-
tions except the last layer are ReLU; the last layer uses softmax activations. The
model has 730K parameters.

8 This was obtained after 67 epochs. After that, the performance deteriorated, and
after 170 epochs, we stopped running the model. We also ran the model on the
same architecture, but restricting the number of filters to 12, which yielded 59.08%
validation accuracy.
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Table 4: CNN used for MNIST

Layer Filters Padding

3 x 3 Conv 32 Valid
3 x 3 Conv 32 Valid

2 x 2 MaxPool – –
Dropout (0.2) – –

3 x 3 Conv 64 Same
3 x 3 Conv 64 Same

2 x 2 MaxPool – –
Dropout (0.25) – –

3 x 3 Conv 128 Same
Dropout (0.25) – –

Flatten – –
Dense (128) – –
BatchNorm – –

Dropout (0.25) – –
Dense (10) – –

Our preprocessing involved random shifts (up to 10%), zoom (to 10%), and
rotations (to 15◦). We used a batch size of 256, and ran the model for 20 epochs.
The experiment on MNIST used only an adaptive learning rate, where the Lip-
schitz constant, and therefore, the learning rate was recomputed every epoch.
Note that this works even though the penultimate layer is a Dropout layer.
No regularization was used during training. With these settings, we achieved a
training accuracy of 98.57% and validation accuracy 99.5%.

Finally, Figure 3a shows the computed learning rate over epochs. Note that
unlike the computed adaptive learning rates for CIFAR-10 (Figures 3b and 3c)
and CIFAR-100 (Figures 3h and 3i), the learning rate for MNIST starts at a
much higher value. While the learning rate here seems much more random, it
must be noted that this was run for only 20 epochs, and hence any variation is
exaggerated in comparison to the other models, run for 300 epochs.

The results of our Adam optimizer is also shown in Table 3. The optimizer
achieved its peak validation accuracy after only 8 epochs.

We also used a custom implementation of SGD with momentum (see Ap-
pendix A for details), and computed an adaptive learning rate using our AdaMo
algorithm. Surprisingly, this outperformed both our adaptive SGD and Auto-
Adam algorithms. However, the algorithm consistently chose a large (around
32) learning rate for the first epoch before computing more reasonable learn-
ing rates–since this hindered performance, we modified our AdaMo algorithm so
that on the first epoch, the algorithm sets K to 0.1 and uses this value as the
learning rate. We discuss this issue further in Section 8.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Plots of adaptive learning rate over time with various architectures and
datasets. Where not specified, an SGD optimizer may be assumed. (a) Custom
architecture on MNIST (b) ResNet20 on CIFAR-10 (c) ResNet20 on CIFAR-10
from epoch 2 (d) DenseNet on CIFAR-10 (e) DenseNet on CIFAR-10 from epoch
2 (f) DenseNet on CIFAR-10 with Adam optimizer (g) DenseNet on CIFAR-10
using AdaMo (h) ResNet164 on CIFAR-100 (i) ResNet164 on CIFAR-100 from
epoch 3
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CIFAR-10 For the CIFAR-10 experiments, we used a ResNet20 v1[16]. A resid-
ual network is a deep neural network that is made of “residual blocks”. A residual
block is a special case of a highway networks [38] that do not contain any gates
in their skip connections. ResNet v2 also uses “bottleneck” blocks, which consist
of a 1x1 layer for reducing dimension, a 3x3 layer, and a 1x1 layer for restoring
dimension [17]. More details can be found in the original ResNet papers [16,17].

We ran two sets of experiments on CIFAR-10 using SGD. First, we empir-
ically computed Kz by running one epoch and finding the activations of the
penultimate layer. We ran our model for 300 epochs using the same fixed learn-
ing rate. We used a batch size of 128, and a weight decay of 10−3. Our computed
values of Kz, max‖w‖, and learning rate were 206.695, 43.257, and 0.668 respec-
tively. It should be noted that while computing the Lipschitz constant, m in
the denominator must be set to the batch size, not the total number of training
examples. In our case, we set it to 128.

Fig. 4: Plot of accuracy score and loss over epochs on CIFAR-10

Figure 4 shows the plots of accuracy score and loss over time. As noted in
[35], a horizontal validation loss indicates little overfitting. We achieved a training
accuracy of 97.61% and a validation accuracy of 87.02% with these settings.

Second, we used the same hyperparameters as above, but recomputed Kz,
max‖w‖, and the learning rate every epoch. We obtained a training accuracy of
99.47% and validation accuracy of 89.37%. Clearly, this method is superior to a
fixed learning rate policy.

Figure 3b and 3c show the learning rate over time. The adaptive scheme
automatically chooses a decreasing learning rate, as suggested by literature on
the subject. On the first epoch, however, the model chooses a very small learning
rate of 8× 10−3, owing to the random initialization.

Observe that while it does follow the conventional wisdom of choosing a
higher learning rate initially to explore the weight space faster and then slowing
down as it approaches the global minimum, it ends up choosing a significantly
larger learning rate than traditionally used. Clearly, there is no need to decay
learning rate by a multiplicative factor. Our model with adaptive learning rate
outperforms our model with a fixed learning rate in only 65 epochs. Further,
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the generalization error is lower with the adaptive learning rate scheme using
the same weight decay value. This seems to confirm the notion in [36] that large
learning rates have a regularization effect.

Figures 3d and 3e show the learning rate over time on CIFAR-10 using a
DenseNet architecture and SGD. Evidently, the algorithm automatically adjusts
the learning rate as needed.

Interestingly, in all our experiments, ResNets consistently performed poorly
when run with our auto-Adam algorithm. Despite using fixed and adaptive learn-
ing rates, and several weight decay values, we could not optimize ResNets using
auto-Adam. DenseNets and our custom architecture on MNIST, however, had
no such issues. Our best results with auto-Adam on ResNet20 and CIFAR-10
were when we continued using the learning rate of the first epoch (around 0.05)
for all 300 epochs.

Figure 3f shows a possible explanation. Note that over time, our auto-Adam
algorithm causes the learning rate to slowly increase. We postulate that this
may be the reason for ResNet’s poor performance using our auto-Adam algo-
rithm. However, using SGD, we are able to achieve competitive results for all
architectures. We discuss this issue further in Section 9.

ResNets did work well with our AdaMo algorithm, though, performing nearly
as well as with SGD. As with MNIST, we had to set the initial learning rate to
a fixed value with AdaMo. We find that a reasonable choice of this is between
0.1 and 1 (both inclusive). We find that for higher values of weight decay, lower
values of x perform better, but we do not perform a more thorough investigation
in this paper. In our experiments, we choose x by simply trying 0.1, 0.5, and
1.0, running the model for five epochs, and choosing the one that performs the
best. In Table 3, for the first experiment using ResNet20 and momentum, we
used x = 0.1; for the second, we used x = 1.

AdaMo also worked well with DenseNets on CIFAR-10. We used x = 0.5
for this model. This model crossed 90% validation accuracy before 100 epochs,
maintaining a learning rate higher than 1, and was the best among all our models
trained on CIFAR-10. This shows the strength of our algorithm. Figure 3g shows
the learning rate over epochs for this model.

CIFAR-100 For the CIFAR-100 experiments, we used a ResNet164 v2 [17].
Our experiments on CIFAR-100 only used an adaptive learning rate scheme.

We largely used the same parameters as before. Data augmentation involved
only flipping and translation. We ran our model for 300 epochs, with a batch
size of 128. As in [17], we used a weight decay of 10−4. We achieved a training
accuracy of 99.68% and validation accuracy of 75.99% with these settings.

For the ResNet164 model trained using AdaMo, we found x = 0.5 to be
the best among the three that we tried. Note that it performs competitively
compared to SGD. For DenseNet, we used x = 1.

Figures 3h and 3i show the learning rate over epochs. As with CIFAR-10, the
first two epochs start off with a very small (10−8) learning rate, but the model
quickly adjusts to changing weights.
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Baseline Experiments For our baseline experiments, we used the same weight
decay value as our other experiments; the only difference was that we simply used
a fixed value of the default learning rate for that experiment. For SGD and SGD
with momentum, this meant a learning rate of 0.01. For Adam and RMSprop,
the learning rate was 0.001. In SGD with momentum and RMSprop, β = 0.9
was used. For Adam, β1 = 0.9 and β2 = 0.999 were used.

8.4 Comparison with other methods

In this section, we compare our results against other methods proposed in recent
years. Because many papers do not test on CIFAR-100, we show comparisons
on MNIST and CIFAR-10. We show the number of epochs and the validation
accuracy. In cases where the paper reports only the validation loss but not ac-
curacy, we do not make a comparison. We also show our best performing result
for comparison in each table.

For a fair comparison, we compare against the closest architecture used.
Below, we compare against several recent adaptive learning rate methods.

AdaShift [48]: The authors show their results on MNIST and CIFAR-10
using a ResNet and a DenseNet. We compare our results accordingly in Tables
5-7.

Table 5: Comparison of ResNets on CIFAR-10 between AdaShift and Lipschit-
zLR.

Training Details AdaShift LipschitzLR LipschitzLR (custom)

Architecture ResNet18 ResNet 20 DenseNet-40
Epochs 50 300 300
Validation accuracy 91.25% 89.37% 92.36%

Table 6: Comparison of DenseNets on CIFAR-10 between AdaShift and Lips-
chitzLR. The DenseNet with AdaMo yields our best results on CIFAR-10.

Training Details AdaShift LipschitzLR

Architecture 100-layer DenseNet 40-layer DenseNet
Epochs 150 300
Validation accuracy 90% 91.34% (SGD), 92.36% (AdaMo)

AdaDelta [46]: The authors show their results on MNIST, and we provide
a comparison in Table 8.

WN-Grad [44]: The authors show their results on MNIST and CIFAR-10,
but for MNIST, they do not show validation accuracy scores, only the loss values.
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Table 7: Comparison of neural networks on MNIST between AdaShift and Lip-
schitzLR.

Training Details AdaShift LipschitzLR

Architecture 2 hidden layers 16 layers as in Table 4
Epochs 20 20
Validation accuracy 89% 99.5% (SGD), 99.57% (AdaMo)

Table 8: Comparison of networks on MNIST between AdaDelta and LipschitzLR.

Training Details AdaDelta LipschitzLR

Architecture 2-layer network with tanh activations CNN described in Table 4
Epochs 6 20
Validation accuracy 98.17% 99.5% (SGD), 99.57% (AdaMo)

However, it is incorrect to compare learners using their loss function values,
as different points on the loss surface can have the same value but leading to
different accuracy scores. Therefore, we only show a comparison on CIFAR-10
in Table 9.

Table 9: Comparison of ResNets on CIFAR-10 between WN-Adam and Lipschit-
zLR.

Training Details WN-Adam LipschitzLR LipschitzLR (custom)

Architecture ResNet18 ResNet 20 DenseNet-40
Epochs 100 300 300
Validation accuracy 92% 89.37% 92.36%

AMSGrad [28]: The authors of AMSGrad only report loss values on MNIST
and CIFAR-10, so we find that we cannot directly compare against their results.
Fortunately, the authors of AdaShift [48] also report AMSGrad validation ac-
curacy scores, so we compare our results against those values in Tables 10 -
12.

9 Practical Considerations

Although our approach is theoretically sound, there are a few practical issues
that need to be considered. In this section, we discuss these issues, and possible
remedies.

The first issue is that our approach takes longer per epoch than with choosing
a standard learning rate. Our code was based on the Keras deep learning library,
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Table 10: Comparison of ResNets on CIFAR-10 between AMSGrad and Lips-
chitzLR.

Training Details AMSGrad LipschitzLR LipschitzLR (custom)

Architecture ResNet 18 ResNet 20 DenseNet-40
Epochs 50 300 300
Validation accuracy 90% 89.37% 92.36%

Table 11: Comparison of DenseNets on CIFAR-10 between AMSGrad and Lip-
schitzLR.

Training Details AMSGrad LipschitzLR

Architecture DenseNet-100 DenseNet-40
Epochs 150 300
Validation accuracy 88.75% 91.34% (SGD), 92.36% (AdaMo)

which to the best of our knowledge, does not include a mechanism to get outputs
of intermediate layers directly. Other libraries like PyTorch, however, do provide
this functionality through “hooks”. This eliminates the need to perform a partial
forward propagation simply to obtain the penultimate layer activations, and
saves computation time. We find that computing max‖w‖ takes very little time,
so it is not important to optimize its computation.

Another issue that causes practical issues is random initialization. Due to the
random initialization of weights, it is difficult to compute the correct learning
rate for the first epoch, because there is no data from a previous epoch to use.
We discussed the effects of this already with respect to our AdaMo algorithm,
and we believe this is the reason for the poor performance of auto-Adam in all
our experiments. Fortunately, if this is the case, it can be spotted within the
first two epochs–if large values of the intermediate computations: max‖w‖, Kz,
etc. are observed, then it may be required to set the initial LR to a suitable
value. We discussed this for the AdaMo algorithm. In practice, we find that for
RMSprop, this rarely occurs; but when it does, the large intermediate values
are shown in the very first epoch. We find that a small value like 10−3 works
well as the initial LR. In our experiments, we only had to do this for ResNet on
CIFAR-100.

10 Discussion and Conclusion

In this paper, we derived a theoretical framework for computing an adaptive
learning rate; on deriving the formulas for various common loss functions, it was
revealed that this is also “adaptive” with respect to the data. We explored the
effectiveness of this approach on several public datasets, with commonly used
architectures and various types of layers.
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Table 12: Comparison of networks on MNIST between AMSGrad and Lipschit-
zLR.

Training Details AMSGrad LipschitzLR

Architecture 2-layer network CNN described in Table 4
Epochs 20 20
Validation accuracy 89% 99.5% (SGD), 99.57% (AdaMo)

Clearly, our approach works “out of the box” with various regularization
methods including L2, dropout, and batch normalization; thus, it does not inter-
fere with regularization methods, and automatically chooses an optimal learning
rate in stochastic gradient descent. On the contrary, we contend that our com-
puted larger learning rates do indeed, as pointed out in [36], have a regularizing
effect; for this reason, our experiments used small values of weight decay. Indeed,
increasing the weight decay significantly hampered performance. This shows that
“large” learning rates may not be harmful as once thought; rather, a large value
may be used if carefully computed, along with a guarded value of L2 weight de-
cay. We also demonstrated the efficacy of our approach with other optimization
algorithms, namely, SGD with momentum, RMSprop, and Adam. In summary,
we have shown, beyond reasonable doubt, that sufficiently deep architectures
may not be a necessity to accomplish state-of-the-art performance.

Our auto-Adam algorithm performs surprisingly poorly. We postulate that
like AdaMo, our auto-Adam algorithm will perform better when initialized more
thoughtfully. To test this hypothesis, we re-ran the experiment with ResNet20
on CIFAR-10, using the same weight decay. We fixed the value of K1 to 1,
and found the best value of K2 in the same manner as for AdaMo, but this
time, checking 10−3, 10−4, 10−5, and 10−6. We found that the lower this value,
the better our results, and we chose K2 = 10−6. While at this stage we can
only conjecture that this combination of K1 and K2 will work in all cases, we
leave a more thorough investigation as future work. Using this configuration, we
achieved 83.64% validation accuracy.

A second avenue of future work involves obtaining a tighter bound on the
Lipschitz constant and thus computing a more accurate learning rate. Another
possible direction is to investigate possible relationships between the weight de-
cay and the initial learning rate in the AdaMo algorithm.
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A Implementation Details

All our code was written using the Keras deep learning library. The architecture
we used for MNIST was taken from a Kaggle Python notebook by Aditya Soni9.
For ResNets, we used the code from the Examples section of the Keras documen-
tation10. The DenseNet implementation we used was from a GitHub repository
by Somshubra Majumdar11. Finally, our implementation of SGD with momen-
tum is a modified version of the Adam implementation in Keras12.
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