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Abstract

Online learning is an important technical means for sketching massive real-time and high-speed data.

Although this direction has attracted intensive attention, most of the literature in this area ignore the

following three issues: they think little of the underlying abstract hierarchical latent information exist-

ing in examples, even if extracting these abstract hierarchical latent representations is useful to better

predict the class labels of examples; the idea of preassigned model on unseen datapoints is not suitable

for modeling streaming data with evolving probability distribution. This challenge is referred as model

flexibility. And so, with this in minds, the online deep learning model we need to design should have a

variable underlying structure; moreover, it is of utmost importance to fusion these abstract hierarchical

latent representations to achieve better classification performance, and we should give different weights

to different levels of implicit representation information when dealing with the data streaming where

the data distribution changes. To address these issues, we propose a two-phase Online Deep Learning

based on Auto-Encoder (ODLAE). Based on auto-encoder, considering reconstruction loss, we extract

abstract hierarchical latent representations of instances; Based on predictive loss, we devise two fusion

strategies: the output-level fusion strategy, which is obtained by fusing the classification results of en-

coder each hidden layer; and feature-level fusion strategy, which is leveraged self-attention mechanism

to fusion every hidden layer output. Finally, in order to improve the robustness of the algorithm, we

also try to utilize the denoising auto-encoder to yield hierarchical latent representations. Experimental

results on different datasets are presented to verify the validity of our proposed algorithm (ODLAE)

outperforms several baselines.

Keywords: online deep learning; auto-encoder; output-level fusion; feature-level fusion; denoising

auto-encoder

1. Introduction

With the rapid development of information technology, especially the wide application of the In-

ternet industry, more and more fields have emerged for the demand of real-time processing of massive

and high-speed arrival data. Nowadays, there has been paid much attention to online learning since
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the wide prospects of its applications, more and more scholars begin to study online learning related

issues [1, 2, 3, 4, 5].

Current research related to online learning mainly includes the following aspects:

The seminal work regarding online learning algorithms can be traced back to the famous perceptron

algorithm in the 1950s [6], i.e., the most basic model in the field of machine learning, which can be

regarded as the simplest neuron network. The perceptron assumes that the samples are linearly

separable. When the samples are linearly inseparable, the kernelized perceptron is more suitable [7].

When dealing with the problem of non-linear classification, it is necessary to map the datapoints to

the kernel space by using the non-linear mapping. Unfortunately, finding a suitable kernel function

remains an unsettled problem [8]. In contrast, online deep Learning is more suitable for building

nonlinear classifiers.

Recent advances in deep learning have produced encouraging results in various fields, its highly

non-linear modeling capacity and ability to extract abstract hierarchical features with layer-by-layer

structures make it more and more widely used in image processing, natural language processing and

speech analysis [9, 10, 11, 12, 13].

However, the existing deep learning models are mostly used in batch learning environment, so it

need training data to adjust the model structure and parameters in advance, apparently, it is not

suitable to straightforwardly apply it to online learning setup, because for online learning the data

arrive in the form of data stream, and we need to give prediction immediately when the high-speed

data arrives, and explicitly memorizing the order of hundreds of millions of examples is prohibitive.

Moreover, most of the streaming data are non-stationary data, i.e., the probability distribution of

the data would change over time, which entails the problem of concept drift. Obviously, the traditional

predefined model idea is not suitable for characterizing data with evolving probability distribution.

This challenge is referred to “model flexibility”. Therefore, the online deep learning model we need to

design should have a variable underlying structure, and we should give different weights to different

levels of implicit representation information when dealing with the data streaming where the data

distribution changes. However, previous online deep learning methods rarely considered this crucial

issue. In some recent studies, Fisher information matrix has been introduced to solve this problem

[14, 15, 16]. Unfortunately, these methods focus on the study of online multi-task learning, emphasizing

the parameters between different tasks give different importance, while ignoring the importance of

parameter of different hidden layers, which also changes with the data distribution evolution.

Another problem that is easily ignored is data representation learning. The improvement of online

deep learning algorithm usually depends on the data representation. In online deep learning domain,

the existing model structure can’t utilize well the information extracting from different latent layers of

deep network. The common practice is to design a fixed number of hidden layers and utilize the output

of the last hidden layer to construct the classifier [17, 18, 19]. To promote prediction performance, it
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is very important to learn a good implicit representation from different abstract level. However, after

the hidden representation is obtained, how to make full use of the information and how to effectively

combine different abstract hierarchical latent representations is still an unsolved problem worth quite

studying.

To address these problems, we design Online Deep Learning algorithm Based on Auto-Encoder(ODLAE),

proposing a new adaptive online deep learning model, which use auto-encoder to extract more rep-

resentative and salient hidden features of input data to yield latent representation and utilize latent

representation to construct nonlinear classifier. In addition, two different fusion strategies are used

to fuse the latent representation of different levels obtained by auto-encoder, so as to obtain better

prediction performance.

In summary, our contributions can be exhibited as follows:

(1) We applied auto-encoder to extract different abstract hierarchical latent representations. Con-

structed classifier makes full use of the input information of different abstract level, which can effectively

improve the overall prediction performance.

(2) We combine prediction loss and reconstruction loss to get our final total loss, which is different

from the conventional methods. We dynamically adjust the impact of these two losses on the overall

classifier’s performance according to the evolving streaming data.

(3) Finally, in order to make ODLAE to have a certain capability of noise resistance, we replace the

normal autoencoder with the denoising autoencoder, to improve the noise-resistibility and robustness

of our ODLDAE approach.

The remainder of this paper is organized as follows. In Section 2, we introduced the related work,

in Section 3, the learning setting is presented, and some concepts and notions relevant to ODLAE

are introduced. In addition, the structure of the algorithm is also proposed in this section. We will

introduce our algorithm in three parts, the first part is the latent representation learning, and in the

second part the two fusion strategies are proposed, in the last part, we introduce the objective function.

In Section 4, the experimental results are given and the detailed comparative experiments of different

baseline methods are also discussed. Finally, the conclusion and future work are presented in Section

5.

2. Related Work

In the traditional off-line learning, we need to obtain a large number of training data in advance,

and find the appropriate model parameters through training, however, in real life, data often appears

in the form of data stream, and the probability distribution of data may change over time. The

traditional offline learning could not suitable for this learning setup. online learning has emerged to

bridge the gap.
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Deep neural network can be directly applied to online learning setting, but it may suffer from

training problems such as gradient vanishing. In addition, because the probability distribution of

streaming data can change over time, i.e., the concept drift problem is unavoidable, and different

data distribution has its own most appropriate network settings, so we could not determine the most

appropriate network structure and the optimal network parameters in advance. Therefore, we need to

choose a suitable model and structure, which need to change with the continuous learning on streaming

data, these problems are referred to model flexibility.

Online Deep Learning Considering Flexibility Nowadays, the combination of online learning

and deep learning has attracted more and more attention. Unfortunately, the traditional online deep

learning algorithms mostly consider the fixed model structure or parameters, while ignoring the change

of probability distribution obeyed by the data stream. The continuous evolution of data compels us to

constantly adjust the model structure or parameters. currently, most of existing literatures propose to

change the depth of the network or increase the number of hidden units to make the network structure

more complex to adapt to the changes of data[20, 21], Mahardhika Pratama[22] propose a method

called the network significance (NS) to grow and to prune hidden units of denoising autoencoder,

which intended to make the model more adaptive to the change of data probability distribution. The

strategy of increasing or decreasing the number of network hidden layer is designed to deal with

different data [23]. However, when the concept drift occurs, blindly increasing or reducing the depth of

the network or the number of hidden uints could not effectively improve the predictive accuracy of the

algorithm. When the depth of the network reaches a certain extent, the increase of depth would greatly

reduce the effect on the predictive performance, and even may deteriorate the predictive accuracy. In

addition to these methods, there are a small number of researchers to deal with the flexibility of the

model through the Fisher matrix[14, 15, 16]. However, it is mainly used to deal with online multi-task

learning rather than single task online learning which emphasizes the importance of parameters in

different tasks.

Data Representation Learning The success of deep neural networks is largely due to their

ability to learn not only classifiers, but also appropriate data representation [24, 25, 26, 27], however,

in the setting of online learning, it is easy to ignore the representation learning. Therefore, in our

structure, we design autoencoder to extract the hidden features of data with layer-by-layer structures.

Although the autoencoder as the underlying structure also appears in quite a few papers [28, 29, 30],

most of them only build classifiers on the last hidden layer of the autoencoder.

In our ODLAE algorithm, we adopt two different data fusion strategies to make full use of the

information in the different hidden layers of the autoencoder. Finally, devising objective function bal-

ance the prediction and reconstruction loss, and constantly adjusting the ratio coefficient of prediction

and reconstruction loss through the continuous learning on the streaming data. This combination of

the prediction and reconstruction loss gives us better prediction performance.
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3. Proposed Framework

In this section, we would embark on a discussion of the proposed ODLAE algorithm. Firstly, we

will recall online learning scenario briefly, and then proposes our framework, which is divided into

three parts: latent representation learning, fusion strategies and objective function. In the latent

representation learning, we reconstruct the input using auto-encoder and acquire the feature latent

representation. then, we present two different data fusion strategies. Moreover, we consider two factors:

the reconstructing and prediction loss, and derive the whole optimization objective function. Finally,

a detailed description of parameter updating procedure is given.

3.1. Learning Scenario

In online learning scenario, at each time instant t the agent acquires the example xt = (xt,1, xt,2, . . . , xt,n)T ∈

RDX .An agent was required to predict its corresponding output yt ∈ RDY through learnnig a mapping

f(x) according to information of the previous input-output sequence (x1, y1), (x2, y2), . . . , (xt−1, yt−1).For

online deep learning setup, we use the deep neural network to replace the input-output mapping

f(x).After obtaining the prediction value ŷt ∈ RDY from the deep neural network, the agent would

receive the real output value yt ∈ RDY from the environments. By calculating the loss between the

prediction and the real value, the agent suffers the prediction loss. Then the loss information would

be fed back to online learning algorithm to guide the update process of the model parameters. If

the model predicts incorrectly, the parameters of the model are dynamically adjusted according to

prediction loss. Therefore, online learning can reflect real-time changes more timely.

3.2. Latent Representation Learning

There are redundancy and noise information in the input instances, these redundant and noisy

information not only make the prediction inaccurate, but also increase the calculation cost, so it is

necessary to remove redundancy and noise from input instances, and find compact and non-redundant

representation. To our knowledge, at present, in the field of online learning, there is little research on

how to use deep learning to learn input hidden representation and realize feature selection, and then

use the hidden representation to predict class labels of instances.

Hence, we utilize autoencoder to extract abstract hierarchical features from example, yield input

example’s hidden representation.

The encoder of autoencoder receives the input sequentially and builds a fixed-length latent vector

representation (denoted as hL ∈ RD′
X in Fig.1). Conditioned on the encoded latent representation,

the decoder of autoencoder generates the reconstructed input (denoted as x̂ ∈ RDX in Fig.1). The

deviation between the input and reconstructed one was described by mean square error Lre(x, x̂),

which is defined as:
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Lre(x, x̂) = ‖x− x̂‖22 (1)

We then update the parameters of the auto-encoder according to the reconstruction loss function.

3.3. Fusion Strategies

In this subsection, we propose two different data fusion approaches, one is output-level fusion, and

the other one is feature-level fusion. In the first fusion scheme, the L + 1 classifiers is constructed

separately from outputs of encoder’s L+1 hidden layers, and then they are combined and merged into

an ensemble classifier through the weighted fusion strategies. In the second fusion scheme, each hidden

layer is given different alignment weights by self-attention mechanism, and then they are integrated

into a context vector, which is used as input to directly generate the final classifier.

To simplify the representation, in the following section, we use ODLAE-1 and ODLAE-2 to denote

the output-level and feature-level fusion strategies respectively.

Output-Level Fusion As seen in Fig.1, encoder of autoencoder is composed with hidden layers

in the Fig.1. The transformation can be formulated as

h0 = sf (b0 +W0x) (2)

hl = sf (bl +Wlhl−1), l = 1, 2, . . . , L (3)

ĥl−1 = sf (b̂l + Ŵlĥl), l = 1, 2, . . . , L (4)

x̂ = sf (b̂0 + Ŵ0ĥ0) (5)

where sf is the activation functions of the encoder and decoder, the parameters for such an

autoencoder are generally defined as: W0 ∈ RD′
X×DX , Wl ∈ RD′

X×D′
X and Ŵ0 ∈ RD′

X×DX ,

Ŵl ∈ RD′
X×D′

X , l = 0, 1, . . . , L are the weight matrices of encoder and decoder, respectively.bl ∈ RD′
X ,

l = 0, 1, . . . , L and b̂0 ∈ RDX , b̂l ∈ RD′
X , l = 0, 1, . . . , L is the bias vectors of encoder and decoder,

respectively.

Each hidden layer’s output l = 0, 1, . . . , L is used directly as input to construct L+1 base classifiers

fl = softmax(cl · hl + bcl), l = 0, 1, . . . , L (6)

where cl ∈ RDY ×D′
x is the weight matrix, and bcl ∈ RDY is the correspoding bias vector.

In the scenario of online learning, we could regard each base classifier as an expert. We then assign

weights βl, l = 0, 1, . . . , L, to each base classifier according to the prediction performance of whole

ensemble classifier, which is our predicted output value:
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ŷ =
∑

βl · fl (7)

Note that βl denotes the weight vector of base classifier fl, the weight value represents the contri-

bution rate of each classifier to the final classification result.

In this paper, the combination of online gradient descent and multiplicative updating rules are

applied to update each classifier’s weight βl, l = 0, 1, . . . , L, the concrete expression for iterative

formula of classifier’s weight βl is as follows:

βl
t+1 ← βl

t · θLpre(ft
l ,yt)

0 , l = 0, 1, . . . , L (8)

where θ0 ∈ (0, 1) is a discount factor. When calculating the parameter update βl
t+1, l = 0, 1, . . . , L

at the next time t+ 1, Lpre(f
t
l , yt) represents the cross entropy loss between the predictive output of

each classifier and the real output value at the current time t. Thus each classifier’s weight is updated

by a factor of theta
Lpre(ft

l ,yt)
0 . The initial weight vector βl, l = 0, 1, . . . , L, may be arbitrary, and can

be regarded as a “prior” over the set of expert opinions. Generally, we can set all of the initial weights

equally to 1/(L+ 1), which would ensure the value of the next instant is must be in the open interval

(0, 1). The new classifier’s weight values would be updated sequentially according to the cross entropy

loss.

Figure 1: ODLAE using the method of output fusion

After calculating the loss Lpre(f
t
l , yt) between the real output value yt and the predictive value of

7



each classifier f tl , we also need to calculate the loss Lpre(yt, ŷt) between the real output value yt and

the weighted sum of each base classifier ŷt and regard it as the whole prediction loss.

As for the other parameters in the network, online gradient descent method is adopted to update

these parameters.

Θt+1 ← Θt − η∇ΘtLtotal (9)

where Θ = {cl, bcl, wl, bl, w′l, b′l} represents the set of parameters and Ltotal is the total loss, the

details of Θ = {cl, bcl, wl, bl, w′l, b′l} can be seen in subsection 3.4.

The overall specific implementation process is presented in Algorithm 1. To simplify the represen-

tation, we use ODLAE-1 to represent the output-level fusion method.

Algorithm 1 output-level fusion approach (ODLAE-1)

1: Repeat

2: Input xt = (xt,1, xt,2, . . . , xt,n)T ∈ RDX

3: Initialize weights, biases and other parameters

4: Set the number L+ 1 of hidden layers and the number DX′ of nodes of the auto-encoder

5: Calculate the reconstruction loss Lre(x, x̂) for input x

6: Determine the fusion scheme: output-level fusion

7: Compute the corresponding classifiers fl using each hidden layer as input

8: Calculate the cross entropy loss Lpre(f
t
l , yt) of each classifier fl

9: Compute the total prediction loss Lpre(yt, ŷt) for genuine output yt

10: According to parameter update rule βl
t+1 ← βl

t · θLpre(ft
l ,yt)

0 , l = 0, 1, . . . , L update the weight of

classifier fl.

11: Update the trade-off parameters between the reconstructing and prediction loss, respectively:

are ← are·βre
Lre

are·βre
Lre+apre·βpre

Lpre , and apre ← apre·βpre
Lpre

are·βre
Lre+apre·βpre

Lpre

12: Calculate the total loss Ltotal = areLre(xt, x̂t) + apreLpre(yt, ŷt)

13: Update the other parameters based on error back propagation

14: Calculate the Θt+1 ← Θt − η∇ΘtLtotal

15: Until process all the data in turn

Feature-Level Fusion Fig.2(a) shows the feature fusion process of ODLAE-2, instead of directly

constructing the L+ 1 classifiers for the L+ 1 outputs of the hidden layers, we first fusion the L+ 1

outputs of the hidden layers to form context latent representation. At each time, we first concatenate

them to form a latent representation matrix H = (h0, h1, . . . , hL), where H is (L+ 1)×D′X matrix, as

illustrated by Fig.2(b). The self-attention mechanism [31, 32] use H as input, and obtain the alignment

weight vector A = [a0, a1, . . . , aL] through a softmax layer:
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A = softmax(ws2 tanh(Ws1H
T )) (10)

Where Ws1 ∈ Rda×D′
X is the weight matrix, and ws2 ∈ Rda , the dimension da is predefined

hyperparameter.A is a (L+ 1) × 1 alignment weight vector, which represent the contributions of the

columns hi of H, and because the role of softmax, it ensures that the sum of components in equals to

1.

The feature fusion context vector C can be obtained by multiplying the alignment weight vector

and the latent representation matrix H:

C = AH (11)

Finally, the results of feature fusion are fed into the classifier output layer:

f = softmax(C ·Wf + bf ) (12)

In this way, we get our prediction output ŷk = f .Moreover, the cross-entropy loss is applied to get

the prediction loss Lpre(yt, ŷt).

As for the other parameters in the network, online gradient descent method is adopted to update

parameters.

Ωt+1 ← Ωt − η∇ΩtLtotal (13)

where Ω = {wl, bl, w′l, b′l,Ws1, ws2,Wf , bf} represents the set of parameters of the network and

Ltotal is the total loss, the details of Ltotal can be seen in subsection 3.4.

The overall process is presented in Algorithm 2. To simplify the representation, we use ODLAE-2

to denote the algorithm of the feature-level fusion.

3.4. Objective Function

In this section, we would introduce our objective function, which is divided into two components:

the prediction loss Lpre(yt, ŷt) and reconstructing loss Lre(xt, x̂t). The prediction lossLpre(yt, ŷt)

between the output’s prediction value (label) and the true value (label) is represented by the cross-

entropy function:

Lpre(yt, ŷt) = −
∑

yt log(ŷt) (14)

Meanwhile,considering reconstruction loss Lre(xt, x̂t), which is introduced in Section 3.2, we could

project data to a hidden space that is of lower dimensionality, and therefore make the learning rep-

resentation more compact and more powerful, fully exploit existing underlying information of input,
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(a) (b)

Figure 2: (a) feature fusion approach. Feature fusion method assign different alignment weights for outputs of the L+ 1

hidden layers and form feature fusion context vector C and then feeds them into the classifier output layer; derived

process for attention mechanism weights vector A is illustrated in Fig. 3 (b).

Algorithm 2 feature-level fusion approach (ODLAE-2)

1: Repeat

2: Input xt = (xt,1, xt,2, . . . , xt,n)T ∈ RDX

3: Initialize weights, biases and other parameters

4: Set the number L+ 1 of hidden layers and the number DX′ of nodes of the auto-encoder

5: Calculate the reconstruction loss Lre(x, x̂) for input x

6: Determine the fusion scheme: output-level fusion

7: Form the matrix H from outputs of L+ 1 hidden layers: H = (h0, h1, . . . , hL)

8: Calculate the alignment weights A = softmax(ws2 tanh(Ws1H
T ))

9: Obtain the fusion vector C = AH

10: Finally, feed the results of feature fusion into the classifier output layerto obtain the prediction

value ŷ = f = C ·Wf + bf

11: Update the trade-off parameters between the reconstructing and prediction loss, respectively:

are ← are·βre
Lre

are·βre
Lre+apre·βpre

Lpre , and apre ← apre·βpre
Lpre

are·βre
Lre+apre·βpre

Lpre

12: Calculate the total loss Ltotal = areLre(xt, x̂t) + apreLpre(yt, ŷt)

13: Update the other parameters based on error back propagation Ωt+1 ← Ωt − η∇ΩtLtotal

14: Calculate the Θt+1 ← Θt − η∇ΘtLtotal

15: Until process all the data in turn
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in the nutshell, our goal is to predict output labels more accurately, at the same time, learn a good

implicit representation, so we define the following loss function as the whole objective function:

Ltotal = areLre(xt, x̂t) + apreLpre(yt, ŷt) (15)

where are and apre represent the trade-off parameters between the reconstructing loss and prediction

loss, respectively, where are ← are·βre
Lre

are·βre
Lre+apre·βpre

Lpre and apre ← apre·βpre
Lpre

are·βre
Lre+apre·βpre

Lpre respectively.

βre ∈ (0, 1) and βpre ∈ (0, 1) is the discount rate parameter,Lre ∈ (0, 1) and Lpre ∈ (0, 1). Hence,

trade-off parameters of the reconstruction loss and the prediction loss is discounted by a factor of

βre
Lre and βpre

Lpre respectively in every iteration. Then, the trade-off parameters are normalized by

dividing the sum of these two trade-off parameters.

4. Experimental Results

A good online deep learning needs to meet the following requirements [33, 34, 35, 36]: In order

to improve the accuracy of the algorithm, we need to design an appropriate total loss function, and

constantly update the model parameters according to the changing data; The algorithm must have

low false positive rate and negative rate and reduce the gap between the prediction label and the

true label; Robustness to noise,i.e., the algorithm must be able to distinguish whether the probability

distribution of data changes or appears noise in the data, and avoid confusion between them. So

the model parameters can be updated correctly to achieve the ideal prediction effect. Hence, in this

section, we carry out three experiments to validate the effectiveness of our algorithm. In the first

group of experiments, we compared the different trade-off parameters between the reconstructing and

prediction loss on ODLAE-1 and ODLAE-2. In the second group of experiments, different algorithms

on seven datasets through four evaluation criteria are conducted.The four evaluation criteria are accu-

racy, precision, F1, and haming loss respectively. The comparative experimental results are obtained

by running the open source code in the same computing environment. In order to make the experi-

mental results more objective and fair, we have run each group of experiments ten times. In the third

group of experiments, we further improve the robustness of the algorithm by adding the denoising

autoencoder to the original two fusion strategies, and propose the new algorithm, named Online Deep

Learning based on Denoising AutoEncoder(ODLDAE).

4.1. Implementation Details

AOILAE starts the learning process by establishing an autoencoder as the underlying structure.

We use fully-connected layers as the encoder and decoder, Relu is used as the activation function

for each hidden layer. The entire network parameters are updated using the Adam optimizer with a

learning rate of 0.01[37]. In the feature-level fusion part, the parameter da for self-attention mechanism

is a user-defined parameter, in our experiments, we set it to 30 to get good results.
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Table 1: seven datasets with different scales, feature dimensions, and classes.

ID Datasets Instances Attributes Class Type

D1 forestcovtype 581012 54 7 Non-stationary

D2 gesture 9873 50 5 Stationary

D3 mnist 70000 784 10 Stationary

D4 rotatedmnist 65000 784 10 Non-stationary

D5 permutedmnist 70000 784 10 Non-stationary

D6 rfid 28000 3 4 Stationary

D7 N-BaloT 712808 115 11 Stationary

4.2. Description of the Dataset

To verify the effectiveness and evaluate the performance of the proposed algorithm, we conduct

various experiments on stationary datasets and non-stationary datasets. In this section, seven different

datasets are chosen to verify our algorithm, which varies in the scales, feature dimensions, and the

number of classes. The attributes of the datasets are shown in Table 1, and details about these data

sets are summarized as follows:

(1) forestcovtype dataset[38]: The classification task on this data is to predict forest cover types only

from cartographic variables without remote sensing data, the actual forest cover type was provided by

Resource Information System (RIS) of US Forest Service (USFS) Region 2. The data is in its original

form (non-scale) and contains binary (0 or 1) columns of data with qualitative independent variables,

such as wilderness area and soil type. Because the input distribution would change with time, the data

contains covariate drift and belongs to non-stationary data.

(2) gesture dataset[39]: This dataset is composed of seven features extracted from gesture videos

to study the phase segmentation of gestures. Each video is represented by two files: an original file

that contains the location of the user’s hands, wrists, head, and spine in each frame; and a processed

file that contains the velocity and acceleration of the hand and wrist.

(3) mnist dataset[40]: This dataset contains 70K samples. These numbers are dimensionally stan-

dardized and located in the center of the image, which is of a fixed size (28x28 pixels) with a value

between 0 and 1. For simplicity, each image is flattened and converted into a one-dimensional numpy

array of 784 (28 * 28) features.

(4) rotatedmnist dataset[41]: By rotating the original sample, the extension of the traditional mnist

problem[40] is formed, which leads to the abrupt drift of the concept. Specifically, handwritten digits

are rotated to any angle in the range of -π to π, resulting in covariate drift.

(5) permutedmnist dataset[15]: It is a modification of the MNIST datasets [18] which performs

the permutations of pixels in mnist after quantization, in fact, it uses a group of random indexes to
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scramble the position of each element in the vector, and different random indexes produce different

tasks. Hence, the real drift [42] is present in this dataset.

(6) rfid dataset[43]: Indoor RFID location data is a multi-class problem, which aims to identify

the location of objects in the manufacturing workshop by using three input attributes. RFID readers

are placed in different locations and four areas are created in the manufacturing workshop, resulting

in four categories problems.

(7)N-Balo dataset[44]: This dataset solves the lack of public botnet datasets, especially the Internet

of things. It shows the real traffic data collected from 9 Commercial Internet of things devices. Because

the malicious data can be divided into 10 kinds of attacks carried by two botnets and one kind of benign

attack. Therefore, it belongs to multi-category data set.

4.3. Comparing Different Trade-off parameters for the reconstructing loss and prediction loss on ODLAE-

1

ODLAE algorithm is a progressive learning approach. Because the total loss is composed of two

components, namely prediction and reconstruction loss, how to reasonably allocate the proportion of

these two losses in the total loss has a great impact on the accuracy rate, which can effectively ensure

the communication between the old and new data, resulting positive back propagation. There are two

options for us to choose from: one is fixed allocation weight value selection strategy and the other is

change the weight value according to the loss of the previous moment selection strategy. As discussed

in the previous section, we use the method of constantly adjusting the trade-off parameters, and the

changing total loss function constantly updates the network parameters through back-propagation.

The weight value selection strategy strategy balances the trade off between prediction loss and

reconstruction loss. On the one hand, we want the model to explore and learn new knowledge as

much as possible to reduce the prediction loss. On the other hand, we also hope that the model will

not forget its own input characteristics and reduce the loss of reconstruction. In addition, because

the probability distribution of data in the data stream may change, we need to update the total loss

function dynamically according to the different characteristics of the data.

To further illustrate that the adaptive change scheme is better than the method of fixing the trade-

off parameters, we designed several groups of comparative experiments. We set these two parameters

to (are, apre) = (0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6), . . . .(0.9,0.1) and the dynamic change strategy

is set as ( are·βre
Lre

are·βre
Lre+apre·βpre

Lpre ,
apre·βpre

Lpre

are·βre
Lre+apre·βpre

Lpre ) respectively.

As we can see in Fig.3, this illustrates that our proposed tuning strategy that dynamically controls

the equilibrium between prediction and reconstruction loss can help significantly reduce of the error

rate of the algorithm. Specifically, the best performance is achieved by changing these two trade-off

parameters adaptively. This enables the model to dynamically change the overall loss according to its

continuous learning performance on input data, and then constantly update the model, improving the

13



(a) forestcovtype (b) gesture

(c) mnist (d) rotatedmnist

(e) permutedmnist (f) rfid

(g) N-Balo

Figure 3: Comparing different trade-off parameters between the reconstructing and prediction loss on ODLAE-1
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learning effect of the model.

4.4. Comparing Different Trade-off Parameters for the Reconstructing Loss and Prediction Loss on

ODLAE-2

Similarly, we have done the same experiments on the algorithm ODLAE-2, as we can see in Fig.4,

for smaller are, that is, the reconstruction loss accounts for a small proportion of the total loss, the

network tends to forget its original input characteristics while learning the data, however, when we

set apre to a smaller value, it means that we rely too much on the original characteristics of data

and neglect to explore new knowledge. However, we should take different measures for different data,

hence, Our strategy with changing trade-off parameters is better than the general strategy with fixed

trade-off parameters.

4.5. Comparing the Performance of Different Hidden layers L and Hidden units DX′ of Auto-Encoder

on ODLAE-1 and ODLAE-2

Variations in L and DX′ : L represents the hidden layers and DX′ represents the hidden units of

the autoencoder. These two parameters controls the model control the complexity of the network.

The hidden layers and hidden units of the network is very important to the performance of the model.

When these two parameters of network layers is increased, the network can extract more complex

feature patterns. Therefore, when the model is more complex, the theoretical results can be better.

However, the degradation of the deep network may occur, the accuracy is saturated or even decreased.

Therefore, we use the method of super parameter retrieval to find the ideal super parameters on

each dataset. First, we fix the number of hidden units of the autoencoder DX′ to 32, and then increase

the number of hidden layers from 2 layers to 5 layers to find out the optimal number of layers. Then

we fix the optimal number of layers L of the autoencoder and increase the number of hidden layer

units DX′ from 32, 64, 128, to 256 to find the best combination (L,DX′). As we can see in Fig.5,

the horizontal axis represents different combinations of experiments. On forestcovtype dataset, we

find the best couple (L,DX′) = (5, 128) in ODLAE-1 algorithm, and (L,DX′) = (5, 64) in ODLAE-2

algorithm, And these optimal parameter combinations are used as the fixed parameter settings of the

follow-up experiments.

4.6. Comparing Different Algorithms on Different Datasets

We extensively compare the proposed technique with existing state-of-the-art methods for online

learning. These include Relaxed Online Maximum Margin Algorithm[ROMMA] and its variation

aggressive ROMMA algorithms(AROMMAS)[45], Adaptive Regularization of Weights(AROW)[46],

confidence weighted algorithms (CW)[47], Soft Confidence Weight Learning algorithm (SCW1 and

SCW2)[48], Online Gradient Descent algorithms(OGD)[49], Passive-Aggressive learning algorithms
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(a) forestcovtype (b) gesture

(c) mnist (d) rotatedmnist

(e) permutedmnist (f) rfid

(g) N-Balo

Figure 4: Comparing different trade-off parameters between the reconstructing and prediction loss on ODLAE-2
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(a) Forestcovtype (b) Gesture

(c) Mnist (d) Rotatedmnist

(e) permutedmnist (f) rfid

(g) N-Balo

Figure 5: Variations in L and DX′ on different datasets
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for Multiclass(PAM) and its variations PAM1 and PAM2 [50], Perceptron Algorithms with Max-score

update(PerceptronM), Perceptron Algorithms with similarity-score update(PerceptronS), Perceptron

Algorithms with uniform update(PerceptronU)[51], Online Deep Learning: Learning Deep Neural

Networks on the Fly(ONN)[52].

Fig. 6 compares different methods on different datasets, the results indicate the superior perfor-

mance of the proposed method. Compared with the second best method on the rotatedmnist dataset,

our approach achieves a relative gain of 3.5% and 4.77% respectively. For the case of N-Balo dataset,

our performance is only 2.35% and 2.25% below the SCW1 approach. In addition, the predictive results

of different algorithms on these datasets are also listed in Table 2, and in Table 2, we provide more

comparisons on the performance on different datasets, such as precision, F-1, and haming loss. For

each evaluation index, our algorithm has achieved good results. The best performances are indicated

in the bold.

Table 2: Comparisons on the different datasets with different evaluation indexes

Method
Accuracy

Forestcovtype gesture mnist rotatedmnist permutedmnist rfid N-Balo

ODLAE-1(ours) 75.87% 63.34% 94.82% 86.88% 91.87% 98.50% 86.48%

ODLAE-2(ours) 74.48% 62.73% 93.16% 88.15% 90.52% 98.42% 86.58%

AROMMAS 60.89% 46.47% 84.85% 68.54% 82.40% 33.76% 84.51%

AROW 71.04% 59.68% 89.07% 76.41% 87.21% 49.60% 79.78%

CW 10.19% 48.93% 87.03% 70.98% 84.99% 25.05% 55.25%

SCW1 70.81% 58.88% 88.93% 76.06% 86.66% 55.83% 88.83%

SCW2 71.85% 59.25% 89.96% 78.04% 87.99% 53.81% 88.79%

OGD 70.47% 55.09% 89.36% 66.56% 86.50% 48.12% 84.38%

ROMMA 59.06% 46.92% 83.21% 77.66% 79.82% 33.35% 83.18%

PAM 60.60% 45.11% 85.83% 69.57% 83.10% 33.73% 83.67%

PAM1 67.88% 46.92% 85.80% 69.57% 87.80% 49.31% 83.70%

PAM2 64.19% 46.93% 86.24% 70.20% 83.34% 48.18% 83.66%

ONN 72.56% 58.26% 91.11% 83.38% 87.47% 98.20% 83.66%

PerceptronM 61.03% 47.75% 85.01% 69.83% 81.52% 41.36% 82.02%

PerceptronS 61.68% 49.31% 85.61% 72.36% 82.50% 42.10% 82.08%

PerceptronU 62.23% 50.68% 86.13% 71.16% 82.74% 43.09% 82.13%
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(a) forestcovtype (b) gesture

(c) mnist (d) rotatedmnist

(e) permutedmnist (f) rfid

(g) N-Balo

Figure 6: The accuracies of different algorithms on different datasets
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Method
F-1

Forestcovtype gesture mnist rotatedmnist permutedmnist rfid N-Balo

ODLAE-1(ours) 0.7507 0.6117 0.9482 0.8684 0.9185 0.9857 0.8473

ODLAE-2(ours) 0.7401 0.6109 0.9315 0.8813 0.9051 0.9828 0.8629

AROMMAS 0.6092 0.4647 0.8484 0.6853 0.8237 0.3376 0.8450

AROW 0.6952 0.5723 0.8901 0.7596 0.8711 0.4323 0.7628

CW 0.0918 0.4876 0.8702 0.7088 0.8496 0.2084 0.4607

SCW1 0.7063 0.5750 0.8890 0.7590 0.8663 0.5562 0.8573

SCW2 0.7089 0.5791 0.8994 0.7790 0.8796 0.5235 0.8588

OGD 0.6866 0.5358 0.8935 0.7756 0.8647 0.4067 0.8397

ROMMA 0.5929 0.4685 0.8320 0.6664 0.7984 0.3341 0.8320

PAM 0.6060 0.4490 0.8580 0.6945 0.8305 0.3374 0.8365

PAM1 0.6699 0.4651 0.8577 0.6945 0.8776 0.4548 0.8367

PAM2 0.6378 0.4652 0.8621 0.7006 0.8329 0.4524 0.8363

ONN 0.7136 0.5418 0.9109 0.8329 0.8747 0.9820 0.8348

PerceptronM 0.6103 0.4771 0.8502 0.6983 0.8153 0.4083 0.8203

PerceptronS 0.6156 0.4912 0.8561 0.7235 0.8251 0.4151 0.8210

PerceptronU 0.6200 0.5033 0.8614 0.7116 0.8275 0.4246 0.8216
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Method
Haming Loss

Forestcovtype gesture mnist rotatedmnist permutedmnist rfid N-Balo

ODLAE-1(ours) 0.2412 0.3666 0.0517 0.1312 0.0813 0.0140 0.1352

ODLAE-2(ours) 0.2516 0.3726 0.0684 0.1185 0.0947 0.0170 0.1341

AROMMAS 0.3910 0.5352 0.1514 0.3145 0.1759 0.6624 0.1548

AROW 0.2895 0.4031 0.1092 0.2358 0.1278 0.5039 0.2021

CW 0.8980 0.5106 0.1296 0.2902 0.1500 0.7494 0.4474

SCW1 0.2918 0.4111 0.1106 0.2393 0.1333 0.4416 0.1116

SCW2 0.2814 0.4074 0.1003 0.2196 0.1200 0.4618 0.1120

OGD 0.2952 0.4490 0.1063 0.3343 0.1349 0.5187 0.1561

ROMMA 0.4093 0.5307 0.1679 0.2233 0.2017 0.6664 0.1681

PAM 0.3939 0.5488 0.1416 0.3042 0.1689 0.6626 0.1632

PAM1 0.3211 0.5307 0.1419 0.3042 0.1219 0.5068 0.1629

PAM2 0.3580 0.5306 0.1375 0.2979 0.1665 0.5181 0.1633

ONN 0.2743 0.4173 0.8884 0.1661 0.1225 0.0179 0.1633

PerceptronM 0.3896 0.5224 0.1498 0.3016 0.1847 0.5863 0.1797

PerceptronS 0.3831 0.5068 0.1438 0.2763 0.1749 0.5789 0.1791

PerceptronU 0.3776 0.4931 0.1386 0.2883 0.1725 0.5690 0.1786
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Method
Precision

Forestcovtype gesture mnist rotatedmnist permutedmnist rfid N-Balo

ODLAE-1(ours) 0.7554 0.6116 0.9481 0.8683 0.9184 0.9856 0.8601

ODLAE-2(ours) 0.7400 0.6073 0.9314 0.8812 0.9050 0.9828 0.8640

AROMMAS 0.6095 0.4649 0.8483 0.6852 0.8235 0.3386 0.8450

AROW 0.6959 0.5784 0.8902 0.7600 0.8713 0.4644 0.7547

CW 0.3757 0.4941 0.8701 0.7081 0.8494 0.2750 0.5507

SCW1 0.7048 0.5759 0.8889 0.7580 0.8661 0.5632 0.8490

SCW2 0.7068 0.5851 0.8994 0.7783 0.8794 0.5336 0.8800

OGD 0.6900 0.5366 0.8934 0.7751 0.8647 0.4570 0.8410

ROMMA 0.5954 0.4717 0.8321 0.6673 0.7986 0.3352 0.8323

PAM 0.6060 0.4604 0.8578 0.6934 0.8301 0.3383 0.8363

PAM1 0.6669 0.4743 0.8575 0.6934 0.8775 0.4701 0.8366

PAM2 0.6349 0.4743 0.8618 0.6995 0.8324 0.4563 0.8362

ONN 0.7232 0.5668 0.9109 0.8330 0.8752 0.9821 0.8352

PerceptronM 0.6103 0.4828 0.8504 0.6987 0.8156 0.4164 0.8204

PerceptronS 0.6144 0.4946 0.8562 0.7237 0.8254 0.4236 0.8213

PerceptronU 0.6182 0.5053 0.8616 0.7118 0.8279 0.4344 0.8220

22



4.7. Comparing Different Algorithm’s Robustness on Different Datasets

Generally speaking, a good encoding representation should be devoted to capturing useful and

stable structures from maybe partially collapsed inputs with unknown distribution. In this section,

motivated by this principle, in order to further improve the robustness of the algorithm to learning

latent representation of partially corrupted input data. We introduce and motivate a new training

principle for ODLAE based on the idea of Denoising Auto-Encoder(DAE), a more recent variant of

the basic autoencoder.

This is done by first corrupting the initial input x into x̃ in the form of a stochastic mapping

x̃ ∼ qD(x̃ |x ).Then the collapsed input x̃ is then mapped, as the same process as auto-encoder does

before, to a hidden representation

h̃0 = sg(W
(0) · x̃+ b(0)) (16)

h̃l+1 = sg(W
(l) · h̃l + b(l)), l = 1, 2, . . . , L− 1 (17)

where sg is a non-liner activation function, W (0) ∈ RD′
X×DX , and W (l) ∈ RD′

X×D′
X , l =

1, 2, . . . , L − 1 are the weight matrix, and b(0) ∈ RD′
X , l = 1, . . . , L − 1 are the bias vector, from

which we could then obtain the reconstructed input z:

h̃′L−1 = sg(W
′(L) · h̃L(x̃) + b(L)) (18)

h̃′l−1 = sg(W
′(l) · h̃L(x̃) + b′(l)), l = 0, 1, . . . , L− 1 (19)

z = W ′(0) · h̃0(x̃) + b′(0) (20)

where W ′(0) ∈ RDY ×D′
X and W (l) ∈ RD′

X×D′
X , l = 1, 2, . . . , L are the weight matrix, and b′(0) ∈

RDY and b(l) ∈ RD′
X , l = 1, 2, . . . , L are the bias vector. The DAE training process consists of finding

parameters Ξ = {W (l),W ′(l), b(l), b′(l)}, l = 0, 1, . . . , L which minimize the reconstruction error. This

corresponds to minimizing the following the squared error loss Lre(x, z) = ‖x− z‖22. Other different

from the ODLAE-1 and ODLAE-2 is that, we only replace the auto-encoder in ODLAE-1 or ODLAE-2

with the denoising auto-encoder, the remaining part is consistent with the ODLAE-1 and ODLAE-2,

so for convenience, we dub it as ODLDAE-1and ODLDAE-2 respectively.

As we can see in Fig.6, we compare the accuracies of different algorithms on different datasets

with and without adding noise. The results indicate superior performance of the proposed method in

all datasets, including N-Balo dataset, From the Fig.7, we can see that the accuracies of ODLDAE-

1and ODLDAE-2 algorithms are slightly inferior to SCW1 algorithm when noise data is not added on
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denoising autoencoder, but the accuracies of our algorithm are higher than that of SCW1 algorithm

after adding noise to data, and the accuracies of ODLDAE-1and ODLDAE-2 algorithms are higher

than other baseline algorithms on other datasets. In addition, the accuracies of different algorithm on

different dataset with adding noise are listed in the Table3. The best performances are indicated in

the bold.

Table 3: The predictive results of different algorithm on different dataset with adding noise

Method

Accuracy

forestcovtype gesture mnist rotatedmnist permutedmnist rfid N-Balo

(noise) (noise) (noise) (noise) (noise) (noise) (noise)

ODLDAE-1(ours) 73.60% 62.92% 94.33% 86.30% 91.05% 98.19% 85.30%

ODLDAE-2(ours) 73.08% 61.47% 93.15% 88.01% 90.01% 98.03% 85.01%

aROMMS 57.83% 47.61% 84.79% 68.35% 81.96% 33.55% 81.66%

AROW 68.96% 58.19% 88.62% 75.77% 86.44% 49.91% 77.85%

CW 4.34% 46.76% 86.78% 70.74% 83.98% 51.54% 51.21%

SCW1 67.08% 57.46% 88.20% 74.98% 85.51% 53.77% 84.83%

SCW2 69.40% 58.79% 89.67% 77.22% 86.93% 52.72% 84.35%

OGD 68.17% 54.68% 89.25% 77.48% 86.23% 47.64% 82.98%

ROMMA 56.25% 46.13% 83.17% 66.42% 79.18% 33.07% 80.69%

PAM 57.81% 44.87% 85.82% 69.57% 82.81% 33.56% 80.70%

PAM1 65.32% 46.81% 85.79% 69.56% 82.81% 48.75% 80.74%

PAM2 61.32% 46.31% 86.14% 70.07% 83.16% 47.40% 80.76%

ONN 70.36% 58.08% 91.25% 83.09% 87.47% 92.76% 83.65%

PerceptronM 58.47% 47.72% 84.84% 69.81% 81.19% 40.57% 79.81%

PerceptronS 59.16% 49.69% 85.48% 71.23% 81.87% 41.37% 79.90%

PerceptronU 59.87% 51.21% 85.95% 72.44% 82.50% 42.36% 79.91%

5. Conclusion and Future Work

Based on auto-encoder, we propose a new two-phase online deep learning framework, by encoder,

different abstract hierarchical latent representations are acquired, by means of the output-level fusion

strategy and feature-level fusion strategy, constructed classifier make the best of the input information

with different abstract level. We devise objective function to balance the prediction and reconstruction

loss. This combination of loss functions gives us better prediction performance.

In order to improve the robustness of the algorithm, we incorporate a denoising auto-encoder, which

effectively improves the anti-noise performance of the algorithm compared with the normal algorithm.
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(a) forestcovtype (b) gesture

(c) mnist (d) rotatedmnist

(e) permutedmnist (f) rfid

(g) N-Balo

Figure 7: Comparing the accuracies of different algorithms on different data sets with and without adding noise
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Our experimental results suggest that:(1) online deep learning provides an feasible way to learn effective

implicit representation, and the good predictive results were also obtained;(2) the proposed algorithm

obtains smaller reconstruction and prediction loss, the overall prediction performance is also better

than other state-of-art algorithms;(3) compared with the simple weighted average fusion method, our

paper proposes two different fusion strategies, which effectively improve the predictive accuracies of

the algorithm;(4) the encouraging experimental results showed that the robustness of the algorithm is

further improved in comparison to most of diverse online learning algorithms.

For future work, we plan to consider sequential characteristics of samples to get better prediction

results. At the same time, we can extend our single task online learning to multi-task online deep

learning setup, adaptively learn task weight vector and task correlation from multi-task streaming

data.
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