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Abstract The quality of the proposed solutions by Case-Based Reasoning (CBR)
systems is highly dependent on recorded experiences and their describing attributes.
Hence, to keep them offering accurate and efficient responses for a long time frame,
the maintenance of Case Bases (CB) and Vocabulary knowledge is required. How-
ever, maintenance operations are usually unable to exploit provided domain-experts
knowledge although this kind of systems are widely applied in several real-life con-
texts. This offered prior knowledge is handled, in our work, in form of pairwise con-
straints: Regarding cases, Must-Link (ML) affirms that two given problems should
have the same solution, and Cannot-Link (CL) informs that two problems cannot have
the same solution. These constraints may also regard vocabulary knowledge in such a
way that ML is generated when prior knowledge affirm that two given features offer
correlated values, therefore, similar information, and CL is built when they provide
different information. This paper proposes a new constrained & integrated method,
named CIMMEP, encoding Constrained & Integrated Maintaining Method based on
Evidential Policies, for maintaining both vocabulary and CB through eliminating re-
dundancy and noisiness. Since CBR systems handle real-world experiences, which
are full of uncertainty, CIMMEP manages this imperfection using a powerful tool
called the belief function theory.
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1 Introduction

Case-Based Reasoning (CBR) is an artificial intelligence paradigm for problem solv-
ing based on recalling previous experiences which are stored within a memory struc-
ture called Case Base (CB) and described by some vocabulary knowledge such as the
set of attributes. It is mainly based on the hypothesis that similar problems have sim-
ilar solutions with offering the possibility to make some adaptations to solutions in
order to perfectly match new problems characterizations. After the revision of every
provided solution, a new case will be stored in the CB in order to provide an incre-
mental learning [1]. However, if we take a snapshot of knowledge in some instant, we
may note some irrelevant or out-of-date knowledge which will cause a degradation of
the competence as well as the performance of the overall CBR system. For that rea-
son, we find, in the literature, several maintenance policies that have been proposed
to revise the content of the CB, the vocabulary describing cases, and other types
of knowledge. In CBR systems, this knowledge is distributed over four knowledge
containers: the case base, the vocabulary, the similarity measure, and the adaptation
rules [2]. The CB is the basic element and plays a special role because cases can be
entered without understanding them. The vocabulary refers to the first question that
arises: which data structure is used to represent primitive notions, in general, and
the set of cases, in particular? Hence, our emphasis, in this work, turns around the
maintenance of this two knowledge containers.

The proposed maintaining policies aim, generally, at removing (1) noisy and/or
(2) redundant knowledge, using some given strategies. The need of such maintenance
operation are more and more important through time since CBR learns incrementally
and uses past experiences for adapting solutions. Actually, some of these maintenance
policies have the ability to manage imperfection embedded within real-world situa-
tions which cause ignorance and overlapping data regions during learning. However,
these policies suffer from their disability to help their automatic maintenance mech-
anisms when prior knowledge, such as those provided by domain-experts, are avail-
able. We tackle these problems, in this paper, by proposing a new maintaining policy,
called CIMMEP for Constrained & Integrated Maintaining Method based on Evi-
dential Policies. By managing constraints, CIMMEP revises the content of the most
important maintenance targets simultaneously: (1) the CB, which presents the set of
numerical experiences, and (2) the vocabulary knowledge, which has been restricted
to the set of features/attributes describing cases.

Our proposal is characterized by an ability to exploit prior knowledge in order to
help the learning task. Hence, it makes use of the semi-supervised learning through
pairwise must-link (ML) and cannot-link (CL) constraints. Since we intend to learn
both cases and features, we use two kinds of constraints for both types as shown in
Fig. 1. On the one hand, during CB learning, we use must-link constraints MLCB to
specify that two given cases have the same solution where cannot-link constraints
(CLCB) inform that two instances of cases cannot belong to the same cluster. On the
other hand, during vocabulary learning, must-link constraints (MLVoc) between two
features are generated when prior knowledge affirm that they offer the same informa-
tion, where cannot-link constraints (CLVoc) are created to affirm that they offer dif-
ferent information during learning. Ultimately, we mention that our new CIMMEP
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method is based on some powerful managing uncertainty tools offered within the
frame of the belief function theory [3,4] so as to manage imperfection within knowl-
edge containers (CB and Vocabulary) since they present the origins of uncertainty in
CBR systems [5].

𝐶𝐿𝑉𝑜𝑐

Formal Description

Prior knowledge about 
cases (CB)

Prior knowledge about 
attributes (Vocabulary)

𝐶𝐿𝐶𝐵 𝑀𝐿𝑉𝑜𝑐𝑀𝐿𝐶𝐵

CIMMEP algorithm

CB learning Vocabulary learning

Original CBR system Maintained CBR system

Fig. 1 The used ML and CL constraints for both CB and Vocabulary maintenance within CIMMEP policy

The rest of this paper is organized as follows. The next Section is dedicated to
present some related works regarding policies aiming to maintain CBs, on the one
hand, and Vocabulary knowledge, on the other hand. The necessary background re-
lated to the belief function theory tools and prior knowledge expression are offered
during Section 3. Section 4 is focusing on providing details regarding our proposals
for this paper. Throughout Section 5, we present two modes for artificial constraints
generation and establish an experimental study followed by results exposition and
discussion. Ultimately, conclusion and outlook are stated in Section 6.

2 Case Base and Vocabulary knowledge as maintenance targets

Obviously, CBR systems are designed to operate for a long period of time. However,
context variance along with continuous CB learning evolution give rise to the need of
maintaining the CB (Section 2.1), on the one hand, and the vocabulary or the set of
attributes (Section 2.2), on the other hand. The integration of these both maintenance
targets is therefore interesting, especially when offering the possibility to exploit prior
knowledge (discussion in Section 2.3).
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2.1 Case Base as a maintenance target

The CB presents the basic element for any CBR system which serves to gather the
collection of previous experiences to be retrieved. Due to their incremental evolution
between-whiles, CBs have to be maintained and cases knowledge should be revised.

By this way, a sub-field of Case Base Maintenance (CBM) arises to revise the
organization or content of CBs so as to ease reasoning for a particular set of perfor-
mance objectives [7]. Hence, CBM has been explored in-depth where we find several
policies that aim to maintain CBs, and others to evaluate their maintenance task ad-
equacy degree [8]. An overview about the evolution of this field in term of research
work, during the last five decades, is offered in Fig. 2. Let briefly describe this broad
spectrum of policies through classifying them into three classes according to the three
following strategies.

Selection based strategy consists to select from a case base only the set of repre-
sentative cases that are able to cover the remaining cases. It embodies, for instance,
the Condensed Nearest Neighbor (CNN) policy [9] which consists in iteratively and
randomly select cases to be added within a new CB, and test, during every iteration,
if it is able to successfully solve all problems of the original one. The Reduced Near-
est Neighbor (RNN) policy [10] aims at reducing the CB size, case by case, while
no case from the original CB is misclassified by the reduced one. Other variants and
methods, that belong to this strategy, are also proposed [11,12] .

The ensemble of policies belonging to the Optimization based strategy are char-
acterized by maintaining CBs through optimizing some evaluation criteria. For in-
stance, Utility Deletion (UD) policy maintains CBs by estimating Minton’s utility
[13] measurement. Iterative Case Filtering algorithm (ICF) [14] is based on the com-
petence to make decision about cases deletion. Its principle idea is to delete every
case that more case can solve it than can solve itself. Besides, RC-NN [15] consists
in combining CNN as a CBM policy with the Relative Coverage (RC) metric so as to
quantify the competence of cases. Some works that explore the Competence concept
within the field of CBR have also been mentioned in Fig. 2 with orange color.

Finally, Partitioning based strategy gathers CBM policies that handle the overall
CBs in form of small ones. These policies use generally the clustering as a machine
learning technique to divide CBs. Case clustering has been extensively applied within
the CBM field due to its success in detecting cases to be maintained. For example,
Clustering, Outliers, and Internal case Deletion policy (COID) [16] uses a density
based clustering algorithm to allow defining and removing irrelevant cases. Besides,
Evidential Clustering and case Types Detection (ECTD) for CBM [17] as well as its
dynamic (DETD) [18] and constrained (CECTD) [19] versions divide the CB with
uncertainty management and classify cases into four main types: Two among them
are retained where noisy and redundant case types are removed.

2.2 Vocabulary knowledge as a maintenance target

According to authors in [2], the vocabulary knowledge responses to the question
”Which elements of the data structures are used to present fundamental notions?”.
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Actually, it is related to the nature of knowledge source within CBR systems.
As already mentioned, we restrict this knowledge to be in form of attribute-value
data with an object-oriented organization. Obviously, every encountered experience
in our real-life may be described with an infinite number of features. However, only
some of them are useful to provide the most accurate solution for one problem. As
already mentioned, there are basically two types of attributes that should be removed
to maintain cases’ vocabulary. On the one hand, the set of noisy attributes which
their removal from the vocabulary conducts to the improvement of the CBR system’s
decision making. On the other hand, the set of redundant attributes that we define by
the ensemble of high correlated features.

Likewise, we find in the literature various research works aiming to maintain the
vocabulary knowledge. An attempt to collect them is provided within Fig. 3.

Actually, the maintenance of vocabulary is widely investigated within Feature
Selection (FS) context. By this way, various researches use FS techniques to se-
lect/reduce features set for cases description.

Regrouping attributes according to some proximity data has also been proved to
be an interesting solution to maintain features within the CBR context. This concept
is known by Attribute Clustering (AC), which consists in regrouping similar attributes
within the same cluster, where dissimilar attributes are assigned to different ones. In
the context of features, similarity reflects generally the relation between them which
is generally defined according to the research purpose (e.g., correlation, dependency,
etc.). We note that, in the literature, AC has been carried out, for the aim of vocabulary
maintenance, in several research works such in [20], [21], and [22].

2.3 Discuss integrated maintenance towards exploiting prior knowledge

For CBM, partitioning CBs and regrouping them into small ones facilitate handling
their content since each one may be treated separately. The clustering technique fits
such problem since cases may be considered as individuals where distance notion
between them is well presented. Concerning vocabulary maintenance, AC concept,
which consists in regrouping attributes according to some proximity data, is suitable
for this problem since it leads to preserve relations between features and offers a high
amount of flexibility to the CBR framework, where we can substitute each feature by
any other one belonging to the same cluster.

Actually, research established within the two above mentioned sub-fields are
somehow interesting. However, we should ask what if we need to maintain the content
of both CB and vocabulary? Obviously, the naive solution is to successively perform
a CBM policy then a vocabulary maintenance policy, or inversely. In fact, in that
case, we will even learn on noisy attributes when we maintain CBs, or learn on noisy
cases during vocabulary maintenance. Hence, an integration between the two-level
maintenance is required. The primary idea of the integrated maintenance approach
is to minimize the size of vocabulary (e.g., number of attributes) and the size of the
case base simultaneously, which may achieve synergy effect through detecting the
most relevant features along with the most representative cases. However, we note
that only few studies have been proposed to provide a two-dimensional maintenance.
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The first one proposed by [23] performs this kind of reduction using the Genetic
Algorithm (GA) [24]. Then, authors in [25] proposed similar method that tackles
the latter work’s limitation towards large data sensibility. Therefore, they employ, for
GA search, different models for chromosomes and fitness function. The latter men-
tioned works have been only applied to artificially produced datasets. To validate a
two-dimentional maintenance technique in real-world data, the work, presented in
[26], proposes a method for CBR systems with cases and attributes reduction tech-
nique for customer classification. However, all these stated works suffer from their
disability to manage uncertainty. In fact, we mention that, during every maintenance
operation, imperfection within data should be managed within knowledge in general,
and within CBR systems, in particular. Vocabulary and CB present two knowledge
containers among the origins of uncertainty within CBR systems [5] since they refer
to real-world experiences where data is never exact and full by uncertainty, vague-
ness, and imprecision. Actually, this imperfection could be handled using different
theories such as fuzzy logic [27], rough sets [28], or other works on multigranulation
[29]. However, in the integrated maintenance context, we find, unfortunately, only
one work [30] that uses one among the most powerful tools for this matter called
Evidence or belief function theory [3,4]. We aim, in this paper, to address a major
limitation of all reviewed methods that figures in their disability to aid learning opera-
tions using prior knowledge. In fact, CBR systems are widely applied within various
domains where their experts could provide very important knowledge for both CB
and vocabulary maintenance tasks. Using pairwise constraints presents one among
the most used forms, in the literature, to express provided knowledge. Thus, these
extra data, if available, will be used to conduct the most reliable decision instead of
being neglected.

Evidential background, as well as the used way to express prior knowledge, are
presented in the following Section.

3 Evidential background

To manage uncertainty, our proposals are based on tools offered by the belief function
/Evidence/Dempster-Shafer theory [3,4]. Its basic concepts are overviewed in Section
3.1, the evidential clustering along with the credal partition concepts are devoted in
Section 3.2, and constraints expression within the evidential framework is presented
in Section 3.3.

3.1 Basic concepts of the belief function theory

A belief function model is originally defined by a discrete and finite set of elementary
events called the frame of discernment Θ of the problem taken into account. The
set 2Θ is called the power set and contains all the possible subsets of Θ . The basic
belief assignment (bba) mΘ is a mapping function from 2Θ to [0,1] that assigns to
every subset C of Θ a degree of belief reflecting the partial knowledge taken by a
variable y defined on Θ , and verifies the constraint ∑C⊆Θ mΘ (C) = 1. For the sake
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of simplicity, we use m as notation since we have only one frame on discernment. A
bba m is normalized if m( /0) = 0. On the opposite case, the interpretation of the mass
assigned to the empty set partition consists in measuring the degree of belief towards
the hypothesis saying that y does not belong to Θ . This amount of belief can be useful
in clustering to identify noises [31]. From a given bba m, the plausibility function is
defined, to measure the maximum amount of belief supporting the different subsets
in Θ , as follows:

pl(C) = ∑
B∩C 6= /0

m(B) ∀C ⊆Θ (1)

Given two bbas m1 and m2, defined in the same frame of discernment Θ , the following
equation, proposed in [4], presents one of the most known measurements that aim to
quantify the degree of conflict between them:

κ = ∑
C∩B= /0

m1(C) m2(B) ∀C,B⊆Θ (2)

Authors in [32] proved that if two bbas represent evidence regarding two distinct
questions and defined in the same frame Θ , then the plausibility that they acquire the
same answer is equal to 1−κ .

3.2 Evidential clustering and credal partition

We call Evidential Clustering the task of regrouping objects1, according to some
attribute-based/dissimilarity-based data, within the frame of belief function theory.
In an evidential clustering context, the frame of discernment Θ defines the set of a
finite number c of clusters. Besides, the uncertainty regarding the membership of an
object oi to the different clusters is modeled by a bba mi on Θ . If we have n objects,
the credal partition is, therefore, the n-tuple composed by n mass functions, such that
M = (m1, ...,mn) [32]. Generally, M is generated after applying an evidential cluster-
ing technique to regroup a set of objects according to their similarity while managing
the uncertainty in their membership to all the possible partitions of clusters. Since it
quantifies uncertainty in a power set space, the credal partition is more general than
hard and soft partitions. Nevertheless, it can be converted to any one of these types
[31,32]. After generating the credal partition, the decision about the membership may
regard the cluster having the highest pignistic probability, which is defined as follows:

BetP(ω) = ∑
ω∈C

m(C)

|C|
∀ω ∈Θ (3)

1 In our context, these objects represent the set of features that describe cases, if we handle vocabulary,
and the set of cases if we handle CBs.
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3.3 Constraints based prior knowledge expression within evidential framework

In real CBR application domains, there is often the case that we possess some extra
background knowledge. Actually, it is always gainful to use them throughout learning
in general, and during evidential clustering in particular. Within such context, it is
beneficial to use instance-level constraints to express background knowledge since
they give information about which instances that should or should not belong to the
same group. Hence, we use two types of constraints: ML constraints, which indicate
that two instances should be associated with the same cluster, and CL constraints
which specify that two instances should not belong to the same cluster.

For the search of the credal partition within the belief function framework, these
pairwise constraints are translated and expressed as follows. Given mi and m j two
bbas regarding cluster-membership of instances oi and o j respectively, let pli j(Θi j)
refers to their plausibility to belong to the same cluster, and pli j(Θ i j) refers to the
plausibility of the complementary event. They can be calculated as follows [31]:

pli j(Θi j) = 1−κi j (4a)

pli j(Θ i j) = 1−mi( /0)−m j( /0)+mi( /0) m j( /0)−
c

∑
k=1

mi({ωk})m j({ωk}) (4b)

For the sake of clarity regarding the calculation of this plausibility, let mention
that it consists in placing ourselves in the Cartesian product Θ 2 = Θ ×Θ and com-
bining the two vacuous extensions of mi and m j [32]. If the resulted combination is
denoted by mi j, then pli j can be computed through mi j using Equation 1.

4 Maintaining CB & Vocabulary containers with prior knowledge exploitation

Our purpose behind the current work consists in giving the possibility to exploit prior
knowledge during both CB and Vocabulary maintenance in order to repair CBR sys-
tems weaknesses. Hence, our proposal defines a constrained and integrated mainte-
nance policy that targets CBR systems knowledge called CIMMEP, for ”Constrained
& Integrated Maintaining Method based on Evidential Policies”. Due to their rich-
ness and flexibility, we use tools offered within the belief function theory for knowl-
edge uncertainty management, during the maintenance of CBR systems.

CIMMEP is characterized by an alternation of two main phases so as to provide a
trade-off between accurate maintenance tasks for CB and Vocabulary knowledge con-
tainers, while exploiting prior knowledge available for both of them. The first phase,
which is inspired from our preliminary work described in [33], concerns vocabulary
maintenance under constraints, where the second phase which regards CBM under
constraints uses steps of a new weighted version of our preliminary work presented
in [19]. Therefore, we present, in what follows, our constrained vocabulary main-
tenance strategy (Section 4.1), our new weighted and constrained policy for CBM
(Section 4.2), and finally our main proposal regarding the new constrained and inte-
grated CIMMEP method for both CB and vocabulary maintenance (Section 4.3).
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4.1 Constrained Evidential Vocabulary Maintenance (CEVM)

At the aim of performing a high-quality attribute selection within a CBR system, our
Constrained Evidential Vocabulary Maintenance policy for CBR systems (CEVM)
follows three main steps, as shown in Fig. 4. It consists, first of all, in generating some

Case Base

n cases
p+1 attributes

Step 1: Extract Dissimilarity Data Between Attributes

Step 2: Constrained Evidential Attribute Clustering

Step 3: Attribute Maintenance

Measure the correlation

Measure the similarity

Conclude the dissimilarity

Delete noisiness

Making decision about 
attributes membership

Remove redundancy

Prior 
knowledge

Fig. 4 Steps and substeps of CEVM policy

dissimilarity data, from the CB, between attributes, based on the correlation between
their values. Second, CEVM regroups the set of attributes using their dissimilarities
and with taking advantage of prior knowledge. After managing uncertainty and gen-
erating the credal partition by allowing every attribute to belong to all the partitions
of clusters with a degree of belief, we make decision about their membership along
with removing noisy and redundant features. More details are given during the three
following Subsections.

4.1.1 Step 1: Extracting attributes dissimilarity data

As already mentioned, the notion of dissimilarity between attributes can be defined,
according to the context into account, in term of dependency, correlation, etc. In our
work, we are interested in identifying the similarity between two features A1 and A2
through measuring the correlation between them. This idea comes from the fact that
if two features are exactly correlated, then they offer exactly the same information for
learning. Let, for instance, refer to Fig. 5 where we show a somehow perfect linear
distribution of cases according to both features. We remark, so, that features values
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increase with the same amount for A1 and A2, which makes them somehow identical
or similar.

Fig. 5 Example of cases distribution having binary class: A scatterplot of A1 and A2

Consequently, to extract attributes dissimilarity data, our CEVM policy follows
the three following sub-steps:

1. Correlation between attributes: In our context, the origins of dissimilarity data
between attributes Ai and A j are generated through measuring the correlation be-
tween their values. The idea is that if two attributes are highly correlated, then
they offer the same information for solving problems. We use the well-known
Pearson’s Correlation Coefficient [34] so as to measure the linear association
between the different values ail and a jl of attributes Ai and A j respectively, as
follows:

rAiA j =
∑

n
l=1(ail−ai)(a jl−a j)√

∑
n
l=1 (ail−ai)

2
√

∑
n
l=1 (a jl−a j)

2 (5)

where ai and a j are the mean values of features Ai and A j respectively.
2. Similarity between attributes: All correlation values are in [−1,1] [34]. If rAiA j '
−1, then there is a high negative correlation and a high similarity between Ai and
A j since they offer the same information. Similarly, if rAiA j ' 1, then there is a
high positive correlation and a high similarity. However, if rAiA j ' 0, then there
is no correlation between them, which makes Ai and A j completely dissimilar.
Consequently, we create the square similarity matrix S = (sAiA j) such as:

sAiA j = |rAiA j | (6)

3. Attributes dissimilarity data: After measuring the similarity between features, it
is straightforward to compute the square dissimilarity matrix D = (dAiA j) such as:

dAiA j = 1− sAiA j (7)
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4.1.2 Step 2: Constrained Evidential Attribute Clustering

During this step, we aim to regroup features according to their similarity and reach
the two following objectives during vocabulary maintenance: First, managing the un-
certainty in attributes membership to clusters from the complete ignorance to the
total certainty using the belief function theory. Secondly, exploiting the prior avail-
able knowledge supplied, for instance, by experts of domains in which the CBR is ap-
plied. We used a constrained evidential clustering method based on dissimilarity data,
which are supplied from the previous step, called Constrained EVidential CLUSter-
ing (CEVCLUS) [31]. It is a variant of EVCLUS [32] which is characterized by its
ability to take into account a prior knowledge in form of the two pairwise constraints:
The Must-link (MLvoc) and the Cannot-Link (CLvoc) constraints.
To construct the credal partition M, the non-constrained EVCLUS [32] algorithm
minimizes a stress function, using a gradient based algorithm, similar to:

J(M) = η ∑
i< j

(κi j−δi j)
2 (8)

where η = (∑i< j δ 2
i j)
−1, and δi j = ϕ(di j), with ϕ is an increasing function such as

ϕ(d) = 1− exp(−γd2). γ can be calculated as −logα/d2
0 , with a recommendation

to fix α to 0.05 and d0, which determines the size of each class, can be set to some
quantile of the dissimilarities in D.

The principle of the previous stress function is explained by Equation 4a. It means
that if two attributes are too far in term of distance, then they should have a low plau-
sibility to belong to the same cluster, and a large degree of conflict. In our context, if
we have prior knowledge informing that attributes Ai and A j surely belong to different
clusters, then the constraints pli j(Θ i j) = 1 and pli j(Θi j) = 0 are imposed. In contrast,
if prior knowledge affirm that they belong to the same cluster, then the constraints
pli j(Θ i j) = 0 and pli j(Θi j) = 1 are created. By this way, the CEVCLUS algorithm
minimizes, using an iterative gradient-based optimization procedure, the following
cost function composed by the sum of EVCLUS’s stress function [32] and a penal-
ization term:

JC(M) = J(M)+
ξ

2(|MLvoc|+ |CLvoc|)
(JMLvoc + JCLvoc) (9)

with

JMLvoc = ∑
(i, j)∈MLvoc

pli j(Θ i j)+1− pli j(Θi j) (10a)

JCLvoc = ∑
(i, j)∈CLvoc

pli j(Θi j)+1− pli j(Θ i j) (10b)

where MLvoc (respectively CLvoc) presents the set of must-link constraints (respec-
tively cannot-link constraints) about the vocabulary knowledge, and ξ is the hyper-
parameter aiming at arbitrating between the stress function and the constraints.
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4.1.3 Step 3: Attribute maintenance

Ultimately, we reach the vocabulary maintenance through removing noisy and re-
dundant features, and keeping only those that are unique and represent the different
generated clusters during the previous step. As shown in Fig. 4, this step is composed
by the three following sub-steps:
1. Removing noisy attributes: Since the performed CEVCLUS clustering method

devotes the empty set partition for noisiness allocation, we eliminate attributes
characterized by a high belief’s assignment to the empty set partition, such that:

Ai ∈ NA i f f mi( /0)> ∑
B j⊆Θ ,B j 6= /0

mi(B j) (11)

where NA presents the set of noisy attributes.

2. Making decision about attributes membership to clusters through the highest pig-
nistic probability value, using Equation 3.

3. Removing redundancy by keeping only one representative attribute for each clus-
ter. This idea gives an amount of flexibility to the CECTD policy towards CBR
framework: If there is a problem in selecting one representative attribute, then we
can re-select and re-flag any other attribute from the same cluster.

4.2 Constrained Evidential CB Maintenance (WCECTD): A weighted version

Just before, we presented our strategy for maintain vocabulary knowledge. Now, at
the aim of eliminating irrelevant and redundant cases, let show our CBM strategy
which performs a new weighted and constrained evidential clustering so as to detect
four types of cases and perform maintenance. These three steps, as shown in Fig. 6,
are detailed during the following subsections.

Fig. 6 WCECTD’s steps
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4.2.1 Step 1: Constrained evidential cases clustering using weighted metric

To learn on case bases with managing uncertainty, exploiting prior knowledge, and
taking into account features significance, we propose a new weighted version of
the Constrained Evidential C-Means (CECM) [35] clustering technique that we call
WCECM. In these methods, noisiness is assigned to the empty set partition. Each
object is considered as a case and its class presents its solution part. The background
knowledge is presented as case-level constraints regarding CB (MLCB and CLCB).

Objective function and Optimization of the new Weighted version of Constrained
Evidential C-Means (WCECM) First of all, let mention that WCECM differs from
CECM [35] by its ability to handle weights regarding features importance. Other-
wise, they have the same objective function to be optimized in order to build the
credal partition. The objective function of the non-constrained version of WCECM
(WECM algorithm [30,36]) is defined such that:

JWECM(M,V ) =
1

2cn
[

n

∑
i=1

∑
Ck 6= /0
|Ck|α mβ

ikd2
ik +

n

∑
i=1

ρ
2mβ

i /0 ] (12)

subject to:
∑

j/C j⊆Ω ,C j 6= /0
mi j +mi /0 = 1 ∀i = 1, ..,n (13)

where M presents the credal partition of n cases to c clusters, V is the matrix of 2c

clusters centers, di j represents a Weighted distance between cases xxxiii and xxx jjj, parame-
ters ρ and β serve to treat noisy objects, and α coefficient controls the penalization
of subsets of clusters C j ( j = 1..2c) having high cardinality.

WCECM algorithm is characterized by an additional requirement comparing to
WECM: ”pli j(θ) (respectively pli j(θ)) should be as low as possible if (xxxiii,xxx jjj) ver-
ifies one constraint in CLCB (respectively in MLCB)”. Hence, its cost function to be
minimized is defined as follows:

JWCECM(M,V ) = (1−ξ )JWECM(M,V )+ξ JCONST (14)

where ξ parameter controls the balance between constraints and geometrical model,
and JCONST , which indicates CLCB and MLCB violating cost, is defined such that:

JCONST =
1

|MLCB|+ |CLCB|
[ ∑
(xxxiii,xxx jjj)∈MLCB

pli j(θ)+ ∑
(xxxiii,xxx jjj)∈CLCB

pli j(θ) ] (15)

For more details about optimizing Equation 14, please see reference [35].

4.2.2 Step 2: Case types detection

We remark that various policies (Fig. 2) opt to divide cases into classes according
to their role towards to whole CB competence in solving problems. Our strategy for
CBM classifies cases into four types [17], as shown in Fig. 6. Noisy cases present a
distortion of values, Similar cases present a number of cases which are so close to
each others (redundant), Isolated cases are dissimilar and situated in clusters borders,
and Internal cases present the center of each group of similar cases (prototypes).
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Noisy cases detection: Since CECM algorithm allocates a high belief’s degree to the
empty set for noisy cases, we propose, as in [17] and [19], to detect them such that:

xxxiii ∈ NC i f f mi( /0)> ∑
A j⊆Ω ,A j 6= /0

mi(A j) (16)

where xxxiii presents one case and NC presents the set of all the Noisy cases.

Distinguish between Similar and Isolated cases: By arriving to this step, the majority
of cases are situated in the core of the different c clusters (Similar cases). However,
some cases are isolated and somehow far to their centers (Isolated cases). To make
difference between these two types, we compare the distance between cases and clus-
ters’ centers to a threshold (T hk) which is set to the average of cases distances from
a given cluster’s center. As in [17,19,30], we used the Belief Mahalanobis Distance
(BMD) [17] so as to take into account different shapes of distribution, along with
managing uncertainty. We make difference, therefore, between Similar and Isolated
cases as follows:

xxxi ∈
{

SCk i f ∃k/BMD(xxxi,vvvkkk)< T hk
IsC Otherwise (17)

where SCk is Similar cases set, IsC is the Isolated cases set, and the threshold T hk is

equal to
∑xxxiii /∈NC BMD(xxxiii,vvvkkk)

#TotalCases−#NoisyCases
.

Flag Internal cases: From each group of Similar cases, we flag an internal case as
a prototype or representative to cover all a group of similar cases. Consequently, we
detect that case as the closest one to each cluster’s center using BMD. Denoting InC
as the set of Internal cases, we formally define them as follows:

xxxiii ∈ InC i f f ∃k;¬∃xxx jjj/BMD(xxx jjj,vvvkkk)< BMD(xxxiii,vvvkkk) (18)

4.2.3 Step 3: Case base maintenance

During cases maintenance, we remove those that are irrelevant or dispensable for the
resolution of problems. By this way, we eliminate cases detected as Similar in order
to eliminate redundancy and improve response time, along with Noisy cases so as to
improve the competence of CBR systems in solving problems.

4.3 The integrated maintaining CIMMEP policy under constraints

Our new constrained and integrated CIMMEP method offers two-dimensional main-
tenance for CBR systems: Case Base maintenance and vocabulary maintenance. It
consists in iterating, for a number of repetitions, a two-phases alternation serving at
CB learning, on the one hand, and vocabulary learning, on the other hand. As men-
tioned during the introduction and in Fig. 1, CIMMEP exploits a formal description
arrived from prior knowledge even towards cases or attributes. For every knowledge,
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two types of constraints enter as input for our proposal so as to aid learning within its
integrated algorithm: MLCB and CLCB are used when we handle cases, where MLvoc
and CLvoc serve to help case attributes learning.

Using these constraints, and after every iteration, we update parameters so as to
conduct the algorithm to the most occur output. In case of starting with feature learn-
ing phase, our strategy of constrained vocabulary maintenance strategy (CEVM), as
shown in Section 4.1, will be applied without performing maintenance step (Step 3).
Thus, weights of features that have been flagged as Noisy, will be updated in form
of penalization, during Step 3 of WCECTD. Since we choose to apply iterations of
the two mentioned phases as times as the number of features, let update weights of
features flagged as noises, from one iteration to another, in the following way [30]:

i f Ai ∈ NF wi←− wi−
1
p

∀i = 1..p (19)

where wi presents the weight of feature Ai, NF presents noisy features’ set regarding
one iteration, and the total number of attributes is denoted by p. As initiation of every
iteration, NF is defined as an empty set.

Once weights are updated, we perform, during the second phase towards CB
learning, Step 1 of our strategy for CBM (Section 4.2) which is able to take into ac-
count prior available knowledge as well as features significance rates using weights.
In fact, it presents a weighted version of CECM [35] algorithm (WCECM) which
utilizes a weighted similarity metric. Consequently, we perform WECM as a ma-
chine learning technique on the CB using feature weights from phase 1 and input
constraints (MLCB and CLCB). Similarly to CECTD [19], we detect, thus, noisy cases
through the generated credal partition and Equation 16, which will be eliminated
before proceeding to the next iteration, so as to avoid distorting its operating task.
Contrariwise, redundancy in both CB and vocabulary knowledge improves the learn-
ing task. Hence, we keep them during the alternation between the two main phases.
Ultimately, using results offered within the last iteration, we retain, according to Step
4 of our constrained vocabulary maintenance (Section 4.1), representative attributes
only. Besides, we delete all cases considered as redundant so as to improve CBR sys-
tems performance. These cases are flagged as Similar by our presented CBM strategy
(Section 4.2). Let Algorithm 1 details the whole mechanism of our constrained & in-
tegrated CIMMEP maintaining method.

Before moving on validating our proposals through an experimental study, we
are interested, in this step, to study the computational complexity of our proposal de-
scribed in Algorithm 1 towards the most important variables: the size of the case base
(n), the number of features (p), the number of clusters for cases learning (Kc), and the
number of clusters for features learning (K f ). After investigation, we conclude, that it
takes polynomial time in the size of the CB (n) and the number of features (p). How-
ever, our method takes time exponential in the number of clusters regarding even case
learning (Kc) or features learning (K f ), since it handles cases/features’ membership
not only to clusters but also to all partitions of clusters. This is actually benefit for
managing the different levels of uncertainty, but it could be expensive in term of time
complexity when we use a large number of clusters. Hence, we will try, during the
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next Section, to choose the smallest and the most effective value of clusters number.
The whole complexity of our algorithm is estimated to O(2K f +Kc .n.p).

Algorithm 1 CIMMEP algorithm
Require: Original case base CB with n cases and p features;

List of pairwise constraints: MLvoc, CLvoc, MLCB, and CLCB;
Kc: Number of clusters for cases learning;
K f : Number of clusters for features learning;

Ensure: Maintained case base CB′ with n′ cases and p′ features (with n′ ≤ n and p′ ≤ p);
1: BEGIN
2: Initialize table of all features weights W to 1.
3: CB′←CB
4: j← 1 /* To count the number of iterations */
5: while j < p do
6: /* Alternate between two phases */
7: Phase 1: Constrained feature learning using cases descriptions
8: - Apply Steps 1 and 2 of our constrained vocabulary maintenance strategy (Section 4.1) using

CB′, K f , MLvoc, and CLvoc.
9: - Set weights for features detected as noisy using Equation 19.

10: Phase 2: Constrained Case Base learning based on attributes
11: - Apply Step 1 of WCECTD policy for CBM (Section 4.2) using CB′, Kc, W , MLvoc, and

CLvoc.
12: - Detect the set of noisy cases NC using Equation 16.
13: CB′←CB′ \NC /* Delete noisiness to improve the next iteration’s learning */
14: j← j+1
15: end while
16: Apply Step 3 of our constrained vocabulary maintenance strategy (Section 4.1) on CB′.
17: Apply Steps 2 and 3 of CBM strategy (Section 4.2) on CB′.
18: END

5 Experimental analysis

Throughout this Section, we highlight, first of all, a list of differences between some
CBM and/or vocabulary maintenance policies and our CIMMEP method. Then, we
establish our experimentation and validate our proposals by developing two variants
for both CEVM (Section 4.1) and WCECTD (Section 4.2) policies which differ by
their way in generating artificial constraints2. For every evidential policy, we will use
the variant offering best results to build our integrated CIMMEP method.

5.1 Comparison study between some maintenance policies

Before moving to our experimental investigation, we highlight in Table 1 a list of
some differences between our main contribution CIMMEP and some other main-
tenance policies with which we will compare our results thereafter. We note from
this table that our CIMMEP method, which alternates between constrained learning
and maintenance, is able to maintain CB and Vocabulary knowledge while exploiting

2 Calling domain-experts to generate constraints presents one among our perspectives.
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prior available knowledge, not sensible to noisy data, and capable to manage uncer-
tainty under the belief function framework. This comparative study has been made in
front of the six following maintenance policies: CNN [9], ECTD [17], CECTD [19],
ReliefF [37], EVM [20], and CEVM [33].

Table 1 Differences between some maintenance policies

CNN ECTD CECTD ReliefF EVM CEVM CIMMEP
Maintaining
Case Bases Yes Yes Yes No No No Yes

Maintaining
Vocabulary No No No Yes Yes Yes Yes

Exploiting
Prior
Knowledge

No No Yes No No Yes Yes

Noisiness
Sensibility Yes No No No No No No

Uncertainty
Management No Yes Yes No Yes Yes Yes

Strategy
based on:

Cases
Selection

Cases
Parti-
tioning

Cases
Parti-
tioning

Scores
Attributes
Clustering

Constrained
Attribute
Clustering

Alternation
between
constrained
learning &
maintenance

5.2 Constraints generation strategy

To generate Must-link and Cannot-link constraints, authors in [19] and [33] propose
the two following modes:

– Batch mode: It consists in generating simultaneously a number t of constraints
(Must-link and Cannot-link). For instance, we took t equal to 25% of the total
number of attributes, when we handle vocabulary, and 10% of the total number
of cases when we handle CB knowledge.

– Alternated mode: It consists in alternating between generating one constraint
(Must-link or Cannot-link) and learning, with storing each one incrementally in
listConst. Similarly, the number of constraints t is taken equal to #attributes×
25/100 when we handle vocabulary knowledge, and equal to #cases/10 when we
handle CB.

How we generate a constraint? We generate artificially a pairwise constraint by han-
dling the uncertainty offered by the credal partition and the pignistic probability trans-
formation (Equation 3). The idea consists in randomly picking two attributes/cases
(Ai,A j)/(xi,x j) and behaving according to the three following situations that may
arise:

1. If ∃ a cluster ω/BetPi(ω) > T hresh and BetPj(ω) > T hresh, then generate a
Must-link constraint between Ai and A j/ xi and x j.
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2. If ∀ clusters ωk/|BetPi(ωk)−BetPj(ωk)| > T hresh, then generate a Cannot-link
constraint between Ai and A j/ xi and x j.

3. Else, go back to randomly picking two attributes/cases.

where T hresh is a threshold that aims to answer to the question: ”From which amount
of membership certainty in [0,1], we consider that the attributes/cases belong or not
to the same cluster?”.
Since the alternate mode for constraints generation proved higher effectiveness in
both [19] and [33], it will be used, during the experimental section, to execute and
test our proposed methods.

5.3 Data, evaluation criteria, and experimental settings

The presented proposals, within this paper, have been implemented using R software
and tested on data sets from U.C.I Repository, which are presented in Table 2 by their
references, number of attributes, size, number of classes, and their classes distribu-
tions.

Table 2 Description of used case bases

Case Base Reference Number of attributes Size Number of classes Class distribution

German Credit GR 20 1000 2 700/300
Phishing PH 10 1353 3 103/548/702
Glass GL 9 214 6 70/76/17/13/9/30
Australian AU 14 690 2 383/307
Indian IN 10 583 2 416/167
Vehicle VH 18 946 4 240/240/240/226

In order to assess their offered maintenance efficiency, we use the three following
evaluation criteria:

– The Percentage of Correct Classifications (PCC), which refers to the competence
of CBR systems in solving new problems, and defined as follows:

PCC(%) =
# Correct classi f ications
# Total classi f ications

×100 (20)

– The Retrieval Time (RT ) Criterion, which measures the time spent to offer all
solutions for the different cases instances. It may refer to the performance of
CBR systems.

– The Storage Size (SS) which concerns cases data retention rate regarding our
CBM and integrated maintenance strategies. It is measured such that:

SS(%) =
#Size o f Maintained Training Set

#Size o f Original Training Set
×100 (21)
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To solve cases’ problems, we used the 10-fold cross validation technique with the
K-Nearest Neighbors (K-NN) since it presents one among the most used machine
learning techniques within the CBR framework.

We mention that some of the tested case bases contain missing values. We opted,
therefore, to fill this incompleteness through one of the most common and used in-
completeness mechanism called EM imputation, which consists to use the Expectation-
Maximization algorithm (EM) [38] to estimate missing data within cases’ descrip-
tion.

5.4 Results and discussion

Since our main purpose consists in maintaining both case bases and vocabulary with
exploiting prior knowledge by handling constraints, we propose performing three
experiments: Experiments (1) and (2) will provide evaluation results related to our
strategies for maintaining CB (CECTD) and vocabulary (CEVM) respectively and
separately. CECTD’s results (Table 3) are compared to the baseline of instance re-
duction method called CNN [9] and the non-constrained version named ECTD [17],
where those of CEVM (Table 4) are compared to one among the most known feature
reduction methods, denoted ReliefF-CBR [37], as well as to the nonconstrained ver-
sion for vocabulary maintenance called EVM [20]. To show the performance of the
proposed integration strategy with the availability of prior knowledge, we use Experi-
ment (3) and compare results offered by the integration applied by our new CIMMEP
method to those offered by the simple hybridization of both CECTD and CEVM (Ta-
ble 5). This hybridization consists in even applying CECTD then CEVM successively
(CECTD-CEVM), or applying CEVM then CECTD successively (CEVM-CECTD).
Obviously, all these maintaining policies will also be compared to the original non
maintained CBR system (Original-CBR).

According to evaluation criteria mentioned above, we note that our maintaining
strategies, which are able to take advantage of prior knowledge, are supported. Ob-
viously, we tolerate sometimes some accuracy degradation at the aim to boost CBR
system’s performance by accelerating cases retrieval.

Table 3 Evaluating our constrained strategy for case base maintenance

CB Original-CBR CNN ECTD CECTD

SS (%) PCC (%) RT (s) SS PCC RT SS PCC RT SS PCC RT

GR 100 67.10 0.1018 54.90 54.20 0.0608 45.30 68.88 0.0603 44.98 69.01 0.0661
PH 100 87.73 0.1023 48.75 65.33 0.0718 28.49 84.46 0.0518 48.15 86.12 0.0565
GL 100 87.38 0.0092 10.48 48.33 0.0061 47.82 89.75 0.0051 55.92 90.05 0.0045
AU 100 64.49 0.0501 54.06 59.66 0.0328 36.03 64.33 0.0299 36.11 64.34 0.0301
IN 100 65.26 0.0414 50.08 61.88 0.0301 37.43 67.15 0.0331 40.06 68.33 0.0298
VH 100 58.55 0.0802 64.89 61.24 0.0567 50.31 61.25 0.0412 40.88 68.46 0.0379

From a CBM viewpoint, Table 3 shows that our CECTD strategy was able to
reduce more than half CBs size (SS%), which leads to decrease the retrieval time
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(RT). These results are more interested when we compare them with those offered
before maintenance (Original-CBR). However, when we focus on the accuracy crite-
rion which refers to CBs’ competence, we note that, by exploiting constraints offered
with alternate mode, the CECTD approach provides the best results for four CBs from
six: With Vehicle (VH) dataset, for instance, CECTD reduces 40.88% of the initial
CB (100%) which leads to decrease cases retrieval time from 0.0802s to 0.0379s, and
improves competence from 58.55% to 68.46%. However, CNN and ECTD, which
suffer from their disability to handle constraints, reduce 64.89% and 50.31% of the
initial VH dataset size, retrieve cases in 0.0567 and 0.012 seconds, and offer accuracy
values equal to 61.24% and 61.25% respectively.

Table 4 Evaluating our constrained strategy for vocabulary maintenance

CB Original-CBR ReliefF-CBR EVM CEVM

PCC (%) RT (s) K f PCC RT K f PCC RT K f PCC RT

GR 67.10 0.1018 2 71.70 0.0844 4 74.11 0.0845 4 74.98 0.0733
PH 87.73 0.1023 8 86.25 0.0941 7 88.62 0.0893 7 89.06 0.0801
GL 87.38 0.0092 6 89.52 0.0099 6 91.54 0.0089 7 86.34 0.0081
AU 64.49 0.0501 4 84.90 0.0443 4 86.12 0.0391 5 88.14 0.0420
IN 65.26 0.0414 8 65.60 0.0301 4 67.50 0.0299 4 68.66 0.0301
VH 58.55 0.0802 4 69.11 0.0733 6 68.45 0.0710 5 69.06 0.0417

From a vocabulary maintenance viewpoint, we establish a comparative study with
varying the number of clusters or number of selected features K f from 3 to 9, where
the most convenient value for every method and dataset has been chosen. As shown
in Table 4, our constrained vocabulary strategy offers high PCCs comparing to the
other policies as well as to the original CBs. For example, it provides for Australian
(AU) dataset a PCC value equal to 88.14 %, where Original-CBR, RliefF-CBR, and
EVM offer values equal to 64.49 %, 84.90 %, and 86.12 %, respectively.
Actually, some degradation of competence, such for Glass (GL) dataset, may not due
to our maintenance strategy but to generated constraints quality.

In term of retrieval time, we note competitive results offered by the three vocabu-
lary maintenance policies, with a slightly higher difference comparing to Original-
CBR. For instance, ”Vehicle” dataset (18 attributes), moved from RT=0.0802s to
RT=0.0417s.

Table 5 Evaluating our constrained and integrated strategy for both case base and vocabulary maintenance

CB Original-CBR CECTD-CEVM CEVM-CECTD CIMMEP

SS (%) PCC (%) RT (s) SS PCC RT SS PCC RT SS PCC RT

GR 100 67.10 0.1018 42.83 70.01 0.0615 48.66 62.44 0.0703 33.12 75.08 0.0488
PH 100 87.73 0.1023 30.33 74.14 0.0470 43.54 72.15 0.0508 28.28 87.66 0.0279
GL 100 87.38 0.0092 50.01 60.05 0.0088 62.11 58.65 0.0112 46.08 93.00 0.0076
AU 100 64.49 0.0501 38.76 62.17 0.0333 38.63 62.42 0.0388 33.76 88.21 0.0333
IN 100 65.26 0.0414 35.37 58.43 0.0298 67.01 64.26 0.0367 44.56 67.27 0.0341
VH 100 58.55 0.0802 49.87 59.88 0.0501 53.18 45.10 0.0602 49.81 71.16 0.0589
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To validate our main contribution for this paper, we perform the third experiment
which results to values offered, in Table 5, after the maintenance of both CB and
vocabulary. Hence, our constrained integrated maintenance policy (CIMMEP) has
been compared to the simple two-level maintenance hybridization (CECTD-CEVM
and CEVM-CECTD)3.

In term of storage size and retrieval time, our CIMMEP method provides the
best results for all the CBs comparing to Original-CBR. Comparing to the straight
hybridization maintenance methods, competitive results are offered. However, we
have to mention that the most important criterion consists in preserving or improv-
ing CBs competence. Actually, in term of accuracy, CECTD-CEVM and CEVM-
CECTD gravely decrease some PCC values such for Glass (GL) dataset, where it
moves from 87.38% with original-CBR to 60.05% and 58.65%, respectively. How-
ever, after performing CIMMEP method, it became equal to 93%.Besides, we note,
from Table 5, that our CIMMEP maintenance strategy (Algorithm 1) offers best ac-
curacies for five datasets among the ensemble of six. Moreover, if we compare re-
sults of the three performed experiments (Tables 3, 4, and 5), we easily remark in-
teresting results such for AU dataset, where we provide PCC equal to 88.21% and
Original-CBR, CNN, ECTD, CECTD, ReliefF-CBR, EVM, CEVM, CECTD-CEVM
and CEVM-CECTD offer accuracies equal to 64.49%, 59.66%, 64.33%, 64.34%,
84.90%, 86.12%, 88.14%, 62.17%, 62.42%, respectively.

6 Conclusion

At the aim of giving the ability to CBR systems maintaining policies to exploit prior
available knowledge, which may be given by domain-experts, we proposed, in this
paper, a constrained and integrated strategy, called, CIMMEP method, which is able
to manage uncertainty using the belief function theory. CIMMEP consists in handling
constraints to help the automatic learning of knowledge during maintaining simulta-
neously CBs and vocabulary knowledge within CBR systems.

After providing a somehow exhaustive state-of-the-art, this paper details, on the
one hand, two policies for maintaining the CB and the vocabulary separately, and on
the other hand, the integrated CIMMEP policy to maintain them simultaneously. As
output, CIMMEP removes noisy and redundant knowledge through applying itera-
tions of two main phases. The first one regards the ”Case Base Maintenance” and
the second one concerns the ”Vocabulary Maintenance”. Moreover, two ways for ar-
tificially generating constraints have been proposed with uncertainty management.
The first follows the mode ”Batch” and the second is presented in ”Alternate” mode.
Finally, three experiments have been performed to validate our contributions, which
have been highly supported by provided results.

We conclude that our proposed method may be applied for any structural CBR
system that uses numerical data to describe features’ values of cases. Besides, a some-
how sizable CBs are recommended when performing our CIMMEP method in order
to accurately estimate the correlation between attributes and effectively detect the
different types of cases following the constrained evidential learning of cases.

3 The same constraints are used for the three compared methods
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After noting the significance of Vocabulary and CB knowledge containers, we
aim, in future work, to give an interest to maintain the two other knowledge con-
tainers, namely Similarity and Adaptation. Regarding data imperfection handling, we
intend also to manage uncertainty not only towards the membership to clusters, but
also towards attributes values. Besides, a deeper experimental study will be reported
in a forthcoming paper.
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