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Accepted: 28 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
This paper aims to find a superior strategy for the daily trading on a portfolio of stocks for which traditional trading strategies
perform poorly due to the low frequency of new information. The experimental work is divided into a set of traditional trading
strategies and a set of long short-term memory networks. The networks incorporate general and specific trading patterns,
where the former takes into account the universal decision factors for trading across many stocks, while the latter takes
into account stock-specific decision factors. Our research shows that both long short-term memory networks, regardless of
whether they are based on universal or stock-specific decision factors, significantly outperform traditional trading strategies.
Interestingly, however, on average neither has the edge compared to the other, thus remaining ambivalent as to whether
universality or specificality is to be preferred when it comes to designing long short-term memory networks for optimal
trading.
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1 Introduction

Stock trading is a market exchange process that involves
transactions of company stocks among shareholders. These
transactions commonly encompass buying and selling
stocks, with some holding period between. The aim of stock
trading is to obtain a profit, either dividend payouts or capi-
tal profit, where the first is expressed as actual earnings that
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the company is willing to pay out and the latter as the dif-
ference between the buying and selling prices. Stock trading
is about making the right decision at the right time, either
focused on a single stock or broadened over a portfolio
of stocks, i.e., multiple stocks held simultaneously. Impor-
tantly, the latter variant diversifies (decreases) the unsystem-
atic risk and is thus commonly employed in practice.

Trading decisions by shareholders are traditionally made
by either a top-down or a bottom-up approach. A top-down
approach sequentially follows the macroeconomic, industry
sector and then the individual company (fundamental)
analysis [11], while a bottom-up approach, also called
stock picking, does that in reverse. Macroeconomic, sectoral
and fundamental analyses require extensive information
and understanding; trading decisions derived from such
processes are typically very rare, either because of the
low frequency of some information, e.g., quarterly in the
best case, or because of the lengthy analysis process itself.
As an alternate to the top-down or bottom-up approaches,
technical analysis relies heavily on only past and current
asset prices. Defined as chartists, technical analysts analyze
supply and demand functions continuously to identify
investor behavior and sentiment and execute immediate
actions. Due to its rapidity, technical trading can be defined
as a high-frequency trading (HFT) process; these processes
are currently gaining in popularity among investors. For
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example, Zhang [62] reported that HFT in 2010 accounted
for more than 70% of transactions; we can assume that
this ratio is currently much higher. Interestingly, in the
HFT domain, raw financial data are supplied directly
from trading platforms to high-performance computers
and servers that run automated and computerized decision
algorithms. These decode data and synchronously and
proactively intervene on the stock market. The HFT
process is completely automated, regardless of whether
the decision algorithms are a very simple set of rules or
extremely complex machine learning algorithms. Both share
a common purpose, that is, to identify or extract past and
recurrent hidden patterns that might be beneficial for future
intervention.

The problem and hypothesis that this article addresses is
whether it is possible to earn higher-than-normal (excess)
profits on an open and transparent stock market using inno-
vative decision algorithms. Economic theory on efficient
markets strongly teaches us that the answer to this ques-
tion is no – Fama [16] has stated that when the markets are
efficient, (1) asset prices fully reflect all available informa-
tion, and (2) new information is quickly incorporated into
the asset price, which means that the only way the investor
can increase expected profit is to take higher risk. Since new
information comes in an erratic or unpredictable way, asset
prices are erratic and unpredictable as well; in other words,
asset prices follow random walk movements. According to
the theoretical grounds, it is therefore impossible to earn
higher profits based on only past (old) information, and
whoever attempts to do so cannot surpass even a randomly
selected portfolio of stocks of comparable risk (stated by
Malkiel [32], cite taken from [41]).

Of course, many market inefficiencies have contradicted
these theoretical concepts, such as speculative bubbles,
irrational pricing, herd instinct, and market changes. A
more comprehensive list can be found in [29]. Many
empirical studies have shown that various trading strategies
and ideas have indeed achieved excess profits and thus
have intrinsically negated the theorem that asset prices
strictly follow random walks and are unpredictable [31].
Fernández-Rodrı́guez et al. [17] reported the applicability
of a simple artificial neural networks (ANN) trading
rule to stock index trading, where the authors obtained
higher profitability than a buy-and-hold (passive) strategy
through periods of bear and stable markets and lower
profitability for the bull market periods only. Chiang et
al. [6] proposed an adaptive trading decision support system
with a denoising function, which scored 41.86% of the
adjusted return, compared to 12.98% for a buy-and-hold
trading strategy. Chong and Ng [8] realized (based on 60-
year data for London’s FT30 index) that trading with the
simple momentum strategies relative strength index (RSI)
and moving average convergence divergence (MACD)

generated higher returns than the buy-and-hold strategy in
most cases. Similarly, Wong et al. [59] showed the benefits
of MACD and RSI on the Singapore Stock Exchange. They
claimed that by applying simple technical indicators, one
can generate significantly positive returns, and interestingly,
they also claimed that larger companies have specialized
trading teams that apply technical analysis only. Teixeira
and De Oliveira [52] proposed a combination of technical
analysis with the nearest neighbor classification algorithm,
exclusively based on past daily stock closing prices and
volumes. The proposed method generated significantly
higher profits on 12 out of 15 stocks than the buy-and-
hold trading strategy. Ruta [40] showed many options for
continuous 24/7 machine learning trading, and Creamer [10]
proposed the machine learning algorithm Logitboost, which
generated highly significant positive returns. The most
recent research on the stock trading field encompasses
deep reinforcement learning methods for stock trading [60]
and many other machine learning, artificial intelligence
and deep learning trading algorithms, which have been
reviewed by cbailes on GitHub’s library awesome-deep-
trading.1 Additionally, many relevant articles considering
convolutional neural networks, long short-term memory,
generative adversarial networks, etc., for trading, are
accessible here. Furthermore, fuzzy inference systems may
emerge in the near future [13, 33].

The purpose of this article is to implement an online
(simultaneously updating) long short-termmemory (LSTM)
neural network investment trading strategy (ITS) for daily
portfolio trading and test whether it is possible to earn
higher-than-normal profits compared to benchmark trading
strategies over a longer trading period. LSTM’s innova-
tive architecture should identify (extract) hidden patterns in
financial data, if existing, and sufficiently well intervene
in out-of-sample backtesting. A case study on the German
stock market during the years 2010 and 2020 was imple-
mented, where the German market was chosen as the
example because it is one of Europe’s leading, most open,
and transparent stock markets. Financial data were fetched
from a popular trading platform to construct a dataset and
were later split into two parts: offline LSTM training was
employed for the first part; while online LSTM training was
employed for the second. The quality of the proposed idea
was then evaluated.

In this study, we did not rely on either fundamental,
sectoral or macroeconomic analyses but instead relied on
the current market and stock (financial) quotations only,
which were technically expressed for a given moment by
movement, volatility, trend in stock prices, and suitable
technical indicators. Using the different pattern extraction
methods, we struggled to capture any speculative market

1https://github.com/cbailes/awesome-deep-trading by Craig Bailes
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patterns from these movements and trends. We supposed
that some of these patterns would affect multiple stocks in a
similar (general) way synchronously and that others would
only be relevant for specific stocks. Hence, we constructed
the two following frameworks (Sirignano and Cont [46]):

1. A single, universal, general common-model that treats
all the stocks in the same way, without differentiating
between them. The number of LSTM models equaled
1, regardless of how many stocks were included in a
portfolio (Filos [18] also called such decision systems
‘universal trading agents’).

2. A stock-specific unique-model that aimed to be used for
trading with a single stock only. The number of LSTM
models equaled the number of stocks held in a portfolio.

Model universality, as exploited in present paper, was
extensively populated by Ruiz-Cruz in [38], who proposed
a universal deterministic control law model that was
able to simultaneously trade multiple stocks in real-time.
Investment profiles were freely managed from conservative
to aggressive, and the findings on 4 Mexican stocks showed
that the proposed approach can be exploited for universal
multiple stock trading. Wilson [58] stated that one chaotic
model can be effectively exploited to trade hundreds of
stocks over a long time period without changing any system
inputs; in his case, he traded with 600 stocks over 10
years using a single model. Sezer and Ozbayoglu [42]
employed a universal convolutional neural network (CNN)
and performed trading on the 30 Dow stocks, where
CNN backtesting gave promising results for the future. In
contrast, Chihab et al. [7] explicitly stated that no universal
model captured everything that might happen on stock
markets due to many external (either objective or subjective)
factors. According to Shiller [44], a sample of these includes
psychological, sociological and anthropological factors,
such as greed, emotional pain, speculation, overconfidence,
underreaction, the perceived irrelevance of history, magical
thinking, herd instinct and others. These factors may
all influence different stocks similarly or completely
disparately, similar to more objectively given factors, such
as interest rates, GDP growth and other commonalities [1].

Our goal was to find an autonomous, superior and robust
ITS for daily trading on a selected set of stocks for which
classical fundamental analysis could not be applied due to
the too low frequency of data (information). We expected
that this study would provide a superior ITS and effectively
disclose the benefits of both LSTM frameworks. The
architecture of both LSTM neural networks remained equal
in both frameworks. We assumed that regardless of whether
the hidden (recurrent) patterns across many stocks were
present through time, the common-model would output
adequate performance. Nevertheless, we expected that the
unique-model would adapt to the specifics of each stock and

therefore outperform the common-model. This paper was
written as an extension of Fister et al. [20] and Fister and
Jagrič [19] and comprises the following main novelties:

– extend experiments from a single stock to complete
portfolio,

– widen the online LSTM principle for automated daily
stock trading,

– validate that LSTM ITS can outperform a passive buy-
and-hold ITS on a diversified portfolio,

– implement two different LSTM ITS frameworks (ideas)
and compare their robustness,

– focus on European (German) financial markets,
– compare and extract the benefits of LSTM ITSs

compared to traditional ITSs.

The structure of the paper is as follows: Section 2 addresses
the fundamentals of financial markets, particularly the Ger-
man financial market, the dataset used, traditional invest-
ment trading strategies and the fundamentals of LSTM.
Section 3 describes the two proposed robust online LSTM
ITSs. Section 4 addresses the experiments and results, and
Section 5 concludes the paper and outlines directions for the
future.

2 German financial market, stock companies
and investment trading strategies

This case study focused on one of the most important and
prominent financial markets in Europe – the German finan-
cial market, which is located in Frankfurt (Germ. Börse
Frankfurt). In Frankfurt, many various financial instruments
can be traded, such as stocks, bonds, ETFs/ETPs, funds,
and commodities. Every day, the Frankfurt stock exchange
calculates the average performance of the stocks quoted
there and publishes the so-called stock indices accordingly.
The most popular stock index in Germany is the DAX30
(Germ. Deutsche Aktien Index 30, German stock index 30),
which comprises 30 blue-chip (very prominent) companies
and is calculated using a free-float (free-adjusted) capital-
ization method. Table 1 lists the DAX302 stock companies,
their tickers and market capitalizations.3

2.1 Dataset

In the table of German blue-chip representatives, companies
from textile, automotive, aviation, civil engineering, health-
care, insurance, banking, and other industry sectors can be
found. The largest market capitalization on the given date
was held by SAP SE company, which is a representative

2https://www.finanzen.net/index/dax/30-werte
3https://finance.yahoo.com/
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Table 1 List of stocks obtained from Finanzen.net in May 2020. Additionally, minimum, maximum and mean close prices, the JB test of normality
result and the ADF test of stationarity result are attached

Company Ticker Beta MC min max mean JB ADF

Adidas AG ADS.DE 0.88 51.834 35.01 316.05 116.79 1015.43 0

Allianz SE ALV.DE 1.10 80.483 57.47 232.00 138.11 413.81 0

BASF SE BAS.DE 1.26 52.748 39.03 97.67 69.35 644.01 0

Bayer AG BAYN.DE 1.29 64.987 36.23 143.88 81.38 424.32 0

Beiersdorf AG BEI.DE 0.17 22.473 39.35 116.35 73.39 395.75 0

Bayerische Motoren BMW.DE 1.37 38.426 28.65 122.60 73.29 1142.10 0

Werke AG

Continental AG CON.DE 1.66 19.858 32.13 251.30 135.18 286.37 0

Covestro AG* 1COV.DE 1.41 6.876 n/a n/a n/a n/a n/a

Daimler AG DAI.DE 1.68 42.605 21.84 95.79 55.47 658.73 0

Deutsche Börse AG DB1.DE 0.36 28.569 36.13 157.20 75.13 1039.76 0

Deutsche Bank AG DBK.DE 1.63 17.981 4.87 46.90 21.59 418.91 0

Deutsche Post AG DPW.DE 1.29 39.154 9.13 40.99 23.70 417.79 0

Deutsche Telekom AG DTE.DE 0.59 72.140 7.71 18.05 12.69 259.05 0

E.ON SE EOAN.DE 0.87 26.204 6.03 26.61 12.34 1794.42 1

Fresenius Medical FME.DE 1.12 22.940 36.10 93 63.17 321.07 0

Care AG & CO. KGaA

Fresenius FRE.DE 0.93 29.821 13.93 79.65 44.31 310.49 0

SE & CO. KGaA

HeidelbergCement AG HEI.DE 1.39 10.357 24.57 95.50 60.22 456.54 0

Henkel HEN3.DE 0.58 35.031 35.21 128.90 81.85 396.51 0

AG & Co. KGaA

Infineon IFX.DE 1.42 26.953 3.77 25.49 11.92 513.43 0

Technologies AG

Deutsche LHA.DE 1.22 4.498 7.18 31.12 15.19 2443.49 0

Lufthansa AG

Linde plc LIN.DE 0.73 116.213 75.96 208.60 96.35 3009.16 0

MERCK KGaA MRK.DE 0.69 45.782 28.41 125.60 70.90 318.83 0

MTU AERO MTX.F n/a 9.292 35.25 286.40 100.51 2218.86 0

engines AG

Münchener MUV2.DE 0.76 33.946 79.55 282.60 158.76 966.62 0

Rückversicherungs-

Gesellschaft AG

RWE AG RWE.DE 1.11 18.687 9.20 68.73 27.48 2667.97 1

SAP SE SAP.DE 1.07 144.599 31.11 129.44 69.30 615.22 0

Siemens AG SIE.DE 1.23 88.218 59.76 133.20 92.72 577.96 0

Volkswagen AG VOW3.DE 1.72 77.899 55.50 255.20 145.20 1129.20 0

Vonovia SE* VNA.DE 0.41 29.727 n/a n/a n/a n/a n/a

Wirecard AG* WDI.DE 0.47 11.848 n/a n/a n/a n/a n/a

The examined data are from 1 Jan 2010 to 12 May 2020

“MC” stands for market capitalization and is given in billion euros. Market capitalization data and beta (5-year monthly) were taken on 6th June
from Yahoo Finance. Three stock companies, designated by “*”, e.g., 1COV.DE, VNA.DE and WDI.DE, were not suitable for this case study
since no financial data were available for full coverage from 2010 on. Bold values denote the highest values. The “min”, “max” and “mean” prices
are stated in euros. High JB values show that none of the close prices were practically normally distributed. The ADF test of stationarity shows
that only the close prices of two companies, e.g., EOAN.DE and RWE.DE, are time stationary. We concluded that the observed non-normality,
non-stationarity and high level of multicollinearity of financial data make the classical regression approach infeasible

Source: Finanzen.net2 and Yahoo Finance3
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of a multinational enterprise focused on computer software
applications. By contrast, the lowest market capitalization
was held by Deutsche Lufthansa AG, i.e., the German
national airline company. The presented “betas” express the
empirically calculated risk of each company stock value rel-
ative to the overall DAX30 stock index. The riskiest among
those on the list was the automotive Volkswagen AG com-
pany, and the least risky was the personal-care company
Beiersdorf AG. Stock companies, declared with “*”, e.g.,
1COV.DE, VNA.DE, WDI.DE, were excluded from the
case study due to missing (insufficient) data, while for the
remaining companies, basic underlying financial data fea-
tures could be fetched from the platform Yahoo Finance,
consisting of open price, close price, adjusted close, highest
daily price, lowest daily price and volume.

Open price was defined as the price of the security (in
the morning) at the opening of the trading day. Similarly,
the close price was defined as the current security price
in the evening when the market closed. The adjusted
close price was defined as the close price corrected for
dividend payouts, stock splits, right offerings and others.
A high price was derived as the highest price on the
given day during the market operating hours, while a
low price was derived as the lowest price. The volume
determined the number of transactions on the given day
as it was summed throughout the trading day. These 6
basic financial data features were adopted to derive several
technical indicators and thus (1) expanded the dataset and
(2) included additional information in the dataset. The
minimum, maximum and mean values of each underlying
company across the complete time period observed can be
found in Table 1. Additionally, the results of the Jarque-Bera
(JB) test of normality [26] and augmented Dickey-Fuller
(ADF) test of stationarity [12] are attached to the table to
validate that none of the close prices in the observed time
period followed a normal distribution and that only two
of the time series were practically stationary. Additionally,
the fetched prices exhibited high levels of multicollinearity.
All mentioned findings severely impair the assumptions of
classical regression analysis and thus raise the question of
whether the classical approach is feasible. Table 2 further
summarizes the list of original market, stock and date data
and the derived technical indicators. Such an ‘expanded’
dataset (hereinafter dataset) was generated for each stock
and then used during the case study.

2.2 Traditional investment trading strategies

An ITS is a decision algorithm that scrutinizes financial
data and, according to the internal state, generates three
fundamental trading signals, i.e., “Buy”, “Hold” and “Sell”.
Fister et al. [20] distinguished among (1) traditional trading
strategies, such as passive, RSI and MACD; (2) machine

Table 2 List of explanatory variables

Explanatory variables No. of feat.

1. Market (DAX30) data:

open, close, high, low, adjusted close, volume 6

2. Stock data:

open, close, high, low, adjusted close, volume 6

3. Date data:

month, day, day of week, days to next trading day,
5

days from previous trading day

4. Technical indicators:

RET: n = {1, 2, 3, ..., 10}-day period 10

DIFF: n = {1, 2}-day period 2

RSI: 14-day period RSI, standardized 1

MACD: 12-day short, 26-day long and 9-day 1

signal period

INCL: n = {5, 10, 15, 20}-day period 4

CHG RET: n = {1, 2}-day period 2

DIFF INCL 4

COEFs 2

Sum 43

Market and stock data each comprised 6-element financial data. Date
data were composed of 5-element periodic data. Technical indicators
consisted of n-day returns, n-day differences, RSI and MACD
indicators, inclinations over n = {5, 10, 15, 20}-day periods, changes
(differences) in returns for n = {1, 2}, differences in inclination values
between (1) 5-day inclination to a 5-day inclination shifted for 5-days,
(2) 5-day inclination to a 10-day inclination, (3) 5-day inclination to
a 15-day inclination and (4) 5-day inclination to a 20-day inclination.
Finally, two coefficients were calculated, e.g., the relative quotient
between the close to open prices and the relative quotient between high
and low prices, both decreased by 1

Source: Fister et al. [20].

learning classifiers (MLC), such as decision trees, random
forests, SVM, k-NN; and (3) ANNs, e.g., LSTM. Traditional
trading strategies rely on rule-based guidelines only, which
enable them to conduct instantaneous actions based on
signals without any effort to build surrogate models. On the
other hand, the surrogate model, which has been described
by [34], based ITS performs in two subsequent stages:
(1) training and (2) validation (prediction), usually by
splitting the dataset into two samples, e.g., training (in-
sample) and validation (out-of-sample). The in-sample is
used for training only and the out-of-sample for unbiased
prediction only. The quality of predictions is evaluated using
a mechanical trading system (MTS), which is a tool that
exploits the idea of ex post backtesting [21, 36]. Practically,
this means that the MTS and ITS are both put into
history, without knowing any “future” trends, movements
or information. The MTS is given an initial amount of cash
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that can be used to buy stocks. Then, simulation trading
is performed day by day for each stock in the portfolio.
The MTS reacts to the ITS trading signal accordingly: it
buys, holds and sells stocks on demand. Backtesting is
especially useful for testing ITSs since it incorporates a zero
initial investment concept (trading is performed with virtual
money only).

Traditional (classical) trading strategies are a kind of
rule-based ITS [61], where instead of the trading signal
being derived from some intelligent decision algorithm, the
decision is made according to the internal state moving
between two values (maximum and minimum). When the
internal state hits one of the preset limits, the relevant
trading signals are triggered; when the internal state holds
within these two margins, it is treated as a hold signal.

Many of the traditional rule-based trading strategies
exist. In this paper, two well-known technical indicators
from Table 2, the RSI and MACD, were used (more
technical indicators can be viewed in [37]). For the RSI
indicator, which finds extremes between 0 and 100, this
means that when (1) the internal state over the preferred
time series, e.g., a stock’s close price, hits the upper limit
(in the professional trading community set at 70), the
stock is considered to be overbought, and a sell signal is
triggered immediately. Conversely, when the (2) internal
state hits the lower limit (usually 30), this is treated as
oversold, and a buy signal is triggered. A MACD indicator
is slightly more sophisticated since it derives actual signals
by subtracting two exponential moving averages (EMAs),
e.g., between the 12-period EMA and 26-period EMA,
where the period is typically given in days. The result of
the subtraction is the so-called MACD line, which is next
compared to the 9-period EMA signal line. The subtraction
between the two ultimately provides the MACD histogram,
which is used for trading directly. Both the RSI and
MACD ITSs incorporate initial blackout periods due to their
momentums.

By contrast, a passive trading strategy, i.e., buy at the first
trading day and hold the capitalization until the last day, is
also a typical representative of traditional ITSs. Due to its
simplicity, it does not incorporate any blackout periods. The
three traditional trading strategies mentioned, i.e., passive,
RSI, and MACD, are referred to in this article as backtesting
benchmarks [53].

2.3 LSTM investment trading strategy

In this article, MLC-ITSs are not discussed. Rather, the
focus of this article is on the design of the ANN trading
strategy or, more precisely, the use of LSTM, i.e., a kind
of recurrent neural network (RNN). RNNs were proposed
by Rumelhart et al. [39] specifically to cope with time

series problems. Their benefit compared to a more common
multilayer perceptron network lies in the integration of a
feedback loop, which connects the previous output to the
current input. While the RNNs in general mechanically
connect the output from the previous step to the input in the
current step directly, an innovative variant of RNNs called
LSTM, proposed by Hochreiter and Schmidhuber [23], do
this more delicately by selectively filtrating the unnecessary
information from the previous step and selectively inputting
new data in the current step.

LSTMs consist of three gates, forget, input, and output
gates, and a central memory cell. In effect, they are much
more complex than usual RNNs. The complexity of LSTMs
allows them to prevent the occurrence of exploding and
vanishing gradients and simultaneously enables them to
capture longer-term dependencies in data without forgetting
much. Figure 1 shows the basic outline of a single LSTM
cell [3, 22, 24].

Let us designate the input that is about to be propagated
through the LSTM neural network as xt , and the trainable
LSTM weights, i.e., the input, recurrent and bias weights,
as W, R and b, respectively. Whether the underlying
weights comprise the input, forget, output and cell candidate
components as follows:

W =

⎡
⎢⎢⎣

Wi

Wf

Wo

Wg

⎤
⎥⎥⎦ ,R =

⎡
⎢⎢⎣

Ri

Rf

Ro

Rg

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

bi

bf

bo

bg

⎤
⎥⎥⎦ , (1)

then, the propagation of information through the LSTM can
be denoted by the following transition equations [24, 50]:

it = σ (Wi · xt + Ri · ht−1 + bi) ,

ft = σ
(
Wf · xt + Rf · ht−1 + bf

)
,

ot = σ (Wo · xt + Ro · ht−1 + bo) ,

c̃t = tanh
(
Wg · xt + Rg · ht−1 + bg

)
,

ct = it � c̃t + ft � ct−1,

ht = ot � tanh (ct ) ,

(2)

where σ represents a sigmoid function, and it , ft , ot , c̃t

represent input, forget, and output gate components and the
cell candidate component, respectively. Vectors ct and ht

represent memory cell and hidden states, respectively, and
ct−1 represents the previous memory cell state from the
constant error carousel. Operator � stands for elementwise
multiplication.

Similar to LSTM propagation stipulating the forward
pass of the LSTM network, LSTM training stipulates the
backward pass. Training the LSTM is a very complicated
and computationally intensive task; therefore, we only men-
tion it briefly. The LSTM training (in effect RNN training)
is concluded using a special variant of backpropagation, i.e.,
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Fig. 1 Outline of the LSTM
cell. LSTMs consist of forget,
input and output gates and a
central memory cell. The latter
makes the LSTM a
representative of recurrent
neural networks. Source:
Buduma and Locascio [5]

Memory Cell

Forget gate Input gate Output gate

backpropagation through time (BPTT) [57]. Typical actions
of BPTT encompass (1) presenting the input pattern to
LSTM and forward-propagating it to obtain predicted out-
put ŷ, (2) comparing the predicted output ŷ to actual output
y and calculating the classification error e = ŷ − y (in this
case ŷ and y are classification labels), (3) calculating the
LSTM network weight derivatives, and, finally (4) exploit-
ing the calculated derivatives to modify (adjust) the network
weights to minimize the classification error e [4]. The orig-
inal mathematical outline for calculating derivatives was
denoted in detail by Hochreiter and Schmidhuber [23],
while Sutskever [49] presented novel state-of-the-art RNN
training methods.

2.3.1 Online LSTM investment trading strategy

As already mentioned, when dealing with surrogate model-
ing, the dataset is split into training and testing samples (also
called in-sample and out-of-sample). Usually, the model
is trained on the basis of the in-sample, and the out-of-
sample is used for evaluation of the trained model only.
However, such strict splitting may be irrational when con-
sidering the real-world problem of portfolio trading. Here,
new information (new instances of data) are disclosed every
day, and these can be rationally exploited to update the
model. Behavior on stock markets changes daily; therefore,
it is essential for the user to keep the model continuously
updated with the most recent information. Practically, this
means that the learning process continues out-of-sample
rather than mechanically stops at the end of the in-sample.
Considering that only a single instance (one day) of progress
is made in each step, this practically simulates instance-by-
instance (day-by-day) trading. This concept only complies
with a strict dataset split initially, i.e., the first split to design
the initial network model, whereas later, the out-of-sample
instances become available to retrain (update) the model
one-by-one. According to Fister and Jagrič [19], who called

such LSTM “online”, the concept is entirely physically
viable and substantially beneficial to use in practice.

Algorithm 1 presents the details of the online LSTM
procedure [19] as was used during the experiments. First,
the complete dataset X was loaded into the programming
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environment and split into two samples: in-sample and out-
of-sample. The algorithm parameters, such as the learning
rate α, decay and other mandatory parameters, were
initialized. After initializing, the prospective LSTM model
was trained on the in-sample. The purpose of in-sample
training was to capture the general behavior of financial
markets. In-sample represented offline training and was run
for a number of offline epochs. Due to the mass of in-sample
instances, it was a time-consuming process. After the offline
training, the so-called backtest vector and fixed learning
rate α were initialized. The first was used to store the out-
of-sample trading signals for later evaluation, while the
second was used for online training. As the process turned
into the online LSTM training part, the new out-of-sample
instances xt were extracted one at a time. This sequential
day-by-day process followed real-world circumstances.
Therefore, the model only progressed by a single out-of-
sample instance at each time, first by making forthcoming
trading signal predictions and appending the results into the
backtest vector and second by retraining the LSTM model
with actual y. After the online training concluded, i.e., all
out-of-sample instances went through, the MTS simulation
(SIMULATE MTS in Alg. 1) was performed using the
generated array backtest vector. Finally, the results for
the completed out-of-sample period were visualized and
reported to the user.

MTS served as a backtesting routine that, according to
the ITS, bought, sold or held the stocks in the portfolio.
It is based on real market and financial data that were
downloaded from web portal. In general, the MTS can be
used in two ways: sequentially (day by day) or once only
(when the trading is fully completed). Due to its ease, we
used the second approach in our case, but this introduced
the need to implement the backtest vector. The following
assumptions were considered for the MTS: (1) the MTS
does not deal with short selling, (2) the close price is
obtained exactly a moment before the market closes so that
we can execute orders, (3) the market is highly liquid so that
the MTS can execute any orders requested, (4) the market
is large enough that any buy or sell orders executed do not
affect prices or expected market behavior, (5) the maximum
number of stocks is always bought when the buy trading
signal is triggered and all of the stocks are always sold when
the sell trading signal is triggered – hence, some of the
free cash assets usually remain in the portfolio after buying
(only integer values of stocks can be traded), (6) once the
instrument is bought or sold, no further transactions are
allowed in the n-days time horizon.

2.4 Response variable

The training signal during the training stage was expressed
as a percentage change in the close price in given time

t compared to the previous close price t − n. Formally,
the response variable equation was derived from [20] as
follows:

�n = x
(close)
t

x
(close)
t−n

− 1, (3)

where x
(close)
t was the close price in given period (day) t ,

and x
(close)
t−n was the close price n-days ago. Here, n was

called the time horizon and was defined prior to use; Fister
et al. [20] varied n from 1 to 5. The �n represented the
percentage change in the close price for a given time horizon
and naturally cannot be used for the classification problem.
An additional transformation step was thus employed before
actual use comparing percentage changes to a predefined
variable threshold . Here, three scenarios were applied:
(1) when the percentage change �n was higher than the
defined threshold , the training signal was a “Buy” signal;
(2) when the percentage change �n was lower than the
defined (negative) −threshold , the training signal was a
“Sell” signal; (3) if the percentage change �n remained
between the positive and negative thresholds (±threshold),
the training signal was “Hold”:

y
(n)
t

⎧⎪⎨
⎪⎩

Buy; �n > threshold

Hold; −threshold < �n < threshold

Sell; �n < −threshold

. (4)

The authors in [20] fixed the threshold at threshold = 0.05.
In this article, we agreed that some further experimentation
on this value may be useful/convenient, mainly due to the
fact that each transaction incorporates trading or transaction
costs/fees/provisions (more frequent transactions imply
higher trading costs).

3 Proposed solution

As already stated in the introduction, the purpose of this
paper was to implement two robust/superior LSTM neu-
ral network ITSs and check whether they can perform
efficiently on the financial stock market. The two fol-
lowing frameworks for automated online LSTM ITS were
presented in detail:

1. a common-model for all stocks held in the portfolio that
traded according to the general (average) behavior of
the portfolio,

2. a unique-model for each specific stock in the portfolio
that traded according to the behavior of each stock
uniquely (specifically).

Although the two mentioned frameworks were different,
they shared a common ground of propagating sequence
(financial) data. The propagation of sequence (daily) data
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was performed as follows: first, the length of the time
steps Ts was defined, and for a given day t , the previous
Ts time steps were extracted from the dataset. These were
next supplied into the LSTM neural network one-by-one.
The time step xt was propagated through the LSTM last.
Whether the length of the time step Ts was sufficiently long,
LSTM established stable internal memory cell (ct=Ts ) and
robust weight settings. This was important, since internal
memory cell was next employed to output the predicted
signals. These were next compared to the actual response
variable in a given time t , e.g., yt , to drive the LSTM
training procedure. Finally, t became t + 1 and the process
was repeated. Each instance participated multiple times
in LSTM propagation. Figure 2 graphically shows the
propagation of time steps through the LSTM.

3.1 Common-model for all stocks

Common modeling was the first proposed framework for
automated online LSTM ITS for portfolio trading. Here, a
single LSTM model was used for training and predicting
for all stocks. The common-model aimed to capture the
general or average behavior of stocks held in a portfolio.
The benefit of this idea lies in its decreased complexity,
i.e., a single-model could be especially appropriate for
(minimalistic) dedicated hardware over a wide range of
stocks. The negative aspects of the single-model are (1)
that a considerable set of underlying financial data must
be available for a complete update and (2) two or more
contradictory stock behaviors may cancel each other out
and thus contribute little or nothing to the model. It is thus
desired that the stocks in this model are similar to each
other (homogeneous). The following paragraph describes
the single-model working principle.

For the in-sample, every day, k instances or k training
samples, where k equals the number of stocks held in
a portfolio, were used Noff line times for offline LSTM-
training. The offline LSTM-training ran sequentially from

the oldest data towards the newest data, always considering
all the k instances of all stocks in a given time t . After the
LSTM-training concluded for all k instances in a given time
t , the t variable was incremented by 1 to obtain t + 1, and
the procedure was repeated. During the out-of-sample, for
each of the stocks, the past sequence data of length Ts was
supplied to the common-model. Next, the LSTM-simulation
or prediction was run, which was in effect the trading signal
prediction ŷ for the next trading day (tomorrow). At the end
of the (tomorrow’s) trading day, the actual trading signal
y was extracted, and the difference between the actual y

and predicted ŷ trading signals was supplied to the online
LSTM-training procedure. Figure 3a shows the outline of a
common-model.

3.2 Unique-model for each stock

A unique model for each stock was tailored to the separate
specifics of each stock. Practically, this means that for each
stock company, exactly one model was initialized, trained
and simulated. Hence, the unique-model allowed diverse
financial instruments, such as bonds, cryptocurrencies
or commodities, to be held in portfolio simultaneously
(although only stocks were considered). The benefit of
the unique-model compared to the common-model lies
in the much less time consuming updating and more
tolerable execution pace for different financial instruments
distributed over several computers. However, the main
drawback of such design was a much higher complexity
and thus the need for better hardware. Figure 3b shows the
outline of the unique-model for each stock.

4 Experiments and results

To test the underlying hypothesis, whether it is possible
to earn higher-than-normal profits using the online LSTM
neural network, comprehensive experimental work was

...

Fig. 2 The model shown is a kind of many-to-one sequence model.
The past market and financial data are supplied and propagated via
LSTM cell. After the predefined time steps Ts , the LSTM establishes

stable memory cell state and can output the predicted trading sig-
nal ŷt , e.g., during the learning procedure after comparing to actual
output yt
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Fig. 3 A solid black line
indicates the data-sample in use,
i.e., in case of an offline LSTM-
training, the in-sample (the
upper) and in case of an online
LSTM-training with LSTM-
simulation, the out-of-sample
(the lower). Unbiasedness was
preserved entirely using this
approach. Noff line represents
the number of offline epochs
and Nonline the number of online
epochs a Common-model. b
Unique-model.
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performed. The experimental work was conducted in the
following experimental stages:

– fetching financial data for the majority of German
DAX30 blue-chip stocks and constructing a dataset,

– expanding and transforming the obtained dataset into a
suitable form,

– defining the trading costs treatment,
– implementing and employing offline and online LSTM-

training procedures,
– implementing and employing the LSTM-simulation

procedure, and
– visualizing the results.

For the sake of experimental tests, 10 separate simulations
of both the common- and unique-models were completed
first. The use of 10 separate simulations was inspired by a
common validation tool, the k-fold validation, where k is
usually set to k = 10. We do not provide cross-validation
in this paper but monitor the bias-variance error using a
number of experiments. LSTMs perform differently with
each run; thus, it is important to extract the best, worst and
mean performances (performance is represented by the final
portfolio value). Ten different models were built for the
purpose of testing the common-model, and 270 models were
built for the unique-model experiments, i.e., each of the 27
stocks in the portfolio had 10 different unique-models. Upon

completing 10 simulations, the following experimental tests
were conducted:

1. proof-of-concept of the common- and unique-models
compared to traditional ITSs,

2. robustness tests between common- and unique-models,
and

3. detailed evaluation tests of common- and unique-model
performance compared to that of traditional ITSs.

Experiments were performed in the Python scripting
language with the following libraries: financial data were
fetched using Python’s pandas-datareader4 via the Yahoo
Finance web portal; dataset transformation was performed
using the pandas,5 numpy6 and talib7 libraries. Here, the
6-element basic market and stock data (open, close, high,
low, adjusted close prices and volume), were transformed
into the dataset of 43-element dataset X (the list of dataset
X variables shown in Table 2). The trading costs were
implemented manually and were set at 1% according to
suggestions of [45, 47, 55, 56]. The procedures for LSTM-
training and LSTM-simulation were implemented using the

4https://pandas-datareader.readthedocs.io/en/latest/
5https://pandas.pydata.org/
6https://numpy.org/
7https://ta-lib.org/
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Table 3 Algorithm setup

Variable Variable name Value

No. of LSTM units 100

Learning algorithm Adam

Threshold threshold 0.035

No. of epochs for offline training Noff line 200

No. of epochs for online training Nonline 10

Offline initial (variable) learning rate ε 0.002

Online (fixed) learning rate 0.001

Time horizon n 1

Time steps Ts 32

Dataset split 66.66%-33.33%

In-sample size 1717

Out-of-sample size 843

Transaction costs 1%

Initial cash per stock 10,000.00 euros

No. of stocks in portfolio k 27

No. of independent runs N 10

The decay in the offline (variable) learning rate was defined as ε · 0.1 ·
exp(i/Noff line), where i represented the current epoch. The equation
guaranteed an exponentially decreasing learning rate. The initial
offline learning rate was set as double the keras recommendation,
while the online learning rate was held at the default. The time horizon
was set at n = 1, which means that one-day returns were used to
calculate the response variable. The Adam learning algorithm [30] was
used as a robust training algorithm due to its efficacious characteristic
of combining AdaGrad and RMSProp. The number of offline training
sessions was determined experimentally. The number of offline epochs
were set very low (compared to [19]) to ensure that only general
relations between data were captured (to avoid overfitting problems,
since the batch size was fixed at 1). The time steps T = 32 were held
as a compromise between the actualization of the LSTM network on
the one hand and the stability of the internal memory cell on the other.
The initial cash per stock was set for a moderate investor (due to the
relative evaluation of all ITSs, the initial cash is not among the most
relevant setup variables)

keras deep learning API8 and the results were visualized
with the help of the matplotlib library.9

Experiments were conducted using the algorithm setup
as designated in Table 3. Both common- and unique-models
were implemented as a combination of the subsequent (1)
LSTM layer and (2) dense layer, where the dense layer
consisted of the 3 output neurons (buy, hold, sell) with
a softmax activation function. The MTS was given initial
cash (free assets) per stock. The offline LSTM-training
incorporated the variable (decaying) learning rate ε and
the online LSTM-training fixed learning rate. Although the
dataset was fetched and generated from 1 June 2009 to 12
May 2020, only the data from 4 Jan 2010 to 12 May 2020
were used for simulations. The second half of 2009 was used

8https://keras.io/
9https://matplotlib.org/

to avoid a blackout period (missing data) due to momentum
indicators. Setting the threshold was a purely experimental
task for two reasons: (1) a high threshold guaranteed many
hold instances and just a sample of buys and sells; a low
threshold classified many instances into buy or sell groups
but diminished the number of holds proportionally. The
proportion of buys and sells turned out to be crucial, as
these instances were directly presented to LSTM: when the
frequency of buys and sells was too low, the LSTM turned
nonreactive; when their frequency was too high, LSTM
traded for nothing. (2)When setting the threshold, focus was
also kept on the balance between the buys and sells, i.e., the
greater the divergence between the two, the less symmetric
the operation of LSTM (otherwise special remedies should
be taken, such as [48]). It was experimentally determined,
for the given sample of data, that threshold = 0.035
gives a reasonable compromise between the frequency and
skewness of trading signals. The dataset was split 2/3 (67%
was used for the training stage, and the remaining 33% was
used for validation) as a compromise between the extended
out-of-sample period presented in [20] and the usual data
mining practice for 5- or 10-fold validation, e.g., 80% or
90%. Prior to conducting experiments, the variables were
normalized between range 0-1 to make them suitable for
the LSTM neural network. The next paragraph gives a
short comment on financial movements during the observed
trading period.

During the observed period, markets performed well.
Due to very low interest rates, stock markets acted as
substitutes for bank deposits and bonds and therefore
attracted many new investors. The performance of markets
was so positive in the last time period that market analysts
reported potential markets may burst to correct for inflated
prices. A large correction occurred in March 2020, when
the Coronavirus crisis struck. Although it did not hurt
financial institutions as badly as the last financial crisis,
it caused significant losses and delays in real sectors.
Although monetary policy drivers reacted rapidly in most
countries, so that stock markets recovered quickly, many
stock prices plummeted momentarily, and stock companies
had to address serious financial problems. The period
examined in this paper thus addresses both stock market
occurrences, bullish and bearish trends, which makes it
especially important for ITSs to identify trends and act
accordingly.

4.1 Proof-of-concept

The proof-of-concept was conducted by (1) selecting the
best performances with regard to final portfolio value (on
the last trading day) among the 10 runs and (2) adding them
together into a “best” portfolio. For the common-model, this
means that the model with the highest final portfolio value
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among the 10 was chosen as the best. For the unique-model,
the best portfolio performance was extracted for each stock
independently among the 10 runs, and the 27 individual
best performances were then summed into a single portfolio.
Further steps in the proof-of-concept incorporated providing
visuals of both performances on the chart and comparing
these to traditional ITSs. Figure 4 shows the obtained
results.

In the figure, “LSTM1” represented the best unique-
model performance and “LSTM2” represented the best
common-model LSTM ITS performance. According to the
final portfolio value, the former was the most profitable
among all the ITSs. The common-model was not as
prominent as its predecessor but still scored higher profit
compared to the traditional ITS. Although the passive ITS
was the least sophisticated among all, it performed the best
during the bullish trend, but on the other hand, it lost much
of its potential profit during the Coronavirus crisis. Even
if the portfolio value of the passive ITS recovered quickly,
at the end of the trading period, it suffered an overall loss.
The RSI ITS delivered solid performance for the majority
of examined period, except for the last 150 trading days,
when it missed the potential profit just before the last
bullish trend. MACD ITS performed worst of all ITSs on
a given set of stocks and did not give any indication of
profitability.

The experiments were run on the HP ProDesk 400 G4
MT Business PC using an Intel Core i5-7500 CPU and 8
GB RAM. On average, it took 23 hours 3 min and 40 sec
to complete common-model LSTM-training and 29 min and
2 sec to complete online LSTM-training (for the complete
portfolio). The offline unique-model LSTM-training lasted
an average of 50 min 35 sec per stock, while the online
LSTM-training procedure lasted an average of 1 min and 5
sec per stock.

4.2 Robustness test between the common-
and unique-models

The robustness test was conducted by analyzing all 10
independent runs that were initially carried out. For each
of the stocks separately, the final (overall) portfolio value
was derived, and the basic statistical momentums, such as
minimum, maximum and mean values, were calculated.
The purpose of the robustness test was to determine and
compare the mean values and min-max spreads between the
two proposed LSTM ITSs. Namely, the larger the min-max
spreads were, the worse the ITS robustness.

Table 4 shows the results of the robustness tests, where
maximum (denoted as “max”), minimum (“min”) and mean
(“mean”) values were extracted for each of the stocks in the
portfolio, for each of the LSTM ITSs and the differences
� between mean values of both ITSs were calculated.
The results show that some greater disparities in a few
stocks arose between the common- and unique-models.
For example, the unique-model scored a much higher
performance difference, i.e., more than 2,000.00 euros of
difference between the common- and unique-models for
four stocks: BMW.DE, CON.DE, FRE.DE and HEN3.DE.
While the first two belonged to a group of riskier assets,
the former two were considered less risky. On the other
hand, the common-model scored a much higher mean final
portfolio value twice for ADS.DE and DB1.DE assets. We
speculated that the large difference between the common-
and unique-models was due to the riskiness of the assets,
but this was not the case. As a matter of fact, we realized
that (1) the variance (and thus the standard deviations) of
the common-model was significantly lower than that for
the unique-model; (2) the common-model in effect scored a
higher mean value 16 out of 27 times, and we concluded that
the generalization abilities of common-model were shown

Fig. 4 “LSTM1” represents the
unique-model, and “LSTM2”
represents the common-model.
The former was most profitable
among all ITSs. The passive ITS
was the most prominent during
the bullish trend, while RSI
missed the potential profit in the
last stage of trading. MACD did
not show any indication of
profitability. The dotted line
shows the initial free cash assets
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Table 4 Robustness test results, where the common- and unique-model columns outline the minimum, maximum and average portfolio values for
each of the stocks

Common-model Unique-model �

max min mean max. profit max min mean max. profit

ADS.DE 15,845.5 8,372.44 12,450.76 5,845.5 11,385.29 8,135.82 9,326.09 1,385.29 -3,124.67

ALV.DE 12,271.80 9,903.88 11,282.14 2,271.80 11,765.34 10,087.04 10,681.49 1,765.34 -600.65

BAS.DE 7,104.99 3,053.42 5,081.94 -2,895.01 6,963.76 4,202.84 5,075.23 -3,036.24 -6.71

BAYN.DE 7,808.00 4,850.7 5,921.02 -2,192.00 8,962.23 5,479.92 7,122.02 -1,037.77 1,201.00

BEI.DE 10,821.01 7,824.75 9,482.37 821.01 9,516.12 8,167.38 8,969.41 -483.88 -512.96

BMW.DE 5,826.42 4,438.61 5,363.15 -4,173.58 11,862.33 5,112.01 8,482.25 1,862.33 3,119.10

CON.DE 6,785.01 3,981.95 4,826.42 3,214.99 9,471.72 4,586.51 7,170.49 -528.28 2,344.07

DAI.DE 8,932.15 4,467.33 6,216.41 -1,067.850 9,106.97 4,160.38 6,697.23 -893.03 480.82

DB1.DE 20,847.38 14,574.18 16703.23 10,847.38 16,962.52 10,174.6 13,591.40 6,962.52 -3.111,83

DBK.DE 9,542.53 3,096.58 4,663.74 -457.47 5,622.59 2,645.7 3,892.91 -4,377.41 -770.83

DPW.DE 10,595.00 7,781.89 8,607.79 595.00 11,284.49 5,145.3 8,574.62 1,284.49 -33.17

DTE.DE 11,694.17 5,796.68 9,093.95 1,694.17 11,026.45 7,844.71 9,298.95 1,026.45 205.00

EOAN.DE 14,490.76 9,733.88 12,650.07 4,490.76 12,470.04 9,910.51 11,143.65 2,470.04 -1,506.42

FME.DE 11,869.51 6,910.99 9,079.01 1,869.51 14,035.77 8,654.79 10,986.33 4,035.77 1,907.32

FRE.DE 10,330.59 5,929.14 7,364.41 330.59 12,579.45 8,647.24 11,322.85 2,579.45 3,958.44

HEI.DE 10,672.38 4,748.70 6,403.63 672.38 9,446.03 4,542.3 6,193.55 -553.97 -210.08

HEN3.DE 8,899.58 6,360.35 7,018.19 -1,100.42 10,166.29 6,398.33 9,023.49 166.29 2,005.30

IFX.DE 10,263.59 7,278.52 9,089.54 263.59 11,884.12 6,693.77 8,969.47 1,884.12 -120.07

LHA.DE 14,300.22 6,242.53 8,003.62 4,300.22 12,858.99 5,223.11 7,807.86 2,858.99 -195.76

LIN.DE 11,794.11 7,444.30 10,614.41 1,794.11 11,539.76 8,537.72 9,900.82 1,539.76 -713.59

MRK.DE 13,024.75 7,009.77 10,173.94 3,024.75 10,859.94 8,409.54 9,761.69 859.94 -412.25

MTX.F 13,254.14 8,330.39 10,659.51 3,254.14 13,753.86 8,422.72 11,191.40 3,753.86 1,012.71

MUV2.DE 10,743.51 9,835.41 10,314.48 743.51 10,560.48 8,508.62 9,623.23 560.48 -691.25

RWE.DE 21,311.35 13,306.65 17,427.40 11,311.35 26,878.27 10,000.0 17,151.77 16,878.27 -275.63

SAP.DE 13,041.15 9,215.15 10,341.75 3,041.15 11,533.6 8,946.38 10,366.35 1,533.6 24.60

SIE.DE 9,112.07 5,838.69 7,343.57 -887.93 10,244.38 4,954.37 7,610.84 244.38 267.27

VOW3.DE 12,338.66 6,636.57 9,124.14 2,338.66 11,540.49 4,160.31 7,712.78 1,540.49 -1,411.36

The number of samples amounts to N = 10

Differences � were calculated between the mean values of the unique-model compared to common-model, i.e., � = mean(unique-model) −
mean(common-model). Bold values denote positive differences (differences where the unique-models scored higher mean values than the
common-models). Maximal profit shows the amount of profit per stock, e.g., if initial free cash assets amounted to 10,000.00 euros per stock, and
the maximal final value of the individual stock amounted to 15,845.5 euros (for ADS.DE), then the maximal profit was 5,845.5 euros. For stocks
that were traded with a negative maximal profit for both proposed LSTM frameworks, we can assume that they suffered a downtrend during the
out-of-sample

to be positive; (3) the min-max spread of 16 out of 27
stocks varied minimally in terms of mean values, i.e., less
than 1,000.00 euros between the common- and unique-
models; (4) the common-model proved to be more robust
than the unique-model, but due to its higher generalization
capabilities, it was also more rigid (lower profitability on
certain stocks may be implied); (5) the difference between
the sum of mean values for the common- (245,300.59 euros)
and unique-models (247,648.17 euros) was also minimal
and below that of the passive ITS. This demonstrated that
both ITSs traded similarly to each other and that both LSTM

ITSs were superior to the passive ITS in the best cases but
less superior in the average cases. We conclude that a robust
and solid LSTM portfolio performance occasionally beats
the market and that extra experiments with adjusting control
parameters, architectures and time periods would further
increase performance.

4.3 Detailed evaluation tests

The purpose of this test was to objectively evaluate the
quality of each ITS. The test was carried out by deriving
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three groups of well-known financial indicators: (1) final
profit/loss and beta riskiness, (2) volume (number) of ITS
transactions, and (3) the Sharpe ratio, Jensen’s alpha and
Treynor ratio. The first two groups were extracted directly
from the trading results, while the third group employed an
additional manipulation step.

The financial beta (β) [14] acted as a standardized
financial indicator that showed the ratio of covariance of
asset (portfolio) and index prices relative to the variance
in index prices. It represents the movement of asset prices
relative to the index and thus acts as a substitute for the risk
of an asset. Beta was calculated as follows:

β = Cov(ri , rm)

Cov(rm)
(5)

where ri and rm represent the investment (portfolio) and
market (benchmark) daily returns, respectively. Here, the
asset returns ri were substituted by an ITS portfolio value,
and benchmark returns rm were substituted by “DAX30”
returns during the observed period. Next, the Sharpe
ratio [43], or the return-to-risk financial indicator, was
introduced. It measured the proportion of expected return
per unit of risk. It was calculated as follows:

Sa = √
N · E(ri − rm)√

Var(ri − rm)
, (6)

where Sa represents the annualized asset Sharpe ratio,
and N represents the number of days within a year, e.g.,
set at N = 252 in our case, since one year consists
of approximately 252 trading days. The Sharpe ratio was
calculated on the basis of raw daily data, and negative
values indicate that the expected profit of the underlying
investment was below the market return and positive values
indicate that the expected profit was higher than the market
return.

The following indicators measured value on the basis
of final values rather than on daily data. Jensen’s alpha
αJ [27] was provided to measure the excess return over the
theoretical expected return. It considered the relative risk of
underlying assets (portfolio) compared to the market betaiM

and the capital asset pricing model as follows:

αJ = Ri − (
Rf + βiM · (

RM − Rf

))
(7)

where αJ represents Jensen’s alpha, and Ri stands for
realized returns on assets (portfolio). Rf and RM represent
the risk-free rate and overall market return, respectively.
A positive αJ means that the investment is performing
better than expected; while a negative αJ means that it
is performing worse. Finally, the Treynor ratio T [54]
measures the amount for the excess reward of underlying
investment compared to the risk-free rate per given unit
of volatility. It was calculated as the difference between

realized return and the risk-free rate, compared to the asset
(portfolio) risk as follows:

T = Ri − Rf

βiM

. (8)

Here, the greater the difference is between the realized
return and the risk-free rate, the higher the Treynor ratio, or
the greater the beta, the lower the Treynor ratio. A positive
T determines that the investment is more suitable than the
risk-free investment, while a negative T determines that the
investment is less suitable. The obtained results are shown
tabularly in Table 5 on the basis of best portfolios only (not
on all 10 independent runs).

The first group of extracted results considered final
portfolio value, overall profit/loss and beta riskiness. Given
an amount of cash at the beginning of a trading period
(10,000.00 euros per stock) meaned that 270,000.00 euros
were initially given to complete portfolio. By trading stocks,
this amount varied according to the assets’ close prices.
Table 5 shows that only a single ITS - unique-model LSTM
ITS exceeded the initial amount of cash at the end of
the trading period and thus consolidated an overall profit
(16.40%). The common-model LSTM ITS followed the
unique-model, with a -1.38% of overall loss, but surpassed
the passive ITS, which also consolidated very little loss
(-3.29%). The RSI ITS accounted for -9.27% of the overall
loss, while MACD ITS accounted for an extreme loss of -
56.12%. According to the beta indicator, the passive ITS
was the riskiest ITS among all, although this riskiness was
still lower than the riskiness of the benchmark (complete
DAX30 portfolio) due to the three companies not included
in the analysis. On the other hand, the common-model and,
especially, the unique-model showed very little riskiness
compared to the benchmark, and they even scored negative
betas. This intrinsically implied that whatever movement
happened with the index prices, it did not relate to the
LSTM ITSs. We agreed that such implication came as a
consequence of prudent, vigilant and reasonable day-to-day
trading.

Next, the number of transactions for each ITS is shown,
which was derived as follows: for each of the LSTM ITSs,
the best portfolio was selected (traditional ITSs were run
once only). Then, the number of transactions (no. of times
the MTS bought or sold stocks) during the whole period
was summed. The maximum, minimum, mean values and
standard deviations were calculated from the portfolios, e.g.,
the unique-model maximally performed 36 trades for one
of the stocks in the portfolio, and minimally performed
only 1 trade for a stock in the portfolio. Across the
complete portfolio, the unique-model performed 9.15 trades
per stock on average, with a standard deviation of 7.96.
The common-model, on the other hand, traded slightly
more frequently, with a mean value of 12.85 per complete
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Table 5 The results in this table were obtained by analyzing the best results (among the 10 model runs)

passive RSI MACD common- unique-

Value euros 261,136.06 244,964.33 118,463.91 266,268.29 314,281.28

Profit Ri (%) -3.29 -9.27 -56.12 -1.38 16.40

Beta β 0.7746 0.1812 0.5153 -0.0290 -0.0091

max 1 11 88 30 36

No. of min 1 2 34 2 4

transactions mean 1 7.37 68.04 12.85 9.15

stdev 0 1.95 9.88 6.57 7.96

Sharpe ratio Sa 0.0765 -0.1336 -1.7529 0.0032 0.2384

Jensen’s alpha αJ (%) 1.38 -9.30 -53.69 -3.63 14.32

Treynor ratio T -0.07 -0.60 -1.13 1.16 -15.77

For the calculation of Jensen’s αJ and Treynor’s T , we assumed a risk-free rate Rf = 2%

The highest values are in bold, “common-” stands for the common-model and “unique-” stands for unique-model. The most profitable ITS was
the unique-model LSTM. The riskiest among the ITSs was the passive ITS. The latter also demanded the highest expected return. Beta (β) was
calculated compared to the benchmark “DAX30”

portfolio. The passive ITS executed only a single buy
order per stock and thus scored equal maximum, minimum
and mean (average) numbers of transactions. The RSI ITS
scored 7.37 transactions per stock on average, and the
MACD ITS executed 68.04 transactions on average. Very
frequent trading was one of the reasons for poor MACD
ITS performance – each transaction incorporated trading
costs, and the more trades made, the higher the transaction
costs. These costs substantially lowered the portfolio value.
Additionally, note that transaction costs imposed significant
volatility as well. For instance, if transaction costs were set
at 1%, a drastic 1% loss was always imposed when buying
or selling stocks instantly; among others, this negatively
affected the calculation of beta and the rest of the indicators.

Given the investment performances, RSI and MACD ITS
scored negative Sharpe ratios, while the passive and robust
LSTM ITSs scored positive ones. The highest Sharpe ratio
among the last three was scored by the unique-model LSTM
ITS and was thus denoted as bold in the table. According
to Jensen’s alpha αJ , the passive and unique-model ITSs
performed better than (theoretically) expected. Due to two
of the negative betas, we could not perform objective and
unbiased Treynor ratio analysis, as the results would not be
meaningful.

5 Concluding remarks

We have implemented two promising variants of online
(constantly-updating) LSTM neural networks for the pur-
pose of stock trading and compared their trading perfor-
mance to that of traditional ITSs. We have extended the
experiments from a single asset to a complete portfolio. The

German financial market represented by DAX30 blue-chip
stocks was exploited for this study. We have experimen-
tally shown that LSTM neural networks can be exploited as
robust ITSs that score solid portfolio performance in aver-
age cases and beat the market occasionally in the best cases.
Both proposed LSTM ITSs performed outstandingly well in
the bearish market when selling assets, and limiting losses
came into play. We determined that additional steps towards
improving the efficiency of LSTM ITS during bullish mar-
kets should be taken to increase the mean final overall profit
of multiple independent runs. The robustness tests that were
carried out in the paper showed that LSTM can indeed
be a very reliable and robust tool. Therefore, additional
experiments with control parameters and architecture opti-
mization are necessary to guarantee that the mean overall
portfolio value outperforms that of passive ITS. Consid-
ering the given outlines, we rejected any doubts of the
underlying hypothesis and thus concluded that it was indeed
possible to earn higher-than-normal profits on an open and
transparent stock market during both bullish and bearish
market conditions using innovative LSTM neural networks.
Further, we attached important conclusions of the paper
point-wise:

– The limiting loss capability importantly contributed
to the negativity of the calculated beta, which is in
accordance with Kay [28].

– Universal models are to be stipulated when the com-
plexity of the trading system needs to be low. For
well-differentiated financial instruments, some form of
preprocessing, such as clustering [51], might be benefi-
cial. Nevertheless, a crucial step for combining cluster-
ing with later building a trading system is the selection
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of features (variables). One must remember that all fun-
damental, sectoral or macroeconomic information was
discarded in this paper, as all information originated
from market quotations only.

– Common- and unique-models incorporated entirely
different approaches to modeling, but both showed
exceptionally similar performance on average. On the
basis of 10 independent runs, the mean final portfolio
values between them differed by less than 1%.

– The single common-model for intervening on stock
market was exploited to verify the existence of
subjective factors mentioned earlier that drive asset
prices. As the common-model performed well on a
broad set of stocks, we concluded that similar factors
existed on market that affected the asset prices of many
stocks in the same (similar) way. Implicitly, this meant
that investor (psychological) behavior was similar
across many stocks and dependent on fundamental
factors to some degree. Of course, we could not
capture investor behavior directly, but we exploited the
common-model as a proxy.

Kay defended the concept that a negative beta came
as a consequence of a decreasing algorithmic performance
relative to the general index, and vice versa, which in
effect caused the trading algorithm to underperform in
most (bullish) situations and outperform the general index
during the index’s negative (bearish) returns. This is exactly
what we observed in the results. Chourmouziadis and
Chatzoglou [9] performed a study very similar to ours;
by emphasizing the effect of economic, political and
psychological factors on financial markets, they exploited a
fuzzy stock trading system and realized that their proposed
ITS produced lower returns than the passive ITS on the
bull market but effectively avoided large losses on the
bear market. Berutich et al. [2] showed that a genetic
programming ITSs handled avoiding large losses that were
caused in the 07-09 subprime crisis well. Using a portfolio
of 21 Spanish stocks, they managed to earn minimal positive
returns during the market collapse. These two findings
were in accordance with our results. Hu et al. [25] have
in literature survey explicitly stated that many algorithmic
trading systems commonly suffered from poor trading
performance during uptrends but adequate limiting losses
in downtrends. The conclusion on similarities of common-
and unique-models (mean portfolio values differing for
less than 1%) contributed to the field of automatic trading
as follows: strong psychological (deterministic) factors
exist on financial markets that similarly affect numerous
financial instruments. These factors could be divided into
two subgroups: (1) universal factors and (2) financial
instrument-specific factors (also called universal price
formation mechanisms [46] or stylized facts [15]). On

average, models exploiting any of these provide similar
portfolio returns.

For future work, external data information that are
consequence of rapid information technology outbreak
should be included. An excellent example of such data
seem to be support and confidence models that daily search
the internet for comments and news regarding the stocks’
or other financial instruments’ portfolio and subjectively
asses these information as positive or negative. External
information at high frequency would drastically increase
the resilience and reliability of current trading models
(comprehensive examples of analyzing sentiment from
information sources, such as blogs and social media, are
shown in [35, 63]). Finally, performed case study could be
extended by increasing the number of unique- and common-
model runs from N = 10 to N = 100 or 1000. We expected
that the trading performance of the unique- and common-
models would become even better through this extension.
Further, experiments could be extended by incorporating
other foreign stock markets, such as the US and Asian
and incorporating other financial instruments, such as
bonds, cryptocurrencies, commodities, forex, etc. Finally,
the LSTM trading strategy could be exploited to actually
intervene in stock markets, either as a recommendation
system or combined with a trading bot and dedicated
hardware, as a real-time web trading system. Here, the
trading period could be lowered significantly to enable
intraday buying and selling orders. Finally, the effect of poor
performance during uptrends should be carefully studied,
and appropriate remediation should be implemented.
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Funding No. P5-0027). Matjaž Perc was supported by the Slovenian
Research Agency (Grant Nos. P1-0403, J1-2457, J4-9302, and J1-
9112).

Declarations

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Barrot LD, Servvn L (2018) Gross capital flows, com-
mon factors, and the global financial cycle the world bank.
https://doi.org/10.2139/ssrn.3116778

2. Berutich JM, López F, Luna F, Quintana D (2016) Robust
technical trading strategies using GP for algorithmic portfo-
lio selection. Expert Systems with Applications 46:307–315.
https://doi.org/10.1016/j.eswa.2015.10.040, https://www.scienced
irect.com/science/article/pii/S0957417415007447

3. Brownlee J (2016) Time Series Prediction with LSTM Recur-
rent Neural Networks in Python with Keras - Machine Learning
Mastery. Machine Learning Mastery pp. 1–135. http://machinel

7192 D. Fister et al.

https://doi.org/10.2139/ssrn.3116778
https://doi.org/10.1016/j.eswa.2015.10.040
https://www.sciencedirect.com/science/article/pii/S0957417415007447
https://www.sciencedirect.com/science/article/pii/S0957417415007447
http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/


earningmastery.com/time-series-prediction-lstm-recurrent-neural-
networks-python-keras/

4. Brownlee J (2017) Long Short-Term memory networks with
python develop sequence prediction models with deep learning.
Machine Learning Mastery 46(313):192–202. https://doi.org/10.
19083/ridu.11.498

5. Buduma N, Locascio N (2017) Fundamentals of deep learning:
designing Next-Generation machine intelligence algorithms.
O’Reilly Media Inc, Newton

6. Chiang WC, Enke D, Wu T, Wang R (2016) An adaptive stock
index trading decision support system. Expert Syst Appl 59:195–
207. https://doi.org/10.1016/j.eswa.2016.04.025

7. Chihab Y, Bousbaa Z, Chihab M, Bencharef O, Ziti S
(2019) Algo-Trading Strategy for intraweek foreign exchange
speculation based on random forest and probit regression.
Applied Computational Intelligence and Soft Computing, p 2019.
https://doi.org/10.1155/2019/8342461

8. Chong TTL, Ng WK (2008) Technical analysis and the
London stock exchange: Testing the MACD and RSI rules
using the FT30. Applied Economics Letters 15(14):1111–
1114. https://doi.org/10.1080/13504850600993598. http://www.
tandfonline.com/doi/abs/10.1080/13504850600993598

9. Chourmouziadis K, Chatzoglou PD (2016) An intelligent short
term stock trading fuzzy system for assisting investors in portfolio
management. Expert Syst Appl 43:298–311. https://doi.org/10.
1016/j.eswa.2015.07.063

10. Creamer G (2012) Model calibration and automated trading
agent for Euro futures. Quantitative Finance 12(4):531–545.
https://doi.org/10.1080/14697688.2012.664921

11. Damodaran A (2016) Damodaran on valuation: security analysis
for investment and corporate finance, vol 324. JohnWiley & Sons,
Hoboken

12. Dickey DA, Fuller WA (1979) Distribution of the estimators for
autoregressive time series with a unit root. J Am Stat Assoc
74(366):427. https://doi.org/10.2307/2286348

13. Egrioglu E, Yolcu U, Bas E (2019) Intuitionistic high-order fuzzy
time series forecasting method based on pi-sigma artificial neural
networks trained by artificial bee colony. Granular Computing
4(4):639–654

14. Elton EJ, Gruber MJ (1997) Modern portfolio theory, 1950
to date. Journal of Banking and Finance 21(11-12):1743–1759.
https://doi.org/10.1016/S0378-4266(97)00048-4

15. Engle RF, Patton AJ (2007) What good is a volatility model? In:
Forecasting volatility in the financial markets, pp. 47–63. Elsevier

16. Fama EF (1970) Efficient Capital Markets: A Review of
Theory and Empirical Work: Discussion. The Journal of Finance
25(2):421. https://doi.org/10.2307/2325488. https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1540-6261.1970.tb00518.x

17. Fernández-Rodrı́guez F, González-Martel C, Sosvilla-rivero S
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