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Abstract Interactive news recommendation has been

launched and attracted much attention recently. In this

scenario, user’s behavior evolves from single click be-

havior to multiple behaviors including like, comment,

share etc. However, most of the existing methods still

use single click behavior as the unique criterion of judg-

ing user’s preferences. Further, although heterogeneous

graphs have been applied in different areas, a proper

way to construct a heterogeneous graph for interactive

news data with an appropriate learning mechanism on

it is still desired. To address the above concerns, we

propose a graph-based behavior-aware network, which

simultaneously considers six different types of behaviors

as well as user’s demand on the news diversity. We have

three main steps. First, we build an interaction behavior

graph for multi-level and multi-category data. Second,

we apply DeepWalk on the behavior graph to obtain en-

tity semantics, then build a graph-based convolutional

neural network called G-CNN to learn news represen-

tations, and an attention-based LSTM to learn behav-

ior sequence representations. Third, we introduce core

and coritivity features for the behavior graph, which

measure the concentration degree of user’s interests.

These features affect the trade-off between accuracy

and diversity of our personalized recommendation sys-

tem. Taking these features into account, our system fi-
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nally achieves recommending news to different users at

their different levels of concentration degrees.

Keywords Interaction behavior graph · Concentration

feature · Interactive news recommendation

1 Introduction

Because of high accessibility, electronic media, such as

news apps and social networking apps on a smartphone,

are challenging traditional paper media and becoming

the primary way for people to access new information.

According to statistics, the number of monthly active

users of Tencent News App, one of the most popular

apps in China, had surpassed 280 million in the first

half of 2018 and kept increasing rapidly between 2018
and 2021. To improve users experience, many news con-

tent providers have launched a series of interactive news

pages. Figure 1 is the mockup of Tencent News App.

On the news page, users usually glance over top news or

click an item of news to read thoroughly if they think it

is interesting, while on the interactive page, users can

view hot news post by other users via an interactive

way: publish own viewpoints, share the news, and fol-

low the bloggers etc. Therefore, in the interactive news

scenario, users tend to have diverse behaviors, which

contain more implicit evidence on their interests.

Traditionally, researchers have studied recommen-

dation systems under different setups. We may have col-

laborative filtering (CF) recommendation [1,2], content-

based (CB) recommendation [3–5], and hybrid recom-

mendation [6,7]. The technical tools include latent dirich-

let allocation [8], Bayesian matrix factorization [9], (in-

ductive) matrix completion [10,11], and k-nearest neigh-

bor (kNN) method [12]. We refer to [13] for a brief sur-

vey on recommendation systems. Over the past decade,
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(a) news page (b) interactive news page

Fig. 1 Tencent’s news page and interactive news page on
smartphones (in Chinese characters).

the deep learning methods have shown ground-breaking

performance in a variety of domains ranging from image

recognition [14,15], speech recognition [16], to machine

translation [17–20]. Recently, researchers have also ap-

plied convolutional neural network (CNN) and recur-

rent neural network (RNN) in many recommendation

scenarios and achieved good performance. For example,

a recent work [21] proposed a RNN architecture to gen-

erate users representations using browsing histories as

input sequences. The authors showed in experiments on

recommending Yahoo news that the click-through rate

(CTR) is enhanced by 23% using their deep learning

framework. In addition, other advanced deep-learning-

based recommendation systems, such as Collaborative

Deep Learning [22], DeepFM [23], YouTubeNet [24],

Neural Collaborative Filtering [25], NFM [26], AFM

[27], DAN [28], and KGAT [29], have also been re-

ported. Our work is closely related to this line of litera-

ture and detailed comparisons will be introduced later.

Although research on news recommendation has been

investigated from different aspects, most of existing meth-

ods still use single click behavior as the unique criterion

of judging user’s preferences. This may be acceptable

for recommending traditional news since the click be-

havior is the only feedback from users. However, for in-

teractive news, it will result in a biased prediction due

to the neglect of other behaviors. For example, if a user

follows many bloggers who post the same topic of news,

it strongly suggests that we should recommend news in

this topic to this user, and such information will be lost

if one only focuses on the click behavior. Further, in a

more realistic case, the concentration degree of user’s

interests varies from user to user. Some users may be

interested in multiple news categories, while some may

concentrate on a specific category of news. Therefore,

each user has own demand on the news diversity extent,

and such differences between users are more evident in

reading interactive news. Intuitively, a user with high

concentration degree tends to generate lots of similar

behaviors for a certain type of news, while a user with

low concentration degree tends to have more diverse be-

haviors. Instead of using a global feature to control the

whole system diversity [30], a more appropriate way is

to extract a user-dependent concentration feature and

make it involved when building the system. Moreover,

we note that users and news together with multiple

behaviors, categories, and topics naturally constitute a

weighted heterogeneous graph. This graph almost con-

tains all useful information for recommendation. How-

ever, it is difficult to model and extract those hetero-

geneous and complex information. Targeting the above

limitations, the following question arises naturally:

How to build a learning framework on heterogeneous

graph-structured data that can deal with multiple behav-

iors and, simultaneously, recommend news based on the

user’s interests concentration degree.

In this work, we answer the above question by our

proposed model called graph-based behavior-aware net-

work (GBAN). GBAN leverages tools from broad learn-

ing [31], graph theory [32], and domain-specific knowl-

edge graph [33] to obtain suitable users and news rep-

resentations, and then it feeds the learned representa-

tions into a two-layer fully-connected neural network to

perform a six-classification task. Here, the six possible

behaviors are: unclick, click, like, follow, comment, and

share. We point out that “unclick” behavior would oc-

cur when the other five behaviors could occur but did

not. GBAN inputs a sequence of user’s behaviors and

a piece of candidate news, and outputs the probabil-

ity of each behavior that the user may perform on the

candidate news. We emphasize that designing a sys-

tem under such setup is more reasonable for interactive

recommendation than a biclassification task using the

click-through rate (CTR) as the performance metric.

GBAN structure. We briefly introduce the structure

of GBAN. Details of each step are demonstrated in the

next two sections. Given the data including users, news,

behavior sequences of users, and categories, topics, and

tags of news, GBAN consists of four steps:

(a) We build an interaction behavior graph. Each node

represents either a user, a piece of news, a category,

a tag, or a topic, and whether two nodes are con-

nected by an edge is determined by whether they

have realistic connections. For example, the edge be-

tween a user node and a news node implies that one

of five (positive) behaviors is triggered in the his-

tory. Further, we assign this edge a weight according

to the behavior type, which increases proportionally
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from click to share. The details of assigning weights

for all types of edges are described in Section 3.

(b) Based on the behavior graph, we perform two tasks:

calculate core and coritivity for subgraphs induced

by each user as his/her concentration feature, and

learn a vector representation for each node. Here,

core and coritivity are concepts from graph theory

[34], which quantitatively measure the importance

of the nodes and provide useful insights for user’s

concentration degree. Detailed explanations and al-

gorithms are presented in Sections 2 and 3. The vec-

tor representations are learned by DeepWalk [35].

(c) Using vector representations, we design a graph-

based convolutional network called G-CNN to learn

news representations. Further, we design an attention-

based LSTM to learn user’s behavior sequence rep-

resentations. In particular, given a specific user and

a specific candidate news, LSTM takes the concate-

nated news representations from G-CNN as inputs,

with attention weights being determined by user

node representations and candidate news node rep-

resentations jointly. Here, the concatenation of news

representations is ordered according to the temporal

behavior sequence. Finally, the behavior sequence

representations together with concentration feature

(from Step (b)) constitute the user representations.

(d) We combine user representations with candidate news

representations, feed them into two fully-connected

layers to perform a six-classification task.

The above four steps are the main workflow of GBAN.

To wrap up, interactive news recommendation is a

new scenario and there are very limited works targeting

this problem so far. The main challenges lie in the anal-

ysis of multiple behaviors feedback from users and the

personalized demand on the news diversity. Our pro-

posed GBAN method resolves these challenges and has

following contributions:

(a) We structure the interactive news data as an inter-

action behavior graph, which is a weighted hetero-

geneous graph. To our knowledge, this is the first

paper that clearly illustrates how to compress the

interactive news data containing multiple behaviors

and complex users and news profiles by a hetero-

geneous graph. A clear advantage of studying such

graph is that the representations of different types of

nodes are learned in the same space. Thus, we need

not involve a complex space transformation when

we consider different types of nodes.

(b) The proposed method GBAN is able to recommend

interactive news by considering six types of behav-

iors. GBAN applies a G-CNN to learn news repre-

sentations, and an attention-based LSTM to learn

behavior sequence representations. Our architecture

is simpler than the state-of-the-art model DAN [28],

but achieves better performance. In addition, our at-

tention mechanism for LSTM depends on the spe-

cific candidate news, which enables LSTM to learn

behavior sequence representations with pertinence.

(c) We propose the concept of user’s interests concen-

tration degree, which characterizes his/her demand

on the news diversity. To quantitatively measure the

concentration degree, our paper proposes a simple

resolution: core and coritivity of the subgraph in-

duced by the user. By including the concentration

feature, GBAN can adaptively recommend news ac-

cording to different diversity levels. To our knowl-

edge, this paper is the first endeavor to incorporate

this concentration feature into the recommendation.

(d) We apply GBAN on two datasets. One is the dataset

from Tencent News App and one is the MovieLens

dataset. We show the superiority of GBAN through

comprehensive comparisons with other state-of-the-

art methods and its own variants.

Related work. Our work is related to a growing liter-

ature on deep learning-based recommendation system.

To highlight a few of them, Okura et al. [21] adopted

a RNN to generate user representations using browsing

histories as input sequences. DeepFM [23] studied the

feature interactions behind user behaviors via a novel

neural network model, which combines the power of

factorization machines and deep learning for feature

learning. YouTubeNet [24] applied the classic two-stage

information retrieval dichotomy for video recommenda-

tion, achieved by deep candidate generation model and

deep ranking model, respectively. Collaborative Deep

Learning [22], a hierarchical Bayesian model, addressed

the sparsity issue in ratings, which outperforms conven-

tional CF-based methods significantly. Neural CF [25]

focused on generalizing matrix factorization and replac-

ing the inner product between the latent features of

users and items by multi-layer perceptron. Bobadilla

et al. [36] designed a classification-based deep learn-

ing CF approach that operates on the ratings data.

The learning process is based on two binary sources:

relevant/non-relevant vote and voted/non-voted item.

Hurtado et al. [37] provided a method that combines di-

verse machine learning algorithms to make recommen-

dation to large homogeneous user groups. The homoge-

neous groups are detected by performing clustering on

hidden factors of users, and a virtual user is obtained

for each group by performing hidden factors aggrega-

tion. All aforementioned work proposed advanced deep-

learning-based recommendation systems. However, most

of them are less concerned about several issues includ-

ing the contextual connection and the demand on news
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diversity, which make them not suitable for interactive

news recommendation.

To address those issues, people tried to build per-

sonalized recommendation systems by digging out other

auxiliary features and/or taking advantage of repre-

sentation learning on different graphs with the atten-

tion module. For example, Lian et al. [38] developed

a deep fusion model. There are two critical compo-

nents: an inception module and an attention mecha-

nism. The former is composed of multi-layer networks

and learns various levels of feature interaction, while the

latter merges latent representations learned from dif-

ferent channels in a customized fashion. Subsequently,

DKN [39] built a knowledge graph to extract latent

knowledge-level connections among news. Within DKN,

a multi-channel CNN is adopted to fuse semantic-level

and knowledge-level representations of news. In addi-

tion, an attention module is adopted to address the

user’s diverse interests by aggregating the user’s his-

tory with respect to the candidate news. However, both

methods have flaws when they are applied on interac-

tive news scenario. The former method [38] does not

make use of the graph structure of data and the di-

versity in their study is limit to the behavior patterns,

instead of the diversity of user’s interests concentra-

tion degree. The latter method [39] separates the fea-

tures of users and news from each other so that some

implicit connections between users features and news

features are neglected. Although the knowledge graph

in DKN can aggregate the entity-based information, it

fails to capture the news sequential information. Re-

cently, DAN [28] addressed the drawbacks of DKN by

adopting an attention-based RNN to capture the hid-

den time series features, and achieved a better perfor-

mance than DKN. Our paper competes with DAN thor-

oughly, and shows that GBAN outperforms DAN fur-

ther with a simpler architecture. On the other hand, in

order to design a user-oriented product, Alonso-Virgós

et al. [40, 41] analyzed the compliance and usability in

developing websites. The authors used some statistical

tools to study the behavior of web developers, and fur-

ther to determine how to recommend the usability guid-

ance to web developers in a more effective way. Com-

paring with this sequence of methods, the interactive

news recommendation is more challenging. We have to

exploit the data structure to distinguish multiple be-

haviors (i.e. six possible behaviors) of each user and

also to estimate the concentration feature. This moti-

vates us to build a heterogeneous behavior graph and

leverage tools from graph theory.

In addition, it is worth mentioning that some recent

work studied recommendation with multiple feedback

types. Wan et al. [42] observed that feedback signals

exhibit monotonic dependency structures, i.e., any ex-

plicit signal necessarily implies the presence of implicit

signal (a “review” action implies a “purchase” action,

which implies a “click” action, etc.). Gao et al. [43] de-

signed Neural Multi-Task Recommendation (NMTR)

method for learning multi-behavior data. Both methods

assumed that the behavior types follow a sequential re-

lationship, which is unrealistic for interactive news sce-

nario. The multiple behaviors in our paper don’t follow

the particular ordinal relationship. For example, “fol-

low” and “share” have no implication between them.

Thus, a novel approach to deal with multiple behaviors

especially for interactive news is still desired.

Structure of the paper. In Section 2, we introduce

preliminaries including core and coritivity concepts, graph

representation learning, and also formulate our recom-

mendation problem. In Section 3, we delve into the de-

tails of our GBAN method. We then conduct extensive

experiments and compare with different advanced mod-

els on real data in Section 4, and present conclusions

and future work in Section 5.

2 Preliminary and Problem Formulation

In this section, we introduce core and coritivity con-

cepts and graph representation learning. Then we for-

mulate the recommendation problem considered in this

paper. Throughout the presentation, the terminologies

of node and entity are exchangeable.

2.1 Core and Coritivity

In a graph network, there are always some entities that

are locating at important positions and playing crucial

roles. Removing these entities may lead the graph to

enter a decentralized state. We call these entities cores

of the graph network.

In the interactive news scenario, we first construct a

weighted heterogeneous graph, as shown in the middle

panel of Figure 2. In such a graph, each node repre-

sents either a user, a piece of news, a category, a topic,

or a tag, and the edges are determined by the triggered

behaviors. We then extract two subgraphs induced by

users U1 and U2 respectively, by including only the spe-

cific user node and its all adjacent nodes, as shown in

the left and the right panels of Figure 2. Within each

user subgraph, we see from the figure that if we remove

the nodes in the box (or the circle), the subgraph will

enter a decentralized state. Thus, the nodes in the box

(or the circle) play an important role and are cores of

the subgraph. Comparing the number of nodes in the
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Fig. 2 The illustration of different concentration degrees of users’ interests. The middle panel is the interaction behavior graph;
the left panel is the subgraph induced by the user U1; and the right panel is the subgraph induced by the user U2.

box and circle and their dispersion extent, we can in-

tuitively conclude that two users own different demand

on the news diversity. In particular, U1 is interested in

reading a specific category of news, while U2 is inter-

ested in multiple news categories.

To rigorously study cores and their effects, the pa-

per [34] formally proposed the concepts of core and cori-

tivity, which quantitatively measure the importance of

a set of nodes by the number of connected components

showing up after deleting the nodes and their incident

edges. We present the definitions as follows.

Definition 1 (Coritivity) Given an undirected con-

nected graph G, we define its coritivity h(G) as:

h(G) = max{ω(G− S)− |S| : S ∈ C(G)},

where C(G) denotes the set of all vertex cuts of G, and

ω(G−S) is the number of connected components of G−
S. For S ∈ C(G), G− S denotes the graph obtained by

deleting the node set S together with all edges incident

with any nodes in S. |S| denotes the number of nodes

in S.

Definition 2 (Core) The set S is called a core of graph

G, if S ∈ C(G) and satisfies

h(G) = ω(G− S)− |S|. (1)

According to Definitions 1 and 2, it’s useful to note

that each graph has a unique coritivity value but may

have many different cores. Each core is a cut set that

satisfies (1). We choose the core such that |S| is as

small as possible. Our work uses core and coritivity

pair, (|S|, h(G)), of the subgraph induced by each user

to measure his/her concentration degree. It’s easy to

see that the larger h(G) or |S| implies the more con-

nected components or important nodes, further implies

the lower concentration degree and the larger demand

on news diversity. In principle, a user with high concen-

tration degree tends to generate a lot of similar behav-

iors for a certain type of news. On the contrary, a user

with low concentration degree tends to generate more

diverse behaviors.

Since the coritivity indicates the importance of core

nodes, given a graph, the most fundamental problem is

to design an algorithm to calculate the coritivity. Zhang

et al. [44] proved that exactly computing the coritivity

is NP hard in general. Fortunately, we can use a heuris-

tic algorithm based on Max-Min Ant System (MMAS)

to compute it approximately [45]. The detailed MMAS

scheme is provided in Section 3.

2.2 Graph Representation Learning

Graph is a common and convenient way to represent re-

lationships among entities. The representation learning

or feature learning studies how to convert the network

information to dense, low-dimensional, real-valued vec-

tors, which are further used as the input features in

downstream machine learning tasks. This step has at-

tracted great attention since techniques in representa-

tion learning allow a system to automatically discover

the features from raw data, and transfer network infor-

mation to quantitative relations.

In particular, the input of this step is a graph and

the outputs are series of vectors associated to each node

on the graph. The similarity between two nodes is de-

termined by both the similarity of their neighborhood

nodes and the weights along the path to those nodes.

A good representation can characterize this similarity

in the sense that the more similar two nodes are, the

closer two associated vectors will be. We briefly intro-

duce the method DeepWalk [35], which is one of the

first widespread representation learning methods and

is the method that we apply on the behavior graph.
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DeepWalk uses local information obtained from sev-

eral random walks with certain length on the graph to

learn latent representations, and treats node sequences

as the equivalent of sentences. It utilizes the SkipGram

algorithm [46] and Hierarchical Softmax model [47, 48]

to probabilize the pairs of nodes in each local window

in the random walk sequence, and finally maximizes

the likelihood by stochastic gradient descent (SGD).

SkipGram is a language model that maximizes the co-

occurrence probability among the words. It maximizes

classification of a word based on another word in the

same sentence. More precisely, it uses each current word

as an input of a log-linear classifier with continuous pro-

jection layer, and predicts words within a certain range

before and after the current word [46].

2.3 Problem Formulation

We now formulate our interactive news recommenda-

tion problem. For a given user i, we denote the be-

havior history set by bi = {bi,1, bi,2, . . . , bi,Ti}, where

bi,j for j = 1, . . . , Ti is the j-th behavior triggered by

user i, and Ti is the total number of user’s behaviors.

Here “trigger” means user has browsed one piece of

news so that one of five positive behaviors, from click

to share, has been generated. Thus, each behavior bi,j
corresponds to a piece of news, say di,j . For simplic-

ity, we assume that for each user i the triggered news

{di,j}Tij=1 are different from each other. In practice, if

a user generates two different behaviors on the same

news, we will only keep the most positive behavior (an-

other option is to keep the most recent behavior).

Remark 1 We order the behaviors from unclick, click,

like, follow, comment, to share. We think the behaviors

in this order are more and more positive. In Section

3.1, we assign different weights to the edges between

user and news nodes that are induced by different be-

haviors. The weights reflect the connection intensity of

two nodes. The more positive the behavior, the larger

the weight, and the stronger the connection between

two nodes. Thus, if a user triggers different behaviors

on the same news, we think the extent that the user

is interested in this news is decided by his/her most

positive behavior, which is a reasonable presumption.

We also mention that doing a reduction for repeated

samples is necessary for our method, since we do not deal

with multiple edges between two nodes. In practice, it

is also rare to have multiple behaviors on the same news

(since news is updated instantly). So our data adjust-

ment has a negligible effect on the recommendation. We

emphasize that only if we have repeated (user, news)

pair do we do an adjustment. Most of behaviors are pre-

served. Certainly, designing a method for dealing with

repeated samples is an interesting future work.

Moreover, in our scenario, each news d is composed

of a sequence of words indicating contents, tags, pri-

mary and secondary categories, i.e.

d = [w1, w2, . . . ; tag1, tag2, . . . ; cat1, cat2]. (2)

In Section 3, we will discuss how to learn an embedding

matrix of the above vector to further obtain the news

representations via a convolutional network. We should

mention that (2) does not include topics. We realize

in our real dataset that topics are missing for some of

news. Thus, we only use common features of news to

construct their embedding matrices. However, as one

type of nodes on the interaction behavior graph, topics

will affect the learned embeddings implicitly. Also note

that each news d may be associated with different users

on the interaction behavior graph.

Given the behavior history sets for all users, we aim

to predict whether user i will behave positively on a

candidate news that he/she has not ever seen before.

Further, what is the probability of each of five possible

behaviors (from click to share).

3 The Proposed Method

In this section, we introduce our method called graph-

based behavior-aware network (GBAN). We decompose

GBAN into five steps introduced in the next five sub-

sections respectively: interaction behavior graph con-

struction, graph representation learning, user concen-

tration feature learning, user and news representations,

and behavior prediction.

As illustrated in Figure 3, our recommendation sys-

tem predicts the probabilities of six behaviors of a user

on a candidate news. First, we construct an interac-

tion behavior graph based on users profiles and behav-

iors logs. Second, we obtain the nodes embeddings from

graph representation learning, and meanwhile calculate

core and coritivity for subgraphs induced by each user

as his/her concentration feature. Third, we design a G-

CNN to learn news representations, and an attention-

based LSTM to learn the behavior sequence representa-

tions, which together with concentration feature consti-

tute user representations. Finally, we combine user rep-

resentations with candidate news representations, and

feed them into a two-layer fully-connected neural net-

work to perform the six-classification task.
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Fig. 3 The workflow of GBAN. From the bottom left part to the top right part, GBAN constructs an interaction behavior
graph, calculates core and coritivity and performs graph representation learning in parallel, learns news representations via G-
CNN, learns behavior sequence representations via LSTM, and feeds user representations and candidate news representations
to two fully-connected layers to predict probabilities of six behaviors.

3.1 Construction of Interaction Behavior Graph

To fully exploit the diversified behaviors and the associ-

ations between users and news, we construct a weighted

heterogeneous graph for the interactive news data. We

use Tencent Interactive News data to illustrate the con-

struction. Other data with multiple behaviors share the

same construction process. For example, we also study

MovieLens data [49] in the experiment in Section 4.

Tencent data description: This dataset comes from

the service log of Tencent News App. It consists of

four files: behavior log, user dictionary, news index, and

topic index. Each line of the behavior log contains user

ID, timestamp, news ID, topic ID, and user’s behav-

ior. Each line of the user dictionary contains user ID,

a primary category ID, a secondary category ID and

multiple tags. Moreover, for each user, categories and

tags labels are assigned with weights (i.e. proportions)

calculated according to his/her browsing history. The

other two files have similar formats to the user dictio-

nary. In news index file, each news ID corresponds to

a topic ID, primary and secondary categories IDs, mul-

tiple tags and a sequence of content words; while in

topic index file, each topic ID corresponds to primary

and secondary categories IDs and multiple tags. Here,

categories and tags also come with prespecified weights.

Given such a dataset, we construct the interaction

behavior graph as follows. We consider five types of

nodes: user, news, category, tag, and topic. We denote

them by U , D, C, Tg, T , respectively. Then, the graph

G is given by G = (V,E), where V = U∪D∪C∪Tg∪T
is the node set and E = {(vi,1, vi,2, ωi)}i is the edge set.

The elements of E are triple, with vi,1, vi,2 being two

corresponding nodes and wi being the assigned weights.

The weights are assigned according to different edges

types. In particular, the weight of user-news edge is

assigned based on user’s behavior. We let {click : 0.5, like :
0.6, follow : 0.7, commend : 0.8, share : 1}. If there

is no edge between a user node and a news node, that

means the user unclick the news. For user-category/tag

edge, the weight is given by user dictionary file, which is

essentially the proportion of each news category/tag in

his/her browsing history. Similarly, we manually calcu-

late the proportion of each news topic in the browsing

history, and assign weights accordingly for user-topic

edge. Moreover, the weight of news-category/tag edge

is given by news index file and the weight of topic-

category/tag edge is given by topic index file. Lastly,

since each news belongs to a unique topic, we set weight

to be 1 for news-topic edge. A summary of weight as-

signment is displayed in Table 1.

Remark 2 The reason why we assign weights in this

way is because that the weight between two nodes should

reflect their association extent. This association extent

can be further reflected from the behaviors or the brows-

ing history. Intuitively, behaviors from unclick to share
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Table 1 Summary of weights of the behavior graph.

Node User News Category Tag Topic

User ×

click: 0.5
provided
in user

dictionary

proportion of
each topic in
behavior log

like: 0.6
follow: 0.7
comment: 0.8
share: 1

News ×
provided in
news index

1

Category ×
provided in
topic indexTag

Note: × means there is no edge between nodes.

is becoming more and more positive, which implies that

this user is more and more associated with this piece of

news. Similarly, the association between user and topic

is determined by the proportion of news of this topic in

the browsing history. Thus, we set the weight accord-

ingly. When we perform graph representation learning,

the transition probability between nodes is proportional

to the weight. Then, two nodes are more likely to appear

in the same random walk if they have higher weight, and

the learned embeddings are also more similar.

A detailed behavior graph construction process is

presented in Algorithm 1. The complexity of Algorithm 1

equals to the total number of lines in four data files. Dif-

ferent from the existing heterogeneous graphs [50, 51],

our constructed behavior graph contains rich nodes in-

formation such as topic, tag, and category, aside from

user and news. This graph structure is more suitable

for interactive recommendation, and allows us to in-

crease the breadth of features. For example, we are able

to study the subgraph induced by each user and make

recommendation personalized by involving the concen-

tration feature. The different behaviors are considered

when assigning weights, which provides a way to extend

the application of heterogeneous graphs to interactive

news scenario.

3.2 Graph Representation Learning

Given the constructed behavior graph, we then perform

graph representation learning to embed each graph node

a vector. In this step we ignore the heterogeneity of the

graph (i.e. treat all types of nodes equally), and apply

DeepWalk algorithm [35] on the graph.

In fact, the standard DeepWalk has to be slightly

adjusted since it is designed for unweighted graphs. In

our case, when we generate random walks, we let the

transition probability be proportional to the weight.

Thus, the higher the weight, the more likely two nodes

will appear in the same node sequence. Noting that the

weight is increased when the behavior varies from click

Algorithm 1 Construction of Behavior Graph
1: Input: Behavior log, User dictionary, News index, Topic

index;
2: Let NodeSet, EdgeSet, TopicEdgeDict = {}, {}, {};
3: Let BeDict = {unclick : 0, click : 0.5, like : 0.6, follow :

0.7, commend : 0.8, share : 1};

4: for each line i in Behavior log do

5: Extract useri, newsi, topici, behaviori;
6: Add useri, newsi, topici to NodeSet;
7: Let weighti = BeDict{behaviori};
8: Add triple (useri, newsi, weighti) to EdgeSet;
9: if useri, topici not in TopicEdgeDict then

10: Let TopicEdgeDictuseri,topici = 0;
11: end if

12: Let TopicEdgeDictuseri,topici+ = weighti;
13: end for

14: for useri, topicj in TopicEdgeDict do

15: Let weightij =
TopicEdgeDictuseri,topicj∑
topic TopicEdgeDictuseri,topic

;

16: Add triple (useri, topicj , weightij) to EdgeSet;
17: end for

18: for useri in User dictionary do

19: Extract primary category cati,1, secondary category
cati,2, and multiple tags [tagi,1, . . . , tagi,ui ] with their
weights wcati,1 , wcati,2 , wtagi,1 , . . . , wtagi,ui ;

20: Add useri, cati,1, cati,2, {tagi,k}uik=1 to NodeSet;
21: Add triples (useri, cati,1, wcati,1),(useri, cati,2, wcati,2),
{(useri, tagi,k, wtagi,k )}uik=1 to EdgeSet;

22: end for

23: for newsi in News index do
24: Extract topici, categories cati,1 and cati,2, and

multiple tags [tagi,1, . . . , tagi,ni ] with their weights
1, wcati,1 , wcati,2 , wtagi,1 , . . . , wtagi,ni ;

25: Add newsi, topici, cati,1, cati,2, {tagi,k}nik=1 to
NodeSet;

26: Add triples (newsi, topici, 1), (newsi, cati,1, wcati,1),
(newsi, cati,2, wcati,2), {(newsi, tagi,k, wtagi,k )}nik=1 to
EdgeSet;

27: end for

28: for topici in Topic index do
29: Extract categories cati,1 and cati,2, and multiple tags

[tagi,1, . . . , tagi,ti ] with their weights wcati,1 , wcati,2 ,
wtagi,1 , . . . , wtagi,ti ;

30: Add topici, cati,1, cati,2, {tagi,k}tik=1 to NodeSet;
31: Add triples (topici, cati,1, wcati,1), (topici, cati,2, wcati,2),

{(topici, tagi,k, wtagi,k )}tik=1 to EdgeSet;
32: end for

33: Output: NodeSet, EdgeSet.

to share, DeepWalk ensures that the shared news will

be learned as the strongest evidence of the preferences.

Such tendency is consistent with the users habits. It

is also useful to note that all learned embeddings nat-

urally integrate the user’s behaviors information and

news features (e.g. topics, tags) information.

We briefly demonstrate the implementation of the

adjusted DeepWalk. We have two steps. First, for each

node vi, we generate multiple random walks starting
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from vi with length t. We donate a random walk start-

ing from vi as {v0i = vi, v
1
i , · · · , vti}, where vji (j ≥ 1) is

a node chosen at random from the neighbors N (vj−1i )

of node vj−1i . Different from standard DeepWalk, we

let transition probability from vj−1i to vji , denoted by

{pvij}v∈N (vj−1
i ), be pvij =

weight
v
j−1
i

,v∑
x∈N(v

j−1
i

)
weight

v
j−1
i

,x

, and

weightvj−1
i ,v is the weight of edge between vj−1i and v.

Second, following standard DeepWalk, we apply Skip-

Gram algorithm [46] to generate node representations

for each random walk. We refer to Section 4 of [35] for

details on how to apply SkipGram on random walks.

Remark 3 We prefer DeepWalk for representation learn-

ing due to three reasons.

(a) Designing efficient methods targeting general het-

erogeneous graphs is still an open problem. Exist-

ing methods [52, 53] cannot fit in our scenario and

are computationally expansive. The number and the

types of nodes and edges of our behavior graph

change rapidly over time, which may lead to a delay

for recommending news when using very complex

methods. However, DeepWalk has clear advantages

on parallelism and adaptability, and has been ex-

tensively validated in practice.

(b) Ignoring heterogeneity of graph in representation

learning step does not result in a worse performance.

Conversely, DeepWalk is enough to let GBAN achieve

state-of-the-art performance, and can be performed

in real time.

(c) Although other methods for homogeneous graph rep-

resentation learning allow flexible embeddings, they

bring additional issues. For example, node2vec [54]

involves two parameters in the transition probabil-

ity: one prioritizes a breadth-first-search procedure

and one prioritizes a depth-first-search procedure.

These auxiliary parameters bring flexibility to the

method, but also let the algorithm tend to generate

biased random walks. The bias may affect the mean-

ing of our weights. On the other hand, as the pro-

totype of many other advanced methods, DeepWalk

simply generates unbiased random walks based on

our prespecified weights. It is simple, efficient, and

can perfectly reflect the meaning of the weights.

To justify the above reasons, we compare our adjusted

DeepWalk with the standard DeepWalk and node2vec

methods in experiments (see Table 7). We show our

method enjoys a better performance.

3.3 Concentration Feature Learning

Users’ concentration degree directly affects the pattern

of their behaviors. Intuitively, users tend to repeat sim-

ilar behaviors for a certain class of news if they have

relatively narrow preferences. In contrast, they will be

more likely to behave in a different way if their pref-

erences are extremely wide. In order to personalize the

recommendation, we take user’s concentration feature

into account.

As introduced in Section 2, core and coritivity are

used to describe the importance of a group of nodes on

the graph and are widely used in information security

and brain graph structure analysis [45]. We also use

them to characterize the user’s concentration degree.

As illustrated in Figure 4, we first extract subgraphs

from the full behavior graph induced by each user. Each

subgraph contains only the specific user node and its

all adjacent nodes. We calculate core S and coritivity

h(G) for the subgraph, and the pair (|S|, h(G)) will be

used to measure the concentration degree of this user.

Since S is not unique, we will choose S such that |S| is
as small as possible. The reasonability of this measure

comes from the definition of core and coritivity.

Since computing core and coritivity is NP-hard in

general, we apply Max-Min Ant System (MMAS) algo-

rithm to approximately compute them. MMAS [45,55,

56] is a random search algorithm that simulates the ants

foraging behavior in nature. When ants are foraging,

they secrete chemical hormone, called pheromone, on

the path they pass by, and meanwhile judge their direc-

tion according to the concentration of nearby pheromone.

The key component of MMAS is a parameterized prob-

ability model called a pheromone model. In each itera-

tion, the system generates a population based on the

pheromone model, and then updates the pheromone

model by the generated population information to affect

the next-generation population. The details are pre-

sented in Algorithm 2. The total number of iterations

of MMAS is maxDepth × Epoch. In practice, letting

the product be O(102) is good enough. We then map

coritivity and core to the Euclidean space using

cf = ReLu(Wmap1
[Coritivity, Core] + βmap1

) ∈ R2 (3)

where Wmap1
∈ R2×2, βmap1

∈ R2. Finally, we treat cf

as the concentration feature representation of the user.

3.4 News and Users Representation Learning

After node embedding in Section 3.2 and concentration

feature learning in Section 3.3, we now set the stage to

learn news and users (low-dimensional) representations,

which are used as inputs of the downstream classifica-

tion task. We divide the whole process to four steps: as-

semble news features, design a CNN to learn news rep-

resentations, design an attention-based LSTM to learn



10 Ma et al.

Fig. 4 The concentration feature learning.

Algorithm 2 Max-Min Ant System (MMAS)

1: Input: Subgraph SubG = (SubV, SubE), maximum itera-
tion depth maxDepth > 0, the number of epochs Epoch >
0, the pheromone volatilization coefficient ρ ∈ (0, 1), and
scalars τmin, τmax, α, β > 0;

2: Let Coritivity = 0, Core = {};
3: Let τ = {τi}i∈SubV , η = {ηi}i∈SubV such that τi =

τmin, ηi = 1/di where di is the degree of node i in SubV ;
4: for k = 0, 1, . . . , Epoch do

5: temCoritivity = 0, temCores = {};
6: Calculate node selection probabilities P = {Pi =

ταi η
β
i∑

j∈SubV τ
α
j η

β
j

: i ∈ SubV };

7: for depth = 0, 1, . . . ,maxDepth do

8: Generate numCore uniformly from 1 to |SubV |,
where numCore is the number of nodes in the core set;

9: Allocate the core set S according to probabilities
P such that |S| = numCore;

10: Compute newCoritivity = ω(G− S)− |S|;
11: if newCoritivity > temCoritivity then

12: temCoritivity = newCoritivity;
13: temCore = S;
14: end if

15: end for
16: if temCoritivity > Coritivity then

17: Coritivity = temCoritivity;
18: Core = temCore;
19: end if

20: Compute ∆τbest = temCoritivity
Coritivity

;

21: for node i in temCore do
22: τi = [(1 − ρ)τi + ∆τbest]τmaxτmin ([x]ba means x = a if

x < a; x = b if x > b; x = x if a ≤ x ≤ b);
23: end for
24: end for

25: Output: Coritivity, Core.

behavior sequence representations, and assemble users

representations.

Step 1: assemble news features. As introduced in

(2), each news d is composed of a sequence of content

words, multiple tags, and primary and secondary cat-

egories. Correspondingly, the news features are com-

posed by the embeddings of these components.

Tags and categories are nodes of the behavior graph,

and their embeddings are obtained from graph repre-

sentation learning in Section 3.2. For simplicity, for each

news we only use embeddings of s tags that have the

largest weights. To learn embeddings for content words,

we perform Chinese word segmentation1 and extract M

keywords by Jieba Chinese text segmentation2 and TF-

IDF keyword extraction [57]. Then, the embedding of

each keyword is from the word2vec library3. However,

the word embedding and graph embedding are learned

in different spaces, so we map the word embedding from

the word space to the Euclidean space using

tran wi = tanh(Wmap2
wi + βmap2

), i = 1, . . . ,M,

where we abuse the notation of weights to let wi denote

the keyword embedding vector, and Wmap2
∈ Rn×nw

and βmap2 ∈ Rn are trainable transformation matrix

and bias with compatible dimensions. Finally, the key-

words embeddings together with nodes embeddings of

tags and categories constitute the news feature matrix:

newsin(d) =[tran w1, . . . , tran wM , E tag1, . . . , E tags,

E cat1, E cat2] ∈ Rn×(M+s+2). (4)

Here, E tagi and E cati are tag and category embed-

dings from graph representation learning in Section 3.2.

Step 2: news representations learning. We then

feed the feature matrix (4) into a CNN to learn news

representations. We use multiple filters C ∈ Rn×l×k1

with varying window sizes l and, inspired by DKN [39],

a max-pooling operation on the tensor. We thus have

md = maxpooling(f(newsin(d)⊗ C + β1T )) ∈ Rk1 ,

where ⊗ is the convolution operator, β ∈ RM+s+2 is

bias vector, 1 ∈ Rk1 is all-one vector, and f is ReLu and

is evaluated entrywisely. We emphasize that we use the

same CNN layer for all news, so that the filters C do

not depend on the input news.

Step 3: behavior sequence representations learn-

ing. Based on the learned news representations, we de-

sign an attention-based LSTM to further learn behavior

1 It is not needed for English news.
2 http://pypi.python.org/pypi/jieba/.
3 https://github.com/Embedding/Chinese-Word-Vectors.

http://pypi.python.org/pypi/jieba/
https://github.com/Embedding/Chinese-Word-Vectors
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sequence representations. The input of LSTM is a se-

quence of representations of news that is triggered by

the user. Recall from Section 2.3 that, for a specific user,

the behavior sequence is {b1, b2, . . . , bT }. Each behav-

ior bj correspond to a piece of news dj . In experiment,

we split the long news sequence {d1, d2, · · · , dT } into

short sequences so that we have multiple samples even

for one user. For example, we can get T − r samples

{(dq, . . . , dq+r−1), dq+r, bq+r}T −rq=1 . For each sample, we

use the previous r news to predict the behavior on the

(r+1)-th news. We describe the behavior sequence rep-

resentations learning on the first sample (q = 1), and

[md1
,md2

, · · · ,mdr ] is the news representation matrix.

At step j of LSTM, we use mdj to update the cur-

rent cell state cj ∈ Rk2 and hidden state hj ∈ Rk2 by

ij = Sigmoid(W1mdj +W5hj−1 + β1),

fj = Sigmoid(W2mdj +W6hj−1 + β2),

oj = Sigmoid(W3mdj +W7hj−1 + β3),

ĉj = tanh(W4mdj +W8hj−1 + β4),

cj = fj � cj−1 + ij � ĉj ,
hj = oj � tanh(cj).

where i, f, o are gate activations, � meas elementwise

multiplication, {Wi}4i=1 ∈ Rk2×k1 , {Wi}8i=5 ∈ Rk2×k2 ,

{βi}4i=1 ∈ Rk2 are trainable weight matrices and biases.

Then, we employ the following attention mechanism

to calculate the weighted behavior representation s:

s =

∑r
i=1 exp (e(hi, u, p)) · hi∑r

j=1 exp (e(hj , u, p))
∈ Rk2 (5)

with

e(hi, u, p) =βT
b tanh(WHhi +WUu+WP p+ βa).

Here, e is a score function, which scores the impor-

tance of news for composing the behavior representa-

tion; u ∈ Rn is the user node embedding, and p ∈ Rn is

the candidate news node embedding (here p = E dr+1

as dr+1 is our candidate news, see notations in (4)).

Both of them come from graph representation learning

in Section 3.2. WU ,WP ∈ Rn×n and WH ∈ Rn×k2 are

weight matrices; and βa, βb ∈ Rn are bias vectors.

Remark 4 Our model is simpler than DAN [28] which

also adopted an attention-based CNN-LSTM framework.

(a) In DAN, the authors designed an attention-based

LSTM called ARNN. ARNN involves attention mech-

anism on each state of LSTM. In particular, after we

feed sequence [md1
,md2

, · · · ,mdr ] into LSTM, we

get states [h1, h2, · · · , hr]. For each i = 2, 3, . . . , r,

ARNN involves an attention network ANN for hi to

provide attention weights for all past LSTM states

[h1, . . . , hi−1]. In total, ARNN has r−1 ANN layers

to obtain r − 1 sequential features, and integrates

them as behavior sequence representations. In our

model, we only perform one attention network as

shown in (5).

(b) In DAN (and DKN [39]), the attention network is

applied on the embeddings of the clicked news in

the browsing history, while our attention network is

applied on the embeddings of the user node and can-

didate news node. This difference allows us to learn

personalized, and candidate news-oriented user rep-

resentations.

Step 4: assemble user representations. We are now

able to construct user representations, which consist of

the concentration feature cf from (3) and the behavior

sequence representations s from (5). Finally, combining

the user representations with the candidate news rep-

resentations from Step 2, we obtain the input of the

downstream classification task.

3.5 Behavior Prediction

By far, we have illustrated how to obtain user and news

representations. We now consider the behavior predic-

tion: how the user will behave on an unbrowsed, candi-

date news. We formalize the ranking problem as a six-

classification problem. We believe the six-classification

task is more appropriate for interactive news recom-

mendation than CTR prediction.

We design a two-layer fully-connected network to

conduct classification task. The input is user and candi-

date news representations [cf, s,mdr+1
]. Then we apply

hfc = ReLu(Wfc[cf, s,mdr+1
] + βfc),

θ = Woutputhfc + βoutput ∈ R|B|.

where Wfc ∈ Rk3×(k1+k2+2),Woutput ∈ R|B|×k3 , βfc ∈
Rk3 , βoutput ∈ R|B| are trainable weight matrices and

biases. The loss function is

Loss = − 1

N

N∑
k=1

|B|∑
i=1

yki × log(ŷki ),

with

ŷki = softmax(θk) = exp(θki )/
∑
j

exp(θkj ). (6)

Here, N is the number of samples in the training set, |B|
is the number of behavior types (in our scenario |B| =
6), θk is the output of last layer for the k-th samples,

yk = (yk1 , . . . , y
k
|B|) is the true probability distribution,
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i.e. if the user triggers the l-th behavior, then ykl = 1

and ykj = 0,∀j 6= l.

As standard in the literature, we run mini-bath Adam

to train all parameters. The setup of Adam including

learning rate and batch size are introduced in Section 4.

4 Experiment

In this section, we test the effectiveness of our pro-

posed recommendation system GBAN by offline eval-

uation. We first introduce two datasets in Section 4.1,

then introduce model evaluation metrics in Section 4.2.

The experimental results on two datasets, with compre-

hensive comparisons with other state-of-the-art mod-

els, are presented in Sections 4.3 and 4.4, respectively.

We also show that all our techniques including adjust-

ment of DeepWalk, concentration feature, and atten-

tion mechanism are useful to enhance the performance.

Our code is publicly available at https://github.com/

AI-luyuan/GBANRecommendation. The implementation

is performed on a computer with 4.2GHz Intell Core i7

CPU, 32 RAM and GeForce GTX 1080Ti GPU.

4.1 Dataset Description

Our paper considers two datasets. One is Tencent Inter-

active News data and the other is MovieLens data [49].

Both data are time series; hence we simply pick a time

stamp to split the data into a training set and a test

set: the data before the stamp consist of the training set

and the data after the stamp consist of the test set. No

resampling strategies are used in the experiment. We

train parameters on the training set and then do evalu-

ation (based on trained parameters) on the test set. In

later presentation, for the same fixed training set, we

generate 5 random initializations for weight matrices

when we perform Adam algorithm, which is the same

as [28,39].

Tencent data: Tencent data come from the past server

logs of Tencent News App. It’s a real industrial data

but has not been publicly available. We have described

the data, which include four log files, in Section 3.1. In

our experiment, we approximately sample 220k users in

total, and collect data from June 19, 2018 to July 16,

2018 as training set and July 17, 2018 as test set. There

are 4,604,572 logs in the training set and 289,610 logs

in the test set. The basic statistics of the dataset are

summarized in Table 2, and the number of each type of

positive behavior is shown in Figure 5.

From Table 2, we see that there are about 10 mil-

lion edges on the behavior graph connecting all kinds

Table 2 Tencent news data statistics

#users 223,931 #tags 29,564

#news 54,338 #topics 979

#logs 4,894,182 #categories 333

#nodes 300,932 #edges 10,072,780

of nodes. From Figure 5, we know that each behavior

has a non-negligible proportion. Thus, it is important

to consider all types of behaviors.

MovieLens data: To show the broad applicability of

GBAN, we test it on a publicly available dataset called

MovieLens data, in specific, hetrec2011 movielens-2k-v2

data4. In such a dataset, each movie is associated with

a title, a genre, a directory, a country, and multiple ac-

tors. We only extract actors with ranking 1. Each user

rates a sequence of movies in a time series. To fit in our

model, we convert ratings of {0.5, 1}, {1.5, 2}, . . . , {4.5, 5}
into five types of positive behaviors, say {1, 2, 3, 4, 5}.
We set a time T , and select users with more than nine

behaviors before T to form the training set. The se-

lected users with their behaviors after T forms the test

set.

Similar to Tencent data, we construct a behavior

graph to summarize the data. We have six types of

nodes: user, movie, genre, director, country, and ac-

tor; and have five types of edges: (user, movie), (movie,

genre), (movie, director), (movie,country), (movie,actor).

The (user, movie) edge weight is assigned according to

the behavior: i has weight i/5. The other edge weights

are 1. The basic statistics of MovieLens data are sum-

marized in Table 3, and behavior distribution is shown

in Figure 5.

Remark 5 The similarity between Tencent data and Movie-

Lens data is that the users’ interests have different lev-

els, revealed either by behaviors or rating scores. It’s

reasonable to say that the more positive behavior or

the higher rating score the user has, the more interested

the user is in the news/movie. The proposed method is

not limited to having behaviors with real meaning. As

long as the users’ interests have different levels, we can

always construct the corresponding graph (the extent

differences are reflected by weights), and our method

is still applied. However, it is worth mentioning that

movie recommendation is sometimes treated as a differ-

ent recommendation scenario due to the specific rating

labels.

4 https://grouplens.org/datasets/movielens/.

https://github.com/AI-luyuan/GBANRecommendation
https://github.com/AI-luyuan/GBANRecommendation
https://grouplens.org/datasets/movielens/.
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Fig. 5 Distribution of users’ behaviors of Tencent data and MovieLens data. The left two figures correspond to Tencent data,
and the right two figures correspond to MovieLens data. The blue figures correspond to the training set, and the yellow figures
correspond to the test set.

Table 3 MovieLens data statistic

#users 848 #genres 19

#movies 10,197 #directors 4,061

#countries 71 #actors 4,380

#nodes 19,576 #edges 490,767

4.2 Model Evaluation

As mentioned in Section 3.4 Step 3, each user has a

behavior sequence {b1, . . . , bT } with a news/movies se-

quence {d1, . . . , dT }. For each sequence, we generate T −
r behavior subsequences {(bq, . . . , bq+r−1)}T −rq=1 and cor-

responding news/movies subsequences {(dq, . . . , dq+r−1)}T −rq=1 .

For subsequence q, we use it to predict the user’s behav-

ior on the (q + r)-th news/movie. Thus, our (positive)

samples are formed by {(dq, . . . , dq+r−1), dq+r, bq+r}T −rq=1 .

However, since behavior sequences only contain positive

behaviors (click to share in news data and behaviors 1

to 5 in movie data), we manually generate negative sam-

ples as in [28]. In particular, for each above sequence, we
replace the positive candidate news/movie by randomly

selecting a news/movie from the news/movies set as the

negative candidate.

To the best of our knowledge, there’s no paper con-

sidering multiple-behaviors classification task for inter-

active recommendation scenario. To compare with other

advanced models (which consider biclassification task,

click v.s. unclick), we treat “unclick” behavior as nega-

tive class and the other behaviors as positive class. This

is reasonable since, in our scenario, the other behaviors

are also based on click behavior and, meanwhile, en-

hancing click-through rate (CTR) is also our ultimate

goal. On the other hand, to fully exploit the benefits of

our multi-classification task, we also use Cohen’s kappa

coefficient as one of metrics. In particular, we apply the

following metrics to evaluate the performance of each

competing model.

AUC metric: This metric measures the area under

the receiver operating characteristic (ROC) curve. It

describes the probability that the model will rank pos-

itive samples in front of negative samples. AUC is not

sensitive to the ratio of positive and negative samples.

Thus, even in the case of sample imbalance, AUC is still

a reasonable evaluation metric. In general, the larger

AUC implies the better classification ability, and fur-

ther implies the better performance.

CTR metric: As commonly used in news recommen-

dation, our experiment on Tencent data also uses the

precision as the offline surrogate of CTR, defined as

precision =
true positive

true positive + false positive
.

Average precision (AP) metric: For MovieLens data,

we convert the original rating data format into an in-

teractive news data format. However, as it’s not a real

interactive data, using precision as CTR metric, which

tries to reflect the proportion of clicks in all recom-

mended items, may not be suitable. We instead prefer

to use AP, which calculates the area under the precision-

recall curve without requiring a specific decision thresh-

old. It reflects the trade-off between the accuracy of the

classifier’s recognition of positive samples and the abil-

ity to cover positive samples.

Kappa coefficient metric: The kappa coefficient κ

is an index used for consistency test, and can also be

used to measure the effectiveness of classification. For

classification problems, the consistency is whether the

model prediction results are consistent with the actual

classification labels. The formula is given by

κ =
po − pe
1− pe

with

p0 =
a+ d

a+ b+ c+ d
,

pc =
(a+ c)× (a+ b) + (b+ d)× (c+ d)

(a+ b+ c+ d)2
.

Here, a is true positive, b is false negative, c is false

positive, and d is true negative.
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Table 4 Baseline models descriptions

Model Description

LibFM [58] Feature-based factorization mode

DeepFM [59] FM-based neural network

YouTubeNet [24] Deep ranking network

LSTM [21] Recurrent model using LSTM

DKN [39] Deep model using attention-based CNN

To use the above four metrics, we first train GBAN

model in Section 3 on the training set and derive op-

timal parameters. Then we apply optimal parameters

on the test set to get probability distribution of behav-

iors ŷ as in (6) for each candidate news. We thus have

the predicted behavior that has the largest probabil-

ity. Given the predicted labels and true labels, we can

compute the above four metrics.

4.3 Experiment on Tencent News Dataset

Baseline: We implement five advanced methods listed

in Table 4 as baselines in our experiments. Factorization

machine (FM) [58] is a generic approach that allows to

mimic most of factorization models through the feature

engineering. There are two general FM-based models

for recommendation: LibFM and DeepFM. LibFM [59]

is a feature-based factorization model and widely used

in CTR prediction. In our work, the input news fea-

tures of LibFM have three parts: TF-IDF features [60],

tags, and categories. We concatenate user and candi-

date news features as the input of LibFM. DeepFM
[23] is a deep-learning-based model, which combines

the power of factorization machines for recommenda-

tion and deep learning for feature learning in a novel

neural network architecture. The input of DeepFM is

the same as LibFM. In addition, YouTubeNet [24] is

another architecture proposed recently. It is split into

two parts according to the classic two-stage informa-

tion retrieval dichotomy: a deep candidate generation

model and a separate deep ranking model. Only the sec-

ond part is applicable in interactive news recommenda-

tion problem. The last two recent algorithms are more

related to our method. Okura et al. [21] proposed an

embedding-based method, which learns article repre-

sentations based on a variant of de-noisy autoencoder,

and then generates user representations by a RNN using

browsing history as the input sequence. We denote this

method by LSTM in Table 4. In contrast, DKN [39] is

a content-based deep recommendation model. We note

that only the attention-based CNN part in DKN is suit-

able for our scenario.

Table 5 Comparison with baselines

Model AUC CTR

LibFM [58] 62.2±0.3 30.2±0.8

DeepFM [59] 63.4±0.7 33.5±0.5

YouTubeNet [24] 64.8±1.0 36.3±0.7

LSTM [21] 66.8±1.3 34.4±0.3

DKN [39] 66.1±1.7 34.0±0.6

GBAN 69.7±1.1 39.2±1.3

Parameter setup: In our model, we let r = 5, i.e. we

use every 5 triggered news to predict the next one for

each user. For MMAS in Algorithm 2, we let Epoch =

50, maxDepth = 10, ρ = 0.5, τmin = 0.001, τmax = 10,

α = 0.2 and β = 0.8. For graph representation learning,

we set the length of each random walk to be 20, and let

n = 300 (i.e. the dimension of each node embedding is

300, see Section 3.4 (4)). For the dimensions of hidden

layers in LSTM and CNN, we set l = 3, k1 = k2 = 50,

and k3 = 10. We apply mini-batch Adam for adjusting

the learning rate. The batch size is 1200 and the ini-

tial learning rate is 0.01. The parameters for all base-

lines are set as suggested in corresponding references.

For each method, we conduct 5 independent runs with

random initialization, and we report the average and

standard deviation of all metrics on the test set as re-

sults.

Experimental Result: We summarize the results of

different models as follows. We first simplify our pro-

posed model by removing the concentration feature and

the attention network. The effectiveness of the concen-
tration feature and attention network is tested indepen-

dently later. The vanilla model is denoted as GBAN.

The results are shown in Table 5. From the table, we

see GBAN has the best scores for both AUC and CTR

metrics, while LibFM performs the worst.

Based on Table 5, we can draw the conclusion that

deep models are effective in capturing the relations and

dependencies in interactive data. This is because other

deep-learning-based baselines also outperform LibFM

by 1.2% to 7.5% on AUC and 3.3% to 9.0% on CTR.

As for running time, we find that both DKN and LSTM

take 5 hours around to train, and so does our method

though we have a hybrid network of CNN and RNN.

LibFM is quite different and only takes 1 hour, but its

prediction is also very poor. Our method can ensure

that the system is upgraded multiple times per day.

Test concentration feature: To demonstrate the ef-

fectiveness of concentration feature introduced in Sec-

tion 3.3, we complement all baselines with the concen-
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Table 6 Comparisons with baselines by adding concentration
feature

Model AUC CTR

LibFM [58] +CF 61.7±0.4 33.7±0.7

DeepFM [59] +CF 63.6±1.2 36.0±0.9

YouTubeNet [24] +CF 65.5±0.9 36.8±0.5

LSTM [21] +CF 68.9±1.5 37.1±0.7

DKN [39] +CF 67.2±1.1 36.9±0.7

GBAN +CF 72.6±1.3 42.3±1.4

Table 7 Results on variants of GBAN

Model AUC CTR

GBAN 69.7±1.1 39.2±1.3

GBAN+attention 71.6±0.7 40.4±0.6

GBAN with Deepwalk 69.2±1.3 39.1±1.1

GBAN with Node2vec 68.9±1.0 38.5±0.3

GBAN+CF 72.6±1.3 42.3±1.4

GBAN+CF+attention 73.2±0.9 43.3±1.2

tration feature and do comparisons again. The results

are shown in Table 6.

From Table 6, we see that including the concentra-

tion feature does improve the performance for most of

methods. In particular, AUC metric of DKN, LSTM,

and our method increases by 1.1%, 2.1% and 2.9%, re-

spectively; and CTR metric increases by 2.9%, 2.7%

and 3.1%. We attribute the improvement brought by

concentration feature to two reasons: (i) the coritivity

helps to distinguish different users from a unitary per-

spective; (ii) in interactive data, the behavior sequence

reflects user’s concentration degree implicitly and our

behavior graph can make behavior pattern clearer, which

is further dug out by core and coritivity indexes.

Test attention mechanism and graph representa-

tion learning method: We also demonstrate the effec-

tiveness of our attention mechanism in (5) and adjusted

DeepWalk method in learning nodes embeddings. In

particular, we replaced adjusted DeepWalk by either

standard DeepWalk [35] where weights are set equally,

or Node2vec [54] where weights are set with p = 1,

q = 2 (see parameter setup in [54]). The results are

summarized in Table 7

From Table 7, we see that GBAN with an attention

network works better than vanilla GBAN. The AUC

score increases from 69.7% to 71.6% and the CTR score

increases from 39.2% to 40.4%. This is because the at-

tention network can capture user’s diverse reading in-

terests and is candidate news-oriented. Moreover, we

see that using our assigned weights in generating ran-

dom walks also achieves better result than standard

Deepwalk and Node2vec, due to the reflection of user’s

preferences and relations among nodes in assigned weights.

Last, GBAN with concentration feature outperforms

other variants, regardless of using the attention net-

work or not. But our experiment shows that including

both concentration feature and attention network will

achieve the best score in two metrics. Thus, we con-

clude that all techniques used in our model are helpful

to achieve a state-of-the-art performance.

4.4 Experiment on MovieLens Dataset

Baseline: We realize that a recent model called DAN

[28] was proposed during the review process, and has

achieved good performance in recommending news. DAN

introduces a timing feature extraction architecture that

is related to our model. It is modified based on DKN

[39]. In this subsection, we compete with DAN and

DKN on MovieLens dataset to further demonstrate the

superiority of the proposed method. However, we should

mention that both DAN and DKN are based on single

click behavior, so they consider a simpler problem.

Both DAN and our model adopt an attention-based

LSTM to learn user representations with input news se-

quence. However, as explained in Remark 4, their atten-

tion mechanism only processes news features without

considering users differences, and our attention network

is much simpler than theirs and hence can be trained

faster. Moreover, DAN does not involves graph repre-

sentation learning step. To study the effect of learned

nodes embeddings on recommendation system and make

comparison fair, we also consider modifying DKN and

DAN by replacing their input feature matrices with

learned embeddings. The modified DKN and DAN are

denoted by DKN(*) and DAN(*). All competing meth-

ods are listed in Table 8.

Parameter setup: We let r = 9, i.e. we use every 9

triggered movies to predict the next one for each user.

The batch size of Adam is 1000 and the initial learning

rate is 0.001. For graph representation learning, we set

n = 200 (i.e. the dimension of each node embedding is

200) and all the other parameters, such as hidden lay-

ers dimensions of LSTM and CNN and setup of MMAS,

Table 8 Baseline models descriptions

Model Description

DKN [39] Model using attention-based CNN

DKN(*) DKN with graph representation

DAN [28] Model using attention-based CNN and LSTM

DAN(*) DAN with graph representation
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Table 9 Comparison with baselines

Model AUC AP Kappa

DKN [39] 62.30±0.17 57.71±0.14 24.86±0.34

DKN(*) 63.46±0.80 59.44±1.25 27.61±1.47

DAN [28] 61.73±0.38 57.15±0.42 23.55±1.06

DAN(*) 65.79±0.21 60.59±0.21 31.59±0.43

GBAN 65.96±0.22 61.95±0.10 32.18±0.26

are the same as the setting in Section 4.3. During the

training of DKN and DAN, we find that the suggested

parameters of the original references lead to extremely

poor performance on this dataset. We thus tune their

parameters independently. The dimension of nodes em-

beddings and hidden layers, the number of convolution

kernels of DKN and DAN are the same as GBAN. We

repeat each method 5 times with random initialization

and report the average and standard deviation.

Experimental Result: The results are summarized in

Table 9. From the table, we can see that GBAN has the

best score in all three metrics, AUC, AP, and Kappa.

Compared with DKN and DAN, AUC of GBAN in-

creased by 3.7% and 4.2%, respectively, AP increased

by 4.2% and 4.8% and Kappa increased by 7.3% and

8.6%. Further, we see that DKN(*) and DAN(*) signifi-

cantly improve the performance of DKN and DAN. This

reveals that our constructed behavior graph with graph

representation learning method can effectively exploit

the complex relationships between users and movies,

which further results in a more accurate recommenda-

tion. We also find in our experiment that the running

time of GBAN and DKN are around 45 minutes, while

DAN takes more than 1 hour. This is due to complex

attention networks in DAN.

5 Conclusion and future work

In this paper, we propose a graph-based behavior-aware

network (GBAN) to address the challenges for recom-

mending interactive news. The main challenges include

the analysis of multiple feedback behavior and the per-

sonalization of recommendation. We construct an inter-

action behavior graph for interactive news data, adopt

an adjusted DeepWalk to learn node embeddings, de-

sign a graph-based CNN and an attention-based LSTM

to learn news representations and users representations,

and leverage tools from graph theory to use core and

coritivity to measure user’s concentration degree. The

experimental results show that GBAN achieves the state-

of-the-art performance on Tencent data and MovieLens

data, outperforms recent methods DKN and DAN, and

requires less running time. Further, we show in experi-

ments that all our suggested techniques, such as concen-

tration feature, adjustment of DeepWalk, and attention

mechanism, are helpful for enhancing the performance

further.

One limitation of our method is that it is not an

end-to-end method. The proposed method needs to be

processed in two steps. The first step is graph repre-

sentation learning while the second step is the down-

stream behavior prediction. Two steps are trained in-

dependently. How to design a unified learning model

deserves studying in the future. Also, in graph represen-

tation learning, we do not consider the heterogeneity of

the graph. Designing a more appropriate representation

learning method for weighted heterogeneous graphs has

important applications in recommendation and related

areas. Our method also cannot deal with multiple edges

between two nodes, which is interesting to be improved

by designing a novel representation learning method. In

addition, finding other features from the behavior graph

aside concentration feature to help the recommendation

is also an important topic.
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