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Abstract

Previous AutoML pruning works utilized individual layer
features to automatically prune filters. We analyze the cor-
relation for two layers from the different blocks which have
a short-cut structure. It shows that, in one block, the deeper
layer has many redundant filters which can be represented
by filters in the former layer. So, it is necessary to take in-
formation from other layers into consideration in pruning.
In this paper, a novel pruning method, named GraphPrun-
ing, is proposed. Any series of the network is viewed as
a graph. To automatically aggregate neighboring features
for each node, a graph aggregator based on graph convo-
lution networks(GCN) is designed. In the training stage,
a PruningNet that is given aggregated node features gen-
erates reasonable weights for any size of the sub-network.
Subsequently, the best configuration of the Pruned Network
is searched by reinforcement learning. Different from pre-
vious work, we take the node features from a well-trained
graph aggregator instead of the hand-craft features, as the
states in reinforcement learning. Compared with other Au-
toML pruning works, our method has achieved the state-of-
the-art under the same conditions on ImageNet-2012.

1. Introduction
Deep convolution neural networks (Deep CNNs), such

as ResNet, DenseNet, MobileNet[15, 31, 10, 16], etc.,
bring about the outstanding performance of computer vision
applications, including object classification and localiza-
tion, pedestrian and car detection, traffic flow management.
However, constrained by latency, energy and computation
complexity, it is hard to apply above superior networks to
mobile phones, augmented reality devices and autonomous
cars. Therefore, it is necessary to apply deep CNN models
that can overcome these constraints and keep high accuracy.
Recent developments in network pruning can be divided
into two main categories: weight pruning and filter prun-
ing. Weight pruning directly removes the values of weights
in a filer, which can result in unstructured sparsity. This

Figure 1. We use a topology graph to describe any short-cut struc-
ture model. In the graph, each node represents a type of operation,
such as normal convolution, depth-wise convolution, add and con-
catenation.

irregular structure makes it difficult to utilize mainstream
computational architecture [25]. Accordingly, filter pruning
directly deletes the whole selected filter and rebuilds a nar-
row model with a regular structure. Therefore, filter pruning
is more preferred to speed up the network and reduce the
size of the model. Many recent works pay attention to filter
pruning which directly discards the whole selected filters
based on some human-defined rules [12, 4]. However, these
rules cannot suit all models. For example, ResNet-50 has a
residual connection while Vgg-19 [32] has not, so pruning
these models based on the same rule is always sub-optimal.
To obtain a compressed model without human-defined rule
and domain expertise, some automatically pruning meth-
ods are proposed [11, 23, 40]. Han [11] used reinforcement
learning to automatically find pruning policy by the agent
that takes features of each layer as input. The results of the
reinforcement learning method surpass many human-craft
pruning methods. Because the actor only obtains the fea-
tures from an individual layer, it is still a lack of consid-
eration for the overall network. Besides, it is not suitable
for the large-scale dataset, such as ImageNet-2012 [30]. In

1

ar
X

iv
:1

91
1.

09
81

7v
2 

 [
cs

.C
V

] 
 2

3 
Se

p 
20

21



(a) (b) (c)

Figure 2. 3 × 3 convolution layers from the 4th stage in ResNet-50 are taken as an example. For the convenience of visualization, we
compute the Pearson Correlation Matrix for convolution layer with 3× 3kernel size in each block and print pairs of filters which absolute
Pearson Correlation value |p| is larger than 0.8. (a) The filter correlation with 1st and 2nd convolution. (b) The filter correlation with 1st
and 3rd convolution. (c) The filter correlation with 2nd and 3rd convolution.

evaluation, it needs to iteratively train to recover the accu-
racy. To prune networks on large-scale dataset, Liu [23]
and Yu [40] proposed some one-shot architecture methods,
which train a model that contains all sub-models. However,
these methods just focus on one layer in pruning. We take
the 4th stage from Resnet-50 as an example and use Pear-
son Correlation [42] to measure the similarity between each
layer in different stages. As illustrated in Fig. 2, the corre-
lation between each layer is strong, especially for the layer
with kernel size 3× 3, which means that some filters can be
represented by filters from other layers. For a convolution
layer of which input is produced by the former convolution
layer, it may obtain a sub-optimal solution if only an indi-
vidual layer information is considered.
To solve this problem, we propose a graph aggregator for
model compression which converts the model to an undi-
rected topology graph to find the correlation between each
layer. In the training phase, the graph aggregator feed node
features a PruningNet [23] which can automatically gener-
ate reasonable weights for the pruned layer. Thus, the graph
aggregator and the PruningNet can be jointly trained on the
dataset. Different from MetaPruning[23] that only provides
one layer features for PruningNet, our method takes aggre-
gated node features as input which gathers information of
neighbor nodes. In the searching phase, we use a DDPG
agent[21] to search for the best configuration. Benefiting
from the well-trained graph aggregator, the agent can take
more advantage of the relationship between each layer.
Contributions There are three contributions:

• We demonstrate the importance of the filter relation-
ship in pruning. The proposed GraphPruning method
address this challenging problem.

• We propose a graph aggregator that is a kind of GCN.
In that case, the filter relationship both in one layer
and in the whole network can be automatically found.
To the author’s knowledge, it is the first time that the
graph convolution [28] is applied to model compres-
sion.

• Compared with other AutoML methods, our method is
more professional in pruning networks with short-cuts
structure, such as ResNet serials and MobileNet-V2.
Because a short-cut structure contains many loops in
a graph whose features can be easily extracted by the
graph aggregator.

2. Related Works
Rule-based Channel Pruning The target of channel

pruning methods[22, 13, 38, 29, 4] is to accelerate the in-
ference of large neural networks by reducing the number
of channels, simultaneously, keep high accuracy. The key
to successful channel pruning is to measure the importance
of channels, i.e., l2-norm of channel weights[13], learn-
able scaled weights of batchnorm layer[22] and geometric
median of channel weights[12]. Though the above rule-
based methods have achieved remarkable improvement for
CNN compression, it needs human-designed heuristics to
guide pruning. However, manually defined rules are al-
ways sub-optimal for different tasks[11]. Besides, the above
rule-based methods assumes different layers to be equally
important[5]. As a matter of fact, channel weights between
neighboring layers have a strong correlation so that the as-
sumption in prior work is invalid.
Graph Convolution Application In the real world, many
applications need to process non-Euclidean data, which
cannot be effectively and thoroughly dealt with by normal
CNNs. To extract the useful features from non-Euclidean
data, many graph convolution networks(GCNs) are pro-
posed to provide well-suited solutions for non-Euclidean
data processing. The reliability and effectiveness of GCNs
attract greatly interest in using GCNs for a variety of ap-
plications, such as social networks [26], model chemi-
cal molecule structures [18, 9], recommendation engines
[27, 39] and natural language processing [37, 35]. Until
now, graph convolution is still not applied in network struc-
ture analysis. Modern deep CNNs with short-cut structures
often contain complex edges. It can be viewed as a con-
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Figure 3. The training chartflow. The Graph Aggregator is connected with Pruned Network by a PruningNet. The PruningNet consists of
several fully connected(FC) layers. The weights of the Pruned Network is provided from the PruningNet by reshaping and crop its outputs
to corresponding Conv weights shape.

nected graph so that GCNs can be used to extract informa-
tion from the entire network structure.
AutoML Pruning for Model Compression Recently, Au-
toML pruning methods [11, 23, 40] have attracted a growing
interest in automatically pruning for deep CNNs. Compared
with pruning methods based on the human-craft rule, Au-
toML pruning methods aim to search for the best configu-
ration without manual tuning. Our proposed GraphPruning
also involves little human participation. Different from pre-
vious AutoML pruning methods, which only consider one
layer of information, a graph aggregator is used to extract
neighboring information for each node through converting
the whole pruned network into a topology graph. Compared
to previous AutoML pruning methods [11, 23], GraphPrun-
ing can easily consider neighboring information in pruning
and be compatible with other AutoML pruning methods.

3. Methodology
In this section, we first analyze the correlation between

filters from different layers and take the 4th stage in
ResNet-50 as an example. It is found that filters from the
neighboring layer have a strong correlation, which means
that the neighboring information should be taken into
consideration in pruning.
To solve this problem, the graph transformation method
is presented which can easily describe any CNN network
as a topology. For each node in the graph, some features
are defined as embedding node features. These features
are dynamically changed in the process of training and
searching with different compression ratios. Further, a
graph aggregator which is based on the graph convolution
network is introduced to automatically pruning filters in
CNN networks.

3.1. Analysis of Filter Correlation

For many modern CNNs, the short-cut structure is indis-
pensable. A block containing the short-cut structure can be
formulated as

y = x+ F (x,Wi) (1)

where x and y represent the input and output of this block
respectively, F denotes all of the convolution operations in
this block and Wi is the wights of ith convolution.
For the deep layer, deep networks can be converted into a
shallow network by identity mapping, which means that
eventually F (x,Wi) = 0 [10]. Although the short-cut
structure accelerates the training of deep networks, it causes
redundancy in the deep layer. To analyze filter correlation
from different layers, a Pearson correlation matrix is de-
signed. Pearson correlation matrix P ∈ Rm×n is gener-
ated by the features from two layers. Let two of the se-
lected layers generate the feature maps F 1 ∈ Rh×w×m and
F 2 ∈ Rh×w×m, where h,w, and m represent the height,
width and the number of channels, respectively. The Pear-
son correlation matrix between the ith and the jth layer is
formulated as

Pi,j(x;W )

=

h∑
s=1

w∑
t=1

| F 1
s,t,i(x

2;W 1)× F 2
s,t,j(x

2;W 2)

σ(F 1
s,t,i(x1;W 1))× σ(F 2

s,t,j(x2;W 2))
|

(2)

where x1, x2 and W 1, W 2 denote the input feature maps
and weights of layer 1 and layer 2, respectively, σ(·) rep-
resents standard deviation. The 4th stage from ResNet-50
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[10] is taken as an example. As shown in Fig. 2, As shown
in Fig. 1, it is found that the convolution layer with kernel
size 3×3 has a strong correlation with its neighboring layer.
Many filters in one layer can be represented by the related
filters in other layers. Hence, the neighboring information
should be fully considered in pruning.

3.2. Graph Transformation

In this subsection, a method that can easily convert a net-
work to a graph is proposed while the way how to transform
a neural network into a topology graph is first introduced.
Shown as Fig. 1, the central idea of graph transformation
is as follows: for convolution layer Li , it can be viewed as
node ni in the graph G, and edge ei,j that exists if layer Li

and Lj are connected directly. For each node, it contains 7
features that characterize the state of the node:

(type, in channels, out channels, stride,

kernel, weight size, ratio)
(3)

type: the type of operation for each node. For simplicity,
batch normalization [17] and nonlinear (ReLu) [34] oper-
ation are ignored in the graph so that the types of opera-
tion for modern CNNs are classified as normal convolution,
depth-wise convolution and addition.
in channels: the number of feature maps inputted to each
node. It will be changed in training and searching by multi-
plying the ratio of this node.
out channels: the number of feature maps outputted by
each node. It will be changed in training and searching by
multiplying the ratio of the former node.
stride: the stride of convolution operation. It will be set to
0 if the type of the operation is not convolution.
kernel: the kernel size of the convolution operation. It will
be set to 1 if the type of operation is not convolution.
weight size: the product of the parameter dimension of each
node. It will be set to 0 for the add and concatenation type.
In training and searing, it will be changed by the multiply-
ing ratio of this node and the former node.
ratio: the compression ratio for each node. This feature
will be given by a random uniform in the process of train-
ing. In the process of searching, it will be given by a DDPG
agent.
For this graph G, its elements ai,j of the adjacency matrix
A can be defined by

ai,j =

{
1 if there exists ei,j

0 other
(4)

To alleviate exploding/vanishing gradients [36] in GCN
training, adjacency matrix A will be renormalized by

Â = D̃1/2ÃD̃−1/2 (5)

where Ã = A + IN and IN is the identity matrix with N
dimension.

Figure 4. The graph aggregator consists of some GCN blocks.
Each GCN block contains two GCN layers and a short-cut struc-
ture to avoid over smooth [20].

3.3. Graph PruningNet

To gather the neighbor features for each node, a graph
aggregator based on GCN is constructed. The structure of
the graph aggregator is given in Fig. 4. Residual GCN
architecture [20] with some blocks which contain 2 graph
convolution layers is used. The forward of each block can
be simply described as

Z = X +ReLU(ÂReLU(ÂXW (0))W (1)) (6)

where W (0) ∈ RH×C , W (1) ∈ RC×F are the parameters
of the first and second graph convolution layer, respectively.
Z ∈ RF×N is the high-level feature map of the graph with
N nodes. X denotes the inputs of the block. The nonlinear
function ReLU, defined as max(0, x) with input x, is used.
Inspired by the MetaPruning [23], the graph aggregator and
the Pruned Networks are connected by a PruningNet so that
the graph aggregator can be trained jointly with the Pru-
ingNet on the dataset, meanwhile, the PruningNet can pro-
vide reasonable weights for pruned layer. The difference
between our approach and MetaPruning is that node fea-
tures are utilized as inputs of the PruningNet rather than the
human-defined individual layer features.
The embedding matrix of graph C = (c1, c2, ..., cl), where
ci ∈ R1×7 denotes the embedding feature (3) of ith node,
will be taken as input for the graph aggregator G with its
weights θG. N = (n1, n2, ..., nl) is the aggregated embed-
dingg matrix. Then the ith FC layer with its weights θi takes
the embedding vector ni, where ni denotes the ith column
of output with the graph aggregator, as input to generate the
weights Wi of pruned layer

(n1, n2, ..., nl) = G(c1, c2, ..., cl|θG)
Wi = FCi(ni|θi)

(7)

Stochastic training The training chartflow is shown in Fig.
3. In each training step, the compression ratio ri of ith
pruned layer is randomly given by Uniform distribution,
while the corresponding node features ci in the graph also is
changed according to ri. According to Eq.(7), the reason-
able weightsW = (W1,W2, ...,Wl) of the Pruned Network
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Algorithm 1 Training Algorithm for GraphPruning
Require: graph aggregator G, pruning net FC, pruned network
F , iteration number N

Ensure: trained graph aggregator G, trained pruning net FC
Construct a graph for pruned network and initiallize node fea-
tures C
for i = 1 to N do

Randomly sample ratio r;
Update node features C according to r;
Generate weights for pruned network by Eq.(7);
Get a batch from data and forward to get L by Eq.(8);
Backward L to both θG and θi by Eq.(9);
Update graph aggregator G and pruning net FC;

end for

are generated. Then the Pruned Network is trained on the
dataset. The whole forward can be given by

Y = F (X,W )

L = CrossEntropy(Y, Y ′)
(8)

where Y and Y ′ are the inference result of the Pruned
Network and the label of X respectively, L denotes the
CrossEntropy loss. After inference, back-propagated gradi-
ents are calculated for weights of the graph aggregator and
FC layers according to chain rule as follow

∇θG =
∂L

Y

∂Y

W

∂W

N

∂N

θG

∇θi =
∂L

Y

∂Y

Wi

∂Wi

θi

(9)

In this way, the graph aggregator can learn to extract high-
level embedding features for each node while each FC
layer can learn how to generate reasonable weights for each
pruned layer end to end. The detailed algorithm is described
in Alg. 1.

DDPG searching The searching chartflow is revealed
in Fig. 5. After training the graph aggregator and each FC
layer, the accuracy of trained Pruned Networks with any
channel configuration can be easily obtained. Thus, the
weights of the graph aggregator and FCs are not updated
in searching. However, the configuration that can construct
the best Pruned Network under computational constraints is
still needed to be searched. The DDPG algorithm which is
an off-policy actor-critic algorithm is used to search over
ratio space. The reason why the reinforcement learning
method is used rather than the evolutionary method is that:
(1) In the training phase, the graph aggregator has been
trained well, which can gather neighbor features for each
node. The features of each node can be viewed as the states
in reinforcement learning. (2) Pruning each layer is a se-
quence decision, especially since neighbor information is
taken into consideration.

Algorithm 2 Searching Algorithm for GraphPruning
Require: trained graph aggregator G from Alg.1, trained pruning

net FC from Alg.1, pruned network F , layer number L
Ensure: the optimal pruning ratio rb

Construct a graph for pruned network and initiallize node fea-
tures C
while not converged do

for i = 1 to L do
Generate the current state si by Eq.(10);
Sample prune ratio ri by Eq.(11);
Prune current layer;

end for
Obtain reward R by evaluating the pruned network;
Save each transition (si, ai, R, si+1) to experience replay
buffer;
Get a batch from experience replay buffer;
Update actor and critic by Eq.(12);

end while

The agent prunes the model layer by layer. For each layer,
the actor takes corresponding node features as the state and
outputs an action a ∈ [0, 1] where the action denotes the
compression ratio. Following previous AutoML works with
reinforcement learning [11, 33, 3, 34], each transition in an
episode is (si, ai, r, si+1) which will be saved in the expe-
rience replay buffer where the reward R and the state si can
be formulated as:

R = accuracy

si = G(c1, c2, ..., cl)[i]
(10)

During searching, the actor-network generates the pruning
ratio for each layer. For the exploration noise process, the
truncated normal distribution is used:

ri ∼ TN(µ(si), η
2, 0, 1) (11)

where µ
′

and µ denote the sampled action and probability
distribution of action, respectively. Noise η is decayed after
each episode exponentially. During the update, a variant
form of Bellman’s Equation [21] is utilized:

Lr =
1

N

N∑
i=1

(yi −Q(si, ai))
2

yi = R̂i + γQ(si+1, µi+1)

(12)

where Q and R̂ represent the critic network and normalized
reward, respectively. The discount factor γ is set to avoid
over-prioritizing short-term rewards. We show the detail of
the searching process in Alg. 2.

4. Experiments
The graph aggregator is an expert in extracting features

from the topology graph with many loops. Hence, the effec-
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Figure 5. In searching, our DDPG agent receives embedding features from node ni and outputs a compression ratio of at. The weights of
Pruned Networks is given by trained PruningNet.

Table 1. Experimental configurations.
Phase Model Epochs Batch size Init LR Weight decay Data augmentation

MobileNetV1 64 512 0.25 4× 10−5 crop + flip
Train MobileNetV2 64 512 0.25 0 crop + flip

ResNet-50 32 256 0.1 1× 10−4 crop + flip + lighting
MobileNetV1 256 1024 0.5 4× 10−5 crop + flip + lighting

Retrain MobileNetV2 256 1024 0.5 4× 10−5 crop + flip + lighting
ResNet-50 128 512 0.2 1× 10−4 crop + flip + lighting

tiveness of our approach is demonstrated by pruning Mo-
bileNet V1 [15], MobileNet V2 [31] and ResNet-50 [10].
Besides, as the same as MetaPruning [23], the iterative fine-
tuning process in evaluation is not involved in our approach
so that all experiments can be easily carried out on a large-
scale dataset, ImageNet-2012 [30], which has 1.28 million
training images and 50k validation images of 1000 classes.
We use top-1 accuracy to measure the performance of mod-
els in our experiments since ImageNet-2012 has balanced
samples for each class. Deep ROC analysis[2] can be ap-
plied to measure the performance of models in the case of
the dataset with unbalanced samples.

4.1. Experimental Settings

A graph aggregator with 2 GCN blocks is constructed.
The number of hidden layers for each GCN block is set
to 64. The whole process of pruning can be split into two
stages. First, we jointly train the graph aggregator, FC lay-
ers and the Pruned Network on the training dataset. After
training, the well-trained graph aggregator will be used to
produce a state for the DDPG agent.

Training setting On ImageNet-2012, we randomly split
the original training data into two parts, the sub-validation
dataset contains 50000 images and the sub-training dataset
has the rest of the images. Data augmentation strategies
following PyTorch [1] official examples are applied. For a
fair comparison with [23], the training scheme is followed
as [23] both on ResNet-50 [10] and MobileNet [15, 31].
The scheme detail of each model is shown in Table.1. Be-
cause of stochastic training, it causes the problem of fea-
ture aggregation inconsistency [41] so that moving average
statistics of means and variances in training image which is
computed in Batch Normalization [17] cannot be as means
and variances in the test image. Thus, as it is shown on[40],
all BatchNorm layers are privatized for different channel
widths.
Searching setting At first, the actor and critic are con-
structed, which simply consists of two FC layers, for the
DDPG agent. To conduct a fair comparison with AMC [11],
the reinforcement learning settings are followed as [11].
Noise initialized as 0.5 and decayed after each episode ex-
ponentially is used to enhance exploration. In each search-
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ing step, we fix the ratio for all pruned layers and recalibrate
the moving average statistics for all Batch Normalization
layers on recalibration data.
Retraining setting After training and searching, the best
configuration and corresponding weights are taken to con-
struct a new model. Next, the new model is trained from
scratch with the same scheme as [23]. The scheme detail of
each model is shown in Table.1.

4.2. MobileNet Pruning

MobileNet V1 A single-branch network, MobileNet V1,
is pruned by the proposed approach. The topology graph of
MobileNet V1 is quite simple, which consists of 27 nodes
and 26 edges.

In each training batch, a ratio r ∈ [0, 1] is randomly set
for each node and the graph feature map M ∈ R27×7 will
be changed by corresponding ratio r. Then, the graph ag-
gregator generates a higher dimensional graph feature map
H ∈ R27×64. The ith FC layer takes embedding features
H[i] as input and generates a vector L ∈ R1×Cout×Cin×K2

where Cout, Cin and K denote the number of out channels
and in channels, the kernel size of the ith Pruned layer. At
last, we crop and reshape L to (Cout×ri, Cin×ri−1,K,K)
as the reasonable weights for Pruned layer.
During the searching procedure, we also randomly set the
ratio r for each node at the first 100 episodes to warm up.
After warming up, the DDPG agent takesH[i] and outputs a
ratio r to prune the ith layer, meanwhile, graph feature map
M is dynamically changed with the ratio r. It is noted that
only the point-wise convolutional layers are pruned and the
ratio of depth-wise convolutional layers will be set as the
same as the ratio of their former convolution.
MobileNet V2 We prune MobileNet V2, a highly compact
network consisting of depth-wise convolution and point-
wise convolution layers. As it is shown on Fig. 6 (a), a
topology graph that contains 62 nodes and 71 edges is used
to represent the MobileNet V2. The process of training and
searching is like pruning on MobileNet V1. Different from
MobileNet V1, MobileNet V2 has a short-cut structure for
each block that does not have downsampling. Different with
[12, 13], we also prune the projection shortcuts by sharing
ratio r for pruned layer where output is directly connected
with a shortcut.
We compare our method with some state-of-the-art net-
work pruning methods. The results of the comparison on
MobileNet V1 and V2 are shown in Table 2. For Mo-
bileNet V1, GraphPruning achieves the same top-1 ac-
curacy with AMC under FLOPs 285M, but our method
achieves the state-of-the-art which boosts 0.3% top-1 ac-
curacy with MetaPruning when the model size is as small
as 41M FLOPs. For MobileNet V2, Because it contains
many short-cut structures from which information can be
extracted by the graph aggregator, our method gains im-

provement over MetaPruning by 0.6% under 43M FLOPs.
To evaluate the realistic acceleration, the forward time of
the Pruned Network is measured on one 2080Ti GPU. The
results of MobileNet V1/V2 are shown in Table 3/Table 4.
Under the same compression ratio, the method keeps close
or better inference time but obtains better top-1 accuracy.

4.3. ResNet-50 Pruning

ResNet-50 consists of four stages which are stacked by
some blocks which consists of a 1× 1 convolution, a 3× 3
convolution, a 1 × 1covolution and an extra 1 × 1 convo-
lution when stride = 2. It is shown that its topology graph
in Fig. 6 (b). In the analysis process of subsection 3.1,
due to its short-cut structure in Bottlenecks, many filters in
3 × 3 convolution are redundant and can be represented by
filters in other convolution. Thus, the projection shortcuts
are pruned as pruned on MobileNet V2. Different from
MobileNet V2, the block with stride = 2 in ResNet-50
has an extra 1× 1 convolution in the residual path. To keep
the number of channels the same for adding operation at
the last of the block, the one ratio for the extra convolution
and the last convolution are shared.
We test GraphPruning on ResNet-50 with pruning rates
of 0.5 and 0.25. The comparison of results with other
AutoML methods is revealed in Table 2 and GraphPruning
outperforms previous methods again.

4.4. Results Visualization and Discussion

We visualize what the graph aggregator learned by mea-
suring the MSE of node features after gathering. As shown
in Fig 8., the distance between the neighbor convolutional
layer is small, which means the features of each node have
fully aggregated the neighbor features.
The best configuration of Pruned Networks is visualized to
know more about what the DDPG agent has learned.
MobileNet V1 The best configuration of MobileNet V1 is
analyzed. the block in MobileNet V1 contains a 3 × 3
depth-wise convolution and a 1× 1 point-wise convolution
which has no short-cut structure. The best configuration of
out channels for each block is shown in Fig. 7(a). It is
found that convolution with stride = 2 keeps more chan-
nels which have been mentioned in [23]. Besides, more
channels are kept in deep layers when pruning less.
MobileNet V2 A block from MobileNet V2 consists of a
1×1 point-wise convolution, a 3×3 depth-wise convolution
and a 1 × 1 point-wise convolution, which has a short-cut
structure when stride = 1. By extracting the number of
channels from middle convolution in each block, as shown
in Fig. 7(b), a similar phenomenon is found that more chan-
nels are kept in convolution with stride = 2 and deep layer.
Compared with [23], our method keeps more channels when
stride = 2 and prunes more aggressively on other layers.
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(a) (b)

Figure 6. (a) topology graph converted from MobileNet V2. (b) topology graph converted from ResNet-50.

Table 2. Results of ImageNet classification. We show the top-1 accuracy of each method under the same or closed FLOPs.
Pruned Network Method top-1 acc.(%) FLOPs

Baseline 68.4 325M
AMC 70.5 285M

Slimmable Network 69.5 325M
MetaPruning 70.4 281M

MobileNet V1 GraphPruning 70.5 285M
Baseline 50.6 41M

MetaPruning 57.2 41M
Slimmable Network 53.1 41M

GraphPruning 57.5 41M
Baseline 69.8 220M

AMC 70.8 220M
MetaPruning 71.2 220M

Slimmable Network 68.9 209M
MobileNet V2 GraphPruning 71.6 220M

Baseline 54.3 43M
MetaPruning 58.3 43M

GraphPruning 58.9 43M
Baseline 1.0× 76.6 4.1G

Baseline 0.75× 74.8 2.3G
Slimmable Network 74.9 2.3G

MetaPruning 75.4 2.3G
AOFP-C1 [7] 75.63 2.58G
C-SGD-50 [6] 74.54 1.7G

ResNet-50 ThiNet-50 [24] 74.7 2.1G
GraphPruning 76.1 2.3G
Baseline 0.5× 72.0 1.0

Slimmable Network 72.5 1.0G
ThiNet-30 [24] 72.1 1.2G
MetaPruning 73.4 1.G

GraphPruning 74.7 1.0G

During the analysis procedure in subsection 3.1, the short-
cut structure causes redundancy. The block with stride = 2
in MobileNet V2 does not have short cut yet so that it con-
tains fewer redundant filters than others.
ResNet-50 As same as the analysis of MobileNet V2, we
also extract the number of channels from the middle convo-
lution in each block. Different from the block in MobileNet
V2, each block in ResNet-50 has a short-cut structure and

contains an extra 1 × 1 convolution when stride = 2. The
best configurations under different FLOPs constraints are
revealed in Fig. 7(c), it is found that the agent has learned
the policy that more channels are kept in the deep layer.
Discussion The regular patterns of pruning results for Mo-
bileNet V1/V2 and ResNet-50 are discussed here.
As it is shown on Figs. 7, all of these pruned networks keep
more channels in the deep layer. This phenomenon also
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Table 3. Comparison of the realistic inference time with MobileNet V1.
Ratio Baseline time(ms) Pruned time(ms) Baseline Acc.(%) Pruned Acc.(%)
1× 0.65 - 70.9 -

0.75× 0.51 0.51 68.4 69.9
0.5× 0.35 0.35 63.3 67.7
0.25× 0.21 0.20 49.8 59.4

Table 4. Comparison of the realistic inference time with MobileNet V2.
Ratio Baseline time(ms) Pruned time(ms) Baseline Acc.(%) Pruned Acc.(%)
1× 0.72 - 71.7 -

0.75× 0.53 0.52 69.8 71.0
0.5× 0.41 0.41 65.4 68.9
0.35× 0.33 0.32 60.3 64.2

exists in many other AutoML pruning methods [11, 23].
Liu [23] suspected that it is caused by the number of classi-
fiers for the ImageNet dataset which contains 1000 classes.
However, in AMC [11], more channels are also kept in deep
layers when searching on CIFAR-10 [19] dataset which
only contains 10 classes. Hence, we explain it from the per-
spective of the original Pruned structure. The resolution of
the input picture is very large so that large channel numbers
cannot be set in the shallow layer because of GPU mem-
ory constraints. To solve this problem, modern deep CNN
models [31, 10, 16] are designed deep but narrow, which
means the deep layer has more channels than the shallow
layer. We cannot prune deep layers excessively to ensure a
sufficient feature map for the whole network. Besides, the
policy that the agent has learned is more preferred to keep
channels in layers with stride = 2. Convolution operation
with stride = 2 will shrink the resolution of feature maps.
The shrink in the size of the feature map leads to spatial
information transform so that the filter correlation is also
reduced. As Shown in Fig. 2.(a) and (b), the correlation of
feature map is significantly reduced after the feature map is
processed by convolution layer with stride = 2. Thus, it is
reasonable that the policy keeps more channels in the layer
with stride = 2.

4.5. Ablation Study

In this part, we demonstrate the effectiveness of Graph-
Pruning by comparison on two stages:

• Training stage PruningNet [23] is utilized as the base-
line. We compare the performance of PruningNet with
and without graph aggregator by inferring the accuracy
of several uniformly pruned networks of MobileNet
V2 [31]. The result is shown in Fig.9(a). It is found
that PruningNet with graph aggregator can achieve
much higher accuracy than that without graph aggre-
gator.

• Searching stage AMC [11] is utilized as the baseline
which does not train PruningNet in advance. A graph
aggregator is applied to provide a state for the DDPG
agent. The experiment of this part is conducted on
the CIFAR-10 dataset. All experimental setting is fol-
lowed as [11]. As Fig.9(b) shows, within graph aggre-
gator, the DDPG agent can get convergence faster.

5. Conclusion
In this paper, the correlation is analyzed between differ-

ent layers and finds that some filters in different layers also
have a strong correlation. To consider neighboring informa-
tion in pruning, GraphPruning that uses GCN as the graph
aggregator is introduced. Experiments demonstrate that the
proposed graph aggregator can effectively extract informa-
tion for each layer from its neighborhood. Compared with
other AutoML methods on ImageNet-2012, the proposed
method achieves better or comparable results. In the feature
work, GraphPruning can be applied into many CNN-based
realtime tasks, i.e., traffic flow management[14], pedestrian
attribute recognition[8] and car detection[43].
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