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Abstract
A novel optimization algorithm called hybrid salp swarm algorithm with teaching-learning based optimization (HSSATLBO)
is proposed in this paper to solve reliability redundancy allocation problems (RRAP) with nonlinear resource constraints.
Salp swarm algorithm (SSA) is one of the newest meta-heuristic algorithms which mimic the swarming behaviour of salps.
It is an efficient swarm optimization technique that has been used to solve various kinds of complex optimization problems.
However, SSA suffers a slow convergence rate due to its poor exploitation ability. In view of this inadequacy and resulting
in a better balance between exploration and exploitation, the proposed hybrid method HSSATLBO has been developed
where the searching procedures of SSA are renovated based on the TLBO algorithm. The good global search ability of SSA
and fast convergence of TLBO help to maximize the system reliability through the choices of redundancy and component
reliability. The performance of the proposed HSSATLBO algorithm has been demonstrated by seven well-known benchmark
problems related to reliability optimization that includes series system, complex (bridge) system, series-parallel system,
overspeed protection system, convex system, mixed series-parallel system, and large-scale system with dimensions 36, 38,
40, 42 and 50. After illustration, the outcomes of the proposed HSSATLBO are compared with several recently developed
competitive meta-heuristic algorithms and also with three improved variants of SSA. Additionally, the HSSATLBO results
are statistically investigated with the wilcoxon sign-rank test and multiple comparison test to show the significance of the
results. The experimental results suggest that HSSATLBO significantly outperforms other algorithms and has become a
remarkable and promising tool for solving RRAP.
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1 Introduction

Since 1950, reliability optimization plays a progressively
decisive role because of its critical requirements on sev-
eral engineering and industrial applications, and has become
a hot research topic in the engineering field. To be more
competitive in daily life, the basic goal of a reliability
engineer is always to improve the reliability of product com-
ponents or manufacturing systems. Obviously, an excellent
reliability design facilitates a system to run more safely
and reliably. In general, reliability optimization problems
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can be classified into two classes: integer reliability prob-
lems (IRP) and mixed-integer reliability problems (MIRP).
In IRP, the components reliability of the system is known
and the main task is only to allocate the redundant com-
ponents number. In case of MIRP, both the component
reliability and the redundancy allocation of the system are
to be designed simultaneously. This kind of problem in
which the reliability of the system is maximized through
the choices of redundancy and component reliability is
also known as the reliability-redundancy allocation prob-
lem (RRAP). To optimize a RRAP, redundancy levels and
component reliabilities of the system are considered as inte-
ger values and continuous values lies between zero and
one respectively. Several researchers works on this field to
solve RRAP with the objective of maximizing system reli-
ability under constraints such as the system cost, volume,
and weight etc., [44–48, 66, 76]. RRAP has been consid-
ered to be an NP-hard combinatorial optimization problem
because of its complexity and it has been considered as

Applied Intelligence (2022) 52:12630–12667

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02862-w&domain=pdf
mailto: dmrai23@gmail.com


A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems

the subject of much prior research work over various opti-
mization approaches. Recently, meta-heuristics algorithms
(MHAs) have been successfully applied in dealing with the
computational difficulty to solve a wide range of practi-
cal optimization problems. Solving optimization problems,
these methods apply probabilistic rules and also approxi-
mate the optimal solution by using a random population in
the search space that makes it more flexible to find better
solutions compared to deterministic methods.

Inspiring by biological phenomena and human charac-
teristics, several authors have been developed a variety of
population-based optimization techniques to address com-
plex optimization and in terms of the inspiring source, this
can be broadly classified into three categories –

(i) Swarm intelligence algorithms: These types of algo-
rithms mimic the behaviours or intelligence of ani-
mals or plants in nature, such as artificial bee colony
(ABC) [7], ant colony optimization (ACO) [18], grey
wolf optimization (GWO) [60], particle swarm opti-
mization (PSO) [42], whale optimization algorithm
(WOA) [59], bat algorithm (BA) [85], cuckoo search
(CS) [86], jellyfish search (JS) [16], mayfly algorithm
(MA) [92] and salp swarm algorithm (SSA) [58] etc.

(ii) Evolutionary algorithms: These algorithms mimic the
mechanism of biological evolution, such as genetic
algorithm (GA) [29], differential evolution (DE) [73],
biogeography-based optimization (BBO) [71], and
evolutionary programming (EP) [88] etc.

(iii) Human-related algorithms: These algorithms are
inspired by some human nature/activities, such as
passing vehicle search (PVS) [69], sine cosine algo-
rithm (SCA) [57], teaching-learning based optimiza-
tion (TLBO) [65], and coronavirus herd immunity
optimizer (CHIO) [4] etc.

According to the “No Free Launch (NFL)” theorem [83],
there exist no MHAs best fitted to solve all optimization
problems. Alternatively, it may happen that a particular
algorithm gives efficient solutions for some optimization
problems, but it may fail to perform well on another set
of problems. Thus, no MHAs are perfect and its limitation
affects the performance of the algorithm. Therefore, NFL
provokes researchers to develop new MHAs or upgrade
some original methods for solving a wider range of complex
optimization problems (COPs). The hybridization of two
algorithms is a remarkable and better choice between
all strategies to upgrade an existing algorithm and to
overcome shortcomings. In this process, two different
operators are merged to get better solutions. For example,
an improved HHO method named HHO-DE, based on
the hybridization with DE algorithm is proposed for the
multilevel image thresholding task by Bao et al., [11].
Later, Ibrahim et al., [38] present a hybrid optimization

method that combines the salp swarm algorithm (SSA)
with the particle swarm optimization for solving the feature
selection problem. Again, in 2020, a hybrid method GNNA
combining grey wolf optimization (GWO) and neural
network algorithm (NNA) is proposed by Zhang [94]. Note
that all above cited hybrid algorithms have been shown to be
more competitive compared to the corresponding original
methods. Considering the efficiency of the hybrid methods,
this paper introduces a new hybrid algorithm based on
SSA and TLBO to solve different kinds of reliability
optimization problems.

Mirjalili et al. (2017) [58] first proposed an innovative
population-based optimization method named salp swarm
algorithm (SSA) that mimics the swarming behaviour of
salps. The important characteristics like, simple structure,
robustness, and scalability, makes SSA an efficient method
for solving various kinds of real world problems (e.g.,
engineering design and optimization [80], feature selection
[38], job shop scheduling [75], optimal power flow prob-
lem [22], parameter optimization of power system stabilizer
[21], power generation [68], image segmentation [39, 84],
parameter estimation for soil water retention curve [95], PID
controller for AVR system [20], target localization [54]).
Also, SSA shows the following outstanding features like:
(1) It can be easily applied to different optimization prob-
lems without adjusting other parameters except population
size and stopping criterion and it is worth mentioning that
these parameters are essential for all MHAs; (2) It has a
powerful neighbourhood search ability and it can easily fit-
ted for wide search space [8]. Therefore, these advantages
make SSA an efficient technique and a rapid growth of the
SSA studies has also been noticed recently. Despite of these
efficiency, the basic SSA has some major drawbacks in solv-
ing some optimization problems. Firstly, the SSA algorithm
suffers from the problem of local optima stagnation. Sec-
ondly, the SSA experience is adequate in exploration but
lacking of exploitation forces an improper balance between
exploration and exploitation. Finally, SSA has poor con-
vergence tendency and sometimes, it need more time to
evaluate a new solution for some optimization problems.
To address these issues, researchers have applied differ-
ent search mechanisms and adopted modified operators to
upgrade the original SSA. To mention a few- Gupta et
al., [30] have introduced a new variant of the SSA called
m-SSA. In this work, two different search strategies levy-
fight search and opposition-based learning are utilized to
increase the convergence speed and also, to establish an
appropriate balance between exploration and exploitation.
Abasi et al., [1] proposed a new hybrid algorithm named H-
SSA combining the SSA and the β−hill climbing algorithm
(βHC) to enhance the convergence speed as well as the
local searching ability of the conventional SSA. A new type
improved SSA based on inertia weight search mechanism
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is introduced by Hegazy et al. [33] to maximize reliability,
optimizing accuracy, and convergence speed. Kassaymeh
et al., [41] have embedded backpropagation neural net-
work (BPNN) in the salp swarm algorithm (SSA) to solve
the software fault prediction (SFP) problem that helps to
enhance the prediction accuracy. Sayed et al., [70] proposed
a new hybrid algorithm CSSA that is based on the chaos the-
ory and the basic SSA. Here, ten different types of chaotic
maps are utilized to maximize the convergence speed and to
get more accurate optimization results. A simplex method
based salp swarm algorithm is introduced by Wang et al.,
(2018) [80] that improves the local searching ability of the
algorithm. To maintain a proper balance between explo-
ration and exploitation, Wu et al., [82] introduced an
improved SSA based on a dynamic weight factor and an
adaptive mutation searching strategy. Further, Tubishat et
al., [77] proposed an improved version of SSA based on the
concepts of opposition based learning and new local search
strategy. These two improvement helps to enhance the
exploitation capability of SSA. Singh et al., (2020) [72]
developed a hybrid algorithm named HSSASCA that com-
bines the sine-cosine algorithm (SCA) and the SSA to
improve the convergence efficiency in both local and global
search. Also, an enriched review of recent variants of
SSA and its applications has been discussed by Abualigah
et al., [3].

Apart from the SSA, inspired by the conventional
teaching circumstances of the classroom, Rao et al., (2011)
[65] proposed another significant algorithm for solving
the optimization problems named TLBO. Teaching and
learning are two common human social behaviours and
are also an important motivating process in which an
individual tries to learn from others. A regular classroom
teaching-learning environment is motivational process that
allows students to improve their cognitive levels. After
their appearance, several researchers [2, 12, 13, 15, 36,
62, 80, 87] used this algorithm to solve the real-world
optimization problems. However, in order to solve large
complex global optimization problems, it often falls to
the local optimum. The main advantages of the TLBO
algorithm is that without any effort for calibrating initial
parameters, it leads to first convergence speed and also, the
computational complexity of the algorithm is much better
than several existing algorithms like GA, ABC, CS, SCA
and PSO etc.

Motivated by the advantages of SSA and TLBO, a
hybrid algorithm called HSSATLBO has been developed
in this paper. Generally, searching processes with similar
nature may lead to the loss of diversity in the search
space, and also there is a chance of getting trapped into
a local optimum. But, the different searching techniques
of two different algorithms can maximize the capacity

of escaping from the local optimal. In this algorithm,
the basic structure of the SSA has been renovated by
embedding the features of the TLBO. In this context, a
probabilistic selection strategy is defined, which helps to
determine whether to apply the basic SSA or the TLBO to
construct a new solution. In the searching process, TLBO
helps to accelerate the convergence speed of HSSATLBO,
whereas the excellent global exploration ability of SSA
helps to find a better global optimal solution. Therefore,
in the search process of HSSATLBO, TLBO aims at
the local search, and SSA accentuates the global search,
which may help to maintain a convenient balance between
exploration and exploitation and produces efficient and
effective results for solving RRAP. Therefore, in this study,
a population diversity definition of the proposed method is
introduced and also, performed the exploration-exploitation
evaluation for investigating the search behaviour of both
HSSATLBO and the conventional SSA. To reduce the
computational complexity and improve the searching
abilities, HSSATLBO can reduce its population by keeping
the diversity too low. The measurement of exploration
and exploitation also helps to identify how the proposed
HSSATLBO performs better on an optimization problem.
Keeping all of the above points in mind, the basic objective
of the study is to present an efficient and effective algorithm
to solve various types of reliability optimization problems.
The main contributions of the paper are listed as follows:

• A hybrid algorithm HSSATLBO is developed by combin-
ing the features of SSA and TLBO algorithms. Pro-
posed algorithm mainly contains the structure of the
basic SSA algorithm and, meantime, it has been recon-
structed by embedding the searching strategy of TLBO.

• The proposed method makes a proper balance between
exploration and exploitation in which the basic SSA
looks after the exploration part and the presence of the
searching strategy of TLBO increases the exploitation
capability of the algorithm. Again, to generate a new solu-
tion, a new probabilistic selection strategy is introduced
to determine whether to apply the original SSA or the
TLBO algorithm.

• To validate the effectiveness and efficiency of the
HSSATLBO algorithm, it is examined against seven
well-known reliability redundancy optimization prob-
lems [9, 14, 23, 24, 28, 36, 43, 51, 56, 63, 78, 81, 89].
For a fair comparison, the test problems are also exam-
ined by the conventional SSA and its three different
variants (LSSA, CSSA and GSSA). Finally, a compara-
tive study between HSSATLBO and the three different
variants of SSA are also performed in this study.

• In order to state the statistically significant results or not,
a number of tests have been carried out, such as rank-tie,
Wilcoxon-rank test, Kruskal Wallis test, and multiple
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comparison tests, on the results obtained from the
proposed and the existing algorithms. From these
computed results, it is verified that the proposed
algorithm produces an effective result and also delivers
superior performance compared to other existing
algorithms in terms of the best optimal solutions.

The rest of the papers is organized as follows: Section 2
briefly describes the traditional SSA, three variants of
SSA (i.e., LSSA, CSSA & GSSA), and TLBO algorithms.
Section 3 presents the proposed algorithm HSSATLBO, a
probabilistic selection procedure, and exploration-exploita-
tion measurement. The reliability redundancy allocation
problems are described in Section 4. Section 5 presents the
computational results of the proposed HSSATLBO algo-
rithm and compares them with several existing algorithms.
The results obtained have also been validated through sta-
tistical test analysis. Finally, Section 6 concludes the paper.

2 Basis algorithms

In this section, basic SSA, three improved variants of SSA,
and the conventional TLBO algorithms are briefly described.

2.1 Salp swarm algorithm (SSA)

Salp swarm algorithm (SSA) is one of the population based
algorithm recently developed by Mirjalili et al.,(2017) [58]
to solve numerous kinds of optimization problems. Salp is
a kind of marine creature which belongs to the Salpidae
family and has a thin barrel-shaped body with openings at
the end in which the water is pumped through the body as
propulsion to move forward. These marine creature shows
an interesting behaviour which is of interest in the paper is
their swarming behaviour. In oceans, Salps having a swarm
behaviour called salp chain may support salps in exploring
and a better movement may be possible using fast cordial
changes.

Based on this conduct, a mathematical form for the
salp chains is designed by the authors and examined in
optimization problems. Firstly, the population of salp is
divided into two groups: leaders and followers. The first
salp of the chain is known as the leader, and rest of them
are called the followers. The position of all salps (Np)
is stored in a two-dimensional matrix X given in equation (1).
These salps looking for a food source that implies the target
of the swarm.

X =

⎛
⎜⎜⎝

x1
1 x1

2 ... x1
d

x2
1 x2

2 ... x2
d

... ... ... ...

x
Np

1 x
Np

2 ... x
Np

d

⎞
⎟⎟⎠ (1)

Then the salp with the best fitness (i.e., leader) is find out
by calculating the fitness value of each salp. The position
of the leader should be refurbished in regular basis, so the
following equation (2) is proposed-

x1
j =

⎧⎨
⎩

Fj + D1((ubj − lbj )D2 + lbj ), D3 ≥ 0.5

Fj − D1((ubj − lbj )D2 + lbj ), D3 < 0.5
(2)

Where x1
j is the position of the first salp (leader) in the j th

dimension and Fj is the food position in the j th dimension.
lbj and ubj represents the lower and upper bound of the j th

dimension respectively. D1, D2 and D3 are random numbers
lies between 0 and 1.
Equation (2) shows that the leader only updates its position
concerning the food source. Here, D1 is a very important
parameter in this algorithm as it plays a vital role in
balancing the exploration and exploitation phase and the is
determined by the equation (3)

D1 = 2 exp

(
−

(
4it

T

)2
)

(3)

Where T and it represents the maximum number of
iterations and the current iteration respectively. The
parameter D2 and D3 controlled both the direction and the
step size of the j th dimension of the next position.
After updating the leader’s position, the follower’s position
is updated using equation (4).

xi
j = 1

2
λt2 + μ0t (4)

Where, i ≥ 2, xi
j shows the position of the ith follower

salp in the j th dimension, μ0 is the initial speed, t is the time
and λ = μf inal

μ0
, where μ = (x−x0)

t
.

In optimization, the time indicates the iteration, so the
disparity between iterations is considered as 1 and, taking
μ0 = 0, the following equation (5) is applied for this
problem.

xi
j = 1

2
(xi

j + xi−1
j ), i ≥ 2 (5)

In may happen that some salps cross the search space,
but, using equation (6) they can be bring back to the search
space.

xi
j =

⎧⎪⎨
⎪⎩

lbj ifxi
j ≤ lbj

ubj ifxi
j ≥ ubj

xi
j ,otherwise

(6)

The detailed steps of the basic SSA are explained in
Algorithm 1.
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2.2 Improved variants of SSA withmutation
strategies

Although the conventional SSA is a highly competitive and
effective method for solving different kinds of complex
optimization problems, it may trap into local optima and
also, suffers from the improper balance between exploration
and exploitation which encounters slow convergence. To get
rid of this difficulty and to explore the solution space more
adequately, Nautiyal et al., (2021) [61] introduced improved
variants of SSA named LSSA, CSSA, and GSSA using three
new mutation operators Lévy flight based mutation, Cauchy
mutation, and Gaussian mutation respectively to enhance
the overall performance of SSA. These different mutation
operators make the algorithm more competent in exploring
and exploiting the search space. In these improved SSA,
the mutation scheme is performed after the greedy search
is completed between two consecutive position xi

j (t) at t th

iteration and xi
j (t + 1) at (t + 1)th iteration corresponding

to each salp which is given by the (7).

x
i,new
j =

{
xi
j (t) iff (xi

j (t)) < f (xi
j (t + 1))

xi
j (t + 1) iff (xi

j (t)) > f (xi
j (t + 1))

(7)

After the completion of the greedy search for each salp,
the mutation strategy is performed with a mutation rate
mr . In this study, the value of this parameter mr is taken
as 0.7. During this process, the fitness value of the newly
generated muted salps are compared with the original salps
and if it found better, it replaces the original salps otherwise

discarded. The detailed pseudo-code of the mutation-based
SSA is presented in Algorithm 2.

I. Lévy flight based SSA (LSSA): The concept of lévy flight
based mutation is used to increase salps diversity in
the SSA. When mutation rate allows, lévy-mutation can
improve the global search ability more adequately by
mutating the salps. Each muted salp in the LSSA is
generated using (8) as follows

x̂i
j = xi

j × (1 + LF(δ)) (8)

where LF(δ) corresponds to lévy distributed random
number with δ variable size and that can be obtained using
(9)

LF(δ) = 0.01 × u × σ

|v| 1
β

, σ =
⎛
⎝ �(1 + β) × sin(

πβ
2 )

�(
1+β

2 ) × β × 2(
β−1

2 )

⎞
⎠

1
β

(9)

where u and v are standard normal distribution. β is a
default constant set to 1.5.

II. Cauchy-SSA (CSSA): In this Cauchy-SSA, a random
number is generated, and if its value allows to generate the
new salps using the mutation scheme based on the mutation
rate mr , then each muted salp of the swarm in CSSA is
generated using the (10) as follows

x̂i
j = xi

j × (1 + Cauchy(δ)) (10)

where Cauchy(δ) is a random number generated using the
Cauchy distribution function given by the (11) as follows

y = 1

2
+ 1

π
arctan

(
α

η

)
(11)

and the Cauchy density function is given by

fcauchy(0,η)(α) = 1

π

η

η2 + α2
(12)

where, y is a uniformly distributed random number within
(0,1) and η = 1 is a scale parameter.

III. Gaussian-SSA (GSSA): In GSSA, the mutation follows
the (13)

x̂i
j = xi

j × (1 + Gaussian(δ)) (13)

where Gaussian(δ) is a random number generated using the
Gaussian distribution and the Gaussian density function is
given by (14)

fgaussian(0,σ 2)(β) = 1√
2πσ 2

e
α2

2σ2 (14)

where σ 2 is a variance for each salp. To generate random
numbers, the above equation is reduced by taking standard
deviation σ as 1.
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2.3 Teaching-Learning Based Optimization (TLBO)

Rao et al., (2011) [65] first developed an algorithm like
other population-based algorithms, which reproduced the
conventional teaching-learning aspects of a classroom. In
TLBO, a group of learners is recognised as the population
and various subjects taught to learners represents different
design variables. The fitness value indicates the students’
grade after learning, and the student with the best fitness
value is witnessed as the teacher. This algorithm describes
two basic modes of learning: (1) through teacher (known
as teacher phase) and (2) interacting with the other learners
(known as the learner phase). The working procedure of the
TLBO algorithm is explained below -

In the teacher phase, let us assume, at any iteration t , the
number of subjects or course offered to the learners is d and
Np denotes the population size (i.e. number of learners).
In this phase, the basic intention of a teacher is to transfer
knowledge among the students and also to improvise the
average result of the class. Here, the parameter Meanj (t)

indicates the mean result of the learners in j th subject (j =
1, 2, . . . , d) and at generation t , it is given by (15).

Meanj (t) = [MT
1 , MT

2 , . . . , MT
d ] (15)

XT eacher (t) indicates the learner with the best objective
function value at iteration t and is recognised as the teacher.
The teacher tries to give his/her maximum effort to increase
the knowledge of each student in the class, but learners will
gain knowledge according to their talent and also by the
quality of teaching. Then, the difference vector between the
teacher and the average results of students can be calculated
given by the equation (16).


m
j (t) = rand[XT eacher (t) − TF · Meanj (t)] (16)

where rand indicates a random number lies between 0 and
1. TF denotes the teaching factor and its value is decided
randomly as given in equation (17)

TF = round(1 + rand) (17)

The existing solution is now updated in the teacher
phase and the updated solution is given by the following
equation (18)

X
m,new
j (t) = Xm

j (t) + 
m
j (t) (18)

If the new learner X
m,new
j (t) in generation t is found to

be a better than Xm
j (t) , then it will replace Xm

j (t) otherwise
keeps the previous solution.

Interaction with other students is an effective way to
enhance their knowledge. A learner can also gain new
information from other learners having more knowledge
than him or her. The learning circumstances of the learner
phase is given below.

A student Xm randomly select classmate Xn ( �= Xm) to
obtain more knowledge in the learner phase. If Xn performs
better, Xm moves towards Xn ; if Xn performs worse, Xm

moves away from it. The following formulas (19) and (20)
can be used to describe this process:

X
m,new
j (t) = Xm

j (t) + rand(Xn
j (t) − Xm

j (t)),

if f (Xn
j (t) < f (Xm

j (t)) (19)

X
m,new
j (t) = Xm

j (t) + rand(Xm
j (t) − Xn

j (t)),

if f (Xn
j (t)) > f (Xm

j (t)) (20)

Where f (Xn
j (t)) and f (Xm

j (t)) are fitness values of
Xn

j (t) and Xm
j (t) respectively. The pseudocode of the basic

TLBO is given in Algorithm 3.
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3 Proposedmethod

3.1 Probabilistic selection procedure

It is very important to maintain a proper balance between
exploration and exploitation for a well-organized and well-
designed meta-heuristics optimization algorithm. There-
fore, in this study, a hybrid algorithm HSSATLBO is
introduced by modifying the basic structure of SSA. A prob-
abilistic selection parameter (PSP ) is implemented in the
proposed algorithm to decide whether to apply the search
equation of SSA (Algorithm 1) or TLBO (Algorithm 3) to
generate the new solution. The formula for the parameter
PSP is given by equation (21)

PSP = PSPmax · exp (
ln(

PSPmin
PSPmax

)

MaxI ter
iter) (21)

Here, PSPmin and PSPmax denotes the minimum and
maximum values of the parameter PSP , respectively.
Again, MaxI ter indicates the maximum number of gener-
ations, and iter shows the current generation. Equation (21)
shows that, at the early stage of iterations, the value of
the parameter PSP is very large, and its force to choose
the search equation of SSA. However, as the number of
iterations increases, the probability of electing the search

equation of TLBO is also increased. In this study, PSPmin

and PSPmax takes the value as 0.3 and 0.9 respectively, i.e.,
the value of the parameter PSP is a random number lies
between [0.3, 0.9].

3.2 The proposed HSSATLBO

The framework of the proposed algorithm HSSATLBO
that associates with the SSA and the TLBO algorithm,
is demonstrated in this section. The conventional SSA
algorithm shows excellent efficiency in exploration but
undergoes poor exploitation, and as a result, it fails to
manage the convenient balance between exploitation and
exploration and also, most of the time it cannot generate
a global optimum solution. To avoid this situation, the
updating phase of the salps position is enhanced by
reconstructing the basic formation of the SSA. During
this modification the searching mechanism of TLBO is
implemented into the main structure of the SSA. The
TLBO algorithm having first convergence speed and
much better computational complexity than several existing
algorithms makes it an exceptional search algorithm. Thus,
the inclusion of TLBO adds more flexibility to the SSA
and subsequently, the exploration and exploitation abilities
of the SSA algorithm are also improved. The detailed
framework of the HSSATLBO algorithm is presented in
Fig. 1. The first step in the HSSATLBO is to initialize the
parameters for both the SSA and TLBO and a random
population is generated that represents a set of salp positions.
Then the fitness value for each solution is computed to
evaluate the performance and the best one is determined.
After that, the current population of both the leader and
follower position is to be updated either by using the searching
technique of SSA or TLBO algorithm depending on a
probabilistic selection parameter (PSP) (Section 3.1). This
parameter is basically designed to control the probability of
selecting the above searching strategies. If a random number
lies between [0,1] is less than PSP, then the SSA, otherwise,
the TLBO is used for updating the current salps position.
After that, the fitness value of the current population is
evaluated and the current best solution is compared with the
previous best fitness value, and accordingly the best solution
is need to be updated. This procedure is continued until the
stopping criterion is satisfied. For the proposed HSSATLBO
algorithm the maximum iteration number is considered as a
stopping criterion.

3.3 Exploration and exploitationmeasurement

In this study, an in-depth empirical analysis is performed
to examine the searching behaviour of the proposed
HSSATLBO in terms of diversity. Through diversity
measurement, it is possible to measure explorative and
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Fig. 1 The framework of HSSATLBO

exploitative capabilities of the algorithm. In the exploration
phase, the difference expands between the values of
dimension D within the population and hence swarm
individuals are scattered in the search space. On the other
hand, in exploitation phase, the difference reduces and
swarm individuals are clustered to a dense area. These two
concepts are ubiquitous in any MHAs. In case of finding the
globally optimal location, the exploration phase maximizes
the efficiency in order to visit unseen neighbourhoods
in the search space. Contrarily, through exploitation, an
algorithm can successfully converge to a neighbourhood
with high possibility of global optimal solution. A proper

balance between this two abilities is a trade-off problem.
For better illustration about the exploration and exploitation
concept, see Fig. 2 . According to Hussain [37], diversity in
population is measured mathematically, using the following
equations (22) and (23):

Divt
j =

∑Np

i=1

[
med(xt

j ) − x
i,t
j

]

Np

(22)

Divt =
∑D

j=1 Divt
j

D
(23)

Fig. 2 Candidate population
representation for
exploration-exploitation
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Where, x
i,t
j denotes the j th dimension of ith swarm

individual in Np population in iteration t , whereas med(xt
j )

is median of dimension j . Divt
j and Divt indicates

the diversity in the j th dimension and the average of
diversity of all dimensions respectively. After determining
the population diversity Divt for all the iterations, it is
now possible to calculate the exploration and exploitation
percentage ratios during search process, using equation (24)
and equation (25) respectively:

Expl(%) = Divt

Divt
max

× 100 (24)

Expt(%) = |Divt − Divt
max |

Divt
max

× 100 (25)

where Expl(%) and Expt(%) denotes exploration and
exploitation percentages respectively for iteration t , whereas
Divt

max is the maximum population diversity in all
iterations (T ).
The MATLAB code for measuring population diversity and
exploration-exploitation for MHAs has been made pub-
licly available at https://github.com/usitsoft/Exploration-
Exploitation-Measurement.

4 Problem formulation

Notations

n = (n1, n2, .̇.., nm), the redundancy allocation
vector for the system.

m number of subsystems.
ni the number of components in subsystem i.
ni

max maximum number of components in subsystem i.
ri the components reliability in subsystem i.
b is the vector of resource limitation.
ci the component cost in subsystem i.
vi the component volume in subsystem i.
wi the component weight in subsystem i.
Ri = 1 − (1 − ri)

ni , is the reliability of the ith

subsystem.
C upper limit of the system’s cost.
V upper limit of the system’s volume.
W upper limit of the system’s weight.
RS the system reliability.
gj the j th constraint function.

4.1 Reliability-redundancy allocation problem

The requirement of reliability analysis to evaluate the per-
formance of products, equipment, and several engineering
systems is increasing day by day. Reliability optimization

can figure out these issues and capable of finding a high-
quality products and equipment that performs efficiently
and safely in a given period. In this section, seven relia-
bility optimization problems are discussed to examine the
performance of the HSSATLBO algorithm.
The general form of the reliability redundancy problem is

max RS(r1, r2, ..., rm; n1, n2, ..., nm)
s.t, g(r1, r2, ..., rm; n1, n2, ..., nm) ≤ b,

0.5 ≤ ri ≤ 1, 1 ≤ ni ≤ ni
max, ni ∈ Z+, i = 1, 2, ...,m.

(26)

The goal of the problem is to maximize system reliability
by computing the number of redundant components ni and
the components’ reliability ri in each subsystem.

4.1.1 Series system [Fig. 3(a)] [6, 9, 23, 27, 31, 35, 36, 43,
81, 89, 91, 93]

The series system is a non-linear mixed-integer program-
ming problem and the formulation is given as follows

max RS(n) =
5∏

i=1

Ri(ni) (27)

s.t, g1(r, n) =
5∑

i=1

vin
2
i − V ≤ 0, (28)

g2(r, n) =
5∑

i=1

ci[ni + exp
(ni

4

)
] − C ≤ 0, (29)

g3(r, n) =
5∑

i=1

wini exp
(ni

4

)
− W ≤ 0, (30)

0.5 ≤ ri ≤ 1, 1 ≤ ni ≤ 5, ni ∈ Z+, i = 1, 2, ..., 5.

where, ci = αi

(−1000
ln(ri )

)βi

, i = 1, 2, ..., 5.

The parameters βi and αi are physical features of system
components. Constraints g1(r, n), g2(r, n), and g3(r, n)

represents volume, cost and weight constraint respectively.
The coefficients of the series system are shown in the
literature (Garg, 2015a)[23] and Table 1.

4.1.2 Complex (bridge) system [Fig. 3(b)] [6, 9, 23, 25, 27,
31, 35, 36, 43, 63, 81, 89, 91, 93, 96, 97]

Complex (bridge) system consists of five subsystems and
the formulation of it is described as follows:

max RS(r, n) = R1R2 + R3R4 + R1R4R5 + R2R3R5 −
R1R2R3R4 − R1R2R3R5 − R1R2R4R5 − R2R3R4R5 +
2R1R2R3R4R5

subject to, the same constraint given by the equation
equation (28), (29) and (30) respectively. And also,
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Fig. 3 The schematic diagram
of (a) series system, (b) complex
(bridge) system, (c)
series-parallel system, and (d)
overspeed system for a gas
turbine

0.5 ≤ ri ≤ 1, 1 ≤ ni ≤ 5, ni ∈ Z+, i = 1, 2, ..., 5.
The coefficients of the complex system are shown in the
literature (Garg, 2015a) [23] and Table 1.

4.1.3 Series-Parallel System [Fig. 3(c)] [23, 25, 27, 31, 32,
35, 36, 40, 43, 51, 53, 63, 78, 79, 81, 89, 91]

The mathematical formulation is as follows:
max RS(r, n) = 1 − (1 − R1R2)[1 − (1 − (1 − R3)(1 −

R4))R5]

subject to, the same constraint given by the equation
equation (28),(29) and (30) respectively. And also, 0.5 ≤
ri ≤ 1, 1 ≤ ni ≤ 5, ni ∈ Z+, i = 1, 2, ..., 5.

The coefficients of the series-parallel system are shown in
the literature (Garg, 2015a) [23] and Table 1.

4.1.4 Overspeed protection system for a gas turbine
[Fig. 3(d)] [6, 19, 23, 24, 35, 36, 43, 51, 53, 63, 81, 93, 98]

This reliability problem is formulated as follows:

max RS(r, n) =
4∏

i=1

Ri(ni) (31)

s.t, g1(r, n) =
4∑

i=1

vin
2
i − V ≤ 0, (32)

Table 1 Values of parameters
used in the literature i 105αi βi vi wi C V W

Parameter used for 4.1.1 and 4.1.2

1 2.330 1.5 1 7
2 1.450 1.5 2 8
3 0.541 1.5 3 8 175 110 200
4 8.050 1.5 4 6
5 1.950 1.5 2 9
Parameter used for 4.1.3
1 2.500 1.5 2 3.5
2 1.450 1.5 4 4.0
3 0.541 1.5 5 4.0 175 180 100
4 0.541 1.5 8 3.5
5 2.100 1.5 4 3.5

Parameter used for 4.1.4

1 1.0 1.5 1 6 400 250 500

2 2.3 1.5 2 6

3 0.3 1.5 3 8

4 2.3 1.5 2 7
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g2(r, n) =
4∑

i=1

ci[ni + exp
(ni

4

)
] − C ≤ 0, (33)

g3(r, n) =
4∑

i=1

wini exp
(ni

4

)
− W ≤ 0 (34)

0.5 ≤ ri ≤ 1, 1 ≤ ni ≤ 5, ni ∈ Z+, i = 1, 2, ..., 5.

where, ci = αi

(−1000
ln(ri )

)βi

, i = 1, 2, ..., 4.

The coefficients of the overspeed protection system are
shown in the literature (Garg, 2015a) [23] and Table 1.

4.1.5 Convex quadratic reliability problem [28, 50, 63, 91]

The mathematical formulation of this problem is as follows:

max RS(r, n) =
10∏
i=1

(1 − (1 − ri)
ni ) (35)

s.t, gj (r, n) =
10∏
i=1

(ajini
2 + Cjini) ≤ bj (36)

ni ∈ [1, 6], i = 1, 2, ..., 10. j = 1, 2, 3, 4.
The parameters ri , aji and Cji are generated from uniform
distributions that lies between [0.80, 0.99], [0,10] and [0,10]
respectively. A randomly generated set of values of these
coefficients are given as follows:
ri = [ 0.81, 0.93, 0.92, 0.96, 0.99, 0.89, 0.85, 0.83,

0.94, 0.92];
bj = ( 2.0 × 1013, 3.1 × 1012, 5.7 × 1013, 9.3 × 1012 );

a =

⎛
⎜⎜⎝

2 7 3 0 5 6 9 4 8 1
4 9 2 7 1 0 8 3 5 6
5 1 7 4 3 6 0 9 8 2
8 3 5 6 9 7 2 4 0 1

⎞
⎟⎟⎠

C =

⎛
⎜⎜⎝

7 1 4 6 8 2 5 9 3 3
4 6 5 7 2 6 9 1 0 8
1 10 3 5 4 7 8 9 4 6
2 3 2 5 7 8 6 10 9 1

⎞
⎟⎟⎠

4.1.6 Mixed series-parallel system [28, 50, 63, 91]

The mathematical formulation of this problem is as follows:

max RS(r, n) =
15∏
i=1

(1 − (1 − ri)
ni ) (37)

s.t, g1(r, n) =
15∑
i=1

cini − 400 ≤ 0 (38)

g2(r, n) =
15∑
i=1

wini − 414 ≤ 0 (39)

ni ≥ 1, ni ∈ Z+, i = 1, 2, ..., 15. Ta
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The coefficients of the mixed series-parallel system are
taken from the literature (Gen et al., 1999) [26] and are listed
in Table 2.

4.1.7 Large-scale system reliability problem [27, 28, 63,

78, 79, 81, 97]

The mathematical formulation of this problem is as follows:

max RS(r, n) =
m∏

i=1

Ri(ni ) (40)

s.t, g1(r, n) =
m∑

i=1

αin
2
i −

(
1 + θ

100

) m∑
i=1

αi l
2
i ≤ 0 (41)

g2(r, n) =
m∑

i=1

βi exp
(ni

2

)
−

(
1 + θ

100

) m∑
i=1

βi exp

(
li

2

)
≤ 0 (42)

g3(r, n) =
m∑

i=1

γini −
(

1 + θ

100

) m∑
i=1

γi li ≤ 0 (43)

g4(r, n) =
m∑

i=1

δi

√
ni −

(
1 + θ

100

) m∑
i=1

δi

√
li ≤ 0 (44)

1 ≤ ni ≤ 10, ni ∈ Z+, i = 1, 2, ..., m.

Here, li indicates the lower bound of ni . The parameter
θ indicates the tolerance error that implies 33% of the
minimum requirement of each available resource li . The
average minimum resource requirements for the reliability
system with m subsystems is given by

∑m
i=1 gji(li), (j =

1, ..., 4) and the average values of which is given by
bj = (

1 + θ
100

) ∑m
i=1 gji(li) . In this way, we set the

available system resources (Zou et al., 2010) [97] for
reliability systems with 36, 38, 40, 42, and 50 subsystems,
respectively, as shown in Tables 3 and 4.

5 Results & discussions

In this section, we presented the results of all of the above-
mentioned reliability optimization problems identified by
the use of the proposed HSSATLBO algorithm. This section
is divided into the following six parts. Section 5.1 introduces
the experiment settings including parameters settings
and maximum possible improvement (MPI). Section 5.2
describes the results obtained by the proposed algorithm
and compared the performance with a number of existing
approaches that are presented Table 5. The performance

Table 3 Available system resources for each system for 4.1.7

n i 1 2 3 4

36 bi 391 257 738 1454
38 bi 416 278 778 1532
40 bi 435 289 823 1621
42 bi 458 306 870 1712
50 bi 543 352 1040 2048
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Table 5 Some existing meta-heuristic algorithms from the literature for solving reliability optimization problems (4.1.1 to 4.1.7)

Algorithms Methods Authors & published year

1. SCa Soft computing approach (Gen and Yun, 2006) [27]

2. SAA Simulated annealing algorithm (Kim et al., 2006) [43]

3. GA Genetic algorithm (GA) (Yokota et al., 1996) [91]

4. IA Immune based two-phase approach (Hsieh and You, 2011) [35]

5. ABC1 Artificial bee colony algorithm (Yeh and Hsieh, 2011) [89]

6. IPSO Improved particle swarm optimization (Wu et al., 2011) [81]

7. CS1 Cuckoo search (CS) algorithm (Valian and Valian, 2013) [79]

8. CS2 Cuckoo search algorithm (Garg, 2015a) [23]

9. PSO/SSO/PSSO Particle-based swarm optimization algorithm (Huang, 2015) [36]

10. ICS Improved CS algorithm (Valian et al., 2013) [78]

11. CS-GA Hybrid CS and genetic algorithm (Kanagaraj et al., 2013) [40]

12 ABC2 Artificial bee colony (Garg et al., 2013) [25]

13. TS-DE Hybrid TS–DE algorithm (Liu and Qin, 2014b)[52]

14. INGHS Improved novel global harmony search (Ouyang et al., 2015) [63]

15. MPSO Modified particle swarm optimization (Liu and Qin, 2014a) [51]

16. EBBO Efficient biogeography-based optimization (Garg, 2015b) [24]

17. EGHS Effective global harmony search algorithm (Zou et al., 2011) [96]
18. NMDE Novel modified DE (Zou et al., 2011) [98]
19. NGHS Novel global HS algorithm (Zou et al., 2010) [97]
20. CPSO Co-evolutionary PSO (He and Wang, 2007a) [32]
21. IABC Improved ABC algorithm (Ghambari and Rahati,2018) [28]
22. NAFSA Novel artificial fish swarm algorithm (He et al., 2015) [31]
23. MICA Modified imperialist competitive algorithm (Afonso et al., 2013) [6]
24. GA-SRS RRAP with cold-standby redundancy strategy (Ardakan and Hamadani,2014) [9]
25. LXPM-IPSO-GS IPSO-based hybrid approache (Zhang et al.,2013) [93]
26. PSFSA Penalty guided stochastic fractal search approach (Mellal and Zio, 2016) [56]
27. GA-PSO Hybrid GA-PSO approach (Duan et al., 2010) [19]
28. DE DE algorithm combined with levy flight (Liu and Qin, 2015) [53]
29. HDE Hybrid DE algorithm (Liao, 2010) [50]
30. NNA Neural network algorithm (Sadollah et al., 2018) [67]
31. HHO Harris hawks optimization (Heidari et al., 2019) [34]
32. SMA Slime mould algorithm (Li et al., 2020) [49]
33. SCA Sine cosine algorithm (Mirjalili, 2016) [57]

comparisons between HSSATLBO, SSA, and variants of
SSA are presented in Section 5.3. A parameter sensitivity
analysis for the parameter PSP is performed in Section 5.4.
The performance in terms of population diversity and the exp-
loation-exploitation measurement of HSSATLBO, SSA,
and variants of SSA are described in Section 5.5. Finally,
the statistical analysis of the proposed algorithm and all
compared algorithms are illustrated in section Section 5.6.

5.1 Experiment settings

5.1.1 Parameter settings

The proposed algorithm is implemented in MATLAB
(2015a) on the personal laptop with AMD Ryzen 3 2200
U with Radeon Vega Mobile Gfx 2.50GHz and 4.00 GB of

RAM in Windows 10. The initial population sizes of ABC,
NNA, TLBO, SSA, HHO, SMA, SCA and HSSATLBO
were set as 100 for each and also the parameters of these
compared algorithms are considered as: ABC (Maximum
number of trials i.e., limit = 100), NNA (modification factor,
β = 1), TLBO (teaching factor, TF = 1 or 2), HHO (β =
1.5), SMA (control parameter, z = 0.03), SCA (parameter,
a = 2); Due to the stochastic nature of metaheuristics
algorithms, it might be unreliable if one considers the
results obtained in a single run. Therefore, 30 independent
runs were performed for all applied algorithms ABC,
NNA, TLBO, SSA, HHO, SMA, SCA and HSSATLBO
for solving every reliability optimization problems. In
our experiment, for every independent run, the maximum
number of iterations for each algorithm is taken as
300.
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5.1.2 Maximum possible improvement (MPI)

For each reliability optimization problem, the system relia-
bility is to be maximized by computing both the components
reliability ri and number of redundant components ni for
each subsystem. During the computational procedure, the
redundant components ni are firstly considered as real vari-
ables and after completion of the optimization process, the
real values are converted to their respective nearest integer
values. In this study, we introduce the maximum possible
improvement (MPI) index to evaluate the performance of
HSSATLBO and is expressed by the (45)

MPI = RS(HSSAT LBO)−RS(Others)
1−RS(Others)

(45)

Where RS(HSSAT LBO) denotes the best optimal solu-
tion obtained by the proposed algorithm and RS(Others)

implies the best result obtained by the other compared
approaches and the greater MPI indicates greater improve-
ment.

5.2 HSSATLBO comparison with existing optimizers

This section describes the performance evaluation of
proposed HSSATLBO in terms of best solution and
the maximum possible improvement value. The results
obtained by the proposed algorithm is compared with the
other existing optimizers and the results of the compared
algorithms are taken from their respective papers. The
comparative analysis for solving the reliability problems are
presented in Table 6 to Table 11.
For the series system (4.1.1), Table 6 shows that the
best optimal solution obtained by the proposed method
is 0.93168238710, which is preferable to all compared
algorithms SCA(Gen & Yun, 2006), SAA (Kim et al.,
2006), GA (Yokota et al., 1996), IA (Hsieh & You, 2011),
ABC1 (Yeh & Hsieh, 2011), IPSO (Wu et al., 2011), CS2
(Garg, 2015a), PSO (Huang, 2015), NAFSA (He et al.,
2015), SSO (Huang, 2015), PSSO (Huang, 2015), MICA
(Afonso et al., 2013), GA-SRS (Ardakan & Hamadani,
2014), and LXPM-IPSO-GA (Zhang et al., 2013) with the
improvements 3.4940E-03%, 4.6533E-01%, 3.2446E-01%,
6.8943E-05%, 5.6662E-04%, 3.4940E-03%, 4.1061E-04%,
3.8727E+01%, 1.7353E-04%, 2.6336E-01%, 1.3157E-
04%, 4.3868E-03%, 3.6664E+00%, and 3.9668E-05%
respectively.

It can be observed from Table 7 that the optimal solution
for the complex system (4.1.2) produced by HSSATLBO
is 0.9998896373815054 which is better than the best result
given by the other compared algorithms and also have
most symbolic improvement 4.7596E+01%, 1.7777E+00%,
8.6705E+00%, 2.5927E-01%, 6.6414E+01%, 9.1343E-
01%, and 2.5695E+00%, over the results given by SCA
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A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems

(Gen & Yun, 2006), SSA( Kim et al., 2006), GA
(Yokota et al., 1996), IA (Hsieh & You, 2011), PSO/SSO
(Huang, 2015), and GA-SRS (Ardakan & Hamadani, 2014)
respectively.
Table 8 presents that the best result for the series-parallel
system (4.1.3) obtained by the proposed method is
0.9999863373757 and also better than the algorithms given
by SCA (Gen & Yun, 2006), SAA (Kim et al., 2006), GA
(Yokota et al., 1996), IA (Hsieh & You, 2011), ABC1 (Yeh
& Hsieh, 2011), IPSO (Wu et al., 2011), CPSO (He &
Wang, 2007a), CS1 (Valian & Valian, 2013), ICS (Valian
et al., 2013), CS-GA (Kanagaraj et al., 2013), ABC2
(Garg et al., 2013), TS-DE (Liu & Qin, 2014), INGHS
(Ouyang et al., 2015), CS2 (Garg, 2015a), MPSO (Liu &
Qin, 2015), EBBO (Garg, 2015b), PSO (Huang, 2015),
PSFSA (Mellal & Zio, 2016), NAFSA (He et al., 2015),
PSSO (Huang, 2015), SSO (Huang, 2015), DE (Liu & Qin,
2015), IABC(Ghambari & Rahati, 2018) by the improve-
ment 4.7085E+01%, 4.1488E+01%, 5.6280E+01%,
4.2327E+01%, 4.1490E+01%, 3.9786E+01%, 4.1513E+
01%, 4.1490E+01%, 4.1490E+01%, 4.1488E+01%,
4.1490E+01%, 4.1490E+01%, 4.1490E+01%, 4.1491E+
01%, 4.1490E+01%, 4.1490E+01%, 9.0348E+01%,
4.1490E+01%, 4.1493E+01%, 4.1491E+01%, 4.1687E+
01%, 4.1490E+01%, and 3.2264E+01% respectively. Also,
the optimal redundant component by HSSATLBO for this
sires-parallel system is (3,2,2,2,4) which is completely
different from the other approaches.

It can be noticed in Table 9, the best solution achieved by
HSSATLBO for the overspeed protection system (4.1.4) is
0.99995467466432. The proposed algorithm dominates 15
competitive algorithms in terms of the best-known solution
found so far. Table 9 depicts that the proposed method
has symbolic improvement indices 1.759E+03%, 2.421E-
02%, 1.029E+00%, 1.029E+00%, 1.240E-02%, 8.038E-
02%, 1.750E-02%, and 1.419E-02% over the results by
SAA (Kim et al., 2006), IPSO (Wu et al., 2011), NMDE
(Zou et al., 2011), PSO (Huang, 2015), PSSO (Huang,
2015), SSO (Huang, 2015), DE (Liu & Qin, 2015)
and GA-PSO (Duan et al., 2010) respectively. Table 10
indicates that HSSATLBO executes the same or better than
the other existing algorithms given in this literature for
solving the convex quadratic reliability problem (4.1.5)
and the mixed series-parallel system (4.1.6) in terms
of best results. Table 11 reports the test results of the
problem (4.1.7). It can be seen that the HSSATLBO
algorithm gives equal or better results compare to other
algorithms in terms of the best objective function value
for the large-scale problems of dimensions 36,38,40,42
& 50. But in the case of dimension 40, it comes with
weaker objective value than two existing algorithms INGHS
and IABC.

In order to show the convergence performance of the
stated algorithm over several existing algorithms like ABC,
NNA, TLBO, SSA etc, we vary the best solution for each
considered problem and the results are plotted in Fig. 4.
This analysis shows that the HSSATLBO has a better
convergence rate compared to other algorithms.

5.3 HSSATLBO comparisonwith other variants of SSA

This section details about the comparative study of results
for the conventional SSA, the proposed HSSATLBO and the
three SSA variants namely Levy flight based SSA (LSSA),
Cauchy salp swarm algorithm (CSSA) and Gaussian salp
swarm algorithm (GSSA). The results are presented in
Tables 12–16 in terms of best obtained value and the
MPI values. Table 12 shows that the best optimal solution
obtained by HSSATLBO for solving series system (4.1.1)
is better than the original SSA and the three variants
LSSA, CSSA and GSSA with the improvements 1.2529E-
07%, 2.7509E-06%, 1.2566E-06%, and 6.8942E-07%
respectively. It can be observed from Table 13, the optimal
solution achieved by HSSATLBO for solving the complex
system (4.1.2) is better than the compared algorithms SSA,
LSSA, CSSA and GSSA with significant improvement
percentage 2.6556E-03%, 2.3872E-03%, 3.2317E-04%,
and 1.1439E-05% respectively. Again, in case solving the
series-parallel system (4.1.3) and overspeed system (4.1.4),
Tables 14 and 15 shows that, HSSATLBO dominated all
compared algorithms effectively with the best optimal value
as well as in MPI values. Table 16 shows that HSSATLBO
executes the same or better optimal value with the other
compared algorithms in case of solving both convex system
(4.1.5) and mixed series-parallel system (4.1.6).

Again, the convergence graphs of HSSATLBO are
also compared with LSSA, CSSA and GSSA for solving
problems 4.1.1 to 4.1.6 and are given in Fig. 5. From these
convergence graphs, we can conclude that, as the iteration
number increases, the proposed HSSATLBO algorithm also
shows better performance than the existing algorithm.

5.4 Parameter sensitivity analysis

In this section, parameter sensitivity analysis is performed
to evaluate the impact of the probabilistic parameter
PSP on the proposed algorithm. Under other conditions
retained, different values of the parameter PSP are tested
on reliability problems (4.1.1 - 4.1.6) and the results are
presented in Table 17. PSP1 indicates that PSPmin and
PSPmax takes the value 0.05 and 0.95 respectively, i.e.,
PSP1 lies between [0.05, 0.95]. Similarly, PSP2, PSP3,
PSP4 and PSP5 are lies between [0.1, 0.9], [0.2, 0.9], [0.3,
0.9] and [0.4, 0.9] respectively. The mean values obtained
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Fig. 4 Comparison of convergence curves of HSSATLBO with existing optimizers

by HSSATLBO and their corresponding ranking for each
cases are given in that table. Also, as per their achievement
in terms of mean value, we can sort their ranking, in
the order: PSP4, PSP5, PSP3, PSP2, and PSP1. From the
ranking order in Table 17, it can be observed that the
result of the proposed algorithm is superior when PSP lies
between [0.3, 0.9] i.e., for the case of PSP4. Researchers can
also choose different values for PSP according to other set
of problems. Figure 6 provides a better visualization of the
ranking for each cases of HSSATLBO for solving reliability
optimization problems.

5.5 Diversity and exploration-exploitation analysis

For an effective in-depth performance analysis, the popula-
tion diversity and the exploration-exploitation measurement
in HSSATLBO, SSA and SSA variants (i.e., LSSA, CSSA
and GSSA) are presented in Table 18 while solving relia-
bility optimization problems. A graphical presentation on
comparison of diversity measurement between the proposed
HSSATLBO and the SSA variants are given in Fig. 7. The
exploration-exploitation phases of the proposed algorithm
is also given in Fig. 8. According to Table 18, the pro-
posed hybrid method mostly reduced population diversity
compared to SSA, LSSA, CSSA and GSSA for all the reli-
ability problems. For example, on series system (4.1.1),
HSSATLBO maintained population diversity value 0.12618
which is relatively lesser than diversity values 1.17742,
0.64185, 0.65301, and 0.65110 in SSA, LSSA, CSSA and
GSSA respectively. Similarly, diversity measurement in
HSSATLBO for all other problems (4.1.2 - 4.1.6) remained

lower than original SSA and its variants. Moreover, Table 18
also reveals that mostly HSSATLBO maintained exploration
percentage lower than exploitation on all of the reliability
problems. For instance, HSSATLBO maintained exploita-
tion percentage as 81% 88% 72% 85% 67% and 65%
for series, complex, series-parallel, overspeed, convex and
mixed series-parallel system respectively; and these val-
ues are higher than exploitation measurements recorded for
the compared algorithms. This discussion can be further
assimilated via Fig. 7 for diversity measurement and Fig. 8
for exploration and exploitation behaviours in the proposed
algorithm.

5.6 Statistical analysis

In addition, to analyze whether or not the results obtained
by the proposed HSSATLBO algorithm are statistically
significant, here we consider the following quality indices
described below:

5.6.1 The statistical results by Value-basedmethod and tied
ranking

The solution quality in terms of standard deviation and
mean value is described here. The lower mean value
and standard deviation indicates that the algorithm has a
stronger global optimization capability and more stability.
Also, Tied rank (TR) (Rakhshani & Rahati, 2017) [64] is
used here to compare intuitively the performance between
the considered methods. In this study, the algorithm with
the best mean value is assigned to rank 1; the second-best

12650
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get rank 2, and so on. Besides, two algorithms having same
results share the average of ranks. The algorithm with the
smaller rank indicates that it is better than the compared
algorithms.
In view of the above two quality parameters, the statistical
results achieved for HSSATLBO and all other existing
algorithms (like ABC, NNA, TLBO, SSA, HHO, SMA
and SCA) and the three variants of SSA (LSSA, CSSA,
and GSSA) are computed and summarized in Tables 19
and 20 for the considered problems. In this table, the
mean, SD and median of the best fitness value after the 30
independent runs of each algorithm is reported. From this
table, it is observed that the proposed algorithm is rank 1
followed by the other algorithm, which shows its stability
and convergence for all of the benchmark issues. Also, we
can sort the ranking, as per their achievement, in the order:

i. HSSATLBO, TLBO, SMA, SSA, NNA, ABC, HHO
and SCA.

ii. HSSATLBO, GSSA, LSSA, CSSA and SSA.

The ranking order in Table 19 indicates that the TLBO
algorithm shows strong competitiveness and is the second-
best on all test issues except Overspeed system. Also, in
Table 20, the Gaussian variant of SSA (GSSA) occupied
second best position on most of the cases except for solving
the series-parallel system and the mixed system. It can
therefore be argued that HSSATLBO is an efficient and
effective method for solving various kinds of optimization
problems.

Apart from this analysis, a statistical test named
Wilcoxon signed-rank test is performed to check the
statistical significance of the results obtained from the
proposed algorithm.

5.6.2 The results analysis by Wilcoxon signed-rank test

This statistical test-based method [17] is used to compare
the performance of the proposed HSSATLBO with the other
algorithms. Also, it has several advantages,compared to the
t-test, such as: (1) normal distributions is not considered
here for the sample tested; (2) It’s less affected and more
responsive than the t-test. This advantages makes it more
powerful test for comparing two algorithms (Mafarja et al.,
2018 [55]; Sun et al., 2018 [74]; Yi et al., 2019 [90]).
Wilcoxon signed-rank test is performed here with a
significance level α = 0.05 and the obtained results are
shown in Tables 21 and 22 . In this table, “H” scored “1” if
there is a symbolic difference between HSSATLBO and the
existing algorithm and also “H” is labelled as “0” if there is
no significant difference. Again, the sign of “S” is taken as
“+” if the proposed algorithm is superior to the compared
algorithm and “−” is assigned to “S” if HSSATLBO is
inferior to the compared algorithm. It is noted that the
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Fig. 5 Comparison of convergence curves of HSSATLBO with SSA variants

Table 17 Ranking of results with different values of parameter PSP

Problems PSP1 PSP2 PSP3 PSP4 PSP5

4.1.1 Mean 0.930607050 0.931293414 0.930909699 0.931549670 0.930698573
Rank 5 2 3 1 4

4.1.2 Mean 0.999889220 0.999889278 0.999889346 0.999889391 0.999889348

Rank 5 4 3 1 2

4.1.3 Mean 0.999984725 0.999984748 0.999984869 0.999985542 0.999985240
Rank 5 4 3 1 2

4.1.4 Mean 0.999949560 0.999949559 0.999952968 0.999954106 0.999953538
Rank 4 5 3 1 2

4.1.5 Mean 0.808844189633 0.808844189633 0.808844189633 0.808844189633 0.808844189633
Rank 1 1 1 1 1

4.1.6 Mean 0.944738729 0.944725261 0.945334852 0.945356368 0.945214695
Rank 4 5 2 1 3

Average ranking 4 3.5 2.5 1 2.33
Ranking 5 4 3 1 2

Fig. 6 Ranking of results with
different values of parameter
PSP
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Table 18 Comparison on Diversity and Exploration-Exploitation measurement with SSA and its variants

Problems Measurement Compared algorithms

SSA LSSA CSSA GSSA HSSATLBO

4.1.1 Diversity 1.17742 0.64185 0.65301 0.65110 0.12618
Expl% : Expt% 66 : 34 40 : 60 41 : 59 41 : 59 19 : 81

4.1.2 Diversity 1.19247 0.63969 0.65583 0.66395 0.08692
Expl% : Expt% 66 : 33 47 : 53 41 : 59 42 : 58 12 : 88

4.1.3 Diversity 1.20481 0.70349 0.67796 0.66555 0.19484
Expl% : Expt% 68 : 31 44 : 56 43 : 57 42 : 58 28 : 72

4.1.4 Diversity 1.02167 0.54170 0.55105 0.56604 0.07521
Expl% : Expt% 63 : 37 38 : 63 38 : 62 39 : 60 15 : 85

4.1.5 Diversity 2.67162 1.39743 1.37574 1.40417 0.30378
Expl% : Expt% 90 : 9 61 : 39 60 : 40 62 : 38 33 : 67

4.1.6 Diversity 3.54413 1.69871 1.67273 1.72212 0.43632
Expl% : Expt% 81 : 18 45 : 51 45 : 55 46 : 54 35 : 65

Fig. 7 Comparison of Diversity Measurement of HSSATLBO with SSA, LSSA, CSSA and GSSA

Fig. 8 Exploration-Exploitation measurement of HSSATLBO for solving 4.1.1 to 4.1.6
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Table 20 Comparison of the statistical results obtained by HSSATLBO and the SSA variants

Problems SSA LSSA CSSA GSSA HSSATLBO

4.1.1 Best 0.931682378549 0.931681598466 0.931681812332 0.931681957580 0.931682387100

Mean 0.924530590294 0.921589927882 0.921580640950 0.925015928556 0.931379775784

Std 5.74186E-03 7.52792E-03 7.09996E-03 6.61257E-03 8.02668E-04

Median 0.924646713521 0.921405053083 0.923357326677 0.928483055614 0.931680940554

Rank 3 4 5 2 1

4.1.2 Best 0.999889343515 0.999889373288 0.999889636119 0.999889601704 0.999889637382

Mean 0.999851215328 0.999836304693 0.999857891541 0.999858100930 0.999889356835

Std 2.14278E-05 4.79475E-05 2.00489E-05 1.55662E-05 1.54451E-07

Median 0.999851315177 0.999851302379 0.999864570775 0.999851368670 0.999889331930

Rank 4 5 3 2 1

4.1.3 Best 0.999986336949 0.999986335794 0.999986336878 0.999986303326 0.999986337376

Mean 0.999969247658 0.999976040265 0.999973838913 0.999971544907 0.999984950098

Std 1.75994E-05 1.20043E-05 9.64372E-06 1.66063E-05 2.28012E-06

Median 0.999979814445 0.999979814849 0.999979803291 0.999979776596 0.999986321573

Rank 5 2 3 4 1

4.1.4 Best 0.999954674661 0.999954674643 0.999954674661 0.999954674540 0.999954674664
Mean 0.999940503716 0.999941627064 0.999938408345 0.999941853887 0.999954104695
Std 1.58699E-05 2.05199E-05 3.65211E-05 1.57548E-05 2.16403E-06
Median 0.999946134330 0.999946124021 0.999946117229 0.999946114350 0.999954674352
Rank 4 3 5 2 1

4.1.5 Best 0.808844189633 0.808844189633 0.808844189633 0.808844189633 0.808844189633
Mean 0.792425175286 0.807698589866 0.807469469913 0.807698589866 0.808844189633
Std 1.76271E-02 2.60543E-03 2.79644E-03 2.60543E-03 5.64601E-16
Median 0.794475538781 0.808844189633 0.808844189633 0.808844189633 0.808844189633
Rank 5 2.5 4 2.5 1

4.1.6 Best 0.945218008630 0.945613357458 0.945613357458 0.945613357458 0.945613357458
Mean 0.940979789237 0.943723468748 0.942826393320 0.940895208312 0.945368142124
Std 5.91813E-03 1.40407E-03 2.78831E-03 4.43258E-03 3.76312E-04
Median 0.942552429269 0.943943950607 0.943404680133 0.941624946698 0.945613357458
Rank 4 2 3 5 1

Average ranking 4.17 3.09 3.83 2.92 1
Ranking 5 3 4 2 1

proposed algorithm HSSATLBO dominates all compared
algorithms on all reliability problems. Thus, from this
analysis, we conclude that the proposed HSSATLBO can
obtain better solutions than the comparative algorithms,
which means that the proposed method has a better global
performance optimization capability than the comparable
algorithms.

5.6.3 Kruskal-Wallis andmultiple comparison test

The MCT test is performed here to justify whether
the proposed HSSATLBO algorithm is better than the
other optimizers (e.g., SSA, NNA, TLBO, ABC, HHO,
SMA and SCA) and the other variants of SSA (LSSA,
CSSA, and GSSA). For this purpose, we perform a non-
parametric Kruskal-Wallis test (KWT) between the best
values obtained for each problem considered. This test

was used to investigate the hypothesis that the different
independent samples of the distributions had or did not
have the same estimates. On the other hand, the MCT
is used to determine the significant difference between
the different estimates by performing multiple comparisons
using one-way ANOVA. To addressed this, the significance
of the proposed HSSATLBO algorithm results are compared
with the compared algorithms results. The optimized
results between the pairs of the different algorithms are
summarized in Tables 23 and 24. In this table, the first
column represents the problem considered, while the second
column indicates the indices between the pairs of the
different samples. The third and fifth column describes the
boundary of the true mean difference between the samples
considered at a 5% level of significance. At the end of
the last column, the p-value of the test obtained by KWT
corresponds to the null hypothesis of equal means.
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Fig. 9 Box plot of objective
function using the reported
optimizers
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Fig. 10 Box plot of objective
function using the SSA variants
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The box-plot and the MCT graphs for the problems
(4.1.1-4.1.6) considered are shown in Figs. 9 and 10. In
this figure, the left graph describes the boxes with the
values of the 1st, 2nd and 3rd quarters, while the vertical
lines that extend the boxes are called the whisker lines
that provide information on the re-imagining values. On the
other hand, on the right side of this figure, the MCT makes a
multiple comparison between the different pairs and makes
a significant difference between them. The blue line on
these graphs represents the proposed HSSATLBO results
and the red line indicates which algorithm results (such
as HHO, SMA, SCA, ABC, NNA, TLBO, and SSA) or
(LSSA, CSSA, GSSA and SSA) are statistically significant
from the proposed HSSATLBO. For example, in case of
series system (4.1.1), as shown in Fig. 9 we calculate that
all existing algorithms (HHO, SMA, SCA, ABC, NNA,
TLBO, and SSA) have statistically significant resources
from the HSSATLBO algorithm. Furthermore, the vertical
lines (right/left, shown in black colour) shown around the
HSSATLBO results (displayed in blue colour) describe the
marginal area to show which method is statistically better
or not considered to be problematic. From this analysis and
the results are shown in Figs. 9-10 and Tables 23-24, we
conclude that the performance of the proposed algorithm is
statistically significant with the other algorithms. The best
results are therefore provided by the HSSATLBO.

6 Conclusions & Future work

In order to solve the reliability-redundancy allocation
problems (RRAP) with non-linear resource constraints, this
paper introduces a hybrid algorithm HSSATLBO combining
the SSA and TLBO algorithms. SSA has been successfully
tasted to solve various kinds of complex optimization
problems due to its simple structure and outstanding
performance. Although the SSA experience is adequate
in exploration but lacking of exploitation, which forces
slow convergence and reduces the optimizing accuracy.
To address these issues, the basic formation of the SSA
has been renovated by embedding the features of the
TLBO. In this context, a probabilistic selection strategy is
defined, which helps to determine whether to apply the
basic SSA or the TLBO to construct a new solution. To
demonstrate the application of the HSSATLBO algorithm,
we have considered several benchmark issues in the areas
of reliability optimization. All of these problems considered
are mixed variables – discrete, continuous and integer. The
core idea of the proposed HSSATLBO algorithm is to
make full use of the good global search ability of SSA
and fast convergence of TLBO that helps to maximize
the system reliability through the choices of redundancy
and component reliability. The results obtained from the
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proposed algorithm have been tested and compared with
a number of existing algorithms and conclude that they
also perform well. Also, the best, mean, median and
SD of the problems considered are reports that indicate
that the proposed algorithm has better results with less
SD and is therefore reliable and optimal. In addition, in
order to eliminate the stochastic nature of the algorithm,
we perform several statistical tests, namely a ranking
test and a Wilcoxon signed-rank test for each problem.
All of the above discussions and evaluations in this
study ensure that the proposed algorithm is a competitive
approach, not only that it performs well but also that it
has a better global performance optimization capability
than the comparable algorithms to solve the reliability
problems.

In future works, one can attempt to use the proposed
algorithm in other applications such as airline recovery
problems, integrated aircraft, and passenger recovery prob-
lems, flight perturbation problems, etc. Flight irregularity is
a well-known and widespread problem all over the world
which creates a serious impact on the performance of the
airlines’ company. All through the present decades, dif-
ferent models for dealing with the aircraft recovery issue
have been recommended that hope to optimize the task
upon different conditions. Airlines are attempting to locate
the best timetables that are steady with their different
objectives; namely, minimize the number of interrupted
passengers and the total number of aircraft to recuperate
from the interruption, decrease the number of irrecov-
erable flights, minimize the interrupted passenger’s cost,
thus the ultimate goal of airlines to maximize their over-
all profit (Andersson, 2006 [5]; Arıkan et al., 2016 [10]).
Analysts suggest that it is better to consider recapture prob-
lems jointly with all essential constraints instead of consid-
ering only one recovery. Real situations including erratic
interruptions require a more sensible arrangement that can
retain changes in a better way. Based on our study in that
field of disruption administration, our proposed algorithm
may be considered for further research to solve the problem.
Being a dynamic field for exploration, the researchers may
extend the models to handle more complex variants of the
combined recovery problem.
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