
Noname manuscript No.
(will be inserted by the editor)

Providing Upgrade Plans for Third-party Libraries: A
Recommender System using Migration Graphs

Riccardo Rubei · Davide Di Ruscio · Claudio Di Sipio · Juri Di Rocco ·
Phuong T. Nguyen

the date of receipt and acceptance should be inserted later

Abstract During the development of a software project,

developers often need to upgrade third-party libraries

(TPLs), aiming to keep their code up-to-date with the

newest functionalities offered by the used libraries. In

most cases, upgrading used TPLs is a complex and

error-prone activity that must be carefully carried out

to limit the ripple effects on the software project that

depends on the libraries being upgraded. In this paper,

we propose EvoPlan as a novel approach to the rec-

ommendation of different upgrade plans given a pair of

library-version as input. In particular, among the dif-

ferent paths that can be possibly followed to upgrade

the current library version to the desired updated one,

EvoPlan is able to suggest the plan that can potentially

minimize the efforts being needed to migrate the code

of the clients from the library’s current release to the

target one. The approach has been evaluated on a cu-

rated dataset using conventional metrics used in Infor-

mation Retrieval, i.e., precision, recall, and F-measure.

The experimental results show that EvoPlan obtains

an encouraging prediction performance considering two

Riccardo Rubei
Università degli studi dell’Aquila, Italy
E-mail: riccardo.rubei@graduate.univaq.it

B Davide Di Ruscio
Università degli studi dell’Aquila, Italy
E-mail: davide.diruscio@univaq.it

Claudio Di Sipio
Università degli studi dell’Aquila, Italy
E-mail: claudio.disipio@graduate.univaq.it

Juri Di Rocco
Università degli studi dell’Aquila, Italy
E-mail: juri.dirocco@univaq.it

Phuong T. Nguyen
Università degli studi dell’Aquila, Italy
E-mail: phuong.nguyen@univaq.it

different criteria in the plan specification, i.e., the pop-

ularity of migration paths and the number of open and

closed issues in GitHub for those projects that have al-

ready followed the recommended migration paths.

1 Introduction

When dealing with certain coding tasks, developers usu-

ally make use of third-party libraries (TPLs) that pro-

vide the desired functionalities. Third-party libraries

offer a wide range of operations, e.g., database man-

agement, file utilities, Website connection, to name a

few. Their reuse allows developers to exploit a well-

founded infrastructure, without reinventing the wheel,

which eventually helps save time as well as increase

productivity. However, TPLs evolve over the course of

time, and API functions can either be added or re-

moved, aiming to make the library become more ef-

ficient/effective, as well as to fix security issues. Up-

grading clients’ code from a library release to a newer

one can be a daunting and time-consuming task, espe-

cially when the APIs being upgraded introduce break-

ing changes that make the client fail to compile or in-

troduce behavioral changes into it [27]. Thus, managing

TPLs and keeping them up-to-date becomes a critical

practice to minimize the technical debt [3].

In order to upgrade a client C from a starting library

version lvi to a target one lvt , the developer needs to un-

derstand both versions’ documentation deeply, as well

as to choose the right matching between corresponding

methods. Things become even more complicated when

several subsequent versions of the library of interest l

have been released from vi to vt. In such cases, develop-

ers who want to reduce the technical debts, which have

been accumulated due to libraries that have not been

ar
X

iv
:2

20
1.

08
20

1v
1

 [
cs

.S
E

]
 2

0
Ja

n
20

22

mailto:riccardo.rubei@graduate.univaq.it
mailto:davide.diruscio@univaq.it
mailto:claudio.disipio@graduate.univaq.it
mailto:juri.dirocco@univaq.it
mailto:phuong.nguyen@univaq.it

2 Riccardo Rubei et al.

upgraded yet, have first to decide the upgrade plan that

has to be applied, i.e., how to go from lvi to lvt since

many possible paths might be followed. In such cases,

it is essential to have proper machinery to assist devel-

opers in choosing suitable upgrade plans to potentially

reduce the efforts that are needed to migrate the client

project C under development. It is possible to minimize

migration efforts by identifying upgrade plans, which

similar projects have already performed, and thus, by

relying on the experiences of already upgraded clients.

In this way, developers have the availability of support-

ing material, e.g., documentation, and snippets of code

examples that can be exploited during the migration

phases.

In the context of open-source software, developing

new systems by reusing existing components raises rel-

evant challenges in: (i) searching for relevant modules;

and (ii) adapting the selected components to meet some

pre-defined requirements. To this end, recommender sys-

tems in software engineering have been developed to

support developers in their daily tasks [23,8]. Such sys-

tems have gained traction in recent years as they are

able to provide developers with a wide range of use-

ful items, including code snippets [20], tags/topics [7,

9], third-party libraries [19], documentation [22,24], to

mention but a few. In the CROSSMINER project [8],

we conceptualized various techniques and tools for ex-

tracting knowledge from open source components to

provide tailored recommendations to developers, help-

ing them complete their current development tasks.

In this work, we propose EvoPlan, a recommender

system to provide upgrade plans for TPLs. By exploit-

ing the experience of other projects that have already

performed similar upgrades and migrations, EvoPlan

recommends the plan that should be considered to up-

grade from the current library version to the desired

one. A graph-based representation is inferred by ana-

lyzing GitHub repositories and their pom.xml files. Dur-

ing this phase, EvoPlan assigns weights representing the

number of client projects that have already performed

a specific upgrade. Afterwards, the system employs a

shortest-path algorithm to minimize the number of up-

grade steps considering such weights. It eventually re-

trieves multiple upgrade plans to the user with the tar-

get version as well as all the intermediate passages.

To the best of our knowledge, there exist no tools

that provide this type of recommendations. Thus, we

cannot compare EvoPlan with any baselines but eval-

uate it by using metrics commonly used in informa-

tion retrieval applications, i.e., precision, recall, and

F-measure. Furthermore, we also evaluate the correla-

tion between GitHub1 issues data and the suggested

1 https://github.com/

upgrade plans. In this sense, our work has the following

contributions:

– Gathering and storing of migration data: Using Neo4j

Java Driver,2 EvoPlan stores the extracted data in

a persistent and flexible data structure;

– Recommendation of an upgrade plan list : Consid-

ering the number of clients, EvoPlan suggests the

most common upgrade plans that are compliant with

those that have been accepted by the developers

community at large;

– Modularity and flexible architecture: The proposed

system can be seen as both an external module

integrable into other approaches and a completely

stand-alone tool that can be customized by end users;

– Automated evaluation and replication package avail-

ability : The performance of EvoPlan has been eval-

uated by employing the widely used ten-fold cross-

validation technique. Last but not least, we make

the EvoPlan replication package available online to

facilitate future research.3

The paper is structured as follows. Section 2 presents

a motivating example and existing migration tools in

the literature. Furthermore, in this section we also high-

light the open challenges in the domain. Section 3 in-

troduces EvoPlan, the proposed approach to the recom-

mendation of third-party library upgrades. In Section

4, we present the performed evaluation process. The

results obtained from the empirical evaluation are pre-

sented in Section 5 together with possible threats to

validity. The related work is reviewed in Section 6. Fi-

nally, we conclude the paper and envisage future work

in Section 7.

2 Motivations and Background

TPLs offer several tailored functionalities, and invoking

them allows developers to make use of a well-founded

infrastructure, without needing to re-implementing from

scratch [19]. Eventually, this helps save time as well as

increase productivity. However, as libraries evolve over

the course of time, it is necessary to have a proper plan

to migrate them once they have been updated. So far,

various attempts have been made to tackle this issue.

In this section, we introduce two motivating examples,

and recall some notable relevant work as a base for fur-

ther presentation.

2 https://github.com/neo4j/neo4j-java-driver
3 https://github.com/MDEGroup/EvoPlan

https://github.com/
https://github.com/neo4j/neo4j-java-driver
https://github.com/MDEGroup/EvoPlan

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 3

2.1 Explanatory examples

This section discusses two real-world situations that de-

velopers must cope with during the TLPs migration

task, i.e., code refactoring and vulnerable dependencies

handling. In the first place, it is essential to consider

different TPL releases that are conformed to the se-

mantic versioning format.4 A standard version string

follows the pattern X.Y, in which X represents the ma-

jor release and Y represents the minor one. Sometimes,

releases can include a patch version Z, resulting in the

final string X.Y.Z. We present an explanatory exam-

ple related to log4j,5 a widely used Java logging library.

When it is upgraded from version 1.2 to version 1.3, as

shown in Listing 1 and Listing 2, respectively, a lot of

internal changes happened which need to be carefully

documented.6 As it can be noticed, the main change

affects the Category class which is replaced by the

Logger class. Furthermore, all the former methods that

were used by the deprecated class cause several failures

at the source code level. For instance, the setPriority

method is replaced by setLevel in the new version.

1 Category root = Category.getRoot ();
2 root.debug("hello");
3
4 Category cat = Category.getInstance(Some.class);
5 cat.debug("hello");
6
7 cat.setPriority(Priority.INFO);

Listing 1 log4j version 1.2.

1 Logger root = Logger.getRootLogger ();
2 root.debug("hello");
3
4 Logger logger = Logger.getLogger(Some.class);
5 logger.debug("hello");
6
7 logger.setLevel(LEVEL.INFO);

Listing 2 log4j version 1.3.

Though this is a very limited use case, it suggests

that the code refactoring that takes place during the

migration is an error-prone activity even for a single

minor upgrade, i.e., from version 1.2 to version 1.3.

Additionally, the complexity dramatically grows in the

case of a major release as it typically requires extra ef-

forts rather than a minor one which are not welcome by

the majority of developers [14]. Considering such con-

text, the reduction of the time needed for a single mi-

gration step, even a minor one, is expected to improve

the overall development process.

4 https://semver.org/
5 https://logging.apache.org/log4j/
6 http://articles.qos.ch/preparingFor13.html

Fig. 1 GitHub Dependabot alert.

Concerning vulnerable dependencies, GitHub De-

pendabot7 provides weekly security alert digests that

highlight possible security issues for outdated depen-

dencies of a repository, which can be of different lan-

guages, e.g., Python, Java, JavaScript.8 An example of

a Dependabot report is shown in Fig. 1.

As shown in Fig. 1, Dependabot suggests possible

TPL upgrades to solve vulnerabilities in the given project.

For instance, the guava dependency seems to be out-

dated, and thus the system automatically suggests jump-

ing to the latest version, i.e., 24.1.1. Though this alert

can raise awareness of this evolution, it does not of-

fer any concrete recommendations on how to perform

the actual migration steps. In some cases, the bot does

not provide any recommended version to update the

project, e.g., for the log4j dependence. In this respect,

we see that there is an urgent need for providing recom-

mendations of the most suitable plan, so as to upgrade

the library, as this can significantly reduce the migra-

tion effort.

2.2 Existing techniques

This section reviews some relevant work that copes with

the migration problem.

Meditor [30] is a tool aiming to identify migration-

related (MR) changes within commits and map them at

the level of source code with a syntactic program differ-

encing algorithm. To this end, the tool mines GitHub

projects searching for MR updates in the pom.xml file

and check their consistency with the WALA frame-

work.9

7 https://dependabot.com/blog/

github-security-alerts/
8 https://dependabot.com/#languages
9 https://github.com/wala/WALA

https://semver.org/
https://logging.apache.org/log4j/
http://articles.qos.ch/preparingFor13.html
https://dependabot.com/blog/github-security-alerts/
https://dependabot.com/blog/github-security-alerts/
https://dependabot.com/# languages
https://github.com/wala/WALA

4 Riccardo Rubei et al.

Table 1 Main features of TLPs migration systems.

System In
fe
r
r
in

g
m

ig
r
a
ti
o
n

In
c
r
e
m

e
n
ta

l
p
la
n

P
o
p
u
la
r
it
y

G
it
H
u
b

is
su

e
s

U
p
g
r
a
d
in

g

R
e
p
la
c
e
m

e
n
t

A
p
p
ly
in

g
M

ig
r
a
ti
o
n

Meditor [30] 3 7 3 7 3 3 3

Apivawe [11] 3 7 3 7 7 3 7

Graph Mining [26] 3 7 3 7 7 3 7

RAPIM [2] 3 7 3 7 7 3 3

Diff-CatchUp [29] 3 7 3 7 3 3 7

M3 [4] 3 7 7 7 7 3 3

EvoPlan 3 3 3 3 3 7 7

Hora and Valente propose Apiwave [11], a system

that excerpts information about libraries’ popularity

directly from mined GitHub project’s history. After-

wards, it can measure the popularity of a certain TLP

by considering the import statement removal or addi-

tion.

Teyton et al. [26] propose an approach that discov-

ers migrations among different TLPs and stores them

in a graph format. A token-based filter is applied on

pom.xml files to extract the name and the version of

the library from the artifactid tag. The approach evetu-

ally exhibits four different visual patterns that consider

both ingoing and outgoing edges to highlight the most

popular target.

RAPIM [2] employs a tailored machine learning model

to identify and recommend API mappings learned from

previously migration changes. Given two TPLs as in-

put, RAPIM extracts valuable method descriptions from

their documentation using text engineering techniques

and encode them in feature vectors to enable the un-

derpinning machine learning model.

Diff-CatchUp [29] has been conceived with the aim

of proposing usage examples to support the migration

of reusable software components. The tool makes use

of the UMLDiff algorithm [28] to identify all relevant

source code refactorings. Then, a heuristic approach is

adopted to investigate the design-model of the evolved

component and retrieve a customizable ranked list of

suggestions.

Collie et al. recently proposed the M3 tool [4] to sup-

port a semantic-based migration of C libraries. To this

end, the system synthesizes a behavioral model of the

input project by relying on the LLVM intermediate rep-

resentation.10 Given a pair of source and target TLPs,

10 https://llvm.org/

the tool generates abstract patterns that are used to

perform the actual migration.

Table 1 summarizes the features of the above-ment-

ioned approaches by considering the different tasks in-

volved in migration processes by starting with the dis-

covery of possible migration changes up to embedding

them directly into the source code as explained below.

– Inferring migration: To extract migration-related in-

formation, tools can analyze existing projects’ arti-

facts, i.e., commits, pom.xml file, or tree diff. This

is the first step of the whole migration process.

– Incremental plan: The majority of the existing ap-

proaches perform the migration just by considering

the latest version of a TLP. This could increase the

overall effort needed to perform the actual migra-

tion, i.e., developers suffer from accumulated tech-

nical debt. In contrast, considering a sequence of in-

termediate migration steps before going to the final

one can reduce such refactoring.

– Popularity : This is the number of client projects

that make use of a certain library. In other words, if

a TLP appears in the pom.xml file or in the import

statement, its popularity is increased.

– GitHub issues: As an additional criterion, the mi-

gration process can include data from GitHub is-

sues that may include relevant information about

TLPs migration. Thus, we consider them as a pos-

sible source of migration-related knowledge.

– Upgrading : This feature means that the tool sup-

ports the upgrading of a TLP from an older ver-

sion to a newer one. For instance, the migration de-

scribed in Section 2.1 falls under this class of migra-

tion.

– Replacement : Differently from upgrading, replace-

ment involves the migration from a library to a dif-

ferent one that exposes the same functionalities.

– Applying migration: It represents the final step of

the migration process in which the inferred migra-

tion changes are actually integrated into the project.

2.3 Dimensions to be further explored

Even though several approaches successfully cope with

TPL migration, there are still some development di-

mensions that need to be further explored. However,

providing an exhaustive analysis is out of the scope of

this section. Thus, we limit ourselves to identify some

of them by carefully investigating the approaches sum-

marized in Table 1. The elicited dimensions are the fol-

lowing ones:

– D1: Upgrading the same library. Almost all of the

presented approaches apart from Meditor, focus on

https://llvm.org/

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 5

replacing libraries and very few support the up-

grades of already included ones (see columns Up-

grading and Replacement in Table 1).

– D2: Varying the migration data sources. During the

inferring migration phase, strategies to obtain migra-

tion-related data play a fundamental role in the

overall process. A crucial challenge should be in-

vestigating new sources of information besides the

well-known sources e.g., Bug reports, Stack Over-

flow posts, and GitHub issues.

– D3: Aggregating different concepts. The entire mi-

gration process is a complex task and involves no-

tions belonging to different domains. For instance,

GitHub issues could play a relevant role in the mi-

gration process. A recent work [17] shows that the

more comments are included in the source code,

the lesser is the time needed to solve an issue. Neil

et al. [18] extracted security vulnerabilities from is-

sues and bug reports that could affect library de-

pendencies.

– D4: Identification of the upgrade plan. Existing ap-

proaches identify and apply migrations by taking as

input the explicit specification of the target version

of the library that has to be upgraded. Providing

developers with insights about candidate upgrade

plans that might reduce the migration efforts can

represent valuable support to the overall upgrade

process.

In the present work we aim to explore and propose

solutions for the dimensions D1 and D4 by providing

multiple possible upgrade plans given the request of up-

grading a given library to target a specific target ver-

sion. Furthermore, we also perform an initial investiga-

tion on the D2 and D3 dimensions, relying on GitHub

issues. As it can be seen in Table 1, EvoPlan covers five

out of the seven considered features. In particular, our

approach is able to infer migration, make use of incre-

mental plan by considering the popularity and issues,

so as to eventually recommend an upgrade plan. Com-

pared to the existing tools, EvoPlan tackles most of the

issues previously presented.

3 Proposed approach

In this paper we propose an approach to support the

first phase of the migration process, i.e., inferring the

possible upgrade plans that can satisfy the request of

the developer that might want to upgrade a given TPL

used in the project under development.

Our approach aims at suggesting the most appro-

priate migration plan by taking into consideration two

key factors: the popularity of the upgrade plan and the

GitHub

Crawler

Commits diff

POM files

 Raw issues
 data

Data Extractor

CSV file

Migration
 graph

Plan calculator

Graph Builder

Upgrade
 plans

Issue miner
Ranked

plans
Filtered issues

Plan ranker

Fig. 2 EvoPlan’s architecture.

availability of discussions about it. Popularity means

how many clients have performed a given upgrade plan,

while discussions are GitHub issues that have been open

and closed in projects during the migration phase. By

mining GitHub using the dedicated API,11 we are able

to extract the information required as input for the rec-

ommendation engine of EvoPlan.

The conceived approach is depicted in Fig. 2 and

consists of six components, i.e., Crawler, Data Extrac-

tor, Graph Builder, Issues Miner, Plan Calculator and

Plan Ranker. With the Crawler component, the sys-

tem retrieves information about GitHub repositories

and downloads them locally. These repositories are then

analyzed by the Data Extractor component to excerpt

information about commits and history version. Once

all the required information has been collected, Graph

Builder constructs a migration graph with multiple wei-

ghts, and Issues Miner generates data related to GitHub

issues. The Plan Calculator component relies on the

graph to calculate the k-best paths available. Finally,

Plan Ranker sorts these paths by considering the num-

ber of issues. In the succeeding subsections, we are going

to explain in detail the functionalities of each compo-

nent.

3.1 Crawler

Migration-related information is mined from GitHub

using the Crawler component. By means of the JGit li-

brary,12 Crawler downloads a set P of GitHub projects

that have at least one pom.xml file, which is a project

file containing the list of all adopted TPLs. In case there

are multiple pom.xml files, they will be analyzed sep-

arately to avoid information loss. Then, the Crawler

component analyzes all the repository’s commits that

11 https://developer.github.com/v3/
12 https://www.eclipse.org/jgit/

https://developer.github.com/v3/
https://www.eclipse.org/jgit/

6 Riccardo Rubei et al.

affect the pom.xml to find added and removed TPLs.

Additionally, raw issue data is obtained and stored in

separate files. In particular, we count the number of

opened and closed issues for each project p ∈ P in a

specific time interval D. The starting point of this in-

terval is identified when a certain version v of a given

library l that is added as dependencies of the pom.xml

file in client C. A previous study [12] demonstrates that

the monthly rate of open issues tends to decrease over

time. Thus, the endpoint of D is obtained by consid-

ering the first two months of development to extract

relevant data concerning the considered library l with-

out loss of data. In such a way, the GitHub issues that

have been opened and closed for each TLP that has

been added in p, are obtained for further processing

phases.

3.2 Data Extractor

In this phase, data is gathered by means of JGit, and

analyzed using different processing steps as follows. The

first step makes use of the GitHub log command to re-

trieve the list of every modification saved on GitHub for

a specific file. Furthermore, the command provides the

code SHA for every commit, which allows us to iden-

tify it. For instance, Fig. 3.a depicts a commit related

to a given pom.xml file taken as input. The identifier

of the commit is used to retrieve the list of the cor-

responding operated changes as shown in Fig. 3.b. In

particular, inside a commit we can find a large number

of useful information like what was written or removed

and when. The Data Extractor component focuses on

the lines which contain an evidence of library changes.

In a commit, the added lines are marked with the sign

’+’, whereas the removed ones are marked with ’-’ (see

the green and red lines, respectively shown in Fig. 3.b).

In this way, the evolution of a library is obtained by an-

alyzing the sequence of added/removed lines. With this

information, EvoPlan is also able to count how many

clients have performed a specific migration. The infor-

mation retrieved by the Data Extractor component is

stored in a target CSV file, which is taken as input by

the subsequent entity of the process as discussed below.

3.3 Graph Builder

This component creates nodes and relationships by con-

sidering the date and library changes identified in the

previous phase. To this end, EvoPlan exploits the Cypher

query language13 to store data into a Neo4j graph. For

13 https://neo4j.com/developer/

cypher-query-language/

a) Example of log

b) Example of diff

Fig. 3 Example of artifacts used by the Data Extractor com-
ponent.

instance, we extract from CSV files two pairs library-

version (l,v1) and (l,v2) with signs ’-’ and ’+’, respec-

tively. In this way, the component creates an oriented

edge from (l,v1) to (l,v2). Once the first edge is created,

any further pairs containing the same library upgrade

will be added as an incremented weight on the graph

edge. The date value contained in the CSV record is

used to avoid duplicated edges or loops. Furthermore,

each edge is weighted according to the number of clients

as described in Data Extractor phase. That means if

we find w times the same couple (l,v1) to (l,v2) (i.e.,

a number of w projects have already migrated the li-

brary l from v1 to v2), the edge will have a weight of

w. Thus, the final outcome of this component is a mi-

gration graph that considers the community’s interests

as the only weight. For instance, Fig. 4 represents the

extracted migration graph for the slf4j-api library. The

graph contains all the mined version of the library and

for each pair the corresponding number of clients that

have performed the considered upgrade is shown. For

instance, in Fig. 4 the edge from the version 1.6.1 to

1.6.4 is selected, and 14 clients (see the details on the

bottom) have performed such a migration.

3.4 Plan Calculator

Such a component plays a key role in the project. Given

a library to be upgraded, the starting version, and the

target one, Plan Calculator retrieves the k shortest paths

by using the well-founded Yen’s K-shortest paths algo-

rithm [31] which has been embedded into the Neo4j

library. As a default heuristic implemented in EvoPlan,

the component retrieves all the possible paths that max-

imize the popularity of the steps that can be performed

to do the wanted upgrade. Thus, the Plan Calculator

component employs the aforementioned weights which

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 7

1.3.1

1.5.11

1.4.2

1.5.0

1.6.0

1.7.1

1.6.4

1.5.5

1.5.8

1.5.3

1.6.1

1.7.51.5.10

1.4.3

1.6.2

1.6.3

1.6.6
1.5.6

1.5.2

1.7.2

1.7.12

1.7.7

1.7.10

1.7.21

1.7.6

1.7.20

1.7.24

1.7.25

1.7.22
1.7.4

1.7.26

1.8.0-b

1.7.30

1.7.18 1.7.19

Fig. 4 Migration graph of the slf4j library.

represent the popularity as a criteria for the shortest

path algorithm.

By considering the graph shown in Fig. 4, there are

several possibilities to upgrade slf4j from version 1.5.8

to 1.7.25. By taking into account the available weights,

EvoPlan can recommend the ranked list depicted in

Fig. 5. The first path in the list suggests to follow the

steps 1.6.1, 1.6.4, and 1.7.5 to reach the final version

considered in the example, i.e., 1.7.25.14 Such a plan

is the one that is performed most by other projects,

which rely on slf4j and that have already operated the

wanted library migration. Thus, such a path is more fre-

quent than directly updating the library to the newest

version.

3.5 Issues Miner

Issues play an important role in project development.

For instance, by solving issues, developers contribute

to the identification of bugs as well as the enhance-

ment of software quality through feature requests [16].

In the scope of this work, we exploit issues as criteria

for ordering upgrade plans. In particular, we rely on the

availability of issues that have been opened and closed

due to upgrades of given third-party libraries.

The Issue Miner component is built to aggregate

and filter raw issues data gathered in the early stage of

the process shown in Fig. 2. However, due to the inter-

nal construction of Neo4j, we cannot directly embed

this data as a weight on the migration graph’s edges.

14 It is worth noting that the popularity values are dispro-
portionate to the popularity of the corresponding upgrade
plans. In the example shown in Fig. 5 the most popular up-
grade is the one with popularity value 0.898.

Table 2 Issues information extracted for commons-io.

Version Open Issues Closed Issues Delta
1.0 14 33 19
1.3.2 150 420 270
1.4 87 408 321
2.0 5 10 5
2.0.1 133 457 324
2.1 129 516 387
2.2 67 999 932
2.3 5 20 15
2.4 939 3,283 2,344
2.5 64 918 854
2.6 64 548 484

Thus, as shown in Section 3.1, we collect the number of

open and closed issues considering a specific time win-

dow, i.e., two months starting from the introduction of a

certain TLP in the project. Then, this component filters

and aggregates the issues data related by using Pandas,

a widely-used Python library for data mining [21]. For

instance, Table 2 shows the mined issues related to the

commons-io library. In particular, for each version of

the library, the number of issues that have been opened

and closed by all the analysed clients since they have

migrated to that library version is shown. EvoPlan can

employ the extracted data to enable a ranking function

based on GitHub issues as discussed in the next section.

Issues Miner works as a stand-alone component,

thus it does not impact on the time required by the

overall process. In this way, we have an additional source

of information that can be used later in the process as

a supplementary criterion to choose the ultimate up-

grade plan from the ranked list produced by the Plan

Calculator component.

3.6 Plan Ranker

In the final phase, the k-paths produced by the Plan

Calculator are rearranged according to the information

about issues. For every path, we count the average value

of opened/closed issues. A large value means that a

certain path potentially requires less integration effort

since there are more closed issues than the opened ones

[16], i.e., issues have been tackled/solved rather than

being left untouched.

Thus, the aim is to order the plans produced by Plan

Calculator according to the retrieved issues: among the

most popular plans we will propose those with the high-

est issue values.

Table 3 shows an example of the ranking process.

There are two highlighted paths, the gray row corre-

sponds to the best result according to the plan popu-

larity only. In fact, the gray highlighted plan is the one

with lower popularity value. Meanwhile, the orange row

8 Riccardo Rubei et al.

Fig. 5 List of k -shortest paths for slf4j.

Table 3 An example of the ranking results.

Proposed Path

P
o
p
.
V
a
lu

e

Is
su

e
s
V
a
lu

e

1.5.8, 1.6.1, 1.6.4, 1.6.6, 1.7.5, 1.7.25 1.446 57
1.5.8, 1.6.1, 1.6.4, 1.7.5, 1.7.25 0.898 58
1.5.8, 1.7.5, 1.7.25 1.0 58
1.5.8, 1.6.1, 1.7.5, 1.7.25 1.0 61
1.5.8, 1.6.1, 1.6.4, 1.7.2, 1.7.5, 1.7.25 1.238 58

is recommended according to the issues criteria (in this

case, the higher the issue value, the better). The path

that should be selected is the orange one because it rep-

resents the one characterized by the highest activity in

terms of opened and closed issue, among the most pop-

ular ones. In this way, EvoPlan is able to recommend

an upgrade plan to migrate from the initial version to

the desired one by learning from the experience of other

projects which have already performed similar migra-

tions.

4 Evaluation

To the best of our knowledge, there are no replication

packages and reusable tools related to the approaches

outlined in Section 2 that we could use to compare

EvoPlan with them. As a result, it is not possible to

compare EvoPlan with any baselines. Thus, we have to

conduct an evaluation of the proposed approach on a

real dataset collected from GitHub. Section 4.1 presents

three research questions, while Section 4.2 describes the

evaluation process. Section 4.3 gives a detailed descrip-

tion of the dataset used for the evaluation, and the em-

ployed metrics are specified in Section 4.4.

4.1 Research questions

To study the performance of EvoPlan, we consider the

following research questions:

– RQ1: How effective is EvoPlan in terms of predic-

tion accuracy? To answer this question, we conduct

experiments following the ten-fold cross-validation

methodology [13] on a dataset considering real mi-

gration data collected from GitHub. Moreover, we

compute Precision, Recall, and F-measure by com-

paring the recommendation outcomes with real mi-

grations as stored in GitHub;

– RQ2: Is there any correlation between the GitHub is-

sues and the popularity of a certain migration path?

We analyze how the number of opened and closed

issues could affect the migration process. To this

end, we compute three different statistical coeffi-
cients to detect if there exists any correlation among

the available data.

– RQ3: Is EvoPlan able to provide consistent recom-

mendations in reasonable time? Besides the recom-

mended migration steps, we are interested in mea-

suring the time of the overall process, including the

graph building phase. This aims at ascertaining the

feasibility of our approach in practice.

4.2 Overall process

As depicted in Fig. 6, we perform experiments using

the ten-fold cross-validation methodology on a well-

founded dataset coming from an existing work [14].

Given the whole list of ≈11,000 projects, we down-

load the entire dataset using the Crawler component.

Then, the dataset is split into testing and ground truth

projects, i.e., 10% and 90% of the entire set, respec-

tively, by each round of the process. This means that

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 9

in each round we generate a new migration graph by

using the actual 90% portion. Given a single testing

project, the Analyzing commits phase is conducted to

capture the actual upgrade path followed by the reposi-

tory, as stated in Section 3.1. To build the ground-truth

graph, i.e., the real migration in GitHub, we consider

projects not included in the testing ones and calculate

every possible upgrade plan for each TPLs.

Initial dataset Testing projects

Graph builder

Ground Truth graph

Analyzing commits Actual path

Calculate plan Upgrade plan

Comparison

Split ten-fold Start-end version

Ground truth

Fig. 6 The evaluation process.

To aim for a reliable evaluation, we select the start-

ing and the end version of a certain TPL from the ac-

tual plan of a testing project. The pair is used to feed

the Plan Calculator component which in turn retrieves

the proposed plan. In this respect, by following the two

paths we are able to compute the metrics to assess the

overall performance, namely precision, recall, and F-

measure.

4.3 Data collection

We make use of an existing dataset which has been cu-

rated by a recent study available on GitHub.15 The ra-

tionale behind this selection is the quality of the repos-

itories which were collected by applying different fil-

ters, i.e., removing duplicates, including projects with

at least one pom.xml file, and crawling only well-main-

tained and mature projects. Table 4 summarizes the

number of projects and pom.xml files. The dataset con-

sists of 10,952 GitHub repositories, nevertheless we were

able to download only 9,517 of them, as some have been

deleted or moved. Starting from these projects, we got a

total number of 27,129 pom.xml files. Among them, we

selected only those that did not induce the creation of

empty elements by the Data Extractor component while

analyzing logs and diffs as shown in Fig. 3. The filtering

process resulted in 13,204 pom.xml files. The training

15 https://bit.ly/2Opd1GH

set is used to create a migration graph to avoid any

possible bias. For each round, we tested 420 projects,

and 3,821 projects are used to build the graph.

Table 4 Statistics of the dataset.

Total number of projects 10,952
Number of downloaded projects 9,517
Total number of pom.xml files 27,129
Number of screened pom.xml files 13,204

Table 5 summarizes the set of libraries in the dataset,

obtained by employing the Crawler module (cf. Section

3.1). There are seven popular libraries,16 i.e., junit, http-

client, slf4j, log4j, commons-io, guava, and commons-

lang3. Among others, junit has the largest number of

migrations, i.e., 2,972. Concerning the number of ver-

sions, slf4j has 71 different versions, being the dens-

est library. Meanwhile, commons-lang3 is associated

with the smallest number of migrations, i.e., 162, and

commons-io is the sparsest library with only 16 ver-

sions. The last column shows the number of versions

that we could exploit to get the issues. The difference

means that no issues data was available for the whole

versions dataset.

Table 5 Number of migrations and versions.

Library #
m

ig
r
a
ti
o
n
s

#
v
e
r
si
o
n
s

#
is
su

e
v
e
r
s.

junit 2,972 30 19
httpclient 218 53 35
slf4j 209 71 26
log4j 229 42 19
commons-io 186 16 11
guava 627 70 34
commons-lang3 162 16 13

4.4 Metrics

Given a migration path retrieved by EvoPlan, we com-

pare it with the real migration path extracted from a

testing project. To this end, we employ Precision, Re-

call, and F-measure (or F1-score) widely used in the In-

formation Retrieval domain to assess the performance

prediction of a system. In the first place, we rely on the

following definitions:

16 https://mvnrepository.com/popular

https://bit.ly/2Opd1GH
https://mvnrepository.com/popular

10 Riccardo Rubei et al.

– A true positive corresponds to the case when the

recommended path matches with the actual path

extracted from the testing projects; TP is the total

number of true positives;

– A false positive means that the recommended up-

grade plan is not present in the ground-truth paths;

FP is the total number of false positives;

– A false negative is the migration steps that should

be present in the suggested plan but they are not;

FN is the total number of false negatives.

Considering such definitions, the aforementioned met-

rics are computed as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F −measure =
2× P ×R
P +R

(3)

Rank correlation: We consider the following coef-

ficients:

– Kendall’s tau measures the strength of dependence

between two variables. It is a non-parametric test,

i.e., it is based on either being distribution-free or

having a specified distribution but with the distri-

bution’s parameters unspecified.

– Pearson’s correlation is the most widely used cor-

relation statistic to measure the degree of the rela-

tionship between linearly related variables. In par-

ticular, this coefficient is suitable when it is possible

to draw a regression line between the points of the

available data.

– Spearman’s correlation is a non-parametric test that

is used to measure the degree of association be-

tween two variables. Differently from Pearson’s coef-

ficient, Spearman’s correlation index performs bet-

ter in cases of monotonic relationships.

All the considered coefficients assume values in the

range [-1,+1], i.e., from perfect negative correlation to

perfect positive correlation. The value 0 indicates that

between two variables there is no correlation.

In the next section, we explain in detail the experi-

mental results obtained through the evaluation.

5 Experimental results

We report and analyze the obtained results by answer-

ing the research questions introduced in the previous

section.

5.1 RQ1: How effective is EvoPlan in terms of

prediction accuracy?

Table 6 reports the average results obtained from the

cross-validation evaluation. EvoPlan achieves the max-

imum precision for commons-io, i.e., 0.90 in all the

rounds. The tool also gets a high precision for junit,

i.e., 0.88. Meanwhile, the smallest precision, i.e., 0.58 is

seen by httpclient. Concerning recall, EvoPlan obtains

a value of 0.94 and 0.96 for the junit and commons-io

libraries, respectively. In contrast, the tool achieves the

worst recall value with httpclient, i.e., 0.64. Overall by

considering the F-Measure score, we see that EvoPlan

gets the best and the worst performance by commons-io

and httpclient, respectively.

Table 6 Precision, Recall, and F-Measure considering pop-
ularity.

Library Precision Recall F-measure
junit 0.88 0.94 0.91
httpclient 0.58 0.64 0.61
slf4j-api 0.65 0.74 0.69
log4j 0.88 0.93 0.91
commons-io 0.90 0.96 0.94
guava 0.60 0.73 0.65
commons-lang3 0.66 0.67 0.65

Altogether, we see that there is a substantial differ-

ence between the performance obtained by EvoPlan for

different libraries. We suppose that this happens due to

the availability of the training data. In particular, by

carefully investigating each library used in the evalua-

tion, we see that the libraries with the worst results

in terms of performance have a few migrations that

we can extract from the pom.xml on average (cf. Ta-

ble 5). For instance, there are 162 and 209 migrations

associated with commons-lang3 and slf4j-api, respec-

tively and EvoPlan gets a low performance on these

libraries. Meanwhile, there are 2,972 migrations for ju-

nit and EvoPlan gets high precision, recall, and F1 for

this library. It means that less data can negatively affect

the final recommendations.

Another factor that can influence the conducted eval-

uation could be the number of versions involved in an

upgrade for each library i.e., the availability of fewer

versions dramatically reduce the migration-related in-

formation. This hypothesis is confirmed by the observed

values for log4j and junit that bring better results with

39 and 40 analyzed versions respectively. However, there

is an exception with guava, i.e., EvoPlan yields a mediocre

result for the library (F1=0.65), though we considered

627 migration paths and 49 different versions. By exam-

ining the library, we realized that it has many versions

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 11

employed in the Android domain as well as abandoned

versions. Thus, we attribute the reduction in perfor-

mance to the lack of decent training data.

Answer to RQ1. EvoPlan is capable of predicting the
correct upgrade plan given a real-world migration dataset.
Although for some libraries we witness a reduction in the
overall performances, the main reason can be found in the
lack of migration paths in the original dataset.

5.2 RQ2: Is there any correlation between the GitHub

issues and the popularity of a certain migration path?

To answer this question we measure the correlation

among observed data, i.e., the number of clients that

perform a certain migration step and the issues delta

considering the time interval described in Section 3.1.

The number of clients performing migration is defined

with the term popularity as described in Section 3.4.

Meanwhile, as its name suggests, the delta is the dif-

ference between the number of closed issues and the

number of open ones. It assumes a positive value when

the number of closed issues is greater than the opened

ones. In contrast, negative values are observed when

open issues exceed the number of closed ones. In other

words, deltas characterizes migration steps in terms of

closed issues.

The results of the three indexes are shown in Table

7. As we can see, all the metrics show a positive cor-

relation between the number of clients that perform a

certain migration and the corresponding delta issues.

In particular, Kendall’s tau τ is equal to 0.458, while

Spearman’s rank ρ reaches the value of 0.616. The max-

imum correlation is seen by Pearson’s coefficient, i.e., r

= 0.707.

The strong correlation suggests that given a library,

the more clients perform a migration on its versions,

the more issues are solved. As it has been shown in

a recent work [16], the act of solving issues allows de-

velopers to identify bugs and improve code, as well as

enhance software quality. Summing up, having a large

number of migrated clients can be interpreted as a sign

of maturity, i.e., the evolution among different versions

attracts attention by developers.

Table 7 Correlation coefficients with a p-value < 2.2e−16.

Metric Value
Kendal’s (τ) 0.458
Pearson (r) 0.707
Spearman (ρ) 0.616

Answer to RQ2. There is a significant correlation be-
tween the upgrade plan popularity and the number of
closed issues. This implies that plans to be given highest
priority should be those that have the majority of issues
solved during the migration.

5.3 RQ3: Is EvoPlan able to provide consistent

recommendations in reasonable time?

We measured the average time required for running ex-

periments using a mainstream laptop with the follow-

ing information: i5-8250U, 1.60GHz Processor, 16GB

RAM, and Ubuntu 18.04 as the operating system. Ta-

ble 8 summarizes the time for executing the correspond-

ing phases.

Table 8 Execution time.

Phase Time (seconds)
Graph building 15,120
Querying 0.11
Testing 145.44

The most time consuming phase is the creation of

graph with 15,120 seconds, corresponding to 252 min-

utes. Meanwhile, the querying phase takes just 0.11 sec-

onds to finish; the testing phase is a bit longer: 145.44

seconds. It is worth noting that the testing consists of

the sub-operations that are performed in actual use,

i.e., opening CSV files, extracting the actual plan, and

calculating the shortest path. This means that we can

get an upgrade plan in less than a second, which is

acceptable considering the computational capability of

the used laptop. This suggests that EvoPlan can be de-

ployed in practice to suggest upgrade plans.

Answer to RQ3. The creation of the migration graph
is computationally expensive. However, it can be done of-
fline, one time for the whole cycle. EvoPlan is able to de-
liver a single upgrade plan in a reasonable time window,
making it usable in the field.

5.4 Threats to validity

This section discusses possible threats that may af-

fect the proposed approach. Threats to internal validity

could come from the graph building process. In partic-

ular, the crawler can retrieve inaccurate information

from pom.xml files or GitHub commits. To deal with

this, we employed a similar mining technique used in

some related studies presented in Section 2.2, i.e., Med-

itor, APIwave, aiming to minimize missing data. An-

other possible pitfall lies in downgrade migrations, i.e.,

12 Riccardo Rubei et al.

a client that moves from a newer version to an older

one. We consider the issue as our future work.

Concerning external validity, the main threat is re-

lated to the generalizability of the obtained results. We

try to mitigate the threat by considering only popular

Java libraries. Nevertheless, EvoPlan relies on a flexible

architecture that can be easily modified to incorporate

more TPLs. Concerning the employed GitHub issues

data, they are coarse-grained, i.e., we can have a huge

number of issues that do not have a strong tie with the

examined TLPs. We addressed this issue in the paper

by considering the ratio of the delta instead of absolute

numbers. Concerning the supported data sources, Evo-

Plan employs Maven and GitHub to mine migration

histories and retrieve issues, respectively. Thus, cur-

rently, upgrade plans can be recommended for projects

that rely on these two technologies. However, the archi-

tecture of EvoPlan has been designed in a way that sup-

porting additional data sources would mean operating

localized extensions in the Crawler, Data Extractor, and

Issue Miner components without compromising the va-

lidity of the whole architecture.

Finally, threats to construct validity concern the

ten-fold cross-validation shown in Section 4.2. Even though

this technique is used mostly in the machine learning

domain, we mitigate any possible incorrect values by

considering a different ground-truth graph for each eval-

uation round. Additionally, the usage of GitHub issues

could be seen as a possible threat. We mitigate this as-

pect by using such information as post-processing to

reduce possible negative impacts on the recommended

items, i.e., ranking the retrieved upgrade plans accord-

ing to the total amount of issues.

6 Related work

A plethora of studies highlights different issues related

to the TLPs migration problem. Dig and Johnson [10]

demonstrate the role of code refactorings as the princi-

pal origin of breaking changes, i.e., failures caused by a

library upgrade from an older version to a newer one.

Binary incompatibilities (BIs) happen when the appli-

cation is no longer compilable after migration [5]. The

Clirr tool has been used to detect the entities that cause

incompatibilities by analyzing the JAR files of the test-

ing project. By evaluating six different recommendation

techniques that are typically used to fix BIs, this study

exhibits that they were capable of resolving only 20%

of them.

A recent work [14] attracts the community attention

over the migration awareness problem. By conducting

a user study, the two main migration awareness mecha-

nisms have been evaluated, i.e., security advisories and

new releases announcement. In this respect, the results

show that the majority of the software systems rarely

update the older but reliable libraries and security ad-

visories provide incomplete solutions to the developers.

Alrubaye et al. [1] conducted an empirical study to

highlight the benefits of the migration process over soft-

ware quality measured by the three standard metrics

used in the domain, i.e., coupling, cohesion, and com-

plexity. By relying on a dataset composed of nine differ-

ent libraries and 57,447 Java projects, statistical tests

have been carried on relevant migration data. The re-

sults confirm that the migration process improves the

code quality in terms of the mentioned metrics.

The problem of Technical debt has been studied in

both academia and industry [3], and it is related to

“immature” code sent to production [6]. Although this

approach is used to achieve immediate results, it could

lead to future issues after a certain period. To solve this,

technical debt can be repaid through code refactorings

by carrying out a cost-benefit analysis. Lavazza et al.

[15] propose the usage of technical debt as an external

software quality attribute of a project. Furthermore,

technical debt can affect software evolution and main-

tainability by introducing defects that are difficult to

fix.

Sawant and Bacchelli [25] investigate API features

usages over different TLPs releases by mining 20,263

projects and collect 1,482,726 method invocations be-

longing to five different libraries. Using the proposed

tool fine-GRAPE, two case studies have been conducted

considering two aspects, i.e., the number of migrations

towards newer versions and the usages of API features.

The results confirm that developers tend not to update

their libraries. More interesting, the second study shows

that a low percentage of API features are actually used

in the examined projects.

7 Conclusion and future work

The migration of TPLs during the development of a

software project plays an important role in the whole

development cycle. Even though some tools are already

in place to solve the issue, different challenges are still

opened, i.e., reducing the effort during the migration

steps or the need to consider heterogeneous data sources

to name a few. We proposed EvoPlan, a novel approach

to support the upgrading of TPLs by considering mis-

cellaneous software artifacts. By envisioning different

components, our tool is capable of extracting relevant

migration data and encoding it in a flexible graph-based

representation. Such a migration graph is used to re-

trieve multiple upgrade plans considering the popular-

ity as the main rationale. They are eventually ranked by

Providing Upgrade Plans for Third-party Libraries: A Recommender System using Migration Graphs 13

exploiting the GitHub issues data to possibly minimize

the effort that is required by the developer to select

one of the candidate upgrade plans. A feasibility study

shows that the results are promising, with respect to

both effectiveness and efficiency.

As future work, we plan to incorporate additional

concepts in the migration graph, i.e., TLPs documen-

tation, Stack Overflow posts, and issues sentiment anal-

ysis. We believe that such additional data allows Evo-

Plan to better capture the migration paths performed

by clients. Moreover, we can consider a larger testing

dataset to improve the coverage of the recommendation

items, i.e., provide upgrade plans for more TLPs.

Acknowledgements The research described in this paper
has been partially supported by the AIDOaRT Project, which
has received funding from the European Union’s H2020-ECSEL-
2020, Federal Ministry of Education, Science and Research,
Grant Agreement n◦101007350

References

1. Alrubaye, H., Alshoaibi, D., Alomar, E., Mkaouer, M.W.,
Ouni, A.: How does library migration impact software
quality and comprehension? an empirical study. In:
S. Ben Sassi, S. Ducasse, H. Mili (eds.) Reuse in Emerging
Software Engineering Practices, pp. 245–260. Springer In-
ternational Publishing, Cham (2020)

2. Alrubaye, H., Mkaouer, M.W., Khokhlov, I., Reznik, L.,
Ouni, A., Mcgoff, J.: Learning to recommend third-party
library migration opportunities at the api level. Applied
Soft Computing 90, 106–140 (2020)

3. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Man-
aging Technical Debt in Software Engineering (Dagstuhl
Seminar 16162). Dagstuhl Reports 6(4), 110–138 (2016).
DOI 10.4230/DagRep.6.4.110

4. Collie, B., Ginsbach, P., Woodruff, J., Rajan, A.,
O’Boyle, M.F.: M3: Semantic api migrations. In: 2020
35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 90–102 (2020)

5. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a
retroactive study on the evolution and migration of soft-
ware libraries. In: Procs. of the ACM SIGSOFT 20th
Int. Symposium on the Foundations of Software Engi-
neering - FSE ’12, p. 1. Cary, North Carolina (2012).
DOI 10.1145/2393596.2393661

6. Cunningham, W.: The wycash portfolio management sys-
tem. SIGPLAN OOPS Mess. 4(2), 29–30 (1992). DOI
10.1145/157710.157715. URL https://doi-org.univaq.

clas.cineca.it/10.1145/157710.157715
7. Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.,

Rubei, R.: TopFilter: An Approach to Recommend Rel-
evant GitHub Topics. In: Proceedings of the 14th ACM
/ IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), ESEM ’20. As-
sociation for Computing Machinery, New York, NY, USA
(2020). DOI 10.1145/3382494.3410690

8. Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen,
P.T., Rubei, R.: Development of recommendation sys-
tems for software engineering: the CROSSMINER expe-
rience 26(4), 69. DOI 10.1007/s10664-021-09963-7. URL
https://doi.org/10.1007/s10664-021-09963-7

9. Di Sipio, C., Rubei, R., Di Ruscio, D., Nguyen, P.T.:
Using a Multinomial Näıve Bayesian (MNB) Network to
Automatically Recommend Topics for GitHub Reposi-
tories. In: Proceedings of the 24th International Con-
ference on Evaluation and Assessment in Software En-
gineering, EASE2020, Trondheim, Norway, April 15-17,
2020, EASE’20, pp. 24–34. ACM (2020). DOI 10.1145/
3383219.3383227

10. Dig, D., Johnson, R.: The role of refactorings in API
evolution. In: 21st IEEE Int. Conf. on Software Main-
tenance (ICSM’05), pp. 389–398 (2005). DOI 10.1109/
ICSM.2005.90

11. Hora, A., Valente, M.T.: Apiwave: Keeping track of API
popularity and migration. In: 2015 IEEE Int. Conf. on
Software Maintenance and Evolution (ICSME), pp. 321–
323 (2015). DOI 10.1109/ICSM.2015.7332478

12. Kikas, R., Dumas, M., Pfahl, D.: Issue dynamics in
github projects. In: Proceedings of the 16th Interna-
tional Conference on Product-Focused Software Process
Improvement - Volume 9459, PROFES 2015, p. 295–310.
Springer-Verlag, Berlin, Heidelberg (2015). DOI 10.1007/
978-3-319-26844-6 22. URL https://doi.org/10.1007/

978-3-319-26844-6_22
13. Kohavi, R.: A study of cross-validation and bootstrap for

accuracy estimation and model selection. In: Proceedings
of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, p. 1137–1143. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA
(1995)

14. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue,
K.: Do developers update their library dependencies?: An
empirical study on the impact of security advisories on
library migration. Empirical Software Engineering 23(1),
384–417 (2018). DOI 10.1007/s10664-017-9521-5

15. Lavazza, L., Morasca, S., Tosi, D.: Technical debt as an
external software attribute. In: Proceedings of the 2018
International Conference on Technical Debt - TechDebt
’18, pp. 21–30. ACM Press, Gothenburg, Sweden (2018).
DOI 10.1145/3194164.3194168. URL http://dl.acm.

org/citation.cfm?doid=3194164.3194168
16. Liao, Z., He, D., Chen, Z., Fan, X., Zhang, Y., Liu, S.:

Exploring the Characteristics of Issue-Related Behaviors
in GitHub Using Visualization Techniques. IEEE Ac-
cess 6, 24003–24015 (2018). DOI 10.1109/ACCESS.2018.
2810295. Conference Name: IEEE Access

17. Misra, V., Reddy, J.S.K., Chimalakonda, S.: Is there
a correlation between code comments and issues?: an
exploratory study. In: Proceedings of the 35th An-
nual ACM Symposium on Applied Computing, pp. 110–
117. ACM, Brno Czech Republic (2020). DOI 10.1145/
3341105.3374009. URL https://dl.acm.org/doi/10.

1145/3341105.3374009
18. Neil, L., Mittal, S., Joshi, A.: Mining Threat Intelligence

about Open-Source Projects and Libraries from Code
Repository Issues and Bug Reports. In: 2018 IEEE In-
ternational Conference on Intelligence and Security In-
formatics (ISI), pp. 7–12 (2018). DOI 10.1109/ISI.2018.
8587375

19. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Di Penta, M.:
CrossRec: Supporting Software Developers by Recom-
mending Third-party Libraries. Journal of Systems and
Software p. 110460 (2019). DOI https://doi.org/10.1016/
j.jss.2019.110460. URL http://www.sciencedirect.com/

science/article/pii/S0164121219302341
20. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Ochoa, L.,

Degueule, T., Di Penta, M.: FOCUS: A recommender sys-
tem for mining API function calls and usage patterns. In:

https://doi-org.univaq.clas.cineca.it/10.1145/157710.157715
https://doi-org.univaq.clas.cineca.it/10.1145/157710.157715
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1007/978-3-319-26844-6_22
https://doi.org/10.1007/978-3-319-26844-6_22
http://dl.acm.org/citation.cfm?doid=3194164.3194168
http://dl.acm.org/citation.cfm?doid=3194164.3194168
https://dl.acm.org/doi/10.1145/3341105.3374009
https://dl.acm.org/doi/10.1145/3341105.3374009
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://www.sciencedirect.com/science/article/pii/S0164121219302341

14 Riccardo Rubei et al.

Proceedings of the 41st international conference on soft-
ware engineering, ICSE ’19, pp. 1050–1060. IEEE Press,
Piscataway, NJ, USA (2019)

21. Pandas: pandas documentation — pandas 1.1.3 docu-
mentation (2020). URL https://pandas.pydata.org/

docs/

22. Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R.,
Lanza, M.: Prompter: Turning the IDE into a self-
confident programming assistant. Empirical Software
Engineering 21(5), 2190–2231 (2016). DOI 10.1007/
s10664-015-9397-1. URL http://link.springer.com/

10.1007/s10664-015-9397-1

23. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann,
T. (eds.): Recommendation Systems in Software En-
gineering. Berlin, Heidelberg (2014). DOI 10.1007/
978-3-642-45135-5

24. Rubei, R., Di Sipio, C., Nguyen, P.T., Di Rocco,
J., Di Ruscio, D.: PostFinder: Mining Stack Over-
flow posts to support software developers. In-
formation and Software Technology 127, 106367
(2020). DOI https://doi.org/10.1016/j.infsof.2020.
106367. URL http://www.sciencedirect.com/science/

article/pii/S0950584920301361

25. Sawant, A.A., Bacchelli, A.: fine-GRAPE: fine-grained
APi usage extractor – an approach and dataset to inves-
tigate API usage. Empirical Software Engineering 22(3),
1348–1371 (2017). DOI 10.1007/s10664-016-9444-6.
URL https://doi.org/10.1007/s10664-016-9444-6

26. Teyton, C., Falleri, J.R., Blanc, X.: Mining Library Mi-
gration Graphs. In: 2012 19th Working Conf. on Reverse
Engineering, pp. 289–298 (2012). DOI 10.1109/WCRE.
2012.38

27. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical
and impact analysis of api breaking changes: A large-scale
study. In: 2017 IEEE 24th Int. Conf. on Software Analy-
sis, Evolution and Reengineering (SANER), pp. 138–147
(2017)

28. Xing, Z., Stroulia, E.: Umldiff: An algorithm for object-
oriented design differencing. In: Proceedings of the
20th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’05, p. 54–65. Asso-
ciation for Computing Machinery, New York, NY, USA
(2005). DOI 10.1145/1101908.1101919. URL https:

//doi.org/10.1145/1101908.1101919

29. Xing, Z., Stroulia, E.: API-Evolution Support with Diff-
CatchUp. IEEE Transactions on Software Engineering
33(12), 818–836 (2007). DOI 10.1109/TSE.2007.70747

30. Xu, S., Dong, Z., Meng, N.: Meditor: Inference and Ap-
plication of API Migration Edits. In: 2019 IEEE/ACM
27th Int. Conf. on Program Comprehension (ICPC), pp.
335–346 (2019). DOI 10.1109/ICPC.2019.00052

31. Yen, J.Y., YENt, J.Y.: Finding the k shortest loopless
paths in a network (2007)

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
http://link.springer.com/10.1007/s10664-015-9397-1
http://link.springer.com/10.1007/s10664-015-9397-1
http://www.sciencedirect.com/science/article/pii/S0950584920301361
http://www.sciencedirect.com/science/article/pii/S0950584920301361
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1101908.1101919

	1 Introduction
	2 Motivations and Background
	3 Proposed approach
	4 Evaluation
	5 Experimental results
	6 Related work
	7 Conclusion and future work

