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Abstract
Nonoverlapping sequential pattern mining, as a kind of repetitive sequential pattern mining with gap constraints, can find
more valuable patterns. Traditional algorithms focused on finding all frequent patterns and found lots of redundant short
patterns. However, it not only reduces the mining efficiency, but also increases the difficulty in obtaining the demand
information. To reduce the frequent patterns and retain its expression ability, this paper focuses on the Nonoverlapping
Maximal Sequential Pattern (NMSP) mining which refers to finding frequent patterns whose super-patterns are infrequent.
In this paper, we propose an effective mining algorithm, Nettree for NMSP mining (NetNMSP), which has three key steps:
calculating the support, generating the candidate patterns, and determining NMSPs. To efficiently calculate the support,
NetNMSP employs the backtracking strategy to obtain a nonoverlapping occurrence from the leftmost leaf to its root with
the leftmost parent node method in a Nettree. To reduce the candidate patterns, NetNMSP generates candidate patterns by the
pattern join strategy. Furthermore, to determine NMSPs, NetNMSP adopts the screening method. Experiments on biological
sequence datasets verify that not only does NetNMSP outperform the state-of-the-arts algorithms, but also NMSP mining
has better compression performance than closed pattern mining. On sales datasets, we validate that our algorithm guarantees
the best scalability on large scale datasets. Moreover, we mine NMSPs and frequent patterns in SARS-CoV-1, SARS-CoV-2
and MERS-CoV. The results show that the three viruses are similar in the short patterns but different in the long patterns.
More importantly, NMSP mining is easier to find the differences between the virus sequences.

Keywords Sequential pattern mining · Maximal pattern mining · Nonoverlapping pattern mining · Gap constraint ·
Backtracking strategy · COVID-19 · MERS-CoV

1 Introduction

Sequential pattern mining [1, 2], as an important part
of data mining [3, 4] and knowledge discovery [5],
aims to mine frequent subsequences whose support is
no lower than the given threshold. Many kinds of
sequential pattern mining methods were proposed, such
as outlying pattern mining [6], maximal sequential pattern
mining [7–9], three-way sequential pattern mining [10–
13], negative sequential pattern mining [14, 15], periodic
pattern mining [16, 17], co-location pattern mining [18],
contrast subspace mining [19–22], closed sequential pattern
mining [23], utility pattern mining [24–29], and repetitive
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sequential pattern mining [30, 31]. Traditional sequential
pattern mining neglects the number of occurrences of a
pattern in a sequence, while repetitive sequential pattern
mining does not [32]. Thus, repetitive sequential pattern
mining can find more patterns. However, some of them
are meaningless patterns. To solve this issue, based on
repetitive sequential pattern mining, sequential pattern
mining with gap constraints was proposed to find the
frequent subsequences (known as patterns) which do not
have to be continuous. The pattern can be represented as
P = p1[min1, max1]p2[min2, max2] . . . pm−1[minm−1,
maxm−1]pm , where mini and maxi , called a group of
gap constraints, are the minimal and maximal wildcards
between pi and pi+1, respectively [33, 34]. In sequential
pattern mining, gap constraints are often the same , such
as P = p1[a, b]p2[a, b] . . . pm−1[a, b]pm or P =
p1p2 . . . pm−1pm with gap = [a, b]. This mining method
is also called periodic sequential pattern mining [35] and
has been applied in many applications, such as time series
analysis [36, 37] and feature selection [38, 39].

/ Published online: 10 January 2022

Applied Intelligence (2022) 52:9861–9884

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02912-3&domain=pdf
http://orcid.org/0000-0001-5314-3468
mailto: wuc567@163.com


Fig. 1 All occurrences of
pattern P in sequence S1

Nonoverlapping sequential pattern mining (or sequential
pattern mining under the nonoverlapping condition) [40, 41]
is a kind of sequential pattern mining with gap constraints,
which means that each item (si) in a sequence can be
matched by an item (pj ) at most once [42]. Recent studies
showed that the nonoverlapping sequential pattern mining
is a completeness mining method with the Apriori property
[30]. Importantly, compared with other the state-of-the-art
methods, it is easier to find valuable frequent patterns, and
solves the problem of under-expression and over-expression
of patterns [30]. Example 1 illustrates the nonoverlapping
support which is a key issue in nonoverlapping sequential
pattern mining.

Example 1 Suppose we have a sequence S1 = s1s2s3s4s5
= ACACA and a pattern P = p1[0,2]p2[0,2]p3 =
A[0,2]C[0,2]A, (or P = p1p2p3 = ACA with gap = [0,2]).
All occurrences are shown in Fig. 1.

In this example, pattern P is a pattern with gap
constraints, which has four occurrences in sequence S1. It
is easy to know that subsequence s1s2s3 is an occurrence
of pattern P which can be written as <1, 2, 3>. Similarly,
the other three occurrences are <1, 2, 5>, <1, 4, 5>, and
<3, 4, 5>. Among them, <1, 2, 3> and <1, 2, 5> are two
overlapping occurrences, since s1 is matched by p1 twice
in the two occurrences, while <1, 2, 3> and <3, 4, 5> are
two nonoverlapping occurrences, since s3 is matched by p3

and p1 in these two occurrences, respectively. Therefore, the
nonoverlapping support of pattern P in sequence S1 is 2.

Traditional nonoverlapping sequential pattern mining
algorithms mainly focused on discovering all frequent
patterns [30]. However, one of the disadvantages is that the
mining pattern set is large and contains too many redundant
short patterns. To handle the problem of reducing redundant
patterns, nonoverlapping closed sequential pattern mining
was proposed [23], which means that there is no super-
pattern with the same support. This method can effectively
compress frequent patterns in a sequence with large gap,
but it is less effective in a multiple-sequence dataset or
in a sequence with small gap. Nonoverlapping Maximal
Sequential Pattern (NMSP) mining is another method to
reduce redundant patterns, which means that all super-
patterns of the maximal patterns are infrequent. Example 2
shows that maximal pattern mining has better compression
performance than closed pattern mining.

Example 2 Given sequence database SDB = {S1 =
ACACA, S2 = CACAC}, gap constraint gap = [0,2], and
support threshold minsup = 2.

Let us consider S1 at first. The supports of patterns ”AC”,
”CA”, and ”ACA” in sequence S1 are all 2. Therefore,
all the three patterns are frequent patterns and pattern
”ACA” is a closed pattern. Thus, patterns ”AC” and ”CA”
are compressed. Pattern ”A” is a closed pattern, since the
supports of all its super-patterns ”AA”, ”AC”, and ”CA”
are all 2, which are less than the support of pattern ”A”.
Therefore, pattern ”A” cannot be compressed in closed
pattern mining. However, pattern ”A” can be compressed in
NMSPmining, since its super-patterns are frequent patterns.

Table 1 Comparison of mining results

Pattern type Pattern set Count

Frequent patterns in S1 {A,C,AA,AC,CA,ACA} 6

Closed patterns in S1 {A,AA,ACA} 3

NMSPs in S1 {AA,ACA } 2

Frequent patterns in SDB {A,C,AA,AC,CA,CC,AAC,ACA,ACC,CAA,CAC,CCA,ACAC,CACA} 14

Closed patterns in SDB {A,C,AA,AC,CA,CC,AAC,ACA,ACC,CAA,CAC,CCA,ACAC,CACA} 14

NMSPs in SDB {AAC,ACC,CAA,CCA,ACAC,CACA } 6
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Hence, from Table 1, NMSP mining has better compression
performance in S1.

Moreover, if we mine nonoverlapping closed sequential
patterns in SDB, we notice that there is no frequent pattern
whose support is the same as that of its super-patterns.
Thus, all the frequent patterns are closed patterns, which
means that closed pattern mining cannot compress frequent
patterns in SDB. However, there are only 6 maximal
patterns in SDB in Table 1. Hence, NMSP mining also has
better compression performance in SDB. The comparison
between frequent patterns and NMSPs is shown in Fig. 2.

In Fig. 2, we can see that NMSP mining effectively
compresses the frequent patterns, since all subpatterns of
NMSPs are frequent patterns. Hence, NMSPs can be seen as
the boundary of frequent patterns, since all their subpatterns
are frequent and their superpatterns are infrequent. More-
over, NMSPs provide boundary information for frequent
and infrequent patterns.

More importantly, in bioinformatics, we know that
homologous viruses have high similarity. If we mine
frequent patterns in two homologous viruses, most frequent
patterns are the same. Since researchers pay more attention
to functional and pathogenic divergence, the common
patterns are redundant. To find the difference between
the two viruses easily, NMSPs can not only represent all
frequent patterns, but also effectively prune the common
redundant patterns. To verify this claim, we mine the
NMSPs and frequent patterns in SARS-CoV-1, SARS-CoV-
2 and MERS-CoV. Experimental results show that NMSP
mining is easier to find the differences between the virus
sequences. The main contributions are as follows.

1. To compress frequent nonoverlapping patterns in SDB
and provide the boundary information between frequent
and infrequent patterns, we address NMSP mining
and propose an effectiveness mining algorithm, called
Nettree for NMSP mining (NetNMSP).

2. To calculate the nonoverlapping support effectively,
NetNMSP adopts the backtracking strategy to iter-
atively search the leftmost parent nodes to get the
nonoverlapping occurrences by the Netback algorithm.
Meanwhile, NetNMSP employs the pattern join strat-
egy to generate candidate patterns and the screening
method to find NMSPs.

3. Experiments on biological sequences verify that not
only does NetNMSP have better performance than other
competitive algorithms, but also the maximal pattern
mining has better compression performance than the
closed pattern mining.

4. We mine NMSPs and frequent patterns in SARS-CoV-
1, SARS-CoV-2 and MERS-CoV. The results show
that the three viruses are similar in short patterns but
different in long patterns. More importantly, NMSP
mining is easier to find the differences between the
virus sequences.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 addresses the defini-
tions of the problem. Section 4 proposes NetNMSP which
employs the backtracking strategy to calculate the nonover-
lapping support, the pattern join strategy to generate can-
didate pattern, and the screening method to find NMSPs.
Section 5 reports experimental results and analyzes the per-
formance of NetNMSP on biological and sales sequences.
Section 6 makes the conclusion of this paper.

Fig. 2 Comparison between
frequent patterns and NMSPs in
Example 2. All nodes are
frequent patterns, while green
nodes are NMSPs
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Table 2 Comparison of occurrences under different conditions

Condition Support Occurrences

No-condition 4 < 1, 2, 3 >, < 1, 2, 5 >, < 1, 4, 5 >, and < 3, 4, 5 >

One-off condition 1 < 1, 2, 3 >

Nonoverlapping condition 2 < 1, 2, 3 > and < 3, 4, 5 >

2 Related work

Sequential pattern mining has been widely applied in many
fields [43, 44], such as ICU patient risk prediction [45, 46]
and public reactioms analysis on twitter [47]. A variety of
mining methods have been investigated [48]. Some methods
are derived from different data types, such as the mining of
event logs [49] and transaction databases [50]. Meanwhile,
some methods are derived from different tasks, such as neg-
ative sequential pattern mining [14, 15], frequent pattern dis-
covery with tri-partition alphabets [51], utility pattern min-
ing [52–57], and contrast pattern mining [58, 59]. Moreover,
some methods are derived from different characteristics of
patterns, such as frequent pattern mining [60], rare pat-
tern mining [61], top-k pattern mining [16], closed pattern
mining [62], and maximal pattern mining [63, 64].

To consider the number of occurrences for a pattern
in an SDB, gap constraint sequential pattern mining was
proposed, which can be divided into three types: no-
condition [16, 65, 66], the one-off condition [67–69], and
the nonoverlapping condition [30, 40]. The comparison of
the occurrences of pattern P = ACAwith gap constraint gap

= [0,2] in sequence S = ACACA under different conditions
is shown in Table 2.

As shown in Table 2, no-condition means that when the
gap constraint is satisfied, each subsequence can be matched
multiple times by different positions in a pattern. In brief,
all occurrences can be acceptable. Thus, there are 4 occur-
rences under no-condition, i.e. {<1, 2, 3>, <1, 2, 5>, <1,
4, 5>, <3, 4, 5>}. It is easy to calculate the support under
no-condition. But both its support and support rate are not
monotonicity. Thus, the Apriori-like property is employed
to mine all frequent patterns, which enlarges the searching

space. The one-off condition means that each subsequence
can be matched at most once. Thus, there is only one occur-
rence under the one-off condition, i.e. <1, 2, 3>. Although
this method satisfies the Apriori property, calculating the
support under the one-off condition is an NP-hard problem.
Therefore, it is a kind of approximate mining method. As
mentioned in the Introduction section, there are 2 occur-
rences under the nonoverlapping condition, i.e. {<1, 2, 3>,
<3, 4, 5>}. Wu et al. [42] proved that calculating the sup-
port under the nonoverlapping condition can be done in
polynomial time. Karim et al. [30] showed that nonoverlap
ping sequential pattern mining satisfies the Apriori prop-
erty and proposed an effective algorithm NOSEP. Hence,
nonoverlapping sequential pattern mining achieves the bal-
ance between mining completeness and mining efficiency.
Table 3 shows a comparison of the related studies.

From Table 3, the work of [30] and [23] are the most
related work. The differences between the above researches
and this paper are as follows. First, the problems to be
solved are different. Wu et al. [30] focused on mining all
frequent patterns, while the work of [23] mined all closed
patterns to compress the frequent patterns. Second, the
methods of calculating the pattern support are different.
NETGAP [30] needs to find and prune the invalid nodes
after obtaining each nonoverlapping occurrence. Therefore,
the time complexity of NETGAP is O(m×m×n×w

r2
), where

m, n, w and r are pattern length, sequence length, gap width
and item number, respectively. BackTr [23] employed a
backtracking strategy to find the minimal occurrence in the
Nettree and did not need to find and prune the invalid nodes.
Thus, the time complexity of BackTr is O(m×n×w

r2
). In

this paper, we propose Netback to calculate supports which
adopts backtracking strategy to find the maximal occurrence

Table 3 Comparison of related studies

Literature Type of condition Gap constraint Support Mining Type Pruning strategy

Yun et al.[63] Weighted No Exact Maximal Weight

Lee et al.[64] Weighted No Approximate Maximal Anti-monotone

Min et al.[51] No-Condition Yes Exact All Aprior

Li et al.[65] No-Condition Yes Exact Long Aprior-like

Lam et al.[67] One-off Condition Yes Approximate Closed Apriori

Wu et al.[30] Nonoverlapping Condition Yes Exact All Apriori

Wu et al. [23] Nonoverlapping Condition Yes Exact Closed Apriori

This paper Nonoverlapping Condition Yes Exact Maximal Apriori
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and does not need to find and prune the invalid nodes.
Hence, the time complexity of Netback is also O(m×n×w

r2
),

which is the same as that of BackTr and less than that of
NETGAP. The difference between BackTr and Netback is
that BackTr iteratively finds the minimal occurrences, while
Netback iteratively finds the maximal occurrences.

3 Problem definition

Definition 1 (Sequence and Sequence Database) A
sequence can be expressed as S = s1s2 . . . si . . . sn (n > 0),
which consists of n items arranged by order, where si ∈ �

(1 ≤ i ≤ n), � denotes the category of the items, and the
size is |�|. A sequence database that contains T sequences
can be expressed as SDB = {S1, S2, . . . , ST }.

Definition 2 (Pattern with Periodic Gap Constraint) The
pattern with periodic gap constraint can be described as
P = p1[a, b]p2[a, b]...pm−1[a, b]pm (m >0) (or P =
p1p2 · · · pm−1pm with gap = [a, b]), where a and b are the
minimal and maximal wildcards between pi and pi+1 (0 <

i < m). A wildcard can represent any item in �.

Definition 3 (Occurrence) Suppose we have a sequence S

= s1s2s3 . . . sn and a pattern P = p1p2...pm−1pm with gap

= [a, b]. If p1 = sj1 , p2 = sj2 , . . . , pm = sjm, (0 < j1 <

j2 < . . . < jm ≤ n) and a ≤ ji − ji−1 − 1 ≤ b, then
occ = < j1, j2, . . . , jm > is an occurrence of pattern P in
sequence S.

Example 3 Suppose we have a sequence S1 = s1s2s3s4s5
= ACACA and a pattern P = p1[0, 3]p2[0, 3]p3 = A[0,
2]C[0, 2]A. There are four occurrences {<1, 2, 3>, <1, 2,
5>, <1, 4, 5>, <3, 4, 5>} of pattern P in sequence S1. If
gap = [0, 1], then <1, 2, 5> and <1, 4, 5> do not satisfy
the gap constraint, since 5-2-1 = 2>1 and 4-1-1 = 2>1.

Definition 4 (Nonoverlapping Occurrence and Support)
Suppose occ =< j1, j2, . . . , jm > and occ′ =<

j ′
1, j

′
2, . . . , j

′
m > are two occurrences. If and only if

ji �= j ′
i (∀i(1 ≤ i ≤ m)), then occ and occ′ are two

nonoverlapping occurrences. If any two occurrences in a set
are nonoverlapping, then the set is called nonoverlapping
occurrence set. The number of maximum nonoverlapping
occurrences is the support of pattern P in sequence S

under the nonoverlapping condition, which is denoted
by sup(P, S). The support of pattern P in SDB =
{S1, S2, · · · , ST } is sup(P, SDB) = ∑T

t=1 sup (P, St ).

Definition 5 (Frequent Pattern, FP) If sup(P, SDB) is no
less than the minimum support threshold, then pattern P is
called a frequent pattern, abbreviated as FP.

Example 4 Suppose there is a sequence database SDB =
{ S1 = ACACA, S2 = CACAC }. Given a pattern P =
ACA with gap = [0,2], we know that sup(P, S1) = 2, since
the maximum nonoverlapping occurrence set of pattern
P in sequence S1 is {<1, 2, 3>, <3, 4, 5>}. Similarly,
sup(P, S2) = 1. Hence, sup(P, SDB) = sup (P, S1) +
sup (P, S2) = 3. Suppose the minimum support threshold
is minsup = 2. Pattern P is a frequent pattern in sequence
database SDB, since sup(P, SDB) = 3 > 2.

Definition 6 (NMSP) If pattern P is a frequent pattern and
all its super–patterns are infrequent, then pattern P is an
NMSP.

When sequence database, gap constraints, and support
threshold are given, our problem is to find all NMSPs. For
example, when SDB = { S1 = ACACA, S2 = CACAC },
and minsup = 2 are given, we find all NMSPs which are
{AAC,ACC,CAA,CCA,ACAC,CACA}.

4 NetNMSP

To deal with NMSP mining, there are three key factors
affecting the mining performance: calculating pattern sup-
port, pruning candidate pattern, and determining NMSPs.
Therefore, Section 4.1 proposes the Netback algorithm
which employs the backtracking strategy to calculate the
support of a pattern in a Nettree. Section 4.2 employs
the pattern join strategy to generate candidate patterns.
Section 4.3 adopts the screening method to find NMSPs.
The NetNMSP algorithm is proposed in Section 4.4.

4.1 Netback

In this section, we review the related concepts of Nettree
[66] at first. Then, we introduce the principles of NETGAP
[30] and BackTr [23]. Finally, we propose algorithm
Netback to calculate the support.

Obviously, the nonoverlapping occurrences are a subset
of all occurrences which can be expressed by a Nettree.

Definition 7 (Nettree) Nettree is an extended tree structure,
which has one or more root nodes. In a Nettree, a node
can have more than one parent node. Some nodes may have
the same node ID, which are located in different levels. n

j
i

represents node j in the ithlevel [70].

Definition 8 (Root-Leaf Path, RLP) Suppose a Nettree has
m levels, a node in the first level is a root node, and a node
in the mth level is a leaf node. A path from a root node to a
leaf node in a Nettree is a root-leaf path (RLP) [30].

Example 5 shows that all occurrences can be expressed
by RLPs in a Nettree.
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Example 5 Suppose we have a sequence S =
s1s2s3s4s5s6s7s8s9s10s11s12s13 = ATTCATCACATCA
and a pattern P = p1[0, 3]p2[0, 3]p3[0, 3]p4 =
A[0,3]T[0,3]C[0,3]A.

We create root n11, since s1 =‘A’ = p1. Using this method,
all roots n51, n81, n101 , and n131 can be created. We create
node n32, since s3 = ‘T’ = p2 and there is a parent-child
relationship between nodes n11 and n32, since s1 and s3 satisfy
the gap constraints [0,3], i.e. 0 ≤3-1-1 = 1≤3. We create
node n62, since s6 = ‘T’ = p2 and there is a parent-child
relationship between nodes n51 and n62, since s5 and s6 satisfy
the gap constraints [0,3]. But we cannot create a parent-child
relationship between nodes n11 and n62, since s1 and s6 do not
satisfy the gap constraints [0,3], i.e. 6-1-1>3. Similarly, we
create all nodes and parent-child relationships in a Nettree
shown in Fig. 3. The following characteristics should be
noticed. The Nettree has 5 roots, n11, n51, n81, n101 , and n131 .
Some nodes have the same node ID. For example, nodes n51
and n54 are two nodes with the same ID 5. Some nodes have
more than one parent. For example, node n73 has two parents,
nodes n32 and n62. There are 12 occurrences <1, 2, 4, 5>,
<1, 2, 4, 8>, <1, 3, 4, 5>, <1, 3, 4, 8>, <1, 3, 7, 8>, <1,
3, 7, 10>, <5, 6, 7, 8>, <5, 6, 7, 10>, <5, 6, 9, 10>, <5,
6, 9, 13>, <8, 11, 12, 13>, and <10, 11, 12, 13>. All of
them can be expressed by RLPs in a Nettree. For example,
<1, 3, 7, 8> is an occurrence and its corresponding path <

n11, n
3
2, n

7
3, n

8
4 > is an RLP.

According to the definition of nonoverlapping occur-
rences, any two occurrences cannot use the same node in the
Nettree. For example, <1, 2, 4, 5> and <1, 3, 7, 8> are two
overlapping occurrences, since they use a common node n11,
while <1, 2, 4, 5> and <5, 6, 7, 8> are two nonoverlap-
ping occurrences, since there is no common used node in
the Nettree.

To calculate the support in a Nettree, we employ an
iterative strategy to find the maximal occurrence.

Definition 9 (Maximal Occurrence) Suppose occ = <

j1, j2, . . . , jm > is an occurrence of pattern P in sequence
S. For any occurrence occ′ = < j ′

1, j
′
2, . . . , j

′
m >, if ji ≥ j ′

i

(∀i(1 ≤ i ≤ m)), then occurrence occ is the maximal
occurrence of pattern P in sequence S.

Definition 10 (Maximal Root-Leaf Path, MRLP) An RLP
that iterates the rightmost child node (i.e. the largest child
node) from the rightmost root node to its leaf node in a
Nettree is the maximal root-leaf path (MRLP).

Although the NETGAP algorithm [30] employs the
Nettree structure to calculate the pattern support accurately,
it has to find and prune the invalid nodes after obtaining each
nonoverlapping occurrence. Therefore, the time complexity
of NETGAP is O(m×m×n×w

r2
), where m, n, w, and r

are the length of pattern and sequence, the maximum
gap, and the size of characters (i.e. |�|), respectively.
To calculate the support effectively, we propose Netback
which employs the backtracking strategy and iteratively
finds the maximal occurrences. The time complexity of
Netback is reduced to O(m×n×w

r2
), which is the same as

that of BackTr [23] which iteratively finds the minimal
occurrence.

The following two examples illustrate the principles of
NETGAP, BackTr, and Netback, respectively.

Example 6 As shown in Example 5 and Fig. 3, NETGAP
[30] iteratively finds the nonoverlapping occurrences from
the leftmost root to its leaf. Firstly, starting from the
leftmost root n11, NETGAP finds the leftmost parent child
(i.e. node n22). Iterating this step, NETGAP finds RLP <

Fig. 3 The Nettree of pattern P = A[0,3]T[0,3]C[0,3]A in sequence S

= ATTCATCACATCA. The Nettree has four levels, since the length of
pattern P is four. Nodes n11, n

5
1, n

8
1, n

10
1 , and n131 are the roots. Nodes

n54, n
8
4, n

10
4 , and n134 are the leaves. Nodes n51 and n54 are two nodes with

the same ID 5 in the first and fourth levels, respectively. Node n73 has
two parents nodes n32 and n62. Path < n11, n

3
2, n

7
3, n

8
4 > is an RLP and

its corresponding occurrence is <1, 3, 7, 8>
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Fig. 4 Three maximal
occurrences found by Netback

n11, n
2
2, n

4
3, n

5
4 >, which is an MRLP and its corresponding

occurrence is <1, 2, 4, 5>. Then nodes n11, n22, n43, and
n54 are pruned. After that, to find all the nonoverlapping
occurrences, NETGAP has to find and prune the invalid
nodes. Therefore, node n32 is pruned. Then, NETGAP gets
the second occurrence <5, 6, 7, 8>. Similarly, after pruning
nodes n51, n62, n73, and n84, nodes n93 and n104 are found and
pruned. Finally, NETGAP finds the third occurrence <8,
11, 12, 13>. Hence, NETGAP finds three nonoverlapping
occurrences.

BackTr [23] also iteratively finds the nonoverlapping
occurrences from the leftmost root to its leaf, but it does not
need to find and prune the invalid nodes, since it employs
the backtracking strategy. Therefore, BackTr also finds the
same three nonoverlapping occurrences as NETGAP: <1,
2, 4, 5>, <5, 6, 7, 8> and <8, 11, 12, 13>. But the time
complexity of BackTr is less than that of NETGAP.

We show that Netback can find the same number of
occurrences. The time complexity of Netback is the same as
that of BackTr and less than that of NETGAP.

Example 7 As shown in Example 5, Netback adopts the
backtracking strategy to iteratively find the nonoverlapping
occurrences from the rightmost root to its leaf. Firstly,
starting from the rightmost root n131 , Netback finds its
rightmost child node. Since n131 has no child, Netback find
the next root n101 . It is easy to know that there is only one
RLP < n101 , n112 , n123 , n134 > with root n101 . Thus, Netback
finds the first occurrence < 10, 11, 12, 13 >. Similarly,
Netback finds the second occurrence < 5, 6, 9, 10 >. Now,
Netback selects root n11 which has two children: n22 and n32.
To find the maximal occurrence, Netback iteratively selects
the rightmost child node. Therefore, n32 is selected, and then
n73 is selected. n73 has two children: n84 and n104 . Since n104
is used in occurrence < 5, 6, 9, 10 >, Netback selects n84.
Thus, Netback finds the third occurrence < 1, 3, 7, 8 >.
Hence, Netback also finds three different nonoverlapping

occurrences shown in Fig. 4, and the number of occurrences
is the same as that of NETGAP and BackTr.

From above two examples, we know that both NETGAP
and Netback can find the same number of nonoverlapping
occurrences and Netback is more effective than NETGAP,
since NETGAP has to find and prune the invalid nodes,
while Netback employs the backtracking strategy and does
not need to find and prune the invalid nodes, which reduces
the time complexity. The main process of the Netback
algorithm is shown as follows. First, Netback creates the
Nettree according to P and S. Then, Netback iteratively
finds the rightmost nonoverlapping occurrences from the
rightmost root with the backtracking strategy until all roots
are visited. The Netback algorithm is shown in Algorithm 1.

Theorem 1 The space and time complexities of Netback are
both O(m × n × w) in the worst case and O(m×n×w

r2
) in

the average case, where m, n, w, and r are pattern length,
sequence length, gap width (b − a + 1, gap = [a, b]), and
item number |�|, respectively.
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Proof A Nettree has m levels. Each level has no more than
n nodes. Each node has no more than w children. Therefore,
the space complexity of Netback is O(m × n × w) in the
worst case. Netback employs the backtracking strategy to
find the minimal occurrences. Thus, each node could be
visited no more than once. As a result, the time complexity
of Netback is the same as the space complexity and is also
O(m × n × w) in the worst case. In the average case, each
level has no more than n

r
nodes, and each node has no more

than w
r
children. Therefore, the space and time complexities

of Netback are O(m×n×w

r2
) in the average case.

4.2 Pattern join strategy

Since the nonoverlapping sequential pattern mining satisfies
the Apriori property, we employ the pattern join strategy
[31] to generate candidate patterns.

Definition 11 (Prefix and Suffix Pattern and Pattern join)
Given event items α, β (α, β ∈ �), if there is a pattern Q

= Pα, then P is called the prefix pattern of Q, denoted by
Prefix (Q). If pattern R = βP , then P is called the suffix
pattern ofR, denoted by Suffix (R). PatternsQ andR are the
super–patterns of pattern P , and pattern P is the sub-pattern
of patterns Q and R. Suppose there are two patterns Q =
Pα, andR = βP . We get a new super-pattern P ′ = R⊕Q =
βPα by pattern join since Prefix (Q) = Suffix (R) = P .

Although the set enumeration tree strategy can be used
to generate the candidate patterns, the following example
shows that the pattern join strategy outperforms the set
enumeration tree strategy.

Example 8 Suppose we have a sequence S =
s1s2s3s4s5s6s7s8s9s10s11s12s13 = ATTCATCACATCA, � =
{A, T, C}, gap = [0,3], and the minimum support threshold
minsup = 3. Set F3 including all 11 frequent patterns with
length 3 is {AAA , AAC, ACA, ACC, ATA, ATC, CAA,
CAC, CCA, TCA, TCC}. The principle of the set enumer-
ation tree strategy is adding a character in � at the end of
each pattern to generate a new pattern. Thus, each pattern
can generate |�| candidate patterns. Taking frequent pat-
tern AAA as an example, the set enumeration tree strategy
generates three candidate patterns, AAAA, AAAC, and

AAAT since � = {A, T, C}. Therefore, this strategy gener-
ates 11*3=33 candidate patterns. However, the pattern join
strategy generates 18 candidate patterns shown in set C4 =
{ AAAA, AAAC, AACA, AACC, ACAA, ACAC, ACCA,
ATCA, ATCC, CAAA, CAAC, CACA, CACC, CCAA,
CCAC, TCAA, TCAC, TCCA }. The number of candidate
patterns generated by the set enumeration tree strategy and
pattern join strategy is compared in Table 4. We can see that
with increasing pattern length, more candidate patterns can
be pruned by the pattern join strategy. Hence, the pattern
join strategy is more effective than the set enumeration tree
strategy.

4.3 Screeningmethod

Suppose pattern P is a frequent pattern. According to
Definition 6, if pattern P is an NMSP, we should generate
all its super–patterns and determine that all these super–
patterns are infrequent. Obviously, this method is very
complex. In this section, we propose the screening method
to find NMSPs. The principle is shown as follows.

Suppose all frequent patterns with length m are stored in
frequent pattern set Fm. We generate all candidate patterns
with length m + 1 using Fm and store them in candidate
pattern set C. If pattern P in set C is a frequent pattern,
then its prefix and suffix patterns are not NMSPs. Thus, we
delete Prefix (P ) and Suffix (P ) from set Fm. According
to this method, after checking all patterns in set C, the
remaining patterns in set Fm are NMSPs. It is worth
emphasizing that if pattern P is infrequent, we cannot say
that its prefix and suffix patterns are NMSPs. The following
example illustrates the principle of the screening method.

Example 9 In Example 8, pattern “AACA” is a frequent
pattern since sup (“AACA”, S) = 3. Thus, its prefix pattern
“AAC” and suffix pattern “ACA” are not NMSPs. Pattern
“AACC” is an infrequent pattern since sup(“AACC”, S) =
2. Its prefix pattern “AAC” and suffix pattern “ACC” are not
NMSPs since their super-patterns “AACA” and “ACCA” are
frequent patterns whose supports are both 3.

Example 10 In Example 8, we use 11 frequent patterns
F3 = {AAA , AAC, ACA, ACC, ATA, ATC, CAA, CAC,
CCA, TCA, TCC} to generate 18 candidate patterns, C4 =

Table 4 Number of different length patterns

Length of pattern Length Length Length Length Length Length Total

= 1 = 2 = 3 = 4 = 5 = 6

Number of frequent patterns 3 7 11 9 2 0 32

Number of candidate patterns by set enumeration tree 3 9 21 33 27 6 99

Number of candidate patterns by pattern join 3 9 17 18 8 0 55
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{AAAA, AAAC, AACA, AACC, ACAA, ACAC, ACCA,
ATCA, ATCC, CAAA, CAAC, CACA, CACC, CCAA,
CCAC, TCAA, TCAC, TCCA}. Pattern “AACA” is a
frequent pattern. Thus, patterns “AAC” and “ACA” in F3

are not NMSPs and deleted. Similarly, patterns “ACAA”,
“ACAC”, “ACCA”, “ATCA”, “CACA”, “TCAA”, “TCAC”,
and “TCCA” are frequent patterns stored in F4. Therefore,
patterns “ACC”, “ATC”, “CAA”, “CAC”, “CCA”, “TCA”,
and “TCC” are not NMSPs and deleted. Hence, the
remaining patterns in F3 are “AAA” and “ATA” which are
NMSPs. We iterate the above process to find all NMSPs.

4.4 NetNMSP

In this section, we propose the NetNMSP algorithm and
analyze the space and time complexities of it.

The main process of the NetNMSP algorithm is shown
as follows. First, NetNMSP generates candidate pattern set
C with pattern length m + 1 using frequent pattern set Fm.
Then, NetNMSP calculates the support of pattern P in set
C. If pattern P is frequent, then store it in frequent pattern
set Fm+1, and its prefix and suffix patterns in Fm are not
NMSPs and deleted. NetNMSP iterates the above process
until all patterns in set C have been checked. All patterns
remaining in Fm are NMSPs and are stored in Fmax . Finally,
NetNMSP iterates the above process until pattern set C is
empty. The NetNMSP algorithm is shown in Algorithm 2.

Theorem 2 The space complexity of the NetNMSP algo-
rithm is O(m × ( n×w

r2
+ L)), where m, n, L, w, and r are

the length of the longest pattern, the length of the longest
sequence in database, the number of the candidate patterns,
gap width (b − a + 1, gap = [a, b]), and item number
(i.e.|�|), respectively.
Proof The space of the NetNMSP algorithm consists of two
parts, the space of frequent patterns and candidate patterns
and the space of Netback. It is easy to know that the space
complexity of the first part is O(m × L). Meanwhile, the
space complexity of the Netback algorithm is O(m×n×w

r2
).

Hence, the space complexity of the NetNMSP algorithm is
O(m × ( n×w

r2
+ L)).

Theorem 3 The time complexity of the NetNMSP algorithm
is O(m×N×w×L

r2
), where N is the total length of all

sequences.

Proof According to Theorem 1, the time complexity of
Netback is O(m×n×w

r2
) for a sequence. The time complexity

of Netback for all sequences is therefore O(m×N×w

r2
).

Thus, for all candidate patterns, the time complexity of
NetNMSP is O(m×N×w×L

r2
). Since the binary search is

used in PatternJoin to generate candidate patterns, the
time complexity of generating all candidate patterns is
O(L × log(L)). Therefore, the time complexity of the
NetNMSP algorithm is O(m×N×w×L

r2
+ L × log(L)) =

O(m×N×w×L

r2
).

5 Experimental results and analysis

Section 5.1 explains the benchmark datasets and the
baseline methods. Section 5.2 verifies the correctness of the
NetNMSP algorithm. Section 5.3 reports the time efficiency
of the NetNMSP algorithm. Section 5.4 compares the
compression performance of maximal sequential pattern
mining and closed sequential pattern mining. Section 5.5
reports the NMSPs in a biological application of COVID-
19.

5.1 Benchmark datasets and baselinemethods

The experimental running environment is: Intel(R)
Core(TM) i5-3120M, 2.50GHZ CPU, 8GB RAM, Win-
dows 7, and the 64-bit operating system computer. The
program development environment is VC++6.0. To verify
the performance of the NetNMSP algorithm, this paper
adopts DNA, protein, and virus sequences as experimental
data. All algorithms and datasets can be downloaded from
https://github.com/wuc567/Pattern-Mining/tree/master/
NetNMSP. The datasets are shown in Table 5.
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Table 5 Description of datasets

Dataset Type Source Number of Description Total length

sequences

DNA11 DNA Homo Sapiens AL158070 1 Single 6,000

DNA2 DNA Homo Sapiens AL158070 1 Single sequence 8,000

DNA3 DNA Homo Sapiens AL158070 1 Single sequence 10,000

DNA4 DNA Homo Sapiens AL158070 1 Single sequence 12,000

DNA5 DNA Homo Sapiens AL158070 1 Single sequence 14,000

DNA6 DNA Homo Sapiens AL158070 1 Single sequence 16,000

SDB12 Protein ASTRAL95 1 161 507 Multiple/unequal length 91,875

SDB2 Protein ASTRAL95 1 161 338 Multiple/unequal length 62,985

SDB3 Protein ASTRAL95 1 161 169 Multiple/unequal length 32,503

SDB4 Protein ASTRAL95 1 171 590 Multiple/unequal length 109,424

SDB5 Protein ASTRAL95 1 171 400 Multiple/unequal length 73,425

SDB6 Protein ASTRAL95 1 171 200 Multiple/unequal length 37,327

Baby13 Babysale Sales of baby products 1,636 Multiple/unequal length 73,272

Baby2 Babysale Sales of baby products 2,077 Multiple/unequal length 94,152

Baby3 Babysale Sales of baby products 2,544 Multiple/unequal length 115,088

Baby4 Babysale Sales of baby products 3,057 Multiple/unequal length 137,941

Super14 Superstore Superstore time series 1 Single sequence 100,001

Super2 Superstore Superstore time series 1 Single sequence 120,001

Super3 Superstore Superstore time series 1 Single sequence 140,001

Super4 Superstore Superstore time series 1 Single sequence 161,048

TSS5 Human genes Transcriptional Start Sites 200 Multiple / equal length 20,000

SARS-CoV-16 DNA of the virus Severe Acute Respiratory Syn-
drome Coronavirus

1 Single sequence 29,751

SARS-CoV-27 DNA of the virus Severe Acute Respiratory Syn-
drome Coronavirus

2 1 Single sequence 29,903

MERS-CoV8 DNA of the virus Middle East Respiratory Syn-
drome Coronavirus

1 Single sequence 30,119

1 Homo Sapiens AL158070 is a DNA sequence, which can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/AL158070.11
2 ASTRAL is a database of protein sequences based on the SCOP database, which can be downloaded from https://scop.berkeley.edu/astral/
subsets/ver=1.61 and https://scop.berkeley.edu/astral/ver=1.71
3 Babysale is a sales dataset for infant products, which can be downloaded from https://tianchi.aliyun.com/dataset/dataDetail?dataId=45
4 Superstore is a sales dataset from SuperStore, which can be downloaded from https://tianchi.aliyun.com/dataset/dataDetail?dataId=93285
5 TSS (Transcriptional Start Sites) contains 200 human genes of positive and negative classes, which comes from http://dbtss.hgc.jp/
6 SARS-CoV-1 (Severe Acute Respiratory Syndrome Coronavirus 1) is the gene sequence of virus causing in 2003, which was reported by Ref
[71] and can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/30271926?report=fasta
7 SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is the gene sequence of virus causing COVID-19, which was reported by
Ref [72] and can be downloaded from https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3?report=fasta
8 MERS-CoV (Middle East Respiratory Syndrome Coronavirus) was reported by Ref [73] and can be downloaded from https://www.ncbi.nlm.
nih.gov/nuccore/NC 019843.3?report=fasta

It should be noted that, SDB1-6 are protein sequences
composed of 20 amino acids, and DNA1-6, SARS-
CoV-1, SARS-CoV-2, MERS-CoV, and TSS are DNA
sequences composed of four deoxynucleotides, A, T, C,
and G.

In this paper, GSgrow-MAX, NOSEP-MAX, MAXB,
MAXD, NetNMSP-S, and NOSEP are employed as

competitive algorithms whose principles are shown as
follows.

1. GSgrow-MAX: GSgrow [40] algorithm is an efficient
mining algorithm, which employs INSgrow algorithm
to approximately calculate the support. Based on
GSgrow, GSgrow-MAX further finds the maximal
patterns in the frequent patterns.
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2. NOSEP-MAX: To verify the effectiveness of Netback,
NOSEP-MAX adopts NETGAP to calculate the support
which was employed in NOSEP [30].

3. MAXB and MAXD: To verify the pruning efficiency
of pattern join, we propose the MAXB and MAXD
algorithms, which employ the breadth-first and depth-
first searching for the set enumeration tree to generate
the candidate patterns, respectively.

4. NetNMSP-S: To verify the efficiency of the screening
method, NetNMSP-S is proposed and mines NMSPs
according to Definition 6.

5. NOSEP [30] and NetNCSP [23]: To verify the
compression effect of NMSPs, we employ the NOSEP
and NetNCSP algorithms to mine all frequent patterns
and closed patterns.

5.2 Mining efficiency

To further illustrate the Efficiency of the NetNMSP
algorithm, we perform experiments on single-sequence
DNA datasets (DNA1 to DNA6) and multi-sequence
protein datasets (SDB1 to SDB6). We select GSgrow-
Max, NOSEP-MAX, MAXB, MAXD, NetNMSP-S, and
NetNMSP as the competitive algorithms. Considering the
difference between DNA and protein datasets, we set
minsup = 700, gap = [0,3] on the DNA datasets, and
minsup = 1800, gap = [0,10] on the protein datasets. The
comparisons of the number of NMSPs, running time and the
number of candidate patterns on DNA and protein datasets
are shown in Figs. 5, 6, 7, 8, 9 and 10, respectively.

The results indicate the following observations.

1. Although GSgrow-MAX is faster than NetNMSP,
NetNMSP has better performance than GSgrow-MAX.
FromFigs. 6 and 9,we know thatGSgrow-MAX is faster
than all other algorithms. However, from Figs. 5 and
8, we know that GSgrow-MAX discovers less NMSPs.
For example, on DNA6, GSgrow-MAX runs for
1.41 s, while NetNMSP runs for 444 s. However,
GSgrow-MAX only finds 262 NMSPs, while NetN-
MSP finds 465. The reasons are as follows. GSgrow-
MAX employs INSgrow to calculate the support. INS-
grow is an approximate algorithm and the time com-
plexity of INSgrow is less than that of Netback. There-
fore, GSgrow-MAX runs faster than NetNMSP. How-
ever, GSgrow-MAX is also an approximate algorithm.
Thus, some frequent patterns cannot be discovered by
GSgrow. Moreover, with the increase of the sequence,
more NMSPs will be lost. For instance, on DNA1,
GSgrow-MAX discovers 16 out of 17 NMSPs, while
on DNA6, GSgrow-MAX discovers 262 out of 465
NMSPs, since the length of DNA1 is shorter than that of
DNA6. The protein datasets are composed of multiple
sequences, and each sequence is short. Thus, GSgrow-
MAX can find out most NMSPs on protein datasets.
Hence, NetNMSP outperforms GSgrow-MAX.

2. NetNMSP has better performance than NOSEP-MAX.
NetNMSP checks the same number of candidate
patterns as NOSEP-MAX and finds the same NMSPs
as NOSEP-MAX, and NetNMSP runs faster than
NOSEP-MAX. For example, on SDB1, both NetNMSP
and NOSEP-MAX check 2,045 candidate patterns and
discover 179 NMSPs, and NetNMSP runs for 239 s,

Fig. 5 Comparison of number
of NMSPs on DNA1 to DNA6
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Fig. 6 Comparison of running
time on DNA1 to DNA6

while NOSEP-MAX runs for 371 s. The reasons are as
follows. NetNMSP and NOSEP-MAX employ the same
candidate pattern generation strategy, and Netback
and NETGAP are exact algorithms. Therefore, both
NetNMSP and NOSEP-MAX check the same number
of candidate patterns and discover the same number of
NMSPs. However, NETGAP has to find and prune the
invalid nodes, while Netback does not. Thus, the time
complexity of Netback is less than that of NETGAP.
Hence, NetNMSP runs faster than NOSEP-MAX.

3. NetNMSP has better performance than MAXB and
MAXD. NetNMSP finds the same NMSPs as MAXB
andMAXD, checks less candidate patterns thanMAXB

and MAXD, and runs faster than MAXB and MAXD.
For example, on DNA2, NetNMSP, MAXB andMAXD
all find 38 NMSPs, and check 179, 412 and 412
candidate patterns, respectively, and cost 11, 40 and 40
s, respectively. The reasons are as follows. The three
algorithms all adopt Netback to calculate the support,
but employ different candidate pattern generation
strategies: the pattern join strategy, breadth-first and
depth-first searching for the set enumeration tree. In
Section 4.2, we show that the pattern join strategy
outperforms the set enumeration tree strategy. Hence,
NetNMSP checks less candidate patterns than MAXB
and MAXD, and runs faster than MAXB and MAXD.

Fig. 7 Comparison of number
of candidate patterns on DNA1
to DNA6
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Fig. 8 Comparison of number
of NMSPs on SDB1 to SDB6

4. NetNMSP has better performance than NetNMSP-
S. NetNMSP checks the same number of candidate
patterns as NetNMSP-S and finds the same NMSPs
as NetNMSP-S, and runs faster than NetNMSP-S. For
example, on SDB4, both NetNMSP and NetNMSP-S
check 3,882 candidate patterns and find 325 NMSPs,
and run for 574 and 806 s, respectively. The reason is
that NetNMSP employs the screening method to find
NMSPs, while NetNMSP-S uses the definition. Hence,
NetNMSP runs faster than NetNMSP-S.

In summary, NetNMSP outperforms all competitive algo-
rithms.

5.3 Scalability analysis

To analyze the scalability of the NetNMSP algorithm,
we select two datasets in Table 5: multi-sequence dataset
BABYSALE and single-sequence dataset Superstore. We
set gap = [0,3] and minpau = 6,000 for Babysale and gap

= [0,7] and minpau = 6,000 for Superstore. The number of
NMSPs, running time and number of candidate patterns are
shown in Figs. 11, 12 and 13, respectively.

The results show the following observations.
With the increase of sequence length, the number of

NMSPs, running time and the number of candidate patterns

Fig. 9 Comparison of running
time on SDB1 to SDB6
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Fig. 10 Comparison of number
of candidate patterns on SDB1
to SDB6

increase. For example, the lengths of Baby1 and Baby4 are
73,272 and 137,941, respectively. There are 18 and 118
NMSPs, the running time is 46 and 892 s, and the number
of candidate patterns is 88 and 637 on Baby1 and Baby4
datasets, respectively. This phenomenon can be found on
SUPERSTORE dataset. The reasons are as follows. With
the increase of sequence length, more frequent patterns can
be found. Therefore, there are more candidate patterns. As
a result, the running time increases. More importantly, more
patterns are NMSPs.

Meanwhile, from Fig. 12, we can see that NOSEP-
MAX, MAXB, MAXD, NetNMSP-S and NetNMSP have
the same tendency in running time. However, the tendency
of NetNMSP is more gentle than other algorithms which
means that our algorithm guarantees the best scalability on
large scale datasets.

5.4 Compression Performance

To show the compression performance of NMSP mining,
we report the number of nonoverlapping frequent sequential
patterns mined by NOSEP [30], the nonoverlapping
closed sequential patterns mined by NetNCSP [23], and
NMSPs mined by NetNMSP. In the experiments, we also
report the proportion of closed patterns and maximal
patterns in frequent patterns, expressed by rate close
(rate close = cp

fp
) and rate max (rate max = mp

fp
), where

cp, mp, and fp are the number of nonoverlapping
closed patterns, maximal patterns, and frequent patterns,
respectively.

To evaluate the compression performance of NMSPs,
we report the number of nonoverlapping frequent patterns,
closed patterns, and NMSPs on single-sequence DNA2 and

Fig. 11 Comparison of number
of NMSPs
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Fig. 12 Comparison of running
time

multiple-sequence datasets SDB5. On DNA2, we increase
gap from [0,1] to [0,6] with minsup = 800. On SDB5,
we increase gap from [0,5] to [0,15] with minsup =
1800. To further show the consistence of the compression
performance of NMSPs, we also use different support
thresholds. Single-sequence DNA dataset DNA4, multiple-
sequence DNA dataset TSS, and multiple-sequence protein
dataset SDB2 are selected. On DNA4 and TSS, we decrease
minsup from 950 to 450 with gap = [0,3]. On SDB2, we
decrease minsup from 2000 to 1250 with gap = [0,15]. The
experimental results are shown in Figs. 14, 15, 16, 17 and
18.

The results indicate the following observations.

1. From Figs. 14–18, all experiment results show that
NMSP mining has better compression performance
than nonoverlapping closed pattern mining in all cases,
such as single sequence, multiple-sequences, different

gap constraints, and different support thresholds. In
all experiments the number of closed patterns is the
same as that of frequent patterns, while the number
of NMSPs is less than that of frequent patterns.
For example, in Fig. 14, the number of frequent
patterns, closed patterns, and NMSPs are 317, 317,
and 150, respectively. The same phenomena can be
found in Figs. 15–18. The reasons are as follows. For
nonoverlapping closed pattern mining, if pattern P and
its supper-pattern Q are frequent patterns and have
the same support, then pattern P can be compressed.
However, for NMSPmining, if pattern P and its supper-
pattern Q are frequent patterns, then pattern P can
be compressed no matter whether its support is the
same as that of pattern Q. Therefore, NMSP mining
is easy to obtain better compressing performance than
nonoverlapping closed pattern mining.

Fig. 13 Comparison of number
of candidate patterns
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Fig. 14 Comparison on DNA2
with minsup = 800

2. The less |�| is, the better compressing ability of NMSP
mining is. From Table 5, we know that |�| of DNA2,
DNA4, and TSS are all 4, and |�| of SDB5 and SDB2
are both 20. From Figs. 14–18, NMSP mining remains
about 50% to 65% frequent patterns with |�| = 4, while
NMSP mining remains about 75% to 85% with |�|
= 20. For example, on DNA2, NMSP mining remains
58.3% frequent patterns with gap = [0,1] and minsup

= 800, on DNA4, remains 57.5% frequent patterns with
gap = [0,3] and minsup = 950, and on TSS, remains
56.7% frequent patterns with gap = [0,3] andminsup =
950. However, on SDB5, NMSP mining remains 82.8%
frequent patterns with gap = [0,5] and minsup = 1,800,

and on SDB2, remains 77.3% frequent patterns with
gap = [0,15] and minsup = 2,000. The reasons are as
follows. When the number of the frequent patterns is the
same with different size of�, apparently, the less |�| is,
the longer the maximal length of the frequent patterns
is. Since the subpatterns of the frequent patterns are
also frequent patterns, which could be compressed by
NMSPs. Therefore, many short frequent patterns can be
compressed when |�| is less.

In summary, NMSP mining has better compression
performance than nonoverlapping closed pattern mining in
many cases.

Fig. 15 Comparison on SDB5
with minsup = 1800
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Fig. 16 Comparison on DNA4
with gap = [0,3]

5.5 Case study

On February 11, 2020, the novel coronavirus pneumonia
was named as COVID-19 by the World Health Organization
(WHO). Meanwhile, the International Committee on
Taxonomy of Viruses announced the official name of
a new coronavirus: Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). The disease caused a global
disaster, infecting more than 200,000,000 people and killing
more than 4,500,000 by August 29, 2021. Many researchers
have studied SARS-CoV-2 from different aspects. For
example, Nawaz et al. [74] adopted sequential pattern
mining method to find hidden patterns which can be used

to examine the evolution and variations in COVID-19
strains.

The DNA of the three viruses, SARS-CoV-1, SARS-
CoV-2, and MERS-CoV, is single sequence. To study their
complete genome, in this section, we set gap = [0,4] and
minsup = 2500. We employ intersection, union, and rate
to evaluate the similarity of each two sequences, where
intersection of two sets of mined patterns A and B is the
set of patterns which are in both A and B, union is the set
of patterns which are in A or B, and rate = t

u
, where t

and u are the number of patterns in intersection and union,
respectively. We report the number of frequent patterns
and NMSPs on two sequences with different lengths. The

Fig. 17 Comparison on TSS
with gap = [0,3]
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Fig. 18 Comparison on SDB2
with gap = [0,15]

comparison results between MERS-CoV and SARS-CoV-
1, SARS-CoV-1 and SARS-CoV-2, and MERS-CoV and
SARS-CoV-2 are shown in Figs. 19, 20, 21, 22, 23 and 24.

The results indicate the following observations.

1. Both frequent pattern mining and NMSP mining show
that most of the same patterns are short patterns. In
Figs. 19 and 20, there are 316 and 313 frequent patterns
and 171 and 161 NMSPs in MERS-CoV and SARS-
CoV-2, respectively. In these patterns, 248 frequent
patterns and 68 NMSPs are the same, and most of
them are short patterns. For example, when the pattern
lengths are less than 6, we know that 209 frequent
patterns and 52 NMSPs are the same. Meanwhile, the
same phenomenon can also be found in Figs. 21 to

24. The possible reasons are as follows. The basic
structure of MERS-CoV, SARS-CoV-1 and SARS-
CoV-2 are the same. Therefore, the short NMSPs are the
same. However, the three viruses have many different
characteristics, which lead to different frequent patterns
and NMSPs in long patterns.

2. NMSP mining not only effectively compresses the
frequent patterns, but also is easier to find the
difference between each two viruses. For example,
there are 268 and 313 frequent patterns in SARS-
CoV-1 and SARS-CoV-2, respectively, while there are
150 and 161 NMSPs in SARS-CoV-1 and SARS-CoV-
2, respectively. Therefore, NMSPs remain no more
than 60% frequent patterns. More importantly, NMSP

Fig. 19 Comparison of number
of frequent patterns between
MERS-CoV and SARS-CoV-2
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Fig. 20 Comparison of number
of NMSPs between MERS-CoV
and SARS-CoV-2

mining is easier to find different patterns from each
two viruses. For example, there are both 97 frequent
patterns with length 4 in MERS-CoV and SARS-CoV-
1, respectively. Among them, 87 patterns are the same.
Therefore, the intersection and union are 87 and 117,
respectively. Thus, the rate is 74% in frequent patterns.
However, there are 43 and 66 NMSPs with length
4 in MERS-CoV and SARS-CoV-1, respectively. The
intersection and union are 33 and 76, respectively,
resulting in a rate of 43% in NMSPs. Hence, NMSP
mining makes it easier to find the difference between
each two viruses.

3. SARS-CoV-1 is more similar to SARS-CoV-2 than
MERS-CoV. From Fig. 20, there are 171 and 161
NMSPs in MERS-CoV and SARS-CoV-2, respectively.

Among them, 68 patterns are the same. Therefore, the
intersection and union are 68 and 263, respectively.
Thus, the total similarity between MERS-CoV and
SARS-CoV-2 is about 26%. However, there are 150
and 161 NMSPs in SARS-CoV-1 and SARS-CoV-2,
respectively. The intersection and union are 93 and
218, respectively, resulting in a rate of SARS-CoV-1
and SARS-CoV-2 is 43%. Hence, compared with
MERS-CoV, SARS-CoV-1 is more similar to SARS-
CoV-2.

4. SARS-CoV-1 is more similar to MERS-CoV than
SARS-CoV-2. From the above analysis, we know that
the total similarity between MERS-CoV and SARS-
CoV-2 is about 26%. However, from Fig. 24, there are
171 and 150 NMSPs in MERS-CoV and SARS-CoV-1,

Fig. 21 Comparison of number
of frequent patterns between
SARS-CoV-1 and SARS-CoV-2
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Fig. 22 Comparison of number
of NMSPs between
SARS-CoV-1 and SARS-CoV-2

Fig. 23 Comparison of number
of frequent patterns between
MERS-CoV and SARS-CoV-1

Fig. 24 Comparison of number
of NMSPs between MERS-CoV
and SARS-CoV-1

9880 Y. Li et al.



respectively. Among them, 95 patterns are the same.
Therefore, the intersection and union are 95 and 226,
respectively. Thus, the total similarity between MERS-
CoV and SARS-CoV-1 is about 42%. Hence, the simi-
larity between MERS-CoV and SARS-CoV-1 is higher
than that between MERS-CoV and SARS-CoV-2.

6 Conclusion

This paper studies NMSP mining. As a pattern compression
technology, without changing mining parameters, NMSP
mining can compress the pattern set and reduce redundant
patterns. To solve the problem, this paper proposes the
NetNMSP algorithm which employs the backtracking
strategy to calculate the support, the pattern join strategy to
generate the candidate patterns, and the screening method
to find NMSPs. To calculate the support, we propose the
Netback algorithm which adopts the backtracking method
to find an occurrence with no need to find and prune
invalid nodes in the Nettree. Since NMSP mining satisfies
the Apriori property, NetNMSP adopts the pattern join
strategy to generate the candidate patterns. Meanwhile,
NetNMSP employs the screening method to find NMSPs
to improve the mining efficiency. Experiments on DNA
and protein sequence datasets verify that NetNMSP can
exactly mine all NMSPs in sequence datasets. Moreover,
it shows that not only does NetNMSP outperform other
competitive algorithms, but also NMSP mining has better
compression performance than closed sequential pattern
mining. Experiments on sales datasets validate that our
algorithm guarantees the best scalability on large scale
datasets. More importantly, we mine NMSPs and frequent
patterns in SARS-CoV-1, SARS-CoV-2 and MERS-CoV.
The results show that NMSP mining is easier to find the
differences between the virus sequences.
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