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Abstract The Big Data Era has presented many opportunities for using data
mining techniques to discover knowledge patterns across large and diverse col-
lections of data where the volume of data is growing at an exponential rate.
Recent approaches to Distributed Data Mining (DDM) have focused on ad-
dressing the heterogeneous nature of data sources. However, such approaches
do not prioritize the reduction of data communication costs which could be
prohibitive in large scale sensor networks where bandwidth is a limited re-
source. In fact, higher communication and computational costs are the two
most prominent problems that have been encountered in heterogeneous dis-
tributed environments. Moreover, an effort to decrease the communications
load in the distributed environment has an adverse influence on the classifi-
cation accuracy. Therefore, the research challenge lies in maintaining a bal-
ance between transmission cost, computational cost, and accuracy. This paper
proposes an algorithm Performance Optimizer in Distributed Stream Mining
(PODSM) based on Bayesian Inference to reduce the communication volume
and resource time in a heterogeneous distributed data mining environment
while retaining prediction accuracy. The approach used in this work exploits
the past data for calculating statistics and these statistics are then utilized for
the new data. In other words, it imparts the ability to learn from experiences.

R. Bhalla

School of Engineering, Computer and Mathematical Sciences, Auckland University of Tech-
nology

E-mail: rashi.bhalla@aut.ac.nz

R. Pears

School of Engineering, Computer and Mathematical Sciences, Auckland University of Tech-
nology

M. A. Naeem

Department of Computer Science, National University of Computer & Emerging Sciences
F. Mirza

School of Engineering, Computer and Mathematical Sciences, Auckland University of Tech-
nology



2 Rashi Bhalla et al.

As a result, our experimental evaluation reveals that a significant reduction in
the communication load and an improvement in classification response time
can be achieved across a diverse range of dataset types. Reduction of 34.66%
was obtained with regard to communication overhead for one of the datasets
with huge savings of nearly 27% in resource time. Importantly, instead of show-
ing a negative effect on accuracy, this dataset observes an increment of 0.44%
in accuracy.

Keywords Big Data, Bayesian inference, Distributed data stream mining,
Heterogeneous distributed data

1 Introduction

The volume of data are exploding in both scientific and commercial domains.
Big Data is a term which is used for datasets that are larger than traditional
data. As the size of raw data is increasing, parallelly data mining algorithms are
becoming a necessity. In many application domains data exists in a distributed
fashion across different geographical locations which are networked together
[14} [6]. Each physical location may have different requirements and thus the
nature of the data it collects may differ from its peer nodes in its network thus
giving rise to heterogeneity in the data. Such types of distributed databases
require mining methods which are distinct from traditional homogeneous dis-
tributed databases where the structure is identical across different peer nodes
in the network. The imperative of the Big Data age is to develop machine
learning techniques that can be applied not only to larger static dataset but
also should have the ability to process an ever-changing data stream arriving
at a rapid pace. Concurrent data processing is done in two scenarios, first if
there is a single, high throughput of data or if there are multiple steams of
data that in turn generate huge volumes of data [3I]. The first situation is
dealt with by dividing the data for parallel processing across multiple ma-
chines, which is known as parallelized data mining, however, this is not always
appropriate for distributed data stream mining as it is often based on the as-
sumption that data originates in a single stream. The approach used in this
research addresses the data streams as being heterogeneous and extends it to
the case where data arrives continuously in streaming mode.

The advancements in information and communication technology have
spurred the appearance of distributed computing environments which consist
of large volumes of data and multiple computing components. The objective
of Distributed Data Mining (DDM) is to obtain useful information, knowl-
edge, and patterns from distributed data sources, which can further serve the
needs of many modern applications [19, I4]. The classical data warehouse
based architecture works by uploading the data into the warehouse for cen-
tralized processing, as shown in Fig. [1| but as the dataset sizes grew and the
model became more complex, there was a need to replace the centralized data
mining by parallel and distributed techniques. Moreover, due to the funda-
mental features of the aforementioned method such as long response times,
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Fig. 1: Data warehouse architecture

lack of proper use of distributed resources, high communication cost, and pri-
vacy issues, traditional architectures could not achieve effective outcomes in
distributed environments and therefore gave rise to distributed processing ar-
chitectures. Figure[2] presents a distributed data mining framework where each
individual site processes the locally available data and finally local models will
be agglomerated to form a global model. The distributed approach is more
effective in terms of computation, storage, privacy, and cost of communication
[30]. It is being deployed in by applications like astrophysics, sensor networks,
weather forecasting, and many others.

Data can be distributed in one of two ways, either they follow homoge-
neous schemata also known as horizontal partitioning or vertical partitioning,
an alias for heterogeneous schemata [26]. Homogeneous schemata are the most
common way of collecting data, according to which the features describing the
data are same across each distributed site, a multinational company collecting
data about its clients in different parts of the world comes under this category.
On the other hand, under heterogeneous schemata the attributes present at
distributed sites differ from each other for the same set of records. For exam-
ple, a sensor network in which each sensor collects data related to its set of
attributes. Vertically partitioned dataset is still rare but are becoming more
prominent and will be discussed in this paper. It is generally believed that
mining of heterogeneous distributed data is more challenging and complex [I].

The input to the system is an unbounded stream of data instances arriving
at high speed. Data stream mining algorithms that can learn from continuous
streams of data records have been developed; they can scan and process each
record only once. This ensures that the system does not need to store large
collections of records for training. These algorithms are designed so that they
can adapt to changes in the underlying patterns of the data streams, also
known as Concept Drift [I2]. In supervised learning algorithms, it requires
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Fig. 2: Distributed data mining framework

that the prediction of the unknown target feature value is computed as soon
it is received thus enabling real-time analysis, in this background cutting-edge
studies are able to cater the demands of Distributed Data Stream Mining
(DDSM) by developing techniques through which the local data mining models
generated at each distributed site are combined into the global model while
minimizing the data transmission costs and without much effect on accuracy.

A rapid growth in the number of organization operating globally has turned
distributed data processing a necessity. Moreover, the broadening scale of us-
age of sensor networks has revived distributed mining, with an emphasis on
Heterogeneous Distributed Data Stream Mining (HDDSM), since these appli-
cations analyze data streams originating from different sources. An example
that can be cited here is of a Congestion Prediction Model which uses data
from different data sensor nodes like weather, traffic, social media [I]. This
research demonstrates how the algorithm presented here improves the perfor-
mance of distributed stream mining in a number of different scenarios where
resources are limited. Consequently, productivity gained by reducing commu-
nication burden and resource time would immensely benefit sensor networks,
thereby increasing the life of nodes and thus, enhancing the efficiency of sensor
networks.

The objective of this research is to propose a novel method, Performance
Optimizer in Distributed Stream Mining (PODSM) for strengthening the per-
formance of HDDSM. It has been developed by extending the work done in
[12] 13] for distributed data stream scenarios. The main contributions made
by this research are as follows:
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— A method that uses Bayes’ theorem for predicting the level of confidence
of peer distributed nodes.

— A data transmission protocol that reduces the data transmission volume
in a DDSM context while maintaining similar accuracy levels.

— We demonstrate the capability of the algorithm by achieving significant

improvements in resource time.

We augment the proficiency of local models by building a feedback system

that helps the distributed nodes in making decisions.

The rest of the paper is organized as follows. The next section will elucidate
the previous work in the field of distributed data mining. Section 3 describes
the architecture for DDSM. In Section 4 we will illustrate the performance
of our algorithm based on experimental evaluation by comparing it with a
state-of-art approach. Finally, Section 5 will conclude the paper and provides
pointers for future research.

2 Related work

The literature abounds with research related to Distributed Data Mining
(DDM); it is the field that is attracting the attention of burgeoning number
of scholars. A data matrix can be divided in two ways: either by row resulting
in horizontal parallelism or by column thus enabling vertical parallelism. The
former approach has been used in [31], where a broadcast message is sent to
all the sites for classification of an unlabelled instance, finally, a classification
label with a majority prediction is selected. On the other hand, a novel method
Vertical Hoeffding Tree (VHT) that parallelizes decision tree construction via
vertical parallelism is proposed by Kourtellis, Morales, Bifet and Murdopo
[22].

The basic procedure for creating a DDM algorithm starts with performing
an analysis of the local data available at the distributed sites and then amalga-
mating the local models in order to obtain the global model [20]. The authors
in [24] present the comparative study of four different models namely cen-
tralized database/centralized data mining, centralized database/parallel data
mining, centralized database/distributed mining, and lastly their own devel-
oped method Multi-Agent Hierarchical Data Mining (MHDM). The database
is centralized in the former three approaches while on the other hand, data is
distributed over local sites in the fourth approach where local agents extract
knowledge from the database and send the mined results to the main agent
for aggregation. As discussed earlier, data can typically be distributed either
in a horizontal or vertical distribution. The presence of heterogeneously parti-
tioned data is still scarce but is becoming more prevalent and prominent [30].
Classification of vertically distributed data is the focus of this research.

The authors in [22] implemented vertical tree partitioning by splitting the
data based on its attributes. The Algorithm consists of two components, the
model aggregator, which holds the current model i.e. the tree produced so far
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and the local statistics which contains the statistics njj. for a set of attribute-
value-class triplets. In order to train the model, VHT break down the record
into its constituent features, attaches class label to each and sends them inde-
pendently for calculation of local statistics. The centralized classifier produced
by this method requires the availability of all the attributes of a record to be
classified at a single location.

In vertical distribution, each node gathers values for a different set of at-
tributes for every record. Apparently, each site has different view of the data
and it is assumed that vertical fragments of the record can be joined with the
help of at least one unique key feature that all the sites share. Past approaches
for classifying vertically distributed databases tend to join the models trained
at local site in order to obtain a centralized classifier by merging the outputs of
local sites. There is a trade-off between the accuracy and the amount of data
transmitted to a central location. Chen, Sivakumar and Kargupta [9] presents
an approach of learning a Bayesian Network from heterogeneous distributed
data with selected data transmission. Each local site learns a Bayesian network
based on the local data and identifies the records that are evidence of coupling
between local and non-local variables, thereby sending only a subset of these.
Subsequently, another Bayesian network is constructed at the central site by
using the selective transmission by the local sites and therefore, a collective
Bayesian Network is produced by mingling local and central models.

Park, Ayyagari, and Kargupta proposed a technique [27] to mine data ef-
fectively in a heterogeneous environment while distributing the computational
load and reducing the communication cost. The proposed method constructs
distributed decision tree learning where each site builds a local decision tree
and the global site constructs its model based on instances transmitted by the
local sites. Setting a confidence threshold value helps in identifying instances
that contain the most information about the cross terms. Thus, records that
are classified with a confidence lower than the threshold by the local sites are
transmitted with the local models to the central site. This offers a way to
maintain a balance between the transmission cost and accuracy.

A two stage process of creating an ensemble architecture is a more general
way of mining vertically distributed data, where local classifiers are produced
at the local sites in the first phase while in the following stage, the local classifi-
cations are combined to generate the final output. The methodology is capable
of improving the prediction accuracy [23] as the prediction of new incoming
instances is based on the combination of the individual classifier’s predictions
and thus can be employed in data stream environments. Ensembles of classifiers
are a powerful tool which has led to substantial improvements by integrating
the outputs of multiple classifiers. This framework can provide fruitful results
when applied to heterogeneous distributed data mining situations because they
have a pool of classifiers that differ in terms of overall performance [32]. There
are several ways to merge the local classification for ensemble learning in order
to obtain the final output. The most common method of merging the classi-
fication of local classifiers is Aggregation which selects the classification with
maximum confidence as the final outcome. Another method for classification
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depicted in [3] is based on deriving the combined probability based on utiliz-
ing the posterior probabilities computed by the individual classifiers. Skillicorn
and McConnell [30] came up with a technique called attribute ensembles in
which the local predictions based on the local attributes are sent to a central
site where the combination take place by voting or averaging to produce a
final prediction while [32] suggests a method to obtain the classification based
on order statistics. A more recent approach for data stream environments [12]
that does not involve centralization of data from the distributed nodes forms
the basis of this research and has been discussed in detail below.

2.1 Background and problem definition

As discussed above, Park proposed a method for classifying vertically parti-
tioned data in [27], under which the distributed sites sent only unconﬁdemﬂ
records to the centralized site and subsequently, the centralized site processes
only those records which are declared as unconfident by all the sites. This
allows the centralized site to capture the cross-terms or relationship present
between all the sites, cross-terms are the patterns which can only be detected
by combining views of two or more vertical partitions. Therefore, the trans-
mission of other records for which only a subset of distributed sites are un-
confident and are not processed by the centralized site serve no purpose and
results in uneconomic communication. Subsequently, Ben et al. came up with
an architecture named Hierarchical Distributed Stream Miner (HDSM) [12]
which has its basis in capturing the cross-terms between the subset of sites.
Instead of a single centralized trouble site, it builds a hierarchy of trouble sites,
where each trouble site is formed by pairing two source sites or the distributed
nodes. In HDSM, each primary site constructs a local classifier based upon
its view of data and identifies trouble records that is, the records which were
classified with a confidence value less than the threshold. This method allows
the creation of multiple trouble sites each receiving trouble records from the
subset of primary sites. Every trouble site is of certain order depending upon
its level on the hierarchy as such primary sites are of order 0 and the order
keeps on increasing on moving down the hierarchy. The system is initialized
with a minimal structure consisting of only the primary sites and the Aggre-
gator with no trouble sites. The Aggregator site in this architecture receives
the classification results from all the sites and generates the final output. The
classification result consists of a classification label with a confidence value of
that classification. A trouble site is created only when any two primary sites
reach an agreement greater than the threshold value. Agreement measures the
likelihood that all source sites agree any received record is trouble (refer [I3]
for more details). The architecture is equipped with three sets of monitors,
namely the creation, removal, and the blacklist monitor which are responsible
for creating, removing, or blacklisting a trouble site, respectively. The value
of accuracy for HIG dataset under Park’s experiment and the best HDSM

1 An alias for low-confidence, signifies confidence lower than the threshold.
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experiment reported in [12] were 53.40%, 53.57% respectively while the total
weighted transmission were 45.18% and 48.63%. The first 1000 records of these
experiment were considered a “warm-up” time and were ignored in all calcu-
lations. Moreover, the total weighted transmission considers the proportion of
total data volume transmitted and was calculated in terms of weighted com-
munication. A trouble site will process a record only if it receives the record
fragment from both of its source sites on being declared as a “trouble record”
by both of them, that implies the training set of a trouble site is the collection
of merged record containing all the features of its source sites. The communi-
cation has narrowed down compared to Park’s approach, but the trend is still
similar. This can be demonstrated by an example. Suppose A and B are two
distributed sites and Tap is the trouble site generated for capturing the cross-
terms between A and B, as such Trouble site, Tap receives trouble records
from A and B. While processing a record by sites A and B, there can be four
cases:

— A and B are confident

— A is confident and B is unconfident
— A is unconfident and B is confident
— A and B, both are unconfident

It is worth mentioning here that the distributed sites are unaware about each
other’s state that is, a distributed site has knowledge about only its own view
while it has no information about other sites attributes, their values, and the
confidence configuration. For the first case, since both the sites are confident,
there will be no transmission to the trouble site while for the second and third
case, the unconfident site will send its record fragment to the trouble site
while the confident site will send its classification result to Aggregator sus-
pending communication to trouble site for this particular record. As a result,
the trouble site holds record fragment of only one site which is useless to it
and this results in unnecessary overhead of communication, thereby decreasing
the productivity in terms of computational resource time. Hence, this research
put forward a method to utilize the communication which serve no purpose in
state of the art approaches.

3 PODSM
3.1 Architecture

The following section elucidates the architecture of the proposed method for
classification in a vertically distributed data stream. It aims at curtailing the
communication between the sites and enhancing the efficiency in terms of com-
putational resource time, while maintaining the accuracy level. The proposed
work is based on the HDSM method which was discussed in previous section.
Figure 3| depicts the architecture of the system which consists of a number of
primary sites, trouble sites and one aggregator site. Every primary site receives
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input from heterogeneous data streams which differ in terms of feature set. It
is assumed that each feature set will contain a common key feature that is
not used for classification but allows record fragments and classifications to be
merged at trouble sites and the classification aggregator, respectively.

The ultimate motive of refining the productivity in terms of communica-
tion and computation has been addressed by targeting the records which are
sent by only one unconfident source site. These records have no significance in
generating the classifier at the trouble site and result in wastage of communi-
cation. The basic working scheme says that if a source site is unconfident for
a record, it predicts the probability of confidence of paired source site. If the
predicted probability value is greater than the threshold, the unconfident site
would assume that the other site is confident and therefore makes a decision
not to send the record to the trouble site while in the other case when the
prediction value is less than the threshold the unconfident site would send the
record. Supposing that the unconfident site decides not to send the record
depending upon the prediction value, on the occasion when this assumption
made by the unconfident site turns out to be correct would fruitfully results
in reduction of communication otherwise it may affect the accuracy.

For calculating the probability by a source site, the algorithm exploits
the Bayes’ formula, according to which the conditional probability can be
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calculated as:
P(B | A)P(A)
(B[ A)P(A)+ P(B| A°)P(A°)

The formula is based on the expression P(B) = P(B | A)P(A) + P(B |
A°®)P(A°), which simply states that the probability of event B is the sum of the
conditional probabilities of event B given that event A has or has not occurred.
On relating the above equation in our system shown in Fig. [8] Suppose, if A,
B are the two primary sites and A is unconfident for a record, the formula
used by A in that case to predict the probability of confidence of B will be as
follow:

P(A|B) = 5

P(X =z A~ conf | Beonf)P(Bconf)

P(Beonf | X =z A~ conf) = P(X =2 A~ conf | Bconf)P(Bconf)+ P(X =z A~ conf | B~ conf)P(B~ conf)

where the terms on the left hand side will give the probability of B being con-
fident when A is unconfident for X = x, where X is the set of attributes at site
A and x contribute to values of attributes for a record while the terms on the
right side are calculated at the trouble site using the historic data (i.e. a batch
of seen records). At the end of this batch of records, the trouble site calculates
statistics for the terms mentioned on the right side of the above formula and
send those values to the source sites. Thus, the trouble sites are responsible
for calculating and transmitting these statistics to their respective source sites.
Likewise, when B being unconfident for a record predicts the probability of
confidence of A using the above formula but in that event the positions of
A and B in the formula gets interchanged. The statistics or feedback from
all the trouble sites is then utilized by the source sites when they encounter
a trouble record, for predicting the level of confidence of their peer site. To
achieve dynamism for the data stream environment, the statistics after being
calculated at the end of first batch, are regularly updated on incoming of every
record. This makes algorithm adaptive for situations when there is any change
in the structure, expressly if there is any addition or removal of trouble site
and further adds the flexibility on account of concept drifts in data streams.

3.2 Algorithm

The primary sites generate its local classifier and correspondingly have their
local “confidence threshold” value. When a new unlabelled record arrives,
it calls a procedure processRecord in Algorithm [I} If the local classification
confidence of the record is less than the confidence threshold and it belongs
to batch-17] then that particular record is forwarded to the trouble site for
calculating historic statistics. On the other hand, if the record does not belong
to batch-1 and there exists sufficient statistics (received from trouble site as
explained above), then the unconfident local site estimates the probability of

2 First set of records that is used by the trouble site as the historic data for calculation
of the conditional probabilities.
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the other site being confident. If the computed value is greater than the peer
confidence threshold which is set at 0.5 then it holds back the record and
does not send it to trouble site, but if peer confidence is less than 0.5, it then
forwards the record to the trouble site. While, if sufficient statistics do not
exist, then the record is forwarded to trouble site for calculating statistics.

The reason for setting the peer confidence at 0.5, is that a site that esti-
mates that if a peer site can make a correct prediction above random chance,
then it should allow that peer site’s prediction to be forwarded to the final
aggregation site. The aggregation site will make a final determination of the
class value for such a record based on the site’s confident prediction and its
perception of a confident prediction from its sister peer site. In case the site’s
perception of its peer was incorrect then the site’s prediction will prevail, else
the class value will be determined on the basis of the maximum of the confi-
dent predictions received by the site in question and its peer site. Ultimately,
setting peer confidence at a modest value of 0.5 ensures that communications
overhead is minimized by preventing transmissions involving assessments with
a confidence greater than random chance rather than requiring a higher hurdle
such as a value in the range [0.5, 1.0). One consequence of setting it at the
random chance value is that there is a risk of not identifying cross-terms since
such records are not dealt with at the trouble site. In effect, the setting of the
threshold represents a trade-off between classification accuracy and commu-
nications overhead.

Each trouble site runs a procedure forwardTroubleRecord of Algorithm [T}
which shows that if it receives record fragments from all source sites expressly
as a result of all its source sites agreeing that a record is trouble, then it
processes that record, otherwise when it receives just a fragment of a record
from one site then it uses that particular record for updating existing statistics
or computes new values in case they do not exist.

As a result, the calculated feedback data are transmitted to the source sites
initially at the end of batch-1 and then incrementally updated on a record by
record basis in order to keep statistics current.

All the sites in the network must send their local classification confidence
to the Aggregator which in turn will compute the final prediction depending
upon highest confidence in our case, check procedure notifyAggregator for
reference. The role of a source site is summarized in Fig.

8.2.1 Illustration of transmission protocol

The Aggregator has all the information required for the classification of every
record through the transmission mechanism described in Algorithm [I| The
completeness of this transmission protocol can be demonstrated by considering
a hierarchy, where p; and po are the two primary sites which classify their
record segments r; and ry of record r with key k and produces ¢; and co as
their respective classification, and t is the trouble site with c; representing its
classification. There can be four possible cases to elucidate the transmission
process. The first possible case is when both the primary sites are confident.
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Algorithm 1: Procedures for primary, trouble and aggregator site

Procedure processRecord(site, record):

classify record at site to get the classification-result;
aggregateClassification(site, record-key, classification-result,
t-site-forwarding) ;

foreach t-site that site may forward to do

if classification-result confidence < threshold from site to t-site then

if record belongs to batch-1 then
‘ forwardTroubleRecord (t-site, record);
else if feedback data received from t-site for (X = x1, X2, ..., xn) /=0
then
calculate the conditional probability of another paired site being
confident given the present site is unconfident for (X = x1, x2, ...,
Xn);
if the above estimated classification-result confidence of other site
< 0.5 then
‘ forwardTroubleRecord (t-site, record);
else
quit processing the current record and resume with the next
record;
end
else
‘ forwardTroubleRecord (t-site, record);
end
end
end

Procedure forwardTroubleRecord (t-site, record-fragment):
if t-site has received a record-fragment from all source sites then
\ processRecord (t-site, merged-record);
else if record belongs to batch-1 then
add record-fragment to a size-limited buffer at t-site;
calculate historic statistics when (X = xi, x2, ..., xn) where X is the
feature set;
transmit it to the source sites as feedback data;
else
update the existing historic statistics if they exist otherwise calculate new
values and transmit it to the source sites as feedback data;
end
Procedure aggregateClassification(site, record-key, classification-result,
t-site-forwarding) :
log classification-result as received from site for record-key;
foreach t-site in t-site-forwarding do
if site forwarded record-key to t-site AND record-key has not been logged as
unexpected from t-site then
‘ log that a result for record-key may be expected from t-site;
else
‘ log that a result for record-key is unexpected from t-site;
end
end
if all p-sites and expected t-sites have provided a classification-result then
‘ aggregate all classifications for record-key into a final-classification;
end

In this situation, both the sites classify their record segment with confidence
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values greater than the threshold value, in this case both the sites p; and po
send their classification c; and ¢ to the aggregator without forwarding their
record fragments to the trouble site. The sites notify the aggregator that they
are not forwarding the record to the trouble site by setting t-site-forwarding
= {t : 0} in the call to notifyAggregator in Algorithm When the aggregator
starts processing each site’s classification, the condition is evaluated to be
false for trouble site t as both the sites p; and ps sent {t : 0} in the call so
therefore the record is logged as unexpected from t. Ultimately, the aggregator
will process the classification received from sites (i.e. from both the primary
sites and not expected from trouble site) and produce the final classification.
Algorithm [2| outlines the high-level procedure calls involved in this case.

Algorithm 2: Procedure calls for case when both p; and py are con-
fident

processRecord(p;, 1)

>~ aggregatorClassification(py, k, ¢z, {t : 0})
processRecord(pg, r2)

>~ aggregatorClassification(pg, k, cg, {t : 0})
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In the second case, p; confidently classifies the record while ps is not confi-
dent in its classification, so in this case if the record r belongs to batch-1, then
t-site-forwarding will be {t : 1} for py and {t : 0} for p; while if the record
does not belongs to batch-1 and the estimated probability of confidence of pq
by p2 is less than the threshold, the outcome will be again {t : 1} for ps and
{t : 0} for p1, but if the estimated probability is greater than the threshold,
the t-site-forwarding will be {t : 0} for both p; and ps (i.e. p2 will estimate
that p; is confident and will not transmit the record fragment, thus saving
communication). If t-site-forwarding is {t : 0} for both the sites, the situation
will be same as in case first while if py sends the record fragment to t, the
trouble site t will then receive the record segment from only one site making
the condition false and therefore t will not be processing the record. While if
both the primary sites differ in their decision, the record will be added to the
buffer and will be used for calculation of the conditional probabilities, thus
logging the classification to be unexpected from t. The Aggregator will pro-
duce the final classification from the classification of both the sites and will
not wait for t. Algorithm [3| outlines the procedure calls made when record r
belongs to batch-1 or if the estimated probability of p; being confident by po
is less than threshold, in other cases Algorithm [2] will be used.

Algorithm 3: Procedure calls for case when p; is confident and ps is
not _confident
processRecord(py, 71)
>~ aggregatorClassification(py, k, ¢z, {t : 0})
processRecord(pg, r2)
>~ aggregatorClassification(pg, k, cg, {t : 1})
forwardTroubleRecord (¢, r2)

The third possible case is when the primary site p; is unconfident and po
is confident, which is similar to second case except that the role of the primary
site gets interchanged, therefore this case does not need further discussion.

The final and fourth case is when both the primary sites are unconfident. If
the record belongs to batch-1 then both the sites will transfer their respective
record fragment to the trouble site and t-site-forwarding will be {t : 1} for both
thus making the condition true. The trouble site after receiving the record from
both the sites will process the merged record, accordingly, and will declare t-
site to be expected. Finally, the aggregator will generate the final classification
based on the classification received from both the primary sites py, p2 plus
it will also wait for the classification from t making the condition true, Algo-
rithm [4| demonstrates the procedure calls used in this particular case. on the
other hand, if the record doesn’t belong to batch-1, both the primary sites will
estimate the probability of confidence of the other paired site using the historic
statistics, if the estimated probability value is greater than the threshold, the
transmission of the record will be skipped by that unconfident primary site.
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If both the sites wrongly estimate their paired site to be confident, as a result
both the unconfident primary sites will not send the record to the trouble site
following Algorithm [2] whilst if one of the sites made a wrong estimation and
the other made the correct prediction, the second and the third case will be
used depending on the roles of the primary sites. The last scenario would be
if both the sites correctly predict the low confidence of each other, in this case
Algorithm [4 will be used, the former two cases will have an effect on accuracy.

Algorithm 4: Procedure calls for case when both p; and py are not
confident
processRecord(py, 1)
>~ aggregatorClassification(py, k, c1, {t : 1})
forwardTroubleRecord (¢, r1)
processRecord(pg, r2)
>~ aggregatorClassification(pg, k, co, {t : 1})
forwardTroubleRecord (¢, 72)
/#* t has received fragments from all source sites, and therefore processes r */
> processRecord(t, (1 1 + 7 2))
>~ aggregatorClassification(t, k, ¢, {})

Table [1) highlights the comparison of PODSM with recent approaches [27],
[13] in terms of communication convention. It summarizes the nature of action
under each method for different states (i.e. confident or unconfident) of two
distributed sites, A and B in this case. It is important to recall that in HDSM
and PODSM, A and B would be paired into a trouble site and transmission
will be to that trouble site while in Park’s approach all the communication
takes place between the distributed sites and a single central trouble site.

3.2.2 Aggregation methods

The final classification outcome by the aggregator can be produced based on
several methods. The first one being maximum confidence which has been
adopted as the standard aggregation method in the experiment assessment
section. Under maximum aggregation, a single site whose classification confi-
dence is highest is the victor [27] and the aggregator chooses the winner site’s
class as the final selection. The other method of aggregation is Voting, under
this approach the aggregator’s outclass is based on majority votes from all the
primary sites and the final confidence of classification is the mean confidence
of all of them [30]. The third method of aggregation is stacking [28], where
the classification results from all the primary sites are used as input to other
stream classifier, however these stream classifiers may or may not use the same
algorithm as the base classifiers. These stream classifiers generate a new clas-
sification with a confidence value. The impact of using different aggregation
methods is depicted in the next section.
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Table 1: Transmission comparison for different states of sites

Site Status Transmission Status
Site A Site B Parks’ Algorithm HDSM  PODSM
Conf Conf Yes Yes Yes
Conf Unconf  Yes Yes Maybe
Unconf  Conf Yes Yes Maybe
Unconf Unconf No No No

4 Experimental evaluation

All experiments were performed with OpenJDK 1.8.0 on a 64-bit Windows
running on a 4 x 3.40 GHz Intel Core i5 CPU with 16 GB of memory. We
have used Adaptive Random forest (ARF) [I7] classifiers at trouble sites while
Naive Bayes classifiers are used at the primary sites and the final classification
is selected based on highest confidence aggregation method. There were several
configuration parameters that were kept fixed throughout the implementation
phase in HDSM [12]. They were size-limit for all windows, all threshold values
for creation and removal monitors, Hoeffding bound (¢), and smoothing factor
for agreement threshold (). Additionally, in PODSM an invariable known as
batch-1 was given a constant value depending upon the size of the dataset
such as, the value of batch-1 for HIG dataset was 5000. Trouble factor is a
user-configured parameter in the HDSM architecture that determines the pro-
portion of the data stream that will be transmitted to a trouble site in the
form of trouble records [I3]. The experiments were configured for trouble factor
equal to 1, 1.5 and 2. The experiments were performed on 11 datasets out of
which nine datasets are real namely, Occupancy (OCC), NASA FLTz (FLT),
HIGGS (HIG), Gas Sensor Array Drift (GAS), Gesture Master (GES), Skin
NonSkin (SKIN), Parkinson (PARK), Fog release (FOG), Sensorless Drive Di-
agnosis (SDD)and two are synthetic; RBF-M, SEA-G, these are based on the
Radial Basis Function generator (RBF) and SEA generator. Table [2| describes
the datasets in terms of feature count, number of primary sites, classes and
records count and also list the number of features available per site. The col-
umn stream? provides streaming information about the dataset, in some cases
the dataset consists of long periods of single class, where shuffling is needed
for meaningful assessment while for SDD dataset, there are 11 classes produc-
ing several streams, so these streams are interleaved for preserving time-series
progression within them. Interleaving was done by drawing records in order
from each stream until all records from all the streams are exhausted and the
decision for the selection of next stream was made randomly. FLTz data was
retrieved from NASA’s data portal, and rest of the real world data were re-
trieved from UCI Machine Learning Repository while the synthetic datasets
SEA-G and RBF-M were generated with MOA [5].
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Table 2: Properties of datasets used for performance evaluation

Dataset  Feature Feature P-site Class  Record Stream?
count per site count count count

FLT 20 1-3 9 2 25034  Shuffled

ocCC 3 1 3 2 20560  Shuffled

HIG 19 3-4 5 2 10000  Stream

GAS 128 8 16 6 13910 Stream

GES 8 1 8 6 63196  Shuffled

SKIN 3 1 3 2 50000  Shuffled

PARK 6 1 6 2 26731 Shuffled

FOG 9 1 9 3 38774  Shuffled

SEN 48 4 12 11 58509  Interleaved

SEA-G 3 1 3 2 100,000 Gradual drift

RBF-M 10 1 10 5 50,000 Moderate Incremental Drift

4.1 Performance assessment metrics

The accuracy and the total volume of transmission reported in terms of per-
centage (%) are used as metrics to evaluate the performance of the method
discussed in this study. The accuracy was evaluated using the confusion ma-
trix produced as part of the classification process. Total transmission (TT)
is reported as the record transmission between all the sites and may exceed
100% in cases when record fragments are transmitted through multiple layers
of trouble sites. Transmission of site classifications to the Aggregator is not
considered, as transmission of class labels and confidence values from the sites
is same in both the cases, while being a much less significant cost in com-
parison to feature transmission. In HDSM, the author reported resource time
in terms of Mean Time on Critical Path (MTCP) and Mean Time Between
Completions (MTBC). MTCP measures the classification interval for a sim-
ple record on average and it is the cumulative CPU time taken to process a
record, over the longest running sequences of classifiers, averaged over all the
records. While, MTBC measures the mean difference between the execution
times of consecutive records, provided each classifier can start processing a
record only after it has finished processing the previous record and also af-
ter all its source sites have processed the record. Both MTCP and MTBC
are expressed in nanoseconds, for more details refer [13]. Table 3| provides a
summarised definitions for all the assessment units.

Table 3: Explanation of metrics used for performance assessment.

Metric Explanation

Accuracy  Classification accuracy.

TT Total data transmission to trouble sites.
MTCP Mean Resource Time (CPU) to generate final classification on critical
Path.

MTBC Mean Resource Time (CPU) between successive classification completions.
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4.2 Performance comparison

The following section presents the comparative study between HDSM [12] and
PODSM. The results obtained by applying Algorithm [I| demonstrate its abil-
ity to achieve a substantial drop in communication while maintaining nearly
the same accuracy levels. The values for these metrics were computed without
taking batch-1 into account as batch-1 was only used for calculating the first
historic statistics and in actual there was no effect of applying this algorithm
on batch-1. Tables [4] and |5| provide a comparative study for accuracy and to-
tal transmission between HDSM and PODSM which clearly depicts decline
in communication while obtaining nearly same accuracy except two adverse
cases: Gesture Master and Sensorless drive. In case of SDD, the drop in ac-
curacy is much higher when compared to savings in terms of communication
while in case of GES when trouble factor equal 1.5, a contradictory effect on
communication can be seen after applying algorithm, instead of decreasing,
the communication is increasing.

Table 4: Accuracy comparison

HDSM PODSM

Dataset

TF 1x TF15x TF2x TF1x TF 1.5x TF 2x
FLT 81.18 87.37 87.62 80.54 87.01 87.62
OCC 88.67 88.78 92.69 82.34 88.33 91.19
HIG 53.90 54.00 54.48 54.24 53.58 54.72
GAS 63.04 73.05 81.49 60.95 70.80 81.40
GES 63.08 63.01 63.29 62.97 63.07 63.29
SKIN 97.78  96.68 94.83 95.97  95.90 94.83
PARK 79.53  92.52 99.59 77.46  92.52 99.59
FOG 85.38 88.27 89.20 84.40 87.90 89.28
SEN 86.34 95.83 98.00 71.60 87.86 97.68
SEA-G 75.95 75.76 75.93 75.60 75.76 75.93
RBF-M  43.11 45.72 52.76 41.86 47.23 52.69

For Occupancy dataset, when trouble factor equals 1, the accuracy drops
by 7% but on the other hand the algorithm achieves a huge reduction in
communication of approximately 42%. Table |§| summarizes the accuracy for
the Occupancy dataset in terms of other metrics; precision, which measures
the exactness and recall, which is the measurement for completeness.

However, it can be witnessed that in some cases (SEA-G when TF is
1.5%, 2x) even after applying algorithm PODSM, communication and accu-
racy remains unchanged. Figure [§] highlights the efficiency of the best case
of algorithm which reveals a significant cost reduction can be seen in terms
of communication with marginal effect on accuracy, Fig. shows the com-
parison of accuracy between HDSM and PODSM, while Fig. presents the
communication observation.
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Table 5: Communication comparison

HDSM PODSM

Dataset

TF 1x TF 1.5x TF 2x TF 1x TF 1.5x TF 2x
FLT 425.31 632.46 669.66 369.47 616.74 669.66
ocCcC 99.31 149.68 307.20 57.70 108.12 220.78
HIG 218.12 342.14 525.52 181.24 307.36 343.38
GAS 543.31 850.77 952.87 419.05 707.98 892.85
GES 297.97 276.86 267.28 279.56 353.11 267.28
SKIN 100.65 76.35 13.76 36.95 57.37 13.76
PARK 204.99 311.04 398.46 150.34 311.04 398.46
FOG 341.09 586.54 769.69 230.65 522.34 766.43
SEN 334.88 421.13 493.83  294.28 378.64 463.17
SEA-G 51.34 16.38 6.74 32.21 16.38 6.74

RBF-M  476.33 688.02 1026.22  327.35 684.55 1023.76

Table 6: Other Accuracy metrics for OCC dataset

HDSM PODSM
" Precision Recall Precision Recall
Class 0 Class1 Class0 Class1 Class0 Class1 Class0 Class 1
1x 0.93 0.74 0.92 0.77 0.85 0.67 0.93 0.46
1.5x  0.93 0.75 0.93 0.76 0.93 0.74 0.92 0.75
2x 0.95 0.85 0.96 0.82 0.93 0.85 0.96 0.75

Table 7: Resource time comparison

HDSM PODSM

Dataset

MTCP MTBC MTCP MTBC
FLT 1.80E5  7.05E4 1.67E5  7.06E4
oCC 7.63E4 6.63E4 6.34E4  3.84E4
HIG 1.45E5  6.43E4 1.40E5 4.69E4
GAS 1.85E5  2.63E4 1.67E5  2.17TE4
GES 1.33E5 1.31E4 1.38E5 1.50E4

SKIN 3.12E4 2.49E4 2.01E4 8.11E3
PARK 9.47E4 5.34E4 7.86E4 2.23E4
FOG 1.47E5 7.92E4 1.23E5 6.21E4
SEN 1.43E5 6.61E4 1.20E5 1.71E4
SEA-G 4.58E4 2.96E4 4.15E4 2.54E4
RBF-M  2.08E5 6.35E4 1.65E5 1.74E4

Table [7] draws the comparison between HDSM algorithm and PODSM
algorithm in terms of resource time when TF equals 1, in almost all the cases
an improvement in resource time is observed except for GES, and FLT (only
for MTBC). It can be observed that a considerable reduction in resource time
has been obtained while maintaining the same accuracy levels, with SEN and
RBF-M showing remarkable efficiency.
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Fig. 5: Significance of PODSM

As discussed in previous section, there can be different ways of combining
the classification results from all the sites at the aggregator site. The effect
of choice of method to produce the final classification on accuracy and total
transmission for the SKIN dataset has been depicted in Fig. [6] which has three
subgraphs one for each case of trouble factor. In subgraph for TF equals to
1, a major decline in transmission has been achieved with marginal effects on
accuracy for all the methods. When TF is 1.5x and aggregation method is
Maximum Confidence, transmission witnesses a drop of 24.86% with 0.81%
decrease in accuracy, on the other hand, for other two methods there seem
to be less or no effect. Similarly for TF 2x, voting shows a small decline in
transmission with a minor effect of 0.17% on accuracy while the other two
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Table 8: Resource time comparison for different methods

HDSM PODSM

" MaxConf Voting Stacking MaxConf Voting Stacking

MCTP MTBC MCTP MTBC MCTP MTBC MCTP MTBC MCTP MTBC MCTP MTBC

Ix 3.12E4 2.49E4 2.88E4 2.19E4 1.07E5 9.25E4 2.01E4 8.11E3 1.74E4 7.35E3 1.00E5 8.87E4
1.5x  2.54E4 1.86E4 5.25E4 4.52E4 1.14E5 9.56E4 2.21E4 1.54E4 4.91E4 4.28E4 1.12E5 9.46E4
2x 1.36E4 5.69E3 5.46E4 4.78E4 1.36E5 1.06E5 1.28E4 5.50E3 5.14E4 4.48E4 1.25E5 9.63E4

method witnesses no change. The impact of using different aggregation meth-
ods on resource time has been summarized in Table[§] which shows substantial
improvement in performance in terms of resource time, bold values represent
the best case. This relative analysis portrays the efficiency of the algorithm
in achieving substantial decline in communication and resource time while
maintaining nearly same level of accuracy for all the methods.

A relative view has been drawn among HDSM and PODSM in Figs.[7]and[§
It displays the timeline for accuracy, data transmission volume and resource
time. Data transmission volume is the record feature communication and is
reported as the proportion of the total volume of data in the dataset. Total
transmission represents the volume of transmission that occur between all sites
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while Maximum transmission to one trouble site expresses the maximal volume
of transmission to any trouble site. Figure [7] presents the timeline for HDSM,
it can be seen that after processing approximately 9000 records a trouble site
[2, 3] is generated. The addition of trouble site [2, 3] into the system captures
the cross terms between sites 2 and 3, thereby rising accuracy levels while at
the same time transmission levels also shows a spike, thus higher accuracy is
achieved at the expense of data transmission. Another trouble site [1, [2, 3]]
gets created due to high agreement between the sites and thereupon capturing
the cross terms. After a while, the recently added trouble site is removed and
is blacklisted because the cross terms for which it was created disappeared.
Throughout the experiment, the trouble site [2, 3] remains active revealing the
presence of cross terms and plays a consistent role in improving the accuracy.
The total transmission and resource time shows a spike whenever a trouble site
is created while maximum transmission to a trouble site maintains a steady
trend.

Meanwhile, a comparison drawn between the above experimentation time-
line for HDSM and the visualizations obtained after applying algorithm POD-
SM is represented in Fig. [§|reveals that the same trouble site [2, 3] is created at
the same scales, giving rise to accuracy and total transmission but in this case,
maximum transmission to trouble site shows a declining trend after some time
because at this stage the source sites initiate using the statistics sent by the
trouble sites to predict the probability of confidence of peer site, hence reduc-
ing communication and resource time. The trouble site [2, 3] gets removed due
to absence of cross terms and thus the agreement between the sites decreases,
from this point trouble site transmission turns out to be null till the time a
new trouble site is created. The same recurring behaviour can be witnessed
as maximum transmission after reaching a height maintains a relatively bal-
anced level for some time because the transmission during this period is used
for calculating the statistics and when these statistics or feedback are used,
they led to decreasing trend in transmission. Trouble site [1, 2] gets removed
since the utilisation of trouble site [1, 2] gets dropped due to absence of cross-
terms, so this trouble site gets removed. During the ending phase, presence of
cross-terms triggers the creation of a trouble site [1, 3.

A final distinction has been drawn in Fig. ] between centralized experi-
ment and PODSM with highest confidence as the aggregation method for all
cases of trouble factor. Relative ranks have been calculated for accuracy and
communication averaged across eleven datasets. Although, centralized exper-
iment is the victor in the race of accuracy but lags behind in maintaining the
trade-off between accuracy and communication (calculated as distance from
origin) whereas all cases of HDSM shows better performance in building up
the balance between the two.
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4.3 Parameter sensitivity analysis of PODSM

Along with configuring the experiments to different values of trouble factors,
the sensitivity of PODSM was evaluated on two other parameters; size of
batch-1 and periodicity of updating the statistics. Differing values were ap-
plied on both of these parameters, while changing value of one parameter the
other parameters were stabilized to their standard value (value used in all the
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previous experiments). The size of batch-1 was increased for some datasets
while for others it was decreased, for instance in case of HIG dataset the stan-
dard size of batch-1 used for all the previous experiments was 5000, which was
decreased to 2500 for examining the influence of size of batch-1 on accuracy
and communication. The results in Table [0] shows the impact of changing the
size of batch-1 (Increased / Decreased) on accuracy and communication.
A direct relationship between batch size and communication can be witnessed
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from the results. Once the statistics gets calculated at the end of batch-1, they
are updated on record basis (as mentioned above). The frequency of refreshing
these statistics was switched from record basis to situation when there is any
change in the hierarchical structure that is when there is an addition or re-
moval of a trouble site. The readings in Tables[d] and [f] were obtained when the
probabilities are updated on record basis after batch-1 while Table [10| presents
the results when the probabilities are updated only when there is some change
in the structure, that is only when a trouble site is added or removed. It can
be seen a decrease in communication is achieved compromising accuracy levels
marginally.

Results in these tables clearly highlight the trade-off between classifica-
tion accuracy and communication overhead, therefore the size of batch-1 and
periodicity of updating probabilities can be adjusted in order to maintain a
balance between the two.

4.4 Practical implications and limitations of PODSM

The implication is that the PODSM is a flexible algorithm that can provide
fast and accurate classification using lessen communication and computation.
The backbone of the algorithm to learn heuristics using historic data and em-
ploy them for new data, thus saving resources in reference to communication
and time. This probability calculation method has its major application in
resource restricted heterogeneous frameworks. The development in Internet
of Things (IoT) applications obliges the conjoint servicing of heterogeneous
data streams like traffic congestion model, video surveillance systems involv-
ing numerous video cameras. The experiment evaluation revealed the potential
of PODSM targeted towards enhancing performance of mining of distributed
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Table 9: Impact of change in batch-1 size on Accuracy and Communication

Dataset  batch-1 size Accuracy Communication

TF 1x TF15x TF2x TF1x TF 1.5x TF 2x
FLT Dec 79.81 86.36 86.95 356.62  598.03 676.31
(e]e]6} Dec 80.61 84.38 90.31 39.65 85.28 223.52
HIG Dec 53.93 54.90 54.04 113.39  277.37 345.49
GAS Dec 63.23 72.14 80.28 357.34  552.14 739.71
GES Inc 63.18 63.09 63.24 295.38  253.09 186.49
SKIN Dec 95.21 95.26 94.86 18.74 32.78 14.24
PARK Inc 77.40 93.37 99.61 163.91 311.66 398.56
FOG Dec 82.61 87.14 89.09 200.07  460.79 T47.77
SEN Inc 72.06 88.36 98.07 375.33  626.71 478.94
SEA-G Dec 75.90 78.46 78.54 43.27 54.54 60.61
RBF-M Inc 42.88 47.45 53.11 382.47 691.28 1036.11

Table 10: Effect of changing the periodicity of updating the probabilities

Trouble Factor

Dataset
1x 1.5x 2x

Accuracy Comm  Accuracy Comm  Accuracy Comm
FLT 80.80 390.83  87.20 615.24  87.62 669.66
OoCcC 84.46 38.41 88.57 120.08 92.31 259.13
HIG 54.32 219.70 53.48 399.16 55.24 445.56
GAS 60.49 474.16  65.58 719.24  80.90 980.16
GES 62.97 279.58  63.07 353.13  63.29 267.28
SKIN 97.62 39.94 96.55 69.14 94.83 13.76
PARK 75.39 170.24  92.52 311.04  99.59 398.46
FOG 84.59 240.67  88.17 561.52  89.33 768.16
SEN 77.40 329.29  92.01 423.65 9791 497.47
SEA-G 78.24 55.52 75.76 16.38 75.93 6.74
RBF-M  40.78 345.99  45.80 691.91  52.25 1023.48

data streams while maintaining a balance between accuracy, communication,
and computation resource time. As mentioned before, Naive Bayes classifiers
which are light weight algorithms were used at the primary sites and moreover
the focus of this paper has been on decreasing the communication and resource
time, therefore, this algorithm can strengthen the sensor networks which con-
sist of distributed sensor nodes with limited capability such as the one used to
predict seismic activities like an earthquake or tsunami early warning system.
However, it is a flexible algorithm which can be used with many datasets and
with other classification methods or may even be applied to other machine
learning scenarios such as numeric regression.

It is worth discussing the current constraints and relevance of this algorithm
and the scenarios where PODSM may not be suitable. Table [f] shows that
in some of the cases even after implementing algorithm, the communication
factor remains unchanged, it may be particularly due to the inefficiency of
the dataset to learn sufficient statistics that can be applied to estimate the
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probability of confidence of paired site and the other case can be when there
is substantial fall in accuracy. One way to combat these cases can be to switch
to other trouble factor values. The focus of PODSM was on calculating the
probability of confidence of paired distributed node and comparing it to static
value of 0.5, however some mechanism can be developed to store the past con-
fidence values of sites and thereupon using those values to make a decision
about the confidence status of peer distributed mode.

5 Conclusion and future directions

In this paper, we focused on Distributed Data Mining (DDM), particularly in
the environment where the distributed sources are heterogeneous in nature,
very little research has been done in the heterogeneous arena and still lesser
in the streaming scenario. Indeed, mining knowledge from this architecture
incurs huge communication cost, therefore, we have presented a method to
optimize communication overhead and resource time in vertically distributed
data streams while maintaining the similar accuracy level. Our experimenta-
tion showed a significant drop in communication (HIG, with communication
drop of 34.66% with an increase of 0.44% in accuracy) and an improvement in
resource time with minimal effect on accuracy except for two cases (Gesture
Master and Sensorless Drive).

However, there may still be opportunities to enhance the performance of
mining knowledge from distributed data streams. One approach can be to in-
clude confidence values with feature value to calculate the historic statistics.
This may help to estimate the confidence value instead of estimating prob-
ability of confidence of paired unconfident site. Furthermore, in the current
work the algorithm is used for the classification problem, however, it can be
adapted to other machine learning techniques as well.
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