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Abstract Bayesian network (BN) is a probability in-

ference model to describe the explicit relationship of

cause and effect, which may examine the complex sys-

tem of rice price with data uncertainty. However, dis-

covering the optimized structure from a super-exponential

number of graphs in the search space is an NP-hard

problem. In this paper, Bayesian maximal information

coefficient (BMIC) is proposed to uncover the causal

correlations from a large dataset in a random system by

integrating probabilistic graphical model (PGM) and

maximal information coefficient (MIC) with Bayesian

linear regression (BLR). First, MIC is to capture the

strong dependence between predictor variables and a

target variable to reduce the number of variables for

the BN structural learning of PGM. Second BLR is to

assign orientation in a graph resulting by a posterior

probability distribution. It conforms to what BN needs

to acquire a conditional probability distribution when

given the parents for each node by the Bayes’ Theorem.

Third, Bayesian information criterion (BIC) is treated

as an indicator to determine the well-explained model
with its data to ensure correctness. The score shows
that the proposed method obtains the highest score
compared to the two traditional learning algorithms.

Finally, the BMIC is applied to discover the causal cor-

relations from the large dataset on Thai rice price by

identifying causality change in the paddy price of Jas-
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mine rice. The experimented results show the proposed

BMIC returns the directional relationships with clue to

identify the cause(s) and effect(s) on paddy price with

better heuristic search.
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1 Introduction

With data uncertainty, one important issue is found
when data keeps growing in volume, variety, and ve-

locity. The uncertainty resembles noise, contaminating

the observed dataset, leading to deviation in correct-

ness. However, the observed data is a valid part of the

computational and statistical analysis necessary to ob-

tain knowledge and utilize it further in a prediction.
Price is regarded as a key element that holds a high
possibility to drive the economy through domestic and

international trading. An analysis of price is wildly in

demand in economic (Baharom et al., 2009; Ghoshray,

2008) and agricultural (Sujjaviriyasup, 2018; Shao and

Dai, 2018) topics, requested to know the mechanism,

characteristics, and future trends. The price prediction

model is a popular study, yet the data analysis pro-

cess is quite tricky due to non-stationary and noise

data. To achieve the prediction model, the relationship

among data variables inform of causality becomes cru-

cial for analyzing data. The price domain is affected

by many uncontrollable attributes that gather in time-

series data. Thus, the observed dataset simultaneously
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presents data variability and genuine incomprehension

of data attribute relationships in the system. In this

paper, agricultural price is selected for study, particu-

larly the price of Thai rice, due to price variation and

global trading competition. The price of Thai rice can

fluctuate by many relevant factors such as uncertain

productivity, climatic conditions, competitors (import

and export trading), and domestic and world situa-
tions.(Pandey et al., 2010) Understanding causative re-
lationships among factors can reduce obstacles in pric-

ing and avoid unexpected future situations. Therefore,

the interpretation of causative relationships is better

described via a graphical model.

Probabilistic Graphical Model (PGM) (Marloes et

al., 2013) illustrates causal relationships by probability

and graph. It (Koller and Friedman, 2009) is a robust

framework to handle uncertainty predictions. The cor-
related and tuple uncertainty and their relationships are
demonstrated by a joint probability distribution.(Singh

et al., 2008) Bayesian network (BN) presents a directed

acyclic graph (DAG) on a joint probability distribu-

tion using a conditional probability of variables from

the Bayes’ theorem along with machine learning. Much

research has underlined the probabilistic forecasting of
uncertain data with BN in a specific domain, includ-
ing medical analysis(Helong et al., 2009), ecology sys-

tem(Liu et al., 2015; Aguilera et al., 2011), agricul-

tural forecasting(Chawla et al., 2016; Nuvaisiyah et al.,

2018), and economic application(Alvi, 2018). Unfortu-

nately, PGM’s structured learning process encounters

the NP-hard problem(Chickering, 1996) when all ob-

served variables are required to construct the DAG. It

implies that the super-exponential number of graphi-

cal models is in the search space. The more graphs in

the search space, the more time, memory, and cost are

required to discover the best network structure.

Consequently, this paper aims to use a data-dependent

to scope the observed variables in the sample space. The

dependence measure is calculated by maximal informa-

tion coefficient (MIC).(Reshef et al., 2011) The MIC

widely detects the relationships between pairwise vari-

ables in a large dataset. The coefficient will result in an

R-square (R2) of data related to the regression. An eq-

uitability property, which is one of the main properties

of MIC, is reasonable for choosing this algorithm. The

equitability will return the result of noiseless function

relationships that maximize the R2 to 1. Hence, MIC
coefficient will roughly equal R2 when the function is

tested with different samples, noise models, and noise

levels. Even so, the correlated data is going to be con-

nected to their relationships as an undirected graph.

Edges without a direction between data variables can-

not represent the causality. Based on the reasons above,

this paper highlights the synergy of correlated data of

MIC with PGM, aiming to diagnose the direction of

the relationship by applying a statistical inference. The

Bayesian linear regression (BLR) formulates the linear

regression with the Bayesian inference, implying the

variables’ dependency in a linear function. Therefore,

the BLR in this paper is preferred to identify the di-

rectional relationship of correlated pairwise variables

through their dependence by using a probability distri-
bution. The correlated pairwise variables can manifest
in the linear relationship between the target (y) and

predictor (x) variables. The BLR declares the linear

regression model using a probability distribution from
a normal (Gaussian) distribution rather than a single
value estimated.

Moreover, the target result of BLR draws a poste-

rior probability for model parameters that can describe
the conditional probability of correlated pairwise vari-

ables. The highest posterior probability determines the
direction between correlated pairwise variables relation-
ship. The pairwise variables, x1 and x2, will be tested

as both target and predictor variables, meaning when

x1 is a target variable, x2 will be a predictor variable

and vice versa. Consequently, the alternation of being
the target and predictor variables will obtain a different

posterior probability. The highest posterior probability
selection determines whether x1 or x2 will be the tar-

get or the predictor variable. The result can then be

implied to be a directional relationship and conditional

dependency between x1 and x2.

2 Related methods

PGM and MIC are the related methods for background

knowledge.

2.1 Probabilistic Graphical Model

Probabilistic Graphical Model (PGM) (Marloes et al.,

2013) framework conditionally establishes the network

model into Bayesian network (BN) and Markov chain

(MC). Both models highly support modeling a joint

probability distribution into directed and undirected

graphs, respectively. BN illustrates directed PGM, pre-

senting the captured conditional dependencies of as-

sociated attributes through the Bayes’ theorem, ben-

eficially describing a causality relationship. BN is also

applicable to making predictive modeling of uncertain

data that explains dependent attributes using the oc-

currence probability of their relationships. On the other

hand, MC is designed to be an undirected PGM that
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shows only the nodes’ association without any ordered

causality.

The joint probability distribution theoretically sup-

ports the BN construction. The BN structure is condi-

tionally connected the relationship of random variables.

In terms of the PGM framework, the value estimation is
represented by the probability distribution. Therefore,
the conditional probability distribution (CPD) becomes

an answer to help PGM interprets the joint distributed

random variables with their intuitive models. The BN

is used the Bayes’ theorem (Ruohonen, 2013) inference

in the presence of uncertain situations and handling

many relationships among random variables (factors).

The Bayes’ theorem is usually made use in the financial

domain to support the updating risk evaluation.

The key concept of Bayes’ theorem is to simply de-

fine a result of the conditional distributions in terms

of joint distributions. The Bayes’ theorem requires the

prior probability distributions in order to calculate the

posterior probability. The prior probability is the prob-

ability of an event before collecting the new data. While
the modification probability of occurring events after
receiving the new data will return the posterior proba-

bility. The formula of Bayes’ theorem is stated as

P (A | B) = P (A ∩B)/P (B) = P (B | A)P (A)/P (B)

(1)

As a result, the Bayes’ theorem benefits the revising

predictions that can update probabilities with the new
information incorporation. In prediction terminology,
the information of occurring events relies on the hy-

pothesis and evidence, which imply to the probability

of a hypothesis, H, on a given data, E. So, the formula

is altered as

P (H | E) = P (E | H)P (H)/P (E) (2)

Where P (H | E) is a posterior probability. P (E | H)

is a likelihood probability. P (H) is a prior probabil-
ity. And P (E) is a marginal probability or model evi-

dence.(Ruohonen, 2013)

BN is a model representation based on graph and
probability theories. A graph theory (Joyce, 2003) com-

poses a set of vertices and edges, G = (V,E). V indi-
cates vertices or nodes, while E indicates edges in a

graph. The edge displays the connection between as-

sociated vertices. The cardinality of vertices or nodes

|V | and edges |E| in a graph refer to the order and the
size of a graph. In BN, nodes represent random vari-

ables and edges present relationship on conditional in-
dependence. The basic BN initially composes of at least

two nodes connected with one edge. BN’s edge repre-

sentation draws a directional edge that uses an arrow

to give the best understanding of the causal relation-

ship. Therefore, BN is a directed acyclic graph (DAG)

avoiding a self-connection and cycle relationship that

determines a fundamental cause-and-effect relationship

concept. An example in Fig. 1 is an arrow that directly

connects node A to node B, implying that node A is a

cause of node B or that node B is affected by node A.

Fig. 1 A simple graph of a directed relationship

To consider the probability of a BN construction, S

corresponds to the structured BN and θS corresponds

to the associated conditional probabilities which is de-

fined as <S, θS>. While P<S, θS> is defined the joint

probability distribution of all random variables in a con-
structed network. According to, the set of vertices V

composes of a set of random variables x1, x2, . . . , xn

and edges E provide the conditional independence of

two random variables. Therefore, each variable xi in a

set of V has the CPD as P (xi, Pa(xi)) where Pa(xi) is

a set of parent variables of variable xi. It can be denoted

as

P 〈S, θB〉 = P (x1, x2, . . . , xn) =

n
∏

i=1

P (xi | Pa (xi)) (3)

Consequently, BN draws edges among random vari-

ables to represent their dependencies by using struc-

tural learning of the observed data sample. There are

two learning approaches in the PGM framework, pa-

rameter learning and structure learning, emphasizing

dependent attributes beyond the conditional probabil-
ity estimation process. Both learning algorithms aim to
construct the DAG, but each model will be done by a
different method and target data sample. The BN does

not only learn through the pure data sample, but the

existing relationships can also be learned to construct

the network model.

2.1.1 Parameter learning

The parameter learning approach requires sample data
with the existent DAG for capturing the conditional

probability of individual variables. The conditional prob-

ability is estimated by selecting two components: Max-

imum likelihood estimation (MLE) and Bayesian esti-

mation. MLE gives the maximized conditional probabil-

ity of data given the model, P (Data | Model). At the
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same time, the Bayesian estimation returns the prior

conditional distribution.

2.1.2 Structure learning

The structure learning approach captures the maxi-
mized probability of variable dependencies without know-
ing prior knowledge. The network model is obtained

from the posterior probability distribution given its data

sample, P (Graph | Data). According to the Bayesian

statistical decision theory, the number of graphs can

grow in a super-exponential number of DAGs. Then,

only the most optimized structure, which is measured

by a network score, will be selected. Although struc-

ture learning encounters a limitation of unknown prior

knowledge, the solution is to apply the uniform prior,

which holds equal probability. It is generally implied

that the P (Graph | Data) is proportional to P (Data |

Graph). Hence, two learning algorithms, constraint-based

learning and score-based learning, can help determine

the network’s arcs.

(a) Constraint-based learning

A constraint-based learning approach is structural-

ized intuitively from conditional independencies that

do not overlook the concept of Bayesian Network.

The conditional independence test is done by Pear-

son’s χ2-test, Fisher’s Z-test, and t-test instead of

testing the probability. This constraint-based learn-

ing approach considers three steps to model the net-

work: conditional independence identification, skele-

ton learning of undirected relationship, and arcs di-

rection learning. In (Alvi, 2018), the Markov blanket
was first learned to optimize the number of candi-
date nodes of DAG. The conditioned edges of the
Markov blanket can return the conditional inde-

pendence of every set of nodes. It benefits skele-

ton learning by identifying the undirected edges in

DAG. Then, the undirected edges will be assigned

the direction, which is a complete partial DAG. The
results imply the causal relationship between nodes.

(b) Score-based learning

The score-based learning approach emphasizes ap-
plying a network score to evaluate the best BN which
fits the data. The maximal score returns the highest
posterior probability of a graph (nodes and edges)

given its observed dataset.

P (G | D) = P (D | G)P (G)/P (D) (4)

Since the possible DAGs (BNs) have first seen growth

in the search space in the super-exponentially of

nodes, O(n!2(
n

2))(Bari, 2011) where n is number of

nodes in the network , the heuristic search algo-

rithms take responsibility to reduce the number of

DAGs, finding the optimal BN structure. The scor-

ing function works as an indicator that can calculate
by AIC, BIC (Burnham and Anderson, 2004), K2
(Cooper and Herskovits, 1992) and Bdeu (Hecker-

man, 1995) for the heuristic search algorithm. The

search algorithms also have selections for different

purposes such as Hill-climb search, Tabu search, Ge-

netic algorithm, and Greedy equivalent search (GES).

In (Beretta et al., 2018), the focus was on the opera-

tion efficiency by comparing each scoring method of

each heuristic search algorithm. The outcome found

that variable types and interest domains can affect

learning performance. Only a few heuristic search

algorithms operate efficiently with scoring methods.

However, the score-based mechanism can demon-
strate the whole structural model’s dependencies,
avoiding the failure of individual conditional inde-
pendence.(Koller and Friedman, 2009)

As a result, the dependencies among random vari-

ables can be described by PGM, which helps to de-

pict relationships by supporting conditional probabil-

ity. The hard work of identifying the optimized model

encounters an NP-hard problem which loads all work to

heuristic-search algorithms for comparing all networks’

scores in the search space. The model which holds the

highest score will be determined as the best model.

Although the NP-hard problem in searching for the

best network is time-consuming, PGM is still a robust

framework that provides functions for illustrating the

causal relationship model. Especially, BN can increase

the users’ comprehension by the intuition of model in-

terpretation on a domain.(Liu et al., 2012)

2.2 Maximal information coefficient

Maximal information coefficient (MIC) (Reshef et al.,

2011) statistically measures a dependency between pair-

wise variables on a large dataset and is described as an

exploratory data analysis (EDA) tool. A measure of

dependence is assigned by MIC score to determine the
strength of the dependent relationship between pair-
wise variables. MIC score is ranged between 0 to 1 by
R-squared (R2) evaluation normalized from the mutual

information. MIC score of 0 means an independent re-
lationship. The upwards magnitude of MIC score, up to
1, depicts the increased strength of dependence which

express as the strength type in Table 1. They are usu-
ally divided into 5-6 levels (Cai et al., 2019; Liang et al.,
2019), including no correlation and perfect correlation
levels.

MIC algorithm returns a significant score, when is

compared with other algorithms, because of its two
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Table 1 MIC score interpretation of correlation coefficient

MIC score Strength type

1 Perfect correlation
0.81–0.99 Strong correlation
0.71-0.80 Good correlation
0.51-0.70 Weak correlation
0.01-0.50 Poor correlation
0 No correlation

heuristic properties: generality and equitability. The gen-

erality property supports unlimited access of relation-

ship types. MIC can detect both linear and non-linear
relationships while other algorithms, such as the dis-
tance correlation (Székely and Rizzo, 2009) and Pear-

son’s R (Benesty et al., 2009), only perform on the lin-

ear function. In addition, the equitability property gives

a similar MIC score to different relationship types with

a similar noise level. MIC is found on the mutual infor-

mation but is not the mutual information estimation. It
is directly implemented equitable dependence measure
which returns a more significant result than the mutual

information and others in almost all noise models. The

correlation coefficient in Fig. 2 demonstrates the score

comparison between MIC and other current functions

of noiseless models. It is found that MIC can detect the

equal score as 1.00 on different functions of noiseless
models except the random function.

Fig. 2 The correlation score of noiseless models of different
relationship functions

In practice of MIC, the utility of maximization and

normalization in the definition of MIC (Reshef et al.,

2011, 2013) expresses preliminary for measuring a maxi-

mal coefficient of variables’ dependence. It is found that

the MIC suitably works across four basic noise models,

an amount of a range of function types and sample size

n between 250 to 1000.

Definition 1 (Maximal information coefficient (MIC))
Let D|G denotes the probability distribution which data

D over cells of a grid G, and I denotes a mutual infor-

mation. Then, let I∗(D,x, y) = maxG I (D|G) where

the maximal is from the partitioned x-by-y of a grid

G (x and y can possibly be empty rows or columns).
Therefore, MIC of pairwise variables on data D with

sample size n can be defined as

MICx,y(D) = max
xy<B(n)

{I∗(D,x, y)/ log2 min(x, y)} (5)

Where B(n) is a growing function of sample size n on

data D which satisfying equals O(n). The default set-

ting of B(n) is n0.6 which is from a heuristic suggestion

by the founder team.
The equitability of MIC is outstanding the consider-

ing in a noise models and range of sampling to evaluate

the dependence. The utility of maximization and nor-

malization in the definition of MIC in equation 5 have

been proved by omitting the specific features. (Reshef

et al., 2013) There are three different variations of MIC

which omits the maximization, omits the normaliza-
tion, and omits both the maximization and normaliza-
tion.

Definition 2 (Maximal information coefficient (MIC)
without the maximization)
Let E(D,x, y) when x-by-y is equipartition of data D.
The number of rows and columns should the same with

the points of data D. Then, let IE(D,x, y) = I
(

D|E(D,x,y)

)

which defines the first variation of MIC without the

maximization step by

MIC1(D) = max
xy<B(n)

{

IE(D,x, y)/ log2 min(x, y)
}

(6)

Secondly, the omitting of normalization step is con-

sidered on log2 min(x, y) which is the upper bound of

maximal mutual information on x-by-y of a uniform

grid G. Then, the normalization returns the possible

value between 0 and 1. Also, the grid with variant res-

olutions will be able to be compared.

Definition 3 (Maximal information coefficient (MIC)
without the normalization)
Let I∗ is the same as in equation 5 (definition 2.2.1).

The data D is a set of ordered pairs, x and y, over a

grid G. Then, the second variation of MIC without the
normalization step is defined by

MIC2(D) = max
xy<B(n)

{I∗(D,x, y)} (7)

Thirdly, both the maximization and normalization

steps are omitted

Definition 4 (Maximal information coefficient (MIC)
without both the maximization and normaliza-
tion)

MIC3(D) = max
xy<B(n)

{

IE(D,x, y)
}

(8)
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From the three behaviors of omitting its features,

the MIC with and without both utilities had been tested
over the noisy relationship to show the score of coeffi-
cients R2 in Fig. 3. The plots illustrate that the MIC in-

terprets the stronger equitability than three mentioned
variations of MIC. That is each data point conforms
with an independent of noisy function in a given model.

The equitability considers on how tightly of couple points.
It is shown that the R2 scores obtained the small range

and does not scatter when comparing to other statistic.

Fig. 3 the scatter plots scores of the MIC and three different
characteristic features of MIC variations on the noise model
(original picture from (Reshef et al., 2013))

In addition, the symmetric relation of pairwise vari-

ables due to the mutual information basis equalizes
MIC score, MIC(x, y)(D) equals to MIC(y, x)(D). MIC

carries powerful benefits on revealing association among
variables: the outlier’s robustness, no assumptions of
variable distribution, and easiness of interpretation. It
is widely applied across various research domains such

as language recognition, image processing, searching

based, spatial data analysis and medical. Wang et.al

(Wang et al., 2018) improved MIC methodology offer-

ing iMIC, which was intelligent in searching the associ-

ation relationship of variables in the system. The agri-

culture domain also selected MIC method to find the

impact factors of the rice price variation(Surapunt et

al., 2017).

3 Methodological approach

Bayesian maximal information coefficient (BMIC) is pro-

posed to uncover the causal correlations from large dataset

in the random system by integrating PGM and MIC

with BLR. To identify the cause and effect, it finds out
the best causality model on synergy to minimize run-
time execution.

3.1 Search the correlated variables

MIC is to narrow down the number of variables in the

search space by the generality and equitability which

are beneficial in unlocking the accessibility of many

functions and noise data manipulation. Since MIC algo-

rithm provides a score for ranking their correlation co-

efficient, a high MIC score strengthens the dependence

between pairwise variables, establishing the structural
model. Therefore, the execution time reduces while search-
ing for an optimized model in the structure learning

process. Unfortunately, MIC returns an undirected model

of variables’ dependency, the symmetrical relationship.

It implies that MIC score of the relationship x → y

is equal to y → x that cannot represent the causality.
The use of MIC requires a directional arrow between

any two nodes. As a result, there is interest in studying

the orientation of pairwise variables for identifying the

cause-and-effect relationship.

3.2 Identify the causal relationship

PGM is the robust framework to provide functions for

identifying the causal relationship model. The BN is

a representation of the PGM framework, constructing

a DAG by capturing the knowledge of the probabilis-

tic numerical information. The conditional probability

distribution denotes the variables’ dependency, which

considers the posterior probability value. They repre-

sent the edges in a particular network. The posterior

probability is a basis of any inference which requires

the integration of prior knowledge and new informa-

tion. The Bayes’ theorem captures the posterior prob-

ability by preferring the Bayesian perspective. There-
fore, the Bayesian inference is a traditional method to
detect random variables’ causality. It is an influential

statistical theory that can determine the probability of

uncertain data.

3.3 Determine the posterior probability

The posterior probability values are determined from

the linear regression model under Bayesian view. BLR

(Clyde et al., 2007) applies the Bayesian theorem to

the linear regression model for posterior probability es-

timation. BLR is compatible to the linear regression
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model that is for understanding the linear relationship

between input (feature) variable(s), and an output (tar-

get) variable. The linear function is formulated with

probability distribution rather than a point estimation.

The output parameter y is the response of normal dis-

tribution, controlled by a mean and variance as y ∼
N

(

βTx, σ2
)

. The mean value is a product of parame-

ter βT and input variable x, while the variance value is

a power of standard deviation. When the y variable of

the linear regression model is completely computed, the

posterior distribution for the model parameter given x

and y variables will be detected by the support of Bayes’
theorem as in Equation (9). The model parameters have

followed the fundamental of Bayesian inference.

P (β | y, x) = P (y | β, x)P (β | x)/P (y | x) (9)

where, P (β | y, x) is a posterior probability distribu-
tion, P(y | β, x) is a likelihood of data, P (β | x) is a

prior probability, and P (y | x) is a normalization.

Since continuous values are intractable to param-

eterize for posterior distribution evaluation, the BLR

model uses the Markov Chain Monte Carlo (MCMC)

algorithm to sample the posterior distribution to esti-

mate the posterior distribution. The Markov Chain rep-

resents the next sample value drawn by the previous

sample value. And Monte Carlo means the technique

of drawing a random sample. The concept of MCMC

emphasizes the more the drawing of posterior distribu-
tion samples, the more convergent the posterior distri-
bution between approximated and real value. PyMC3
(Salvatier et al., 2016) is a python library which is used

for implementing the Bayesian model by the MCMC

method. The Bayesian inference has constructed the

Bayesian Linear Models from the formulated linear func-

tion. It is provided by the generalized linear models
(GLM) module, which can generate the formula from
the input variable(s), x, and an output variable, y.

The BLR does not restrict non-informative priors
to assign a value for the model parameters. The non-

informative prior draws from the normal distribution

with the mean and variance of observed data. Another

benefit is the ability to quantify the model’s uncertainty

from the result of the posterior probability distribution.

The level of certainty depends on the data quantity; a
low level of uncertainty model is due to increasing the
quantity of data. Therefore, the BLR has been popu-

lar in statistical training that is widely applied in vari-

ous domains. It is mainly used to examine the relation-

ship between model variables. As in the psychology of

(Baldwin and Larson, 2017), the BLR can outperform

frequentist statistical methods in examining the rela-

tionship of an electroencephalogram (EEG) and anxiety

from their clinical data.

The BLR has also been proposed in predictive mod-

elling, corresponding with a predicted value and a con-

fidence (probability) interval (CI).(Kong et al., 2020)
The predicted value is the distribution of the target
yi given a set of features xi : P (yi | xi). Moreover,

only the posterior probability distribution might not be
enough for the Bayesian decision-making. The CI helps
to confirm the possible values in a range for the model

parameters. The more percentage of CI is, the more the

relationship between pairwise variables should be. The

study of geology in (Ghosh and Chakraborty, 2020) is

based on the demand prediction model of the Seismic

fragility that estimates the uncertainty of the fragility

curve. The BLR provides more accurate results than

other benchmarks.

The CI (Hespanhol et al., 2019) is an uncertainty

measurement in frequentist statistics that can also de-

clare a degree of uncertainty. It comprises the lower

and upper limit for the result estimation that can be
varied by the sample size of observed data and stan-
dard deviation (heterogeneity). The width of an inter-

val can interpret the precision of the result estimates.

When the data sample is large and has a narrow CI

width, a low degree of uncertainty is indicated. How-

ever, the heterogeneity is directly proportional to the

uncertainty degree as low heterogeneity refers to low

uncertainty resulting from the narrow CI. Hence, the

narrower the width of an interval is, the more precise

the effect estimates are. The CI is preferable to the p-

value, especially in the health science area, because of

misinterpreting, misusing, and overestimating hypoth-

esis testing. The p-value usually sets a boundary with

a significant level of 0.05 (5 percent) for accepting or

rejecting the defined null hypothesis. Many researchers

have interpreted the p-value as a probability of accept-

ing (rejecting) the null hypothesis as P (H0 | y) where

is the probability of H0 given the observed data. In

fact, the p-value measures the probability of the actual

result given the null hypothesis as P (y | H0). More-

over, researchers also attempt to oversimplify p-value
interpretation in practice. They separate the statisti-

cally significant and non-statistically significant with
the threshold of p-value at 0.05. Some concerns have
been ignored the sample size and the variability of re-
sults estimation. Thus, the CI is promoted to be an

alternative to the p-value, which can describe the vari-

ability of estimate and the interval’s width. The inter-

val’s width indicates the precision of the result, one that

is usually set at a 95 percent confidence level.

In the Bayesian approach, the uncertainty estima-
tion of the posterior probability distribution is called
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the Bayesian credible interval, which is abbreviated as

CrI. The Crl performs under the same principle as CI.

The estimating Crl of Bayesian inference evaluates the

posterior distribution with two types of Crls: an equal

tail Crl and the highest posterior density (HPD) inter-

val. The equal tail Crl is a direct threshold value of

posterior probability with an interval of the posterior

probability distribution, which calculates easily. For ex-
ample, the upper bound of Crl is 0.975 means 97.5 per-
cent of the quantile distribution of posterior probability.

However, asymmetric posterior probability can affect

the yield estimate value with a lower probability inside

the interval than outside the interval. The HPD interval

also determines the threshold value of posterior proba-

bility, indicating an interval with the probability mass

around the distribution center. When the HPD interval

of -4.0 to -1.0 is 95 percent, it implies that the mean

difference mostly emphasizes between -4.0 to -1.0 given

the observed data. The possible value with the highest

posterior probability would be between -4.0 to -1.0. The

symmetry of posterior probability makes the HPD Crl

equal to the equal tail Crl, but the HPD Crl is more

complicated in a computation interval when comparing

with the equivalent tail Crl method.

4 Case Study on Thai Rice Price

As a case study, the proposed BMIC is applied to dis-

cover the causal correlations from large dataset on Thai

rice price by identifying the causality change in the

paddy price of Jasmine rice. It properly determines the
causality of changes in the price of Thai rice due to its
uncertainty and related impacts.

4.1 Thai rice background

Thai rice price is an interesting topic to study the effects

of price change due to being a well-known global trad-
ing product. Many countries are willing to import Thai
rice despite its high price. Thailand is being the top rice

exporter.(Fahmy, 2019) Thus, Thai rice is an impera-

tive agricultural product to expand the country’s rev-

enue. Rice is not in a monopoly market because many

countries have the ability to export, such as China, In-

dia, Thailand, Vietnam, Pakistan, Australia, and the
USA.(Office of Agricultural Economics, 2017) However,
other competitors are fortunate to adjust their rice price

following the FOB of Thai rice price criteria. The FOB

(Fahmy, 2019; Paisabazaar, 2019) stands for Free on

Board which usually implies when shipping the prod-

uct. According to the incoterms (International Com-

mercial Terms), a trading contract mentions on an FOB

that the costs and risks while transporting the cargo to

the export port of the origin will be responsible by the
exporter or shipper, which includes in the export price
of the particular product. While the costs and risk from

that point deliver to the destination will be conducted

by importer or consignee. Therefore, the export price

that is estimated under FOB will not include insur-

ance, loading and unloading, freight, custom, vat, im-

port duty and transportation cost (from the exporter’s

port to destination).

Unfortunately, Thai rice encounters problems, fluc-
tuating the price of Thai rice, from global and domestic

situations. Many agriculturists decide to plant alterna-

tive crops to gain more profit. It consequently causes

the rice yield to drop. The food crisis in 2008 (Shah,

2008) was a severe situation that caused a spike of 50-

100 percent in raw materials and food prices. The de-

mand upsurge, stocks and farming area decrease, lack

of the agricultural infrastructure and investment, oil

price, and exchange rate influence the rising price, im-

pinging the demand and supply in global markets.(Kha

and Trinh, 2017)

Additionally, Thailand faced domestic problems with

the Paddy Price Pledging scheme in 2011. The Paddy

Price Pledging is the political machinery that supports

agriculturists’ income. The government allowed pledg-

ing the unlimited quota of a paddy and guaranteeing an

obtainment of 50 percent higher than the market price.

This policy affected to gradually increase the stock of

Thai rice while the real market kept decreasing. It made
the price of Thai rice suddenly more expensive than
other competitors who lost the opportunity to trade
with partners. In the study of (Wasawong, 2018), a lin-

ear model was developed to reveal the impact of Thai-

land’s rice-pledging policy. The global trading rice price

is an indirect cause setting the price of various types of

Thai rice in a country. Because rice exporters are the
first people to know the price direction from the global
market, they attempt to negotiate with millers setting
the rice price. Domestic rice price is forced to set a sim-

ilar price with the export price.

During the same period of launching the Paddy Price

Pledging policy, Thailand encountered an emergency

disaster, the devastating flooding in 2011 which moved

the first rank of being a global rice exporter from Thai-

land to India because of the rising Thai rice price. The
high price attracted farmers to grow more rice. Both the
real market and stock held a massive quantity of Thai
rice. Unluckily, the revenue of Thai rice decreased, as

partners had the advantage of a bargain, knowing that

Thai rice needed to be sold. Thailand was under pres-

sure to sell in 2014. The Thai rice price dropped to

385.91 US dollars per ton in 2015 (Thai Rice Exporters
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Association, 2019), and all activity finally paused in

2016. The Thai rice price was then adjusted to the nor-

mal state compared to the price of Vietnamese rice.(Hoang

and Meyers, 2015) Therefore, Thai rice price variation

depends not only on change of time but also on impact

factors.(BBC News, 2017) This paper aims to reveal

the impact factors based on the probabilistic model,

determining the causes of variation in the price of Thai
rice. The relevant situations, such as the quantity of
Thai rice for export, the Thai rice price, exchange rate,

and other countries’ rice prices, should be considered in

detecting the variations in rice price.(Maneejuk et al.,

2016) These results contribute to forecasting the Thai

rice price for all stakeholders.

4.2 Data sample

Thus far, we have implicitly taken BN to demonstrate

the causality of variation in the price of Thai rice due to
many surrounding impacts. Every directed edge in a BN
means the causal association between parent and child

nodes. BN can further be used as a decision-making

tool to deal with upcoming situations.

BN requires relevant data for Thai rice price model
extraction. Thai paddy price, particularly the Thai Jas-

mine (Hom Mali) species, is a target to observe the
causality of price fluctuation. There are two cultivation
seasons that grow different yields. Eighty-five percent of

rice grows between May and October and is harvested

from August to April of the next year. This season is

termed major rice which yields jasmine rice (Hom Mali

rice) and parboiled rice. Another fifteen percent of rice

grows during January to not later than April. It is called

second rice which yields glutinous rice, non-glutinous

rice, and indigenous species.(Office of Agricultural Eco-

nomics, 2017) Accordingly, this paper selects the vari-

ables related to major rice to study the paddy price of

jasmine rice.

This study’s sample collects 11-years of data from

2008 to 2018, containing all relevant variables. As the

price of Thai rice has become an interesting topic in

economic and data science fields, variable selection has

been taken from studying criteria in the following other

literature. In economic studies, researchers focused on

the relationships among rice prices or the competitive

nature of rice in the market. The usability of various
models (Baharom et al., 2009; Ghoshray, 2008) pre-
sented the asymmetric volatility of rice price, consider-

ing case studies in Thailand and Vietnam. They (Kha

and Trinh, 2017) studied the surrounding issues of the

Thai rice price between 2003-2013. In the data science

area, many studies have evaluated some statistical tech-

niques.(Sujjaviriyasup, 2018; Shao and Dai, 2018; Ma-

neejuk et al., 2016; Co and Boosarawongse, 2007) The

ARIMA model has been a popular tool to present a pre-
diction result focusing on the export quantity of Thai
rice, Thai rice price, exchange rate, and price of rice in

other countries.(Maneejuk et al., 2016)

Based on the reasons above, there are 14 variables

(including paddy price) with continuous values collected
without missing the values of variables of interest. They

are the plant area of major rice, the yield of major rice,

minimum income of Thai citizen, paddy price of Jas-

mine rice, Jasmine rice price, export quantity of Jas-

mine rice, the export price of Jasmine rice, the export

price of 5 percent white rice in Thailand, the export

price of 5 percent white rice in Vietnam, the export

price of 5 percent white rice in Pakistan, gold price,

domestic oil price, US exchange rate with the Thai

currency and Thailand’s GDP of agricultural product.

Since we learned that the paddy price could fluctuate

due to domestic and global impacts, the selected 14

variables will be collected as relevant attributes. Do-

mestic factors determine the relevant attributes in Thai-

land’s economic mechanism, while global factors high-
light competitors’ prices on the same category of rice.
Table 2 shows for each variable a longer definition (Mean-
ing) and abbreviations (Variable names).

4.3 Exploratory Analysis with MIC

In this paper, we assume a probability model, BN, to

understand the cause-and-effect relationship of factors

that make Thai paddy price changes. The observed

data, including target and predictor variables, is re-

quired for the learning structure process to bring out
the complete BN. The structure model is learned by
measuring the probability of variables’ dependency with-

out prior knowledge. The highest posterior probabil-

ity distribution, given its data, is returned to confirm

their relationships. However, there is required learn-

ing of many random variables to construct the model,

which can cause a super-exponential growth of DAGs
in the search space ∼ an NP-hard problem.

Our sample contains 14 variables prepared for con-

structing the model. The constraint-based and score-
based algorithms that belong to the structure learning
are executed on the observed data to identify edges be-
tween variables. The optimized graph is judged by hold-

ing the highest posterior probability distribution. We
found that the run time spent a long time finding the
optimized model due to the NP-hard problem. There-

fore, we first apply MIC algorithm to narrow down the

variable space, selecting only the highest strength re-

lationship to the paddy price of Jasmine rice. In ex-

ploratory data analysis, the process to rank the coef-
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Table 2 The abbreviations of variables

Variables of in-
terest

Variable names Meaning

Plant area of
major rice

mjPlantArea The plant area
of major rice
(in-season rice)
(Thai unit of
area = 1,600
square meters)

Yield of major
rice

mjYield The yield of
major rice (in-
season rice)
(tons)

Minimum in-
come of Thai
citizen

minIncome The minimum
rate income of
Thai workers
(US-Dollar)

Paddy price of
Jasmine rice

paddyPrice The paddy price
of jasmine rice
(US-Dollar)

Jasmine rice
price

jasminePrice The domes-
tic jasmine
rice price (US-
Dollar)

Export quantity
of Jasmine rice

jasmineEq The export
quantity of
jasmine rice
(tons)

Export price of
Jasmine rice

jasmineEp The export price
per ton of jas-
mine rice (US-
Dollar)

Export price of
5 percent white
rice in Thailand

whiteThEp The export price
per ton of 5
percent white
rice in Thailand
(US-Dollar)

Export price of
5 percent white
rice in Vietnam

whiteVnEp The export price
per ton of 5 per-
cent white rice
in Vietnam (US-
Dollar)

Export price of
5 percent white
rice in Pakistan

whitePkEp The export price
per ton of 5 per-
cent white rice
in Pakistan (US-
Dollar)

Gold Price goldPrice The gold price
(US-Dollar)

Domestic oil
price

oilPrice The oil price
(US-Dollar)

US exchange
rate with Thai
currency

USExchange The exchange
rate of one US
Dollar to Thai
Baht (Thai
Baht)

Thailand’s GDP
of agricultural
product

GDP The GDP of
agricultural
product of
Thailand (US-
Dollar)

ficient is done by measuring pairwise variables’ depen-

dence. The correlation coefficient is returned as a MIC

score in Table 3. The results are taken from the first

ten-ordered pairwise variables because the perfect and

strong relationship (as in Table 1) has a high impact

on the target variable.

Table 3 MIC score estimate of pairwise variables in the sam-
ple space

x variable y variable MIC score

mjYield mjPlantArea 1
jasminePrice paddyPrice 1
jasmineEp paddyPrice 1
jasminePrice jasmineEp 1
whiteThEp goldPrice 0.8664
whiteThEp whitePkEp 0.8469
USExchange jasmineEp 0.8442
USExchange oilPrice 0.8345
USExchange jasminePrice 0.8169
whiteVnEp whitePkEp 0.8041

Unfortunately, MIC results cannot directly imply

the cause-and-effect relationship because of their sym-

metric relationship. When the x variable connects to

the y variable, MIC score is identical to when the y
variable is connected to the x variable. MIC results di-

agram can be used preliminarily to connect relevant
variables with undirected edges in Fig. 4.

Fig. 4 The relationship diagram of random variables by MIC
score

According to the results in Table 3, MIC score shows

the perfect correlation of selected factors with the paddy

price of Jasmine rice, the Jasmine rice price, and the ex-

port price of Jasmine rice. This means that the paddy

price of Jasmine rice directly relates to both mentioned

factors. The rest of MIC scores are not impractical.

They can specify an indirect relationship to the paddy

price of Jasmine rice. However, the perfect MIC score

is found in the relationship of plant area and yield of

major rice despite being unrelated to the paddy price

of Jasmine rice. Although the export price of 5 percent

white rice in Thailand, Vietnam, and Pakistan obtain

a high MIC score, they are obviously irrelevant to the
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paddy price of Jasmine rice. These preliminary results

of MIC have demonstrated the connections with the

paddy price of Jasmine rice conclusively. It seems ben-

eficial to identify a variable’s scope and notice only the

real relationship to the target domain.

Since MIC score cannot detect the cause-and-effect
relationship, it is compulsory to assign orientations to

all edges in the diagram. BN representation has been
chosen to depict the paddy price of Jasmine rice varia-
tion in a graphical model. The correlated data is a pa-

rameterization of BN used for parameter and structure

learning(Bae et al., 2016). Zhang et al. (Zhang et al.,

2013) improved the heuristic search of structure learn-

ing using MIC. They also found the triangular loops

relationship problem, needing to eliminate the loop by

the d-separation rule. Then, the conditional indepen-

dence test further achieved the assigning orientation in

their work. Therefore, our work is an idea to improve

and contribute a new method to MIC algorithm, as-

signing direction to the undirected edges determining

the cause-and-effect relationship.

5 Results and Discussion

5.1 Proposed BMIC (method of PGM and MIC with

BLR)

Assigning the orientation of edges to MIC diagram in

Fig. 3 follows BN construction rule. Since the analysis

causality of paddy price of Jasmine rice variation oper-

ates with continuous variables, both target and predic-

tor variables occupy the time series data. We attempt

to learn the cause-and-effect relationship between nodes

from MIC result. In contrast, MIC results’ symmetry

makes both directions of pairwise variables imply the

relevant association.

For analysis, we use the open-source python package

for Bayesian statistic, PyMC3, with models and prob-

abilistic machine learning using gradient-based MCMC
algorithms. The BLR better supports the Bayesian in-
ference, and it is mostly used in summarizing the pos-

terior distribution by a central tendency (mean) and

an uncertainty estimate (variance). The response, y,

of a linear regression model, is generated from a nor-

mal distribution of the predictor variables mentioned

above. The posterior distribution is used to determine
the Bayes’ theorem’s conditional probability from the
linear regression parameter. The linear model formula

will be created from MIC results, which assumes as

x ∼ y and y ∼ x. After that, the MCMC responses

on model simulation perform the parameter estimation.

The results are returned in a normal distribution (de-

tails of mean and variance) of the formula’s intercept

and predictor variables. Besides, an uncertainty mea-

surement of the effect estimate requires the Cl or Crl.
This experiment uses the HPD interval of 3 percent and
97 percent to determine the most probable parameter

values. The interval’s width represents the degree of

uncertainty of the estimated model. The most precise

linear model reveals the narrowest HPD interval.

All ten relationships are used to compute the pos-
terior probability from the linear model. The MCMC

algorithm is responsible for simulating the Bayesian
model, which parameterizes from the identified linear
formula. The observed data of parameters that belong

to the linear function are compulsory to rely on the

normal distribution. Each pairwise relationship’s direc-

tion has been oriented by choosing the minimum HPD

Crl according to the results in Table 4. The HDP Crls

of every pairwise do not conform due to their highest

posterior distribution.

Table 4 HPD Crls interval of MIC results in both directions
of pairwise variables relationship

x variable y variable HPD Crl inter-
val of x → y

HPD Crl inter-
val of y → x

mjYield mjPlantArea 0.245 0.413
jasminePrice paddyPrice 0.14 0.129
jasmineEp paddyPrice 0.127 0.133
jasminePrice jasmineEp 0.138 0.129
whiteThEp goldPrice 0.282 0.389
whiteThEp whitePkEp 0.213 0.199
USExchange jasmineEp 0.229 0.206
USExchange oilPrice 0.197 0.203
USExchange jasminePrice 0.246 0.23
whiteVnEp whitePkEp 0.23 0.27

BN in Fig. 5 has been constructed to illustrate the
direct and indirect effects on the paddy price of Jasmine

rice following the HPD Crls of Table 4. We found four

connections, divided into two groups of factors that are

not relevant to the target. The first group is plant area

and yield of major rice that return a perfect relation-

ship. And the second group is the gold price and the ex-

port price of 5 percent white rice of Thailand, Vietnam,

and Pakistan. However, we also found that the paddy

price of Jasmine rice has clarified an effect by the export

price of Jasmine rice. Also, the paddy price and export

price of Jasmine rice impact the domestic jasmine rice

price. Simultaneously, the US exchange rate with Thai

currency and domestic oil price indirectly impact the

paddy price of Jasmine rice.
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Fig. 5 Proposed BMIC (method of PGM and MIC with
BLR)

5.2 The traditional structure learning experiment

BN, provided by either traditional or applied meth-

ods, constructs the model. The observed dataset is a

crucial attribute realized through PGM framework’s

learning process, returning the model from the data.

The connected nodes are captured by the conditional

probability of Bayes’ theorem, determining the depen-

dency values. However, there is an issue of time com-
plexity, which is an NP-hard problem. BN candidates
grow super-exponentially in the search space, needing

more time to find the optimized model. Searching for

the best model will be done using heuristic algorithms

attempting to find a model with an optimal score. This

study selects the Hill Climbing search, a well-known

and most straightforward algorithm for comparing net-
works with the baseline. The Hill Climbing search has
been denoted as a fast-searching algorithm of the max-

imum n variables, n(n−1)/2 for the possible edges and

2(n(n− 1)/2) for a subset of edges in a sample space.

The traditional experiment is tested on both constraint-

based and score-based learnings. All variables are taken

the consideration in the learning structure. Firstly, the

constraint-based algorithm illustrates a BN, as in Fig.

6. The conditional independence is done by correlation

analysis, which uses the Chi-square dependency test for

estimating the model skeleton. The orientation should
then be assigned to each connection between nodes ac-
cording to the information of separating sets: a set that
contains the conditional independence of each pair of

indirectly connected nodes. The skeleton model and

separate set information can estimate the partial DAG

(PDAG), in which the relationships might have both-

way direction, x → y, and y → x. Since the funda-
mental of BN avoids the occurrence of a v-structure

and cyclic graph, BN is intuitively constructed as a

DAG from PDAG. BN of the selected case shows that

Jasmine rice’s export price and domestic price control

the paddy price of Jasmine rice. In-depth, the domestic

price of Jasmine rice is impacted by the export price

of Jasmine rice before affecting the paddy price of Jas-

mine rice. It can be noticed that there is no other effect

that connects to the export price of Jasmine rice. Thus,

we can state that the export price of Jasmine rice is an

initiator of the paddy price of the Jasmine rice varia-

tion.

Fig. 6 BN of the constraint-based learning algorithm

Secondly, in Fig. 7, the score-based algorithm shows

a structure. The Bayesian estimator will estimate the

best model of each learning process to return the opti-

mal score. BN considers the Bayesian Information Cri-

terion (BIC) measurement. It is a log-likelihood score

with Dirichlet priors for manifesting how well the given
observed data describe a model. The method adds a
penalty for network complexity to avoid overfitting. The
score-based structure describes that the paddy price of

Jasmine rice can be changed from the export price of 5

percent white rice in Pakistan. The dependent relation-

ship is a chain following the export price of 5 percent

white rice in Pakistan, domestic oil price, US exchange
rate with Thai currency, domestic price, and ending
at the export price of Jasmine rice. Therefore, both

learning algorithms of traditional PGM return differ-

ent models on the change of paddy price of Jasmine

rice.

From the results of the proposed BMIC and tra-

ditional PGM, the three models, Fig. 5 to Fig. 7, in-

dicate the different impact factors that can cause the

paddy price of Jasmine rice to change. It is noticeable

that pairwise nodes have similar connections but dis-

tinct directions. The proposed BMIC can reduce the

number of relevant variables by selecting perfect and

high strength relationships. The benefits of choosing

only relevant variables for learning BN structure are to

avoid the NP-hard problem. The result is entirely sat-

isfied due to the conformity with another research. The
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Fig. 7 BN of the score-based learning algorithm

traditional method has then been tested to compare

their performance and model accuracy with the pro-
posed BMIC. As in constraint-based learning, ten con-
nections are contained in the best-selected model. The
graph is quite similar to the result of MIC (undirected

edges). Only one extra relationship: GDP of agricul-

tural product and a minimum income of Thai citizen

has been added. After assigning the orientation, the

different direction of cause-and-effect relationships im-
plies the opposite effects of Jasmine rice paddy price
change. In addition, the score-based learning gives 13
relationships in the constructed BN. The dependency

relationships are more complicated than the proposed

BMIC and constraint-based learning. The result reveals

that the change in the paddy price of Jasmine rice can

occur through the forwarding of many effects.
As a result, each algorithm’s explicit model reveals

a different BN pattern. Therefore, the best BN model

should be the most appropriate representation man-

ifesting the cause-and-effect factors when the paddy

price of Jasmine rice changes. We select the BIC score

to measure how well-described the constructed BN is

given its data. The BIC score is a log-likelihood calcu-
lation with an additional penalty to prevent overfitting,
returning in a negative value. The best model should be

assigned with the highest score. The BIC scores in Ta-

ble 5 prove that the proposed BMIC returns the highest

score when comparing with the other two learning algo-

rithms of traditional PGM. Hence, the proposed BMIC

obtains the best-fitted BN to learn the structure of the

paddy price of Jasmine rice.

6 Conclusion

This paper utilizes BN framework’s ability to interpret

the model. In this study, BN framework, describes the

causal model on the Thai rice price situation, focusing

on changes in the paddy price of Jasmine rice. Since

Table 5 The BIC score for measuring BN complexity of dif-
ferent learning models

Learning Models BIC score

The proposed BMIC (method of PGM and
MIC with BLR)

-1072.59

The constraint-based learning algorithm -1333.3
The score-based learning algorithm -1324.67

data uncertainty can be detected in the price of Thai

rice and relevant attributes, the use of BN probability

inference gives a better explanation. BN fundamentally

establishes a model that relies on the Bayes’ theorem by
structural learning from the observed dataset. The NP-
hard problem is usually encountered in the structure
learning process because of a super-exponential num-

ber of graphs in the search space. We scoped the num-

ber of variables using MIC algorithm to capture only

high strength relationships in the Thai rice price sys-

tem. However, MIC result cannot explain any target do-
main’s causality due to undirected relationships in MIC
results. Therefore, the edge orientation is determined

by the BLR model, emphasizing the return of posterior

probability distribution. The BLR model assumes the

normal (Gaussian) distribution sample to formulate the

linear regression. The model parameters of BLR, cal-

culating beneath the Bayes’ theorem, are given the in-
puts and outputs, of the linear model. The Bayes’ theo-
rem handles the probabilistic, non-deterministic model.

Since BN demonstrates independent relationships of a

given joint probability distribution, each connected node

presents a conditional probability that results in the

posterior probability. The posterior distribution is com-

puted in both directions on dependent variables, x → y

and y → x, from the undirected MIC results, resulting

in the highest posterior probability distribution.

The significant posterior probability distribution is

evaluated by the Bayesian credible interval in which the

HPD interval is selected to be a criterion. The orienta-

tion prefers the direction of dependent variables hold-

ing a minimum value of the HPD interval. From the

estimated edge direction results, the proposed BMIC
reveals the causes and effects of the paddy price of Jas-
mine rice in the form of BN model. We found that the
export price of Jasmine rice can change the paddy price

of Jasmine rice. This detail is confirmed in the study

of (Wasawong, 2018), which describes exporters’ power

to foreknow the global rice market direction. Moreover,

the model also indicates that the paddy price of Jasmine

rice can influence the domestic Jasmine rice price. This

becomes supportive information for launching policies

and coping with the future situation because we can

monitor trends in Jasmine rice’s paddy price and its
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directed effects. The proposed BMIC is evaluated in

reliability by comparing the network scores with a tra-

ditional PGM. The network score indicates how well-

explained the model is and how it fits the model. The

score shows that the proposed BMIC obtains the high-

est score while the two traditional learning algorithms’

scores are lower. Hence, this study improves the opti-

mized model selection with a new BN structure learn-
ing using MIC results with the BLR model. When the
cause-and-effect relationships of the paddy price of Jas-

mine rice are finally identified in BN, this provides a

predictive model for our future work.
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Figures

Figure 1

A simple graph of a directed relationship

Figure 2

The correlation score of noiseless models of different relationship functions



Figure 3

The scatter plots scores of the MIC and three different characteristic features of MIC variations on the
noise model (original picture from (Reshef et al., 2013))



Figure 4

The relationship diagram of random variables by MIC score

Figure 5

Proposed BMIC (method of PGM and MIC with BLR)



Figure 6

BN of the constraint-based learning algorithm

Figure 7

BN of the score-based learning algorithm


