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Abstract
In this study, a model for the selection of investment portfolios is proposed with three objectives. In addition to the traditional
objectives of maximizing profitability and minimizing risk, maximization of social responsibility is also considered. Moreover,
with the purpose of controlling transaction costs, a limit is placed on the number of assets for selection. To the best of our
knowledge, this specific model has not been considered in the literature to date. This model is difficult (NP-Hard), and therefore,
only very small instances may be solved in an exact way. This paper proposes a method based on tabu search and multiobjective
adaptive memory programming (MOAMP) strategies. With this method it is possible to obtain sets of nondominated solutions in
short computational times. To check the performance of our method it is compared with adaptations of the nondominated sorting
genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm (SPEA-II) and multiobjective particle swarm optimization
(MOPSO). The results of different computational experiments show that our tabu search-MOAMP method performed best. The
quality of the sets of solutions that were obtained and the speed of execution mean that our tabu search-MOAMP can be used as a
tool for financial assessment and analysis (including online services). This tool, as we can see in this work with some examples,
can take into account the social concerns of many clients and their overall risk profile (very conservative, conservative, moderate,
or fearless). This approach is also in line with current legal regulations that oblige financial advisors to take the client profile into
account to provide greater protection and propose good financial advice.

Keywords Portfolio investment . Social responsibility . Multiobjective optimization . Tabu search . MOAMP . NSGA-II .

SPEA-II . MOPSO . Financial assessment

1 Introduction

1.1 Motivation

Social responsibility is increasingly being taken into account
in portfolio selection. Indeed, investors are increasingly aware
of issues such as environmental sustainability, human rights,
inclusive labor practices, fair trade, cooperation, and social
improvement in general. On the other hand, current
European regulations, including the MIFID (Markets in
Financial Instruments Directive), require financial institutions
and financial advisors to carry out pretests on clients to

identify their profiles (conservative, audacious, moderate,
etc.) and to take these profiles into account when advising
them on portfolio alternatives. Therefore, it is important for
these entities and/or advisors to have adequate tools to help
choose the portfolios they propose to their clients, and equally
important for these tools to be fast and available online.

This paper proposes a method that can serve as a basis for
these tools to help propose portfolios to clients. Specifically,
this method generates sets of nondominated solutions for a
portfolio selection model. In this model social responsibility
is considered a third objective alongside the classic objectives
of expected return and risk. Additionally, different constraints
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(such as cardinality constraints and the minimum and maxi-
mum amounts to invest in each asset) are included since they
incorporate important advantages as explained in detail below.
Once the set of efficient solutions (portfolios) has been obtain-
ed, the most suitable solution is selected according to the
investor’s preferences.

The proposed method is based on tabu search and
MOAMP strategies. Different computer tests with data from
the Spanish IBEX-35, EUROSTOXX-50, DAX-30 and DOW
JONES markets show that the proposed method will result in
high-quality sets of solutions when compared with other strat-
egies for multiobjective optimization such as the well-known
evolutionary algorithms NSGA-II, SPEA-II and MOPSO.
Moreover, our tabu search-MOAMP method obtains these
solution sets in real time (in only a few seconds), which allows
it to be used as an online consulting tool.

1.2 Related literature

An investment portfolio is defined as a set of financial assets
into which the total investment can be divided. Its construction
is equivalent to conducting an acceptable selection of the in-
vestment assets that compose it, as well as determining the
percentage allotted to each of these assets. The origin of in-
vestment portfolio construction and administrative techniques
can be found in the theory of portfolio selection [51], in which
the earliest portfolio selection models are defined and ana-
lyzed, considering the classic objectives of profit (or return)
maximization and risk reduction.

Many other works have contributed to the improvement
and development of investment portfolio construction and ad-
ministrative techniques, such as The Separation Theorem of
Tobin [68], TheMarketModel developed by Sharpe [62], The
Capital Asset Pricing Model (CAPM) [63], and Arbitrage
Pricing Theory (APT) [59]. An analysis of the theoretical
framework of portfolio management may be seen in greater
depth in Suárez [65].

In any case, all of these mathematical models ignore other
realistic constraints, causing them to be inefficient in real-life
applications. Thus, studies considering practical constraints in
real-life financial markets began to appear. Usually, portfolio
managers want to restrict the number of assets (“cardinality
constraint”) in the portfolio bounded to a fixed integer [49, 61,
74, 75]. In addition, lower bounds in the amount invested in
each asset are considered [61]. The aim of these constraints is
to control transaction costs. On the other hand, cardinality can
also be considered an objective of portfolio optimization, as in
Anagnostopoulos and Mamanis [3].

Setting a maximum number of assets favors the supervi-
sion, diversification, and control of transaction costs. In addi-
tion, portfolios are not formed by a large number of assets and,
as a result, by a number of extremely high combinations [64].
Cardinality constraints play an important role as a

regularization term in the optimization problem, allowing for
the identification of portfolios that are robust with respect to
small variations in the input data (i.e., the expected returns on
the individual assets and correlations among the asset returns,
[23]). In addition to controlling robustness, another advantage
of imposing cardinality constraints is that they shorten
runtime. Although the cardinality constraint transforms the
optimization problem to mixed-integer programming, the
search space is reduced at the same time [15, 40, 78].
Another advantage of considering cardinality constraints is
related to index tracking, since the index tracking model nor-
mally includes almost all available assets in the market. This
leads to large transaction costs and a portfolio that is very
difficult to manage because of its diversity [31, 38]. In this
way, a tracking portfolio with fewer assets can avoid small
fraction holdings and reduce transaction costs compared with
a fund that purchases all of the stocks that make up the index.
The tracking portfolio with a cardinality constraint can sim-
plify the complexity of asset management and reduce admin-
istrative overhead and administration costs. In addition, small
portfolios seem to reduce estimation errors for variances and
covariances leading to better out-of-sample performance [1, 9,
13]. Other papers, such as Chen et al. [16, 17] and Chen and
Xu [18], consider cardinality constraints to solve problems of
investment portfolio selection by using uncertain variables
and modifying the initial mathematical model. With
Uncertainty or Fuzzy Set Theories. Finally, Utz et al. [71]
and Liagkouras and Metaxiotis [47] state that there are both
practical and regulatory reasons that justify the imposition of
lower and upper limits on the number of assets that compose a
portfolio. The lower limit to the number of assets held in a
portfolio is usually imposed to avoid excessive exposure to
the idiosyncrasies of any particular asset, even though the
portfolio’s overall risk may appear acceptable. On the other
hand, the upper limit to the number of assets held in a portfolio
is imposed to avoid excessive administrative and monitoring
costs.

Cardinality constraints turn the convex nature of the
Markowitz problem into a nonlinear combinatorial problem
[53]. Such constraints better capture the real-world trading
system but make the problem more difficult to solve with
exact methods. Therefore, given the computational difficulty
of tackling the problem exactly, using heuristics in these cases
is imperative [77]. The first works that employed
metaheuristic techniques in portfolio optimization problems
were Perold [58] and Takehara [66]. Chang et al. [14] pro-
posed three metaheuristic algorithms based on genetic algo-
rithms, tabu search, and simulated annealing. Following the
work of Chang et al. [14], papers using heuristic algorithms
can be divided into two classes: single-objective optimization
and multiobjective optimization algorithms. Focusing on
single-objective optimization, there are genetic algorithms
[72], memetic algorithms [60], tabu search [72], simulated
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annealing [26], particle swarm [27], and artificial bee colonies
[70]. For multiobjective optimization, the works of
Liagkouras and Metxiotis (2015), Macedo et al. [50], and
Kar et al. [45] must be highlighted.

In addition, metaheuristic algorithms have been applied to
other fields of finance. For example, they have been used in
the prediction of business insolvency [57], in the assessment
of credit lines [2], and in financial planning [73].

In addition to all of the above, corporative social responsi-
bility (CSR) has become a new objective to maximize. The
prioritization on the part of investors of ethical, social, and
environmental aspects as decision criteria has given rise to the
appearance of new financial products that comply with the
requirements of social responsibility. A socially responsible
investment allows investors to integrate their personal values
and social concerns with their purely financial objectives.
Therefore, CSR is another objective that must be satisfied to
make an appropriate selection for an investment portfolio [54].
Furthermore, two important surveys with a vast amount of the-
oretical research for portfolio selection with social responsibil-
ity or with ESG (environment, social, and governance) can be
found in Friede et al. [29] and Zopounidis et al. [81].

Faced with this situation, a real model for portfolio selec-
tion is proposed in this work wherein cardinality restrictions
are included with CSR considered to be a third objective in
addition to the classic objectives of profitability and risk. To
the best of our knowledge, there are no models with these
specific characteristics in the bibliography that have been re-
viewed. Nevertheless, we have found models with a certain
similarity – for example, those that consider CSR as a restric-
tion and establish different levels for compliance [7, 24], those
that focus on designing CSR composite indicators [12, 69],
those that use CSR as an objective but risk is considered a
restriction and not an objective [4, 39], and those that consider
the three objectives indicated but not the cardinality constraint
[41, 71]. In the latter work, these objectives are aggregated
into a single objective function. Table 1 summarizes the dif-
ferences between our approach and these previous
approaches.

In this paper, the problem of portfolio selection is analyzed,
considering social responsibility as a third objective in addi-
tion to the classic objectives of risk and return. Furthermore,
due to the advantages mentioned above, this model contem-
plates constraints on cardinality and minimum investment per
asset. To our knowledge, this specific model has not been
previously discussed in the literature.

1.3 Contribution

The main contributions of this work are as follows:

– Analysis of a portfolio selection model that considers
three objectives: along with the classic objectives of prof-
itability and risk, the maximization of social responsibil-
ity is considered. The model also includes constraints
(such as cardinality constraints and minimum and maxi-
mum amounts to invest in each asset) since they incorpo-
rate important advantages. The resulting model is com-
plete. Computationally, it is a complex problem (NP-
Hard).

– Design and development of a method to generate a set of
nondominated solutions for this problem. This method is
based on the tabu search and MOAMP strategies and has
the following characteristics: a) it generates better quality
solution sets than other strategies, such as the well-known
NSGA-II, SPEA-II and MOPSO algorithms; b) these so-
lution sets are obtained by our tabu search-MOAMP
method using very little computation time.

These characteristics allow the method to be used as a basis
for tools to help choose a good portfolio according to the
characteristics and profile of the investor (avid, conservative,
socially concerned, etc.). Some examples of this use are
shown in Section 6. These tools can be used by the investor
himself or by the financial institutions and banks that advise
their clients. This is in line with European regulations (such as
MIFID) that oblige financial institutions to take into account
the profile of their clients when recommending asset

Table 1 Main differences with the proposed approach

“Reference” Approach of the “Reference” Difference with our approach

[24]; [7] They consider CSR as a restriction and establish different
levels for compliance

In our approach CSR is considered as an objective

[69]; [12] - They use aggregate models to define the objective
function.

- CSR was designed as a composite indicator

- We use a multi-objective programming model to find the set of efficient
solutions (also known as the Pareto front).

- CSR is obtained from the S&P Global ESG Score, which is prepared by the
S&P Global Company

[4]; [39] Their CSR was used as an objective but risk was
considered as a restriction

Our CSR and risk are considered as objectives

[41]; [71] They consider the three objectives (return, risk, CSR) but
not the cardinality constraint

We consider the three objectives (return, risk, CSR) and the cardinality
constraint
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portfolios. In addition, the short time taken to obtain the solu-
tion sets allows them to be used online.

In short, both the model analyzed in this paper and the
method designed and developed for its resolution take into
account 1) the growing importance of social responsibility;
2) the convenience of financial institutions having advisory
tools for their customers that take their profile into account.
This convenience is motivated by European regulations.

The rest of this work is structured in the following way: in
Section 2, the notations are established, and the problem is
modeled; Section 3 is devoted to describing our MOAMP
method as well as their main procedures; in Section 4, the
adaptions of the NSGA-II, SPEA-II and MOPSO algorithms
are described; in Section 5, computational experiments with
real data are described and the results are evaluated with dif-
ferent metrics; in Section 6, some examples are described to
demonstrate how to use the method as a tool for financial
assessment while taking into account the client profiles and
their social concerns. Finally, the conclusions are presented in
Section 7.

2 Problem description

As stated previously, the problem of selecting an investment
portfolio is analyzed. In this work, three objectives are con-
sidered: profit maximization, minimization of risk, and max-
imization of social responsibility. Additionally, in an attempt
to control transaction costs, the restriction of limiting the num-
ber of assets to be selected is considered. The problem can be
mathematically formalized in the following way:

Max ∑
n

i¼1
wiRi ð1Þ

Min wT � A � w ð2Þ

Max ∑
n

i¼1
wiRSi ð3Þ

subject to:

∑
n

i¼1
zi≤kmax ð4Þ

∑
n

i¼1
wi ¼ 1 ð5Þ

Qmin � zi≤wi ∀i∈V ð6Þ
wi≤Qmax ∀i∈V ð7Þ
wi≤zi ∀i∈V ð8Þ
wi≥0; zi∈ 0; 1f g ∀i∈V ð9Þ
where w = (w1, w2, …, wn)

T.

In the previous formulation, the following notation is used
for the input:

n: Number of available assets (the first asset is referred to as
1, the second as 2, and so on).

V: Set of assets, in other words V = {1, 2, …., n}.
Ri: Expected profitability/return in asset i
A: Variance/covariance matrix of asset returns
RSi: Social Responsibility of asset i
Qmin, Qmax: Minimum and maximum proportion of the

budget to invest in each selected asset
kmax: Maximum number of selected assets
Section 5 explains how the values of the inputs used in this

work are obtained.
In addition, the following decision variables are defined:
wi : Proportion of budget invested in asset i, ∀i ∈ V,
zi: Binary variable takes the value of 1 if asset i is selected

and 0 if otherwise ∀i ∈ V; it must hold that zi = 1 ⇔ wi > 0
Expressions (1), (2), and (3) correspond with each of

the three objectives of the model: to maximize the ex-
pected return, to minimize the variance, and to maxi-
mize social responsibility. Constraint (4) refers to the
maximum number of assets that should make up a port-
folio (“cardinality”). Constraint (5) refers to the total
quantity to invest (in other words, the budgetary restric-
tion). Constraint (6) obliges an investment of at least
Qmin monetary units in the asset if it is selected.
Constraint (7) refers to the maximum quantity to invest
in an asset (Qmax). In addition, constraints (6) and (8)
ensure that zi = 0 ⇔ wi = 0 ∀i ∈ V.

Objective functions (1) and (2) correspond to expect-
ed return and risk in the classic Markovitz model. On
the other hand, objective function (3), related to social
responsibility, uses the ESG scores/measures provided
by S&P Global (more details in section 5). As stated
earlier, the cardinality constraint (4) and the minimum
quantity to invest constraint (6) aim to control transac-
tion costs.

Regarding the use of variance as a measure of risk, it
should be noted that this measure is sensitive to perturba-
tions in the input data [5, 19]. For this reason, the more
sophisticated risk measures VaR and conditional value-at-
risk (CVaR) were used. Applications of these risk mea-
sures can be found in Lotfi and Zenios [48]. However,
when the data used for estimation are long time series
such as the data used in this paper, the effect of the dis-
turbances is less. In fact, variance is still used today as
described in Zhang et al. [77].

Each solution will be defined by the values of the
decision variables wi, ∀ i ∈ V (which implicitly deter-
mine the value of the variable zi). Moreover, the rela-
tions of dominance of the solutions that were obtained
through the multiobjective approach were added. Given
a solution w, we denote f1(w) as the value of the
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objective function that measures the expected return (1),
f2(w) as the value of the objective function that mea-
sures risk (2), and f3(w) as the value of the objective
function that measures social responsibility (3). Let w
and w′ be two possible solutions; w is said to dominate
w′ if:

f 1 wð Þ≥ f 1 w
0

� �

f 2 wð Þ≤ f 2 w
0

� �

f 3 wð Þ≥ f 3 w
0

� �

f 1 wð Þ > f 1 w
0

� �
or f 2 wð Þ < f 2 w

0
� �

or f 3 wð Þ > f 3 w
0

� �
:

One solution is said to be efficient if there is no other
solution that dominates it. The problem that we propose
consists of finding the set of efficient solutions (also
known as the Pareto front) or, in this case, an approxima-
tion to this set.

Let:

f minr : Minimum value known for the rth objective function
(r = 1, 2, 3) in the set of efficient solutions.

f maxr : Maximum value known for the rth objective function
(r = 1, 2, 3) in the set of efficient solutions.

The function Fλ is defined in the following way:

Fλ wð Þ ¼ max λ1
f max1 − f 1 wð Þ
f max1 − f min1

; λ2
f 2 wð Þ− f min2

f max2 − f min2

; λ3
f max3 − f 3 wð Þ
f max3 − f min3

� �

ð10Þ
where λ = (λ1, λ2, λ3), λr ≥ 0 r = 1, 2, 3 and λ1 +
λ2 + λ3 = 1. This function will be used in the descrip-
tion of our proposed solution method, described in the
following section.

3 Solution method

As commented on in the introduction, the model analyzed in
this work is an NP-hard problem and therefore can only be
solved in an exact way for instances of a small size within
reasonable calculation times. Therefore, a heuristic method is
proposed in this work with the objective of obtaining good
approximations to the set of efficient solutions quickly and in
instances of different sizes.

Specifically, the method proposed to solve our model
is an adaptation of an MOAMP strategy for multiobjective
problems. This strategy was initially proposed by
Caballero et al. [10], and their first practical application
may be found in Caballero et al. [11]. Other further

applications were found in García et al. [32], Pacheco
et al. [56], Gómez et al., (2015), and Martínez-Puras and
Pacheco [52]. These papers describe in detail the basic
principles on which the MOAMP strategy is based.

It should be noted that MOAMP is a strategy, that is,
a conceptual structure that defines what to do in general
but not the specific implementations in each case. For
example, in some works, tabu search is used as a
“search engine” [36, 52, 56]; in other works, a variable
neighborhood search is used [32]. In contrast, Molina
et al. [55] use scatter search. Some of the differences
in our adaptation of MOAMP compared to previous
adaptations are the following: 1) previous adaptations
deal with logistic, location and routing problems, some
very similar to each other, but all different from our
problem. Therefore, construction procedures, neighbor-
hood movements, etc. that have been designed are log-
ically different; 2) through various experiments we have
determined that obtaining optimal or near-optimal solu-
tions to the single-objective problems in the initial steps
has an important positive effect on overall performance.
These solutions become high-quality “anchors” for ap-
proximation of the efficient frontier. For this reason, we
have implemented specific constructive procedures to
obtain good solutions to the three initial objectives
(steps 2–4 pseudocode 1). 3) A fine neighborhood has
been added, which increases the size of the set of
nondominated solutions (steps 13–14 pseudocode 1), as
shown in Section 5.

Next, we provide a high-level description of our
MOAMP approach, a four-phase method, summarized in
pseudocode 1. The output of the method is an approxima-
tion of the efficient frontier. This approximation (SetND)
is composed of the nondominated solutions found during
the process. Phase 1 starts by setting SetND to the empty
set (step 1). Then, the ReturnGenerator procedure is exe-
cuted to obtain a solution with the maximum f1 value
(step 2). A RiskGenerator procedure is executed (step 3)
with the aim of finding a solution with the minimum risk
(i.e., with the minimum f2 value). In the same way, the
SocialGenerator procedure is executed (step 4) to obtain a
solution with maximum social responsibility (i.e., with the
maximum f3 value). We denote the solutions obtained in
steps 2, 3, and 4 by w1, w2, and w3, respectively. A set of
tabu search executions (steps 5 and 6) are launched in an
attempt to link all the pairs of the solution sets {w1, w2,
w3}. The aim of these executions of tabu search is to
update SetND with all the solutions visited in these exe-
cutions (step 7).

Hence, when Phase 1 terminates, f max1 is the objective func-

tion value of the solution obtained in step 2, f min2 is the
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objective function of the best solution found in this phase
considering objective f2, and f max3 is the objective function
value of the solution obtained in step 4.

Pseudocode 1. Adaptation of MOAMP method

Phase 2 consists of a series of executions of tabu search.
Each execution uses Fλ as the objective function (step 9) but
with different λ vectors. The value λr of its components is
generated randomly with a uniform distribution U(0, 1) (step
8). The first execution uses the last solution obtained in Phase
1 as the initial solution. Subsequent executions start with the
solution reached in the previous execution. Phase II ends
when maxPhase consecutive executions pass without any
changes in SetND. The purpose of the third phase is to inten-
sify the search by exploring the neighborhood of each of the
solutions in SetND. The first iteration of step 11 explores the
neighborhoods of all the solutions in SetND. The new solu-
tions that have entered SetND are then identified (step 12). In
the following iterations of step 11, only the neighborhoods of
these new solutions are explored. This phase ends when there
is no iteration with any new solutions in SetND. The mecha-
nism for generating neighborhoods in step 11 is the same as
that used in the TabuSearch procedure. Finally, Phase IV

works very similarly to Phase III but with a different mecha-
nism for generating neighborhoods in step 13 so that SetND
becomes the final output of the whole four-phase MOAMP
adaptation. It should be noted that to avoid an excessive num-
ber of solutions, the size of SetND is limited to 10,000. This
limit is taken into account in the update of SetND.

The constructive procedures (ReturnGenerator and
SocialGenerator) are very simple and make use of the linear
nature of the objective functions and the fact that the con-
straints allow for the whole available budget to be assigned
to an asset. These procedures determine the assets with the
best unitary value in the corresponding function and assign
them all of the available budget (QR) while meeting the con-
straints determined byQmin andQmax. As stated earlier, each
solution w is determined by the values wi obtained ∀i ∈ V.
P s eudocode 2 br i e f l y desc r i bes the p rocedu re
ReturnGenerator.

Pseudocode 2.ReturnGenerator procedure

In an analogous way, the procedure SocialGenerator is
described, changing Ri to RSi . In the case of the
RiskGenerator procedure, the design and description are more
complicated because the risk function f2 is quadratic. As com-
mented on earlier in Section 2, the values wi determine the
corresponding values zi (zi = 0 ⇔ wi = 0). Therefore, every
change in the values of wi that occur in the different proce-
dures or methods that are described in this work implies that
the corresponding zi values are also updated although some-
times it is not explicitly indicated in the description of these
procedures. In the two following subsections, the procedures
RiskGenerator and TabuSearch as well as the “fine” neigh-
borhood used in step 12 are described in detail.

3.1 RiskGenerator procedure

To describe the RiskGenerator procedure, we use some defi-
nitions and notations. For each set S ⊂ V, with ∣S ∣ = p, and
for each pair of values q and q1 such that 0 ≤ q ≤ 1/p and q <
q1 ≤ 1, the following quadratic problem is defined:

Min dT � B � d ð11Þ
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subject to:

∑
p

i¼1
di ¼ 1 ð12Þ

di≥q i ¼ 1::p ð13Þ
di≤q1 i ¼ 1::p ð14Þ
where d = (d1, d2, …, dp)

T and B is the variance/covariance
matrix of the values of the assets of S. We denote this problem
by P(S, q, q1). For each S ⊂ V, such that |S| ≤ kmax, we denote
the value of the optimal solution of the problem P(S, Qmin,
Qmax) by h(S). Each P(S, q, q1) problem has an optimal solu-
tion that can be found by quadratic programming methods, as
described in Appendix 1. The RiskGenerator procedure is
outlined in pseudocode 3.

Pseudocode 3.RiskGenerator procedure

In step 1, the problem P(V, 0, Qmax) is solved. This problem
is defined by function (2), i.e., f2, and constraints (5), (7), and
(9) of Section 2. In step 2, it is checked whether the optimal
solution d∗ fulfills constraints (4) and (6). If it does, d∗ is the
optimum for f2 considering all the constraints of Section 2,
(4)–(9), we do w2 = d∗ and it is not necessary to continue. If
f∗ does not fulfill constraints (4) and (6), then in step 3, a set S ⊂
V is built from set C. This set S is the initial set of an iterative
procedure in which set Swith the best value h(S) is searched. In
each iteration, three types of movements are considered: adding
an element (steps 6 and 7), removing an element (steps 8 and 9),
and exchanging an inside element for an outside element (steps
10 and 11). The process ends when there is no improvement in
the best h(S) value found in iteration (ant = value). From the
final S set obtained and the optimal f∗ of P(S, Qmin, Qmax), the
solution w2 is formed (step 13).

3.2 TabuSearch procedure and “fine” neighborhood

The TabuSearch procedure is based on the strategy tabu
search [33, 34]. This is a very well-known metaheuristic strat-
egy with thousands of applications in the literature. The prin-
ciples behind this strategy are explained in great detail in
Glover et al. [35]. Given a function G to optimize (either the
initial objective functions f1, f2, and f3 or the mixed function
Fλ), the TabuSearch procedure is described in pseudocode 4.
It must be noted that in this description, it is considered, with-
out loss of generality, that the objective is to minimize G.

Pseudocode 4.TabuSearch procedure

In pseudocode 4,N(w) is the set of neighboring solutions of
w, i.e., those feasible solutions that can be reached by
(neighbor) movements from w. The current solution (w) and
the best solution found (w∗) may be different since the proce-
dure permits movements to worse solutions. To avoid cycles,
some movements are declared “tabu”. However, a tabu move-
ment may be permitted if it results in a better solution than w∗.
The set of neighborhood solutions of w, N(w), is determined
by four types of movements (A, B, C, D) that are described as
follows:

– A) Go down/Go up: There are two assets i and i′ in the
portfolio (i.e., Qmin≤wi;wi0 ≤Qmax ). The movement con-
sists of reducing wi to a maximum but without eliminat-
ing i from the portfolio and increasing wi0 by the same
amount that we have reduced wi. This amount should be
the maximum possible. More formally, the movement
consists of executing the following three steps: 1)
Inc ¼ min wi−Qmin;Qmax−wi0

� �
; 2) wi0 ¼ wi0 þ Inc and

3) wi = wi − Inc.
– B) Remove/Go up: There are two assets i and i′ in the

portfolio; the movement consists of deleting i from the
portfolio (so that wi = 0) and maximizing wi0 . In other
words, the movement consists of implementing the fol-
lowing two steps: 1) wi0 ¼ wi0 þ wi and 2) wi = 0. The
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following initial condition must be checked to ensure the
feasibility of the movement:wi0 þ wi≤Qmax

– C) Go down/Introduce: There are two assets i and
i′, i in the portfolio and i′ outside of it. The move-
ment consists of decreasing wi as much as possible
but without eliminating i from the portfolio (that is,
making wi = Qmin) and introducing i′ into the port-
folio. It therefore consists of taking the following
two steps: 1) wi0 ¼ wi−Qmin and 2) wi = Qmin.
The following initial conditions have to be checked
to ensure the feasibility of the movement: 1) wi −
Qmin ≥ Qmin, (or wi ≥ 2 · Qmin), because wi −
Qmin is the value that wi0 will take and this value
should be greater than Qmin; 2) the number of assets
in the actual solution w should strictly be less than

kmax, (∑
n

i¼1
zi < kmax ), as another asset is added in

the movement without removing any other.
– D) Remove/Introduce: There are two assets i and i′, i in

the portfolio and i′ outside of it. Themovement consists of
removing i from the portfolio (wi = 0) and introducing i′

into the portfolio. It therefore consists of implementing
the following two steps: 1) wi0 ¼ wi and 2) wi = 0.

As noted earlier, to avoid cycles and return to recent-
ly visited solutions some movements are declared tabu
during a series of iterations. The different types of
movements that have been defined entail two simulta-
neous actions: the reduction of some value wi (including
the removal of assets from the solution) and the in-
crease of some value wi0 (including the introduction of
assets). Therefore, the movements that imply increase in
some wi0 value that has recently decreased, as well as
reduction in some wi value that has recently increased,
are declared tabu so as not to return to recent solutions.
The following tabu vectors are defined to check the
tabu status of the different movements:

tabuUp ið Þ ¼ Number of the last iteration where the value of wi has decreased:
tabuDown ið Þ ¼ Number of the last iteration where the value of wi has increased:

In the sameway, the parameters tenureUp and tenureDown
down are respectively defined as the number of iterations in
which it is tabu to increase a value ofwi that has just decreased
and the number of iterations in which it is tabu to decrease a
value of wi that has just increased. Specifically, the increase in
wi is tabu if and only if iter ≤ tabuUp(i) + tenureUp, where
iter is the counter of iterations. By analogy, the reduction in a
value wi is tabu if and only if iter ≤ tabuDown(i) +
tenureDown.

Thus, a movement is tabu if it implies a “tabu” increase or a
“tabu” reduction or both. The tabu vectors are initialized in
step 2 of the procedure, as shown in pseudocode 3, with the

values tabuUp(i) = − tenureUp and tabuDown(i) = −
tenureDown, for i = 1,…, n. In the same way, when a move-
ment is executed the values of the corresponding tabu vectors
are updated (step 6).

In Phase 3, the same neighborhoods N(w) defined
above are used. Finally, the “fine” neighborhood used
in Phase IV (step 13) of the MOAMP algorithm is
determined using a variant of type A movements that
is described as follows: for every pair of two assets i
and i′ in the portfolio the movement consists of reduc-
ing wi in an amount determined by a parameter IncFin
but without eliminating i from the portfolio, and in-
creasing wi0 by the same amount that we have reduced

wi. More formally, let Inc ¼ min IncFin;wi−Qmin;Qmax−wi0
� �

,
and the movement consists of executing the two follow-
ing steps: 1) wi0 ¼ wi0 þ Inc and 2) wi = wi − Inc.
Therefore, the “fine” neighborhood depends on the pa-
rameter IncFin. In this case, IncFin has been set to
IncFin = 0.01. In Appendix 2, the computational com-
plexity of the entire MOAMP method is explained.

4 Adaptation of evolutionary strategies

To check the performance of our MOAMP-tabu search
method, adaptations of three evolutionary strategies are
designed for multiobjective optimization problems:
NSGA-II, SPEA-II and MOPSO. These adaptations are
designed ad hoc for this specific problem. Subsequently,
computational tests are carried out to compare the re-
sults obtained by our method and these evolutionary
methods. The three strategies, NSGA-II [22], SPEA-II
[80] and MOPSO [20], are recognized and accepted in
the field of multiobjective optimization. A large number
of applications can be found in the related literature.
Among the most recent applications we highlight the
work of Jalili et al. [43] and Ghanbari and Alaei [30].
Although they were conceived as general-purpose
methods, specific context-dependent elements were used
in this paper. However, other interesting and recent evo-
lutionary methods for multiobjective problems can be
found in Gong et al. [37], Hu et al. [42], Zhang et al.
[76], Jiang and Chen [44] and Tian et al. [67].

Basically, NSGA-II is a genetic algorithm, and it
therefore operates over a set of solutions: this set is
named the “population”. The solutions are also called
“individuals.” It is an iterative process that follows the
following scheme: initially, it creates a population; sub-
sequently, in each iteration (“generation”), a set of par-
ents is selected from the population in a tournament;
from this set of parents, a population of descendants
(“offspring”) are obtained of the same size as the
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current population (by applying the crossover and mu-
tation operations); then, both populations are joined, and
their individuals are ordered. Finally, the best half is
selected, giving rise to a new population. The process
is repeated in each iteration. The algorithm ends when a
stop criterion is reached (maximum number of iterations
without change in the set of nondominated solutions,
maximum calculation time, etc.)

Moreover, NSGA-II makes use of the concepts of
“nondominance” fronts and the “crowding distance” of
each solution. Thus, between two solutions the solution
that belongs to the best dominance front is preferred. If
the two solutions belong to the same front, the one with
the greatest “crowding distance” is preferred. This
sorting is known as “partial order” and denoted by <C.
The partial order is used in the different selection pro-
cesses. The concepts of nondominance fronts, crowding
distance, and partial order are explained in Deb et al.
[22].

In what follows, the procedure to generate initial ran-
dom solutions is described (ConstructiveRandom) as
well as the crossover and mutation operators. The
Cons t ruc t i veRandom procedure i s out l ined in
pseudocode 5.

Pseudocode 5.ConstructiveRandom procedure

The auxiliary variable k indicates the number of assets in
the solution, and QR indicates the amount of money available

in each iteration. Step 5 ensures that ∑
n

i¼1
wi ¼ 1.

The cross operator is the conventional one-point
crossover. Each solution is represented by a vector with
n positions in which each position indicates the corre-
sponding wi value. Once the new offspring solutions
have been generated, each of their components changes
(mutates) with a small probability pmut. The mutation
of each element wi consists of changing from strictly
positive to 0 and from 0 to strictly positive (with a
value between Qmin and Qmax) according to each case.
In other words: removing the corresponding asset i of
the solution if inside or introducing it if outside.

After the operations of crossover and mutation, the solution
that is obtained may not be feasible. Specifically, the cross-
over and mutation operators produce four cases of infeasibil-

ity: a) ∑
n

i¼1
zi ¼ 0; b) ∑

n

i¼1
zi > kmax c) ∑

n

i¼1
wi > 1 and d)

∑
n

i¼1
wi < 1. The procedure SolutionToFeasability was de-

signed to “recover” the feasibility. This procedure is executed
after the mutation operator and successively corrects, where
necessary, each of these 4 cases. This procedure is described
in pseudocode 6.

Pseudocode 6. ProcedureSolutionToFeseability

If case a) applies in step 1, procedure ConstructiveRandom
is executed to generate a feasible solution, and procedure
SolutionToFeseability ends. If case b) applies, steps 2–3 cor-
rect it although case c) could apply after this correction. Case
c) is corrected in steps 4–5, and finally case d) is corrected in
steps 6–7. Observe, specifically in cases c) and d), that the
redefinition of the values of wi in steps 4–5 (6–7) ensures,

on the one hand, that ∑
n

i¼1
wi ¼ 1 and, on the other hand, that

Qmin ≤ wi ≤ Qmax. We consider a simple example to illustrate
the functioning of steps 4–5: n = kmax = 2, Qmin = 0.2, Qmax

= 0.8,w1 = 0.7 and w2 = 0.4. In this example, case c) applies

because ∑
2

i¼1
wi = 1.1 > 1. Therefore, the following are defined

in step 4: k = 2, QT1 = 1–2·0.2 = 0.6 and QT2 = 1.1–2·0.2 =
0.7. Finally, there are a series of redefinitions in step 5:w1 ¼ 0

:2þ 0:7−0:2ð Þ � 0:6
�
0:7

� �
¼ 0:63 and w2 ¼ 0:2þ 0:4−0:2ð Þ

� 0:6
�
0:7

� �
¼ 0:37. In this way ∑

2

i¼1
wi ¼ 1.

LetN be the size of the initial population. The adaptation of
the NSGA-II algorithm to our problem is described in
pseudocode 7.

Pseudocode 7.NSGA − II Adaptation
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In this NSGA II adaptation, a set of solutions Ht with
N elements is generated as follows: 2·N elements of Pt

are randomly selected with replacement; N pairs are
formed with these 2·N elements; the best element ac-
cording to the partial order <C are chosen in each pair;
with the N elements chosen, N/2 pairs of parents are
formed; finally, two “offspring” solutions are obtained
through the crossover operator for each couple. In this
way, the N elements of Ht are obtained.

SPEA-II is also basically a genetic algorithm and has a
structure similar to that of NSGA-II. In addition to the popu-
lation of Pt solutions, a set of “elite” P′t solutions are used.
Both sets interact with each other. Let N be the size of the
current population Pt, and let N’ be the size of the “elite”
solutions P′t. The adaptation of the SPEA-II algorithm to our
problem is described in pseudocode 8.

Pseudocode 8.SPEA − II Adaptation

In this SPEA-II adaptation, the function fitness in step 4 is
calculated as follows:

FIT wð Þ ¼ E wð Þ þ 1
�

σwþ2ð Þ

where

– σw is the distance in the space of objective functions from

w to its closest solution different from it in Pt∪P
0
t.

E wð Þ ¼ ∑
w

0∈Pt∪P
0
t

w
0
dominates w

D w
0

� �

– D(w′) is the number of solutions of Pt∪P
0
t that are domi-

nated by w′′.

The function fitness in step 8 is calculated in the same way

but changing Pt∪P
0
t by Rt. The solutions with the lowest FIT

value are chosen. Therefore, the least dominated solutions and
those that are more distanced from other solutions are favored.
In the case of a tie, the solution with the greatest distance to its
second closest solution is chosen. The set of solutionsHt (step
6) is generated in a similar way as in step 6 of the NSGA-II
adaptation but uses the value of fitness (calculated in step 4) to
choose the best element of each pair.

Finally, the notation to describe the MOPSO algorithm is
slightly different from previous algorithms. We define P the
current population of solutions and N its size. The solutions of
P are denoted by wj, j = 1. . N. In adition, we define an axillar
set of solutions pwj ∀j = 1. .N and a set of vectors vj ∈ Rn, j =
1. . N. The adaptation of the MOPSO algorithm to our prob-
lem is described in pseudocode 9.

Pseudocode 9.MOPSO Adaptation

The output of the algorithm is the set ND of non-dominated
solutions. In particle swarm optimization methods [25] the
solutions wj are referred to as “particles”, each solution pwj

is referred to as the “best individual position” of the particle
wj, the vector vj is referred to as the “velocity” of the particlewj

and the solution pg is referred to as the best global position.
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5 Computational experiments

This section is devoted to the comparison of the MOAMP,
NSGA-II and SPEA-II methods. Different computational tests
were performed, described below. The procedures were coded
and compiled in Object Pascal using Rad Studio (version 10
and later). All the tests were performed on an Intel Core i7–
7700 computer with a 4.20 GHz processor. To do so, four sets
of 25 instances were defined. The first set corresponds with
the real data of the Spanish stock market (Ibex-35), the second
corresponds with the European stock market (EuroStoxx-50),
the third corresponds with the German stock market (Dax-30)
and the fourth corresponds with the American stock market
(Dow-Jones). Asset prices for each market can be found on
the investing.com website. In our case we have taken the
values from April 1 till June 30, 2021. With the table of
values of the quotations of each market, the variance-
covariance matrix of that market (matrix A) and the expected
return for each asset Ri (difference between the last value and
the first divided by the first) are obtained. Regarding to social
responsibility, the RSi values were obtained from the website
https://www.spglobal.com/esg/scores/ (ESG scores
corresponding to June 2021). These indexes prepared by the
S&P Global company are widely recognized and used in the
financial and academic fields. For more information on the
S&P Global ESG Score, please refer to the S&P ESG Index
Series Methodology (https://www.spglobal.com/spdji/en/
documents/methodologies/methodology-sp-esg-index-series.
pdf). On the other hand, companies that have not been
assigned this ESG index have not been considered. Thus, for
each database, we have considered the number of assets
shown in Table 2.

Therefore, instances of the same database use the same
values of n, Ri, RSi ∀i ∈ {1. . n} and the same matrix, A.
The value of Qmax is fixed at 0.7. In each group, the instances
are distinguished by the values of the parameters Qmin and k-
max. Specifically, 25 combinations of parameters Qmin and k-
max have been defined, the same for both sets. These combi-
nations are shown in Table 3.

Preliminary fine-tuning experiments resulted in the follow-
ing parameter settings for the MOAMP approach: maxPhase
= 10, tenureDown = ⌊n/2⌋, tenureUp = ⌊n/2⌋, andmaxTS =
10 · n. On the other hand, previous works [36, 56]

recommended the use of pmut = 0.05. Next, the comparison
between the results with the MOAMP and the other three
methods (NSGA-II, SPEA-II and MOPSO) is shown.
Initially, the MOAMP procedure is executed for each in-
stance, and the number of nondominated solutions (|Set _
ND|) and the computational time (CTime) used are record-
ed. Then, the NSGA-II, SPEA-II and MOPSO procedures
are executed, taking the size of the population N as 2 ·
|Set _ ND| (NSGA-II, SPEA-II and MOPSO) and N ’ =
N (SPEA-II). The stop criterion of the NSGA-II, SPEA-II
and MOPSO methods is to reach 10·CTime. As a prelim-
inary result, Table 4 and Fig. 1 show the average of the
number of solutions obtained by the four sets in each
phase of the MOAMP method as well as the NSGA-II,
SPEA-II and MOPSO adaptations.

From Table 4 and Fig. 1, it can be seen that phase III and,
mainly, phase IV show great capability for increasing the set
of solutions obtained in phases I and II. Phase IV multiplies
the number of solutions of phase II in all databases by nearly
150. Furthermore, the MOAMPmethod obtains approximate-
ly 20–35 timesmore solutions than the NSGA II, SPEA-II and
MOPSO methods. Both Table 2 and Fig. 1 clearly show the
contribution of Phase IV and the fine neighborhood to obtain
dense nondominated solution sets. This increases the informa-
tion provided to the decision maker and thus his decision
capacity.

Three metrics will be used to compare these results. The
first is based on cardinality and was proposed in Zitzler and
Thiele [79]. In this particular case, cardinality is defined as the
number of solutions obtained by each method in the approx-
imation of the efficient frontier (E∗). We build this approxi-
mation of the efficient frontier (E∗) by combining all the so-
lutions obtained by both methods and by identifying the
nondominated and different solutions.

The second metric is based on the concept of coverage of
the two sets [79]. This metric compares the percentage of a set
that is dominated by another set. Specifically, let R(X, Y) be
the ratio of solutions found bymethod Y that are dominated by

Table 2 Databases and number of actives

# DataBase Number of used assets (n)

1 Ibex-35 31

2 EuroStoxx-50 49

3 Dax-30 28

4 Dow-Jones 30

Table 3 Combinations of parameters Qmin andkmax

# Qmin kmax # Qmin kmax # Qmin kmax

1 0.1 3 10 0.12 5 19 0.18 5

2 0.1 4 11 0.12 6 20 0.21 3

3 0.1 5 12 0.12 7 21 0.21 4

4 0.1 6 13 0.15 3 22 0.24 3

5 0.1 7 14 0.15 4 23 0.24 4

6 0.1 8 15 0.15 5 24 0.30 2

7 0.1 9 16 0.15 6 25 0.40 2

8 0.12 3 17 0.18 3

9 0.12 4 18 0.18 4
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a solution obtained by method X for a given instance. Then,
we define:

df Xð Þ ¼ ∑
∀Y≠X

R X ; Yð Þ−R Y ;Xð Þð Þ

The larger the values of df(X) the greater the dominance of
the solutions obtained by method X. Finally, the third metric is
known as hypervolume [79]. For every set of solutions this
indicator measures the ratio of the volume of the region that is
dominated by this set in the objective function space. This
ratio is calculated with respect to the hypercube, the extremes
of which are the ideal and anti-ideal points. The ideal and anti-
ideal points are obtained by calculating the minimum and the
maximum values for each objective function from all the so-
lutions in the sets under consideration. More details on how to

calculate the hypervolume can be found in Beume et al. [6]
and Bradstreet [8].

The results for each instance are shown in Appendix 3
(Tables 6, 7, 8 and 9). The means of these metrics for each
database are shown in Table 5. Columns 2, 3, 4, 5 and 6 refer
to the metric of cardinality: the second column indicates the
number of solutions of the approximation of the efficient fron-
tier (|E∗|), as previously defined; columns 3, 4, 5 and 6 indicate
the percentage of elements E∗ found by the four methods;
columns 7 to 10 refer to the coverage metric; and finally,
columns 11 to 14 indicate the value of the hypervolume of
the sets obtained by each method.

Table 5 shows that the MOAMP method performed better
than the NSGA-II, SPEA-II and MOPSOmethods for all con-
sidered instances and metrics in all databases. The percentage
contribution of solutions obtained by MOAMP to the con-
struction of E∗ is much higher, indicating that MOAMP is
better with regard to cardinality. The value of coverage (df)
is always higher with MOAMP than those values obtained by
NSGA-II, SPEA-II and MOPSO, showing greater dominance
for the set obtained by MOAMP. The hypervolume generated
by the set obtained by MOAMP was also greater than the
hypervolume generated by the sets obtained by NSGA-II,
SPEA-II and MOPSO. Perhaps in the Dow-Jones database
the differences in hypervolume are slightly smaller.
However, this metric is usually the one that gives the least
differences between methods, as seen in Colmenar et al.
[21]. In summary, it can be deduced that in four data sets the
MOAMP method achieves better results, although NSGA-II,
SPEA-II and MOPSO use 10 times more computing time. In

Table 4 Number of solutions of
each method by set Database MOAMP NSGA-

II
SPEA-
II

MOPSO

Phase I Phase II Phase III Phase IV

IBEX-35 17.12 63.04 673.72 9019.24 418.28 417.88 425.12

EUROSTOXX 50 17.28 63.64 680.08 9104.44 264.12 378.44 383.28

DAX-30 17.88 65.72 702.40 9403.12 506.12 505.88 512.96

DOW-JONES 18.16 66.80 714.16 9561.08 382.16 402.00 411.08
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Fig. 1 Number of solutions of each method by set

Table 5 Means of the metrics obtained by the MOAMP, NSGA-II, SPEA-II and MOPSO methods in each database (“Dat”)

Dat
#

Cardinality Coverage(df) Hypervolume

|E∗| MOAMP % NSGAII % SPEA-II
%

MOPSO
%

MOAMP NSGAII SPEA-
II

MOPSO MOAMP NSGAII SPEA-
II

MOPSO

1 8929,9 97,53 1,29 1,26 1,35 1,70 −0,58 −0,61 −0,51 0,879 0,656 0,656 0,657

2 9014,2 98,16 1,24 0,64 1,30 2,03 −0,69 −0,73 −0,61 0,926 0,549 0,549 0,546

3 9310,0 98,73 0,76 0,55 0,79 2,53 −0,82 −0,90 −0,82 0,835 0,472 0,472 0,469

4 9466,4 97,51 1,23 1,27 1,37 1,67 −0,55 −0,62 −0,51 0,791 0,744 0,743 0,738
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addition, in Appendix 3 it can be seen how MOAMP obtains
better results for each of the 100 instances in all the metrics.
Finally, it should be noted that the time used by MOAMP
varies between 0.1 s and 25 s.

Figure 2 shows the sets of points obtained by theMOAMP,
NSGA-II, SPEA-II andMOPSOmethods in instance 12 of the
IBEX-35 data. For a better understanding of the graphics only
the nondominated solutions with respect to f1 and f2 appear.
The value ‘expected return’ (f1) is shown on the x-axis, and the
value ‘risk’ (f2) is shown on the y-axis.

The set of solutions obtained by MOAMP dominates most
of those obtained by the other methods. Moreover, the curve
obtained byMOAMP reaches solutions with lower risk, while
the solution with higher profitability is the same for all 4
methods. This is an example of the best properties of the sets
of solutions obtained by MOAMP.

6 Financial assessment tool

In brief, in the different cases under analysis the MOAMP
method achieves a broad set of nondominated solutions within
a short calculation time (less than 25 s in all instances). In
addition, these sets have good characteristics compared with
those obtained by other multiobjective optimization methods.

This means that the MOAMP method may be used as a
calculation engine in financial assessment tools, even for on-
line use. To illustrate its use as a financial assessment tool,
some examples will be given. With the set of nondominated
solutions that have been generated and with the help of simple
filtering and sorting procedures, graphics can be rapidly gen-
erated on the basis of which the financial advisor can recom-
mend the portfolio solution according to the preferences of the
client.

Let us take the case of a client who approaches a financial
entity or a bank to make an investment. If we suppose that this

client expresses great social concern and therefore has a spe-
cial interest in obtaining a portfolio with a high value of social
responsibility, this client could consider only, for example, the
5% of solutions with highest value on this objective function.
Therefore, the solutions obtained by MOAMP that accom-
plish this requirement can be filtered, and subsequently,
among these, the nondominated solutions may be selected,
taking into account the other two objectives. Figure 3 shows
an example with the selected solutions after this process is
applied to the set of solutions corresponding to instance 12
of IBEX-35 data. The value of expected return (f1) is shown
on the x-axis, and the value of risk f2 is shown on the y-axis.
On the basis of Fig. 3, the entity can recommend, according to
the client profile (risky, conservative, etc.), the most accept-
able portfolio (solution).

We assume there is a second client with a very conservative
profile who is interested in portfolios with low risks. This
client could consider only, for example, the 5% of solutions
with the lowest values of risk. On the basis of the set of solu-
tions obtained by MOAMP, through a process analogous to
the earlier example, a subset of solutions may be selected with
the required risk values that are nondominated with regard to
the other two objectives. Figure 4 shows an example with the
selected solutions after this process. The value of the expected
return (f1) is shown on the x-axis, and the value of social
responsibility (f3) is shown on the y-axis. On the basis of this
figure, the entity can recommend, in response to the social
concerns of the client, the most appropriate portfolio
(solution).

Finally, let us suppose a third case: a client who seeks the
portfolios with the highest return (bold profile). This client
could consider only, for example, the 5% of solutions with
the best values on the expected return. Following the same
steps as in the earlier examples, a subset of solutions may be
found, which are shown in Fig. 5. According to the social
concerns of the client, the appropriate portfolio (solution) is
found.
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In short, the MOAMP method allows us to obtain a broad
set of quality solutions. We think this is always very positive
because this set provides the client and/or advisor with more
possibilities. In effect, taking into account the preferences and
the profile of each client, a set of minor solutions may be
filtered and selected on the basis of which appropriate selec-
tion may be completed.

In this sense, it should be taken into account that, increas-
ingly, different regulations are established for making recom-
mendations on investment portfolios. For example, the
MIFID1 regulations were enacted for European Union coun-
tries on 1st November 2007. In other words, to complete an
investment proposal, it is obligatory to determine and take into
account the global profile of investors. Specifically, their
knowledge, experience, financial situation, and investment
objectives are assessed. In this way, the client is classified as
“Very conservative”, “Conservative”, “Moderate”, “Bold or
fearless”, etc. In case the necessary information to analyze and

to determine the client profile is lacking, the regulations pre-
vent any investment proposal whatsoever.

7 Conclusions

The selection of an investment portfolio is an increasingly
complex process. In addition to the expected return and risk,
other criteria are increasingly considered when assessing dif-
ferent investment possibilities. For many investors, although
return is still important it is no longer the principal criterion.
Social, ethical, and environmental concerns are increasingly
taken into account. Therefore, in recent times, social respon-
sibility has assumed greater importance. Various works that
have appeared in recent years, as cited in the introduction,
have demonstrated this. Nevertheless, in the majority of these
works social responsibility is treated as a constraint (establish-
ing minimum levels or previously selecting assets already
known to be socially responsible).

In this work, unlike earlier models, a multiobjective port-
folio selection model is analyzed in which social responsibil-
ity is introduced as a third objective in addition to the expected
return and risk. Moreover, in the model under analysis, other
real restrictions have also been included such as prefixing a
maximum number of assets to select and determining a min-
imum amount to invest in each selected asset. These con-
straints attempt to avoid high transaction costs. The resulting
model has evident real applications. When considering social
responsibility as an objective and not as a restriction, the mod-
el is more flexible than other earlier models that included
social responsibility.

Specifically, we designed an algorithm for this model that
is capable of generating sets of nondominated solutions with
good properties with short calculation times (only a few sec-
onds). Therefore, our algorithm could be used as the engine of
financial analysis and advisory tools, including real-time and
online tools.

Furthermore, our algorithm takes into account the social
concerns of each client and their overall risk profile (very
conservative, conservative, moderate, or fearless). Indeed, af-
ter obtaining the set of nondominated solutions, the prefer-
ences, profile, and/or social concerns of the client can be used
to make the appropriate selection with simple filtering and
sorting tools. This approach is also in line with recent legal
regulations (e.g., MIFID regulations) that oblige financial ad-
visors to take the client profile into account to provide greater
protection and propose good financial advice.

Specifically, the algorithm proposed in this paper is based
on the MOAMP strategy. This algorithm uses a tabu search
procedure as its main tool, which can be used with different
objective functions. In addition, to validate and test the algo-
rithm design we have compared the results with those offered
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1 http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32014L0065&from=EN
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by an adaptation of the well-known NSGA-II, SPEA-II and
MOPSO algorithms for multiobjective problems.

The different tests employed show that the sets of solutions
were better when using the MOAMP-based method in com-
parison to the sets obtained with the NSGA-II-, SPEA-II and
MOPSO-based methods. This higher quality is given for all
the metrics under consideration. The MOAMP-based method
uses very little calculation time, allowing it to be used as an
online financial assessment tool. Examples of how to give
advice in a simple manner are shown, taking into account
the preferences of each client.

Finally, it should be noted that the MOAMP strategy is not
a “plug-and-play” type algorithm that can be easily adapted to
different problems.MOAMP sets out basic ideas for which we
must devise an ad hoc development for each model or prob-
lem. This ad hoc development requires a greater effort of
design and implementation in comparison with “plug-and-
play” strategies. However, at least in this case this effort al-
lows for better performance.

Appendix 1: Solving quadratic problem
P(S, q, q1) in Section 3.2

In the problem defined by (11)–(14), Section 3.1, constraint
(12) can be redefined as inequality

∑
p

i¼1
f i≥1 ð15Þ

because when B is defined as positive, constraint (13) is al-
ways saturated at the optimum. On the other hand, multiplying
the objective function by 1/2 and changing the variables ti =
di − q ∀i = 1. . p, the problem is defined as:

Min
1

2
� tT � B � t� �þ q � tT � B � 1

subject to:

tT � 1≥q0
ti≤q2 i ¼ 1::p:

ti≥0 i ¼ 1::p:

where t = (t1, t2, …, tp)
T, 1 ¼ 1; 1;…; 1ð ÞT∈Rp, q0 = 1 − p

· q, q2 = q1 − q. The Lagrangian function is defined as
follows:

L ¼ 1

2
� tT � B � t� �þ q � tT � B � 1−v � tT � 1−q0

� �
−tT

� u− q2 � 1−t
� �T

� e

where u = (u1, u2, …, up)
T ∈ Rp, e = (e1, e2, …, ep)

T ∈ Rp

and v ∈ R are the penalty parameters. Since the objective
function is convex, because the Bmatrix is defined as positive
and the constraints are linear Kuhn-Tucker conditions are nec-
essary and sufficient to find the optimal function. To find a
solution that fulfills these conditions Frank-Wolfe’s method
[28] proposes solving a linear programming problem with
complementarity conditions, where the constraints are the
Kunh-Tucker conditions. These constraints are as follows:

B � t þ q � B � 1−v � 1−uþ e ¼ 0 ð16Þ
tT � u ¼ 0 ð17Þ
x � v ¼ 0 ð18Þ
gT � e ¼ 0 ð19Þ
ti; ui≥0; i ¼ 1::p; x; v≥0 ð20Þ
where

x ¼ 1
T
� t−q0 ð21Þ

g ¼ 1 � q2−t ð22Þ

So that g = (g1, g2, …, gp)
T ∈ Rp, where

gi ¼ q2−ti≥0; i ¼ 1::p ð23Þ

Expressions (16), (21) and (22) can be rewritten as follows:

u−e−B � t þ v � 1 ¼ q � B � 1 ð24Þ

x−1
T
� t ¼ −q0 ð25Þ

g þ t ¼ 1 � q2 ð26Þ

The aim is therefore to find a solution that verifies
(24)–(26) and constraints (17)–(19) (conditions of comple-
mentarity) and that the variables involved are positive (con-
straints (20) and (23)). Expressions (24)–(26) consist of 2·p+1
equality constraints and 4·p+2 variables. Since variables u, x,
and g are multiplied by the identity matrix they can form the
initial base in the Simplex table. However, since among the
constant terms there is at least a negative value (−q0), we must
add the artificial variable y. Specifically, we start with the

nonfeasible solution,
u
x
g

0
@

1
A =

q � B � 1
−q0
1 � q2

0
@

1
A and the rest of

the variables equal to 0. Next, the artificial variable is intro-
duced in the base and all the variables of the new base are
positive. It then continues to pivot, as in the Simplex method
until the artificial variable y leaves the base. To choose the
variable that enters in each step the complementarity rule is
followed: the variable that enters the base is the complemen-
tary variable of the one eliminated in the previous step: if ui
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came out, it enters its complementary ti and vice versa; if v
came out, it enters its complementary x and vice versa; if ei
came out, it enters its complementary gi and vice versa. This
method is an adaptation of Lemke’s method or “complemen-

tary pivot” [46]. The following is an example of how it works.
Assume the following data: p = 2, q = 0.4, q1=0.55 and

B ¼ 1 0
0 2

	 

. The initial table is as follows:

The artificial variable y is entered in the base with the value
y = 0.2. To do this, we change the sign of the third row:

As x has left the base in the following iteration, its comple-
mentary v enters.

As u1 has left the base in the following iteration, its com-
plementary t1 enters.

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
u1 1 0 0 −1 0 −1 0 1 0 0 0 0.4

u2 0 1 0 0 -1 0 −2 1 0 0 0 0.8

x 0 0 1 0 0 −1 −1 0 0 0 −1 - 0.2

g1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 0 0 0 0 1 0 0 1 0 0.15

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
u1 1 0 0 −1 0 −1 0 1 0 0 0 0.4

u2 0 1 0 0 −1 0 −2 1 0 0 0 0.8

y 0 0 −1 0 0 1 1 0 0 0 1 0.2

g1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 0 0 0 0 1 0 0 1 0 0.15

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
v 1 0 0 −1 0 −1 0 1 0 0 0 0.4

u2 −1 1 0 1 −1 1 −2 0 0 0 0 0.4

y 0 0 −1 0 0 1 1 0 0 0 1 0.2

g1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 0 0 0 0 1 0 0 1 0 0.15

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
v 1 0 0 −1 0 0 0 1 1 0 0 0.55

u2 −1 1 0 1 −1 0 −2 0 −1 0 0 0.25

y 0 0 −1 0 0 0 1 0 −1 0 1 0.05

t1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 0 0 0 0 1 0 0 1 0 0.15
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As g1 has left the base in the following iteration, its com-
plementary e1 enters.

As u2 has left the base in the following iteration, its com-
plementary t2 enters.

The artificial variable y leaves the base. Therefore, the
method ends. The solution obtained is t1 = 0.15 and t2 =
0.05. Therefore, d1 = 0.55 and d2 = 0.45.

Appendix 2: Analysis of the complexity
of the MOAMP method

The MOAMP method starts with the ReturnGenerator,
RiskGenerator, and SocialGenerator procedures. The
ReturnGenerator and SocialGenerator procedures require
θ(kmax · n) calculations, as can be easily seen in pseudocode
2. The RiskGenerator procedure is a local search procedure, as
seen in pseudocode 3. In each iteration (steps 5–12), θ(kmax ·
(n − kmax)) neighboring solutions (corresponding to the sets
S’) are analysed. To determine the objective function of these
solutions, the corresponding P(S′, Qmin, Qmax) problems are
solved. As shown in Appendix 1, this problem is solved in
θ(kmax

3) steps. Therefore, each iteration of the RiskGenerator
procedure requires θ(kmax

4 · n) calculations.

The TabuSearch procedure (pseudocode 4) is an iterative
neighborhood search procedure. Each neighborhood consists
of θ(kmax · (n − kmax)) solutions. The evaluation of the return
and social responsibility objectives requires θ(kmax) calcula-
tions, while the evaluation of the risk objective requires
θ(kmax

2) calculations. Therefore, each iteration requires
θ(kmax

3 · n) steps of calculations, and the complexity of the
TabuSearch procedure is θ(kmax

3 · n · maxTS). The number
of times the TabuSearch procedure is executed is
θ(maxPhase).

In Phases III and IV of the MOAMP procedure, the same
neighboring solutions are explored as in the TabuSearch pro-
cedure, and then every iteration of these phases requires
θ(kmax

3 · n · |SetND|) calculations.
As indicated in Section 3, in this implementation the size of

SetND has been limited to 10,000. On the other hand, maxTS
= 10 · n andmaxPhase = 10. Thus, the overall complexity of
our MOAMP method is θ(kmax

3 · n2).

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
v 0 1 0 0 −1 0 −2 1 0 0 0 0.80

e1 −1 1 0 1 −1 0 −2 0 −1 0 0 0.25

y 0 0 −1 0 0 0 1 0 −1 0 1 0.05

t1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 0 0 0 0 1 0 0 1 0 0.15

Base u1 u2 x e1 e2 t1 t2 v g1 g2 y
v 0 1 −2 0 −1 0 0 1 −2 0 2 0.90

e1 −1 1 −2 1 −1 0 0 0 −3 0 2 0.35

t2 0 0 −1 0 0 0 1 0 −1 0 1 0.05

t1 0 0 0 0 0 1 0 0 1 0 0 0.15

g2 0 0 −1 0 0 0 0 0 1 1 −1 0.10
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Appendix 3: Metrics obtained by the MOAMP,
NSGA-II, SPEA-II and MOPSO methods in 100
instances

Table 6 Metrics obtained in Ibex-35 database

Inst.# Cardinality Coverage(df) Hypervolume

|E∗| MOAMP
%

NSGAII
%

SPEA-II
%

MOPSO
%

MOAMP NSGAII SPEA-
II

MOPSO MOAMP NSGAII SPEA-
II

MOPSO

1 8687 97.89 1.08 1.06 1.09 1.66 −0.59 −0.54 −0.53 0.843 0.840 0.840 0.841

2 10,044 98.15 0.90 0.99 1.00 1.62 −0.54 −0.55 −0.53 0.840 0.839 0.839 0.840

3 10,165 98.18 0.90 0.95 0.96 1.66 −0.55 −0.56 −0.55 0.840 0.839 0.839 0.840

4 10,166 98.16 0.90 0.97 0.98 1.65 −0.55 −0.56 −0.54 0.840 0.839 0.839 0.840

5 10,077 99.13 0.64 0.25 0.64 2.25 −0.55 −1.16 −0.55 0.929 0.055 0.054 0.055

6 10,086 99.04 0.71 0.26 0.72 2.25 −0.56 −1.13 −0.56 0.929 0.055 0.054 0.055

7 10,185 98.14 1.36 0.50 1.30 1.96 −0.41 −0.96 −0.60 0.929 0.055 0.054 0.054

8 9303 97.91 0.86 1.25 1.26 1.52 −0.71 −0.41 −0.40 0.857 0.854 0.854 0.855

9 10,179 98.11 0.87 1.05 1.06 1.55 −0.65 −0.45 −0.45 0.855 0.853 0.853 0.854

10 10,010 99.89 0.08 0.04 0.08 2.85 −1.05 −0.90 −0.90 0.863 0.767 0.767 0.767

11 9946 99.85 0.05 0.10 0.10 2.81 −1.04 −0.89 −0.88 0.881 0.539 0.539 0.540

12 10,065 99.29 0.42 0.30 0.42 2.44 −0.67 −1.10 −0.67 0.932 0.046 0.045 0.046

13 8582 96.18 1.92 1.93 1.95 1.14 −0.47 −0.33 −0.33 0.876 0.875 0.875 0.876

14 10,260 97.01 1.55 1.48 1.57 1.20 −0.48 −0.36 −0.36 0.874 0.875 0.875 0.876

15 10,022 99.76 0.13 0.12 0.12 2.91 −1.01 −0.90 −0.99 0.900 0.465 0.465 0.465

16 10,018 99.82 0.08 0.11 0.11 2.84 −1.02 −0.92 −0.91 0.908 0.353 0.353 0.353

17 9431 96.25 1.84 1.94 1.96 1.13 −0.39 −0.37 −0.37 0.874 0.874 0.874 0.875

18 10,315 96.55 1.74 1.75 1.77 1.08 −0.36 −0.37 −0.36 0.873 0.874 0.874 0.875

19 10,059 99.39 0.36 0.25 0.36 2.66 −0.89 −0.90 −0.88 0.910 0.317 0.317 0.318

20 9266 95.38 2.21 2.45 2.47 0.92 −0.36 −0.28 −0.28 0.870 0.872 0.872 0.873

21 10,382 95.89 2.02 2.13 2.15 0.91 −0.34 −0.28 −0.28 0.871 0.872 0.872 0.873

22 3843 95.58 2.21 2.32 2.34 0.97 −0.45 −0.27 −0.26 0.872 0.867 0.867 0.868

23 10,385 95.36 2.29 2.39 2.41 0.74 −0.25 −0.25 −0.24 0.874 0.872 0.872 0.873

24 1380 94.49 2.90 2.97 3.00 1.18 −0.37 −0.44 −0.37 0.869 0.861 0.861 0.862

25 392 92.86 4.34 3.83 4.38 0.80 −0.15 −0.49 −0.15 0.862 0.851 0.850 0.851
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Table 7 Metrics obtained in EuroStock-50 database

Inst.# Cardinality Coverage(df) Hypervolume

|E∗| MOAMP
%

NSGAII
%

SPEA-II
%

MOPSO% MOAMP NSGAII SPEA-
II

MOPSO MOAMP NSGAII SPEA-
II

MOPSO

1 9990 99,11 0,44 0,47 0,48 1,89 −0,63 −0,62 −0,64 0,90 0,88 0,88 0,88

2 10,045 99,05 0,48 0,50 0,50 1,82 −0,59 −0,65 −0,59 0,90 0,87 0,87 0,89

3 9985 99,95 0,03 0,02 0,03 2,93 −0,96 −1,00 −0,97 0,93 0,41 0,41 0,40

4 10,045 99,00 0,52 0,51 0,52 1,78 −0,58 −0,61 −0,59 0,90 0,88 0,88 0,89

5 10,059 99,43 0,39 0,20 0,40 2,11 −0,47 −1,15 −0,48 0,96 0,02 0,02 0,02

6 10,055 99,48 0,36 0,16 0,36 2,11 −0,46 −1,19 −0,45 0,96 0,02 0,02 0,02

7 10,059 99,44 0,42 0,14 0,41 2,11 −0,47 −1,18 −0,47 0,96 0,02 0,02 0,02

8 10,046 99,03 0,58 0,41 0,57 1,77 −0,57 −0,62 −0,58 0,90 0,88 0,88 0,85

9 10,065 99,02 0,56 0,45 0,56 1,70 −0,58 −0,57 −0,56 0,90 0,88 0,88 0,87

10 10,004 99,93 0,04 0,03 0,04 2,90 −0,98 −0,96 −0,96 0,95 0,26 0,26 0,26

11 10,067 99,02 0,56 0,45 0,56 1,77 −0,60 −0,58 −0,60 0,90 0,88 0,88 0,87

12 10,080 99,23 0,41 0,37 0,41 2,44 −0,82 −0,80 −0,81 0,96 0,02 0,02 0,02

13 10,104 98,65 0,63 0,74 0,73 1,37 −0,59 −0,39 −0,39 0,90 0,89 0,89 0,89

14 10,006 99,89 0,05 0,06 0,06 2,80 −1,06 −0,86 −0,88 0,93 0,46 0,46 0,46

15 10,003 99,93 0,04 0,03 0,04 2,85 −1,07 −0,87 −0,90 0,95 0,16 0,16 0,16

16 10,108 98,68 0,62 0,72 0,74 1,41 −0,62 −0,39 −0,39 0,90 0,89 0,89 0,88

17 10,110 98,47 0,76 0,80 0,80 1,22 −0,51 −0,36 −0,36 0,91 0,89 0,89 0,91

18 9999 99,89 0,08 0,03 0,08 2,85 −0,99 −0,92 −0,94 0,94 0,30 0,30 0,30

19 10,010 99,88 0,10 0,05 0,10 2,78 −0,97 −0,91 −0,90 0,96 0,12 0,12 0,12

20 7767 98,12 0,81 1,11 1,08 0,96 −0,48 −0,24 −0,24 0,91 0,90 0,90 0,88

21 9988 99,89 0,08 0,03 0,08 2,78 −1,08 −0,84 −0,86 0,95 0,23 0,23 0,22

22 5300 97,96 0,91 1,19 1,20 1,15 −0,57 −0,29 −0,29 0,91 0,90 0,90 0,90

23 9208 99,91 0,02 0,07 0,07 2,84 −1,07 −0,87 −0,90 0,96 0,18 0,18 0,18

24 1759 98,18 0,91 1,08 1,06 1,86 −0,66 −0,61 −0,59 0,92 0,89 0,89 0,87

25 492 72,76 21,34 6,50 21,68 0,48 0,17 −0,82 0,17 0,92 0,91 0,90 0,88
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Table 8 Metrics obtained in Dax database

Inst.# Cardinality Coverage(df) Hypervolume

|E∗| MOAMP
%

NSGAII
%

SPEA-II
%

MOPSO
%

MOAMP NSGAII SPEA-
II

MOPSO MOAMP NSGAII SPEA-
II

MOPSO

1 10,127 98,28 0,91 0,83 0,92 1,81 −0,56 −0,69 −0,56 0,826 0,818 0,818 0,792

2 10,078 98,37 0,83 0,81 0,83 1,86 −0,61 −0,63 −0,62 0,827 0,817 0,817 0,816

3 10,100 98,36 0,84 0,82 0,84 1,83 −0,59 −0,67 −0,57 0,827 0,817 0,817 0,793

4 9992 99,89 0,06 0,05 0,06 2,88 −0,89 −1,08 −0,91 0,848 0,248 0,248 0,239

5 9995 99,97 0,02 0,01 0,02 2,91 −0,95 −1,03 −0,93 0,844 0,258 0,258 0,256

6 10,019 99,82 0,09 0,09 0,09 2,77 −0,82 −1,11 −0,84 0,847 0,202 0,201 0,205

7 10,028 99,69 0,15 0,16 0,16 2,79 −0,89 −0,97 −0,92 0,845 0,145 0,145 0,141

8 10,126 97,76 1,19 1,08 1,19 1,62 −0,60 −0,51 −0,51 0,825 0,819 0,819 0,836

9 10,110 98,04 1,01 0,97 1,00 1,87 −0,62 −0,62 −0,63 0,828 0,820 0,820 0,834

10 9995 100,00 0,00 0,00 0,00 3,02 −1,00 −1,00 −1,02 0,836 0,606 0,606 0,598

11 10,010 99,74 0,15 0,11 0,15 2,75 −0,82 −1,11 −0,82 0,852 0,172 0,171 0,175

12 9998 99,91 0,04 0,05 0,05 2,97 −0,98 −0,99 −1,00 0,849 0,178 0,178 0,180

13 10,013 99,88 0,03 0,09 0,09 2,94 −0,96 −1,00 −0,98 0,832 0,621 0,621 0,621

14 10,004 99,96 0,02 0,02 0,02 2,98 −0,97 −1,01 −0,99 0,833 0,620 0,620 0,604

15 10,001 99,97 0,02 0,01 0,02 2,95 −0,97 −1,01 −0,96 0,829 0,666 0,666 0,653

16 10,052 99,50 0,33 0,17 0,32 2,54 −0,67 −1,18 −0,68 0,856 0,110 0,110 0,108

17 10,006 99,97 0,01 0,02 0,02 2,99 −0,99 −1,00 −1,00 0,839 0,417 0,417 0,422

18 10,005 100,00 0,01 0,02 0,02 2,98 −0,99 −1,00 −0,99 0,839 0,417 0,417 0,423

19 10,003 99,97 0,01 0,02 0,02 2,96 −0,99 −1,00 −0,97 0,837 0,447 0,447 0,442

20 10,000 99,96 0,01 0,03 0,03 2,99 −1,01 −0,98 −1,00 0,838 0,291 0,291 0,285

21 10,002 99,98 0,00 0,02 0,02 2,98 −1,00 −0,99 −0,99 0,839 0,291 0,291 0,290

22 9922 99,91 0,03 0,06 0,06 2,96 −1,01 −0,96 −0,99 0,842 0,222 0,222 0,219

23 9926 99,93 0,03 0,06 0,06 2,96 −1,01 −0,97 −0,98 0,843 0,222 0,222 0,216

24 1762 93,42 3,23 3,52 3,53 1,23 −0,42 −0,41 −0,41 0,798 0,788 0,788 0,786

25 476 85,92 9,87 4,83 10,13 0,84 −0,18 −0,48 −0,18 0,795 0,785 0,784 0,784

J. Pacheco et al.15804



Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was partially supported by
FEDER funds and the Spanish Ministry of Economy and
Competitiveness (Projects PID2019-104263RB-C44 and PDC2021–
121021-C22), the Regional Government of “Castilla y León”, Spain
(Projects BU329U14 and BU071G19), the Regional Government of
“Castilla y León” and FEDER funds (Projects BU062U16,
COV2000375 and BU056P20).

Declarations

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflict of interest All authors declare that they have no conflicts of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Al Halaseh RHS, Islam MA, Bakar R (2016) Dynamic portfolio
selection: a literature revisit. Int Bus Manag 10(2):67–77

2. Aliehyaei, R., 2012. Efficient and effective classification of credit-
worthiness using ant colony optimization. Proceedings of the 50th

annual southeast regional conference, 83-88
3. Anagnostopoulos KP, Mamanis G (2010) A portfolio optimization

model with three objectives and discrete variables. Comput Oper
Res 37(7):1285–1297

Table 9 Metrics obtained in Dow-Jones database

Inst.# Cardinality Coverage(df) Hypervolume

|E∗| MOAMP
%

NSGAII
%

SPEA-II
%

MOPSO
%

MOAMP NSGAII SPEA-
II

MOPSO MOAMP NSGAII SPEA-
II

MOPSO

1 10,098 98,69 0,61 0,69 0,70 2,00 −0,68 −0,65 −0,67 0,791 0,778 0,777 0,789

2 10,061 98,81 0,61 0,59 0,62 2,02 −0,69 −0,67 −0,66 0,791 0,775 0,774 0,770

3 10,057 98,73 0,66 0,62 0,67 1,93 −0,68 −0,63 −0,63 0,789 0,776 0,775 0,758

4 10,067 98,75 0,66 0,60 0,67 1,95 −0,67 −0,63 −0,65 0,788 0,776 0,775 0,753

5 10,110 97,84 1,59 0,56 1,61 1,53 −0,27 −0,99 −0,27 0,789 0,782 0,775 0,790

6 10,007 99,91 0,08 0,01 0,08 2,59 −0,63 −1,34 −0,62 0,810 0,483 0,480 0,477
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