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Abstract
We present a survey of smartphone-based Transport Mode Detection (TMD). We categorize TMD solutions into local and
remote; the first ones are addressed in this article. A local approach performs the following steps in the smartphone (and not
in some faraway cloud servers): 1) data collection or sensing, 2) preprocessing, 3) feature extraction, and 4) classification
(with a previous training phase). A local TMD approach outperforms a remote approach due to less delay, improved
privacy, no need for Internet connection, better or equal accuracy and smaller data size. Therefore, we present local TMD
solutions taking into account the above mentioned four steps and analyze them according to the most relevant requirements:
accuracy, delay, resources consumption and generalization. To achieve the highest accuracy (100%), studies used a different
combination of sensors, features and Machine Learning (ML) algorithms. The results suggest that accelerometer and GPS
(Global Position System) are the most useful sensors for data collection. Discriminative ML algorithms, such as random
forest, outperform the other algorithms for classification. Some solutions improved the delay of the proposed system by
using a small window size and a local approach. A few studies could improve battery usage of their system by utilizing low
battery-consuming sensors (e.g., accelerometer) and low sampling rate (e.g., 10Hz). CPU usage is primarily dependent on
data collection, while memory usage is related to the features and complexity of theML algorithm. Finally, the generalization
requirement is met in studies that consider user, location and position independency into account.
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1 Introduction

The evolution of mobile network technologies and smart-
phones have provided mobile users with ubiquitous access
to the Internet and its value-added services on the move [1].
Besides making phone calls and accessing to the Internet,
nearly all smartphones today provide users with a var-
ied range of built-in sensors and applications which have
considerably influenced the human lifestyle. Today, more
or less everybody uses their smartphones for navigating
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their path, for finding the best restaurant or other entertain-
ment facilities close by, for well-being purposes, etc. The
advancements in sensing, computing and storage capabili-
ties of smartphones have made them an effective tool for
monitoring the travel behavior (i.e., used transport modes)
of mobile users.

The knowledge of travelers’ behavior has a considerable
impact on different research areas such as transport, urban
planning, health, epidemiology, and entertainment [2, 3].

Monitoring individuals’ travel behavior can help to
improve urban transportation planning, design and manage-
ment. Such travel information becomes even more impor-
tant for traffic management when a fast response is required
to assign one specific mode of public transportation. For
example, a football match, a national festival, or a bad
weather condition may change the regular public transporta-
tion demands during a specific period of time [4].

Furthermore, monitoring patients’ travel behavior may
contribute to controlling the spread of a disease during a
pandemic. Likewise, it is a useful way to detect abnormal
activities of patients with Alzheimer’s, dementia, or other
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mental pathologies. Hence, patients can be protected from
danger and undesirable consequences [5].

In environmental epidemiology, transport mode detection
(TMD) is an excellent tool for studies that are concerned
with the influence of travel modes on air pollution
exposure [6].

When done in real-time, detection of the transport modes
can be used, e.g., as an automatic way for issuing tickets
for the travelers, particularly when they are using public
transport means such as train, bus, subway, etc.

Some previous studies relied on travel logs; others have
relied on dedicated wearable sensors for TMD. However,
such systems put the burden on research participants and
users. Therefore, there has been a shift towards the use
of smartphones for TMD in recent years [7]. The most
common solution for smartphone-based TMD is to collect
data from smartphones’ sensors, train a machine learning
(ML) algorithm (i.e., a classifier) based on such data,
and then use the generated classifier for making future
predictions [3, 8–10].

1.1 Transport mode detection (TMD)

When the TMD is ML-based, it has the following main
steps: 1) data collection or sensing, 2) preprocessing, 3)
feature extraction, and 4) classification with a previous
training phase. The advancements in sensing capabilities of
smartphones and their resource improvements (i.e., faster
CPU, more memory, etc.) provided us with the opportunity
of collecting data-sets by using smartphones sensors (first
step), and also to perform the above mentioned other
three main steps (i.e., except the training which might
require more computing power) locally on the smartphone.
Therefore, based on the steps which are performed locally
on a smartphone or on a remote server, TMD approaches
can be categorized as being local or remote [7].

Performing classification locally on a smartphone has
some advantages over a remote approach using some
(cloud-based) server(s) as follows. 1) The smaller amount
of data exchanges between a remote server and smartphones
(i.e., data transmission occurs only in case that further
analysis, evaluation of the classified modes, assisted
feedback, or long-term storage is required); 2) There is
no need for transmitting raw collected data through the
(possibly slow or even intermittent) network between a
smartphone and a server; so, latency is much smaller and
real-time (i.e., quick enough, based on the human time
scale) TMD becomes possible; 3) There is no need for
continuous connectivity to the Internet in order to send the
raw data of each trip to a server and receive the result
back (i.e., the result from the corresponding classification).
In other words, a user’s smartphone is not required to be
connected to the Internet during the classification process;

the reason is that in a local approach, users are not
dependent (for TMD purposes) on a remote server which is
only accessible through the Internet; 4) Less user-specific
data has to be sent to a remote server with obvious
privacy advantages; 5) The accuracy of TMD with a local
approach can be the same as with a remote approach. For
instance, Guvensan et al. [3] proposed a local approach
which its overall accuracy (i.e., 94.5%) is equal to the
average accuracy (i.e., 94.5%) of a remote approach done
by Chen et al. [2]; 6) The growing increase in computing,
storage, and power capabilities of smartphones make them
an encouraging platform for running ML algorithms and
storing data locally rather than on a remote cloud server.

In short, local classification gives us the opportunity
for real-time (as previously indicated) TMD by avoiding
the latency that transmission to a remote server imposes.
In addition, real-time TMD allows context-awareness
for location-based services (LBS) to provide customized
information delivery based on a user’s needs and her/his
interactions. For example, low latency allows a TMD
application to alert a user when she/he should start walking
towards the bus station in order to be on time for work [11],
or to inform a user about the real-time location of relevant
buses [8].

1.2 TMD requirements

Different kinds of TMD approaches made an effort to meet
(at least) one or a combination of four main requirements
(see Section 5 for more details): high accuracy, minimum
delay, low resource consumption, and high generalization.

The TMD accuracy is the fundamental requirement;
it expresses the number of correct predictions (i.e., used
transport modes) made by the classification model.

Delay in TMD consists of three different parts: i)
computing-time, which is the time taken for the classifica-
tion to be done by an ML algorithm, and ii) latency which is
the time taken to send the raw collected data to a server and
receive the results back. iii) modal change time, which is the
time taken to correctly detect the change from a modality to
one another.

Resource consumption accounts for the number of
resources in terms of battery, CPU, memory (RAM), etc.
that the classifier consumes while running on a smartphone.
To the best of our knowledge, there is a limited number
of studies which have evaluated the battery, CPU, or
memory usage of their solutions running on smartphones
[8, 9].

A generalized system is one in which its accuracy is not
affected by smartphone position variability, user variation
(i.e., collecting data from a variety of users of different ages,
gender, education, job status, etc.) or geographical location
changes.
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1.3 Goal

The goal of this article is to provide an overview of: i) most
common sensors used in local TMD; ii) most useful metrics
for evaluating the local ML-based TMD systems; iii) most
common ML algorithms and the best choices for achieving
high accuracy; iv) common steps of local TMD; and v) how
local TMD requirements are fulfilled and affected mostly by
which step. Note that we focus on local (and not on remote)
TMD given its interesting capabilities (mentioned above)
regarding real-time detection, lower users’ concerns about
their privacy, and the fast pace of progress in smartphones’
capabilities.

Thus, a major difference of this survey when compared
to others [11–14] is twofold: i) we mainly focus on
local TMD approaches, and ii) we introduce a novel
perspective of TMD applications by considering the four
main requirements of such approaches (that were mentioned
above): high accuracy, minimum delay, low resource
consumption, and high generalization. To the best of our
knowledge, there is no survey that focuses on local TMD
while taking into account the requirements mentioned
above.

In this survey, we use the following criteria for the
selection of studies to be reviewed (for more details on the
methodology, see Section 7):

• They use built-in smartphone sensors for the data
collection step. Those TMD solutions which use sound
samples gathered by the mobile phone’s microphone
or pictures captured by its camera (such as Miluzzo’s
work [15]) are not included in this survey. The reason
is that these types of data gathering raise many user
privacy concerns.

• They have implemented TMD classification locally on
smartphones. The training (to generate the classifier)
can still be done on a remote server or a smartphone.

• They can recognize more than two types of transport
modes. For example, studies or applications which are
focused only on bicycles or cars are excluded.

• Although there are some human activity recognition
(HAR) approaches which have implemented activity
recognition locally on smartphones [16], they are not
part of this survey because of the following reasons:
1) they have covered general activities such as walking
downstairs or upstairs, standing, sitting, etc. which
are not our goal classes (goal classes for most TMD
applications include those used for transportation such
as car, bus, train, etc.), and 2) there is another study that
has already evaluated them [7].

Some other studies [2, 17] claimed that they proposed
a real-time TMD system. However, we did not find any
evaluation, proof, or other details regarding a local TMD

implementation. Therefore, we do not include such studies
in this article.

The rest of this survey is structured as follows. We
start by presenting the main reasons for having, and
advantages of local over remote TMD in Section 2. Then,
in Section 3 we describe the smartphone sensors which
have been utilized in recent local TMD approaches (e.g.,
accelerometer, etc.) and their limitations. In Section 4,
we describe in detail the four main TMD steps and the
different methods which can be utilized in each one. We
have dedicated Section 5 to the main four requirements
of local TMD systems. In Section 6, different local TMD
approaches are compared following the same presentation
structure used in Section 4; in addition, we describe
how different studies have fulfilled the TMD requirements
already mentioned. Section 7 describes our searching
strategy and Section 8 presents a summary of the main
findings. Finally, Section 9 presents the conclusion of this
survey.

2 Local vs. remote smartphone-based TMD

The variety of the built-in sensors available in smartphones,
the fast-growing enhancements of their processing and
storage capabilities, their hardware price reduction, com-
bined with their ubiquitous characteristics have made them
devices efficiently equipped for identification of an indi-
viduals’ transport mode. Hence, smartphones provide the
opportunity not only to collect data-sets by the use of their
built-in sensors, but also to perform the other three main
steps locally (mentioned above in Section 1.1) on a smart-
phone (note that the training phase can be done locally or
on a remote server). Thus, a local approach brings some
considerable benefits over a remote approach:

1. Smaller data size. In local TMD, a smaller amount of
data has to travel between the smartphone and a remote
server. In fact, data must be sent to a server only in two
cases: i) when we want to send the training data-set to
an ML algorithm running in a server (which is normally
performed once for most TMD approaches), and ii)
when the classification has been locally performed,
and we want to analyze the results centrally (and for
long-term storage purposes); in both cases, such data is
smaller when compared to the data that would have to
be sent from a smartphone to a remote server regarding
every single sensing information of each user (as it
would happen in a remote TMD approach).

2. Less delay. With local TMD, near real-time detection
of transport modes becomes possible. The reason is
that in a local approach, the network latency between
a smartphone and a server is much smaller (when
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compared to a remote approach). In fact, there is no
need to send the raw collected data to a remote server
through the network and wait for the classification;
in a local approach, data transmission occurs only in
the cases mentioned above. Therefore, the classification
step is not affected by the delay of the transmission
itself. Moreover, even with no Internet access, the
transport mode can still be identified with a local
approach (which is not the case with a remote solution).
Therefore, TMD is not delayed because of the lack of
Internet access.

3. No need for Internet connectivity. In a remote
approach, for each mode classification, the smartphone
must be connected to the Internet. However, in a local
approach, there is no such a need (i.e., it is not necessary
to have continuous connectivity to the Internet).

4. Improved privacy. In a local approach, smaller and
less personal information of a user is sent to a server.
This feature alleviates the privacy concerns of TMD
applications for their users. For example, a user location
obtained via the Global Position System (GPS) is not
required to be sent to a server and over the Internet for
classification purposes.

5. Better accuracy. The accuracy of TMD in a local
approach is almost the same as with a remote approach.
Such accuracy mainly depends on the sensitivity of
the sensors, their combination, the application internals,
and on the proposed algorithm or ML algorithm being
executed on a smartphone (assuming that it has been
trained with sufficient and correct data).

6. Evolving smartphones. A fundamental reason for the
use of smartphones to run a TMD application is the
constant and fast pace of smartphones advancements
mostly regarding sensors quality, computing power,
storage and battery capabilities. Therefore, a classifica-
tion model can be integrated into a mobile application
and a users’ data can be stored on her/his own smart-
phone locally (instead of a remote server). This is in line
with the current trends of edge and fog computing [18].

3 Available smartphone sensors

TMD can be considered a sub-field of HAR that has been
widely studied during the last years. Most approaches relied
on dedicated wearable motion sensors for activity recogni-
tion. However, there has been a shift toward smartphones
for collecting sensing data given their ubiquity and always
increasing capabilities. In fact, most current smartphones
have various types of sensors which can measure orienta-
tion, motion and environmental conditions [9, 19].

In this section, we overview the most relevant sensors
in smartphones used by different local TMD approaches.

The comparison of different TMD solutions (see Section 6)
suggests that the accelerometer and the GPS are the most
commonly used sensors for data collection. Although using
more sensors can provide higher accuracy, it is more
common for researchers to carefully use an engineered
number of sensors to restrict the energy consumption. Such
a hybrid approach (that collects the data using several
sensors) can achieve higher accuracy than approaches that
only use one sensor.

• An Accelerometer is the most commonly used sensor
for TMD [3, 8, 9, 16, 20, 21]. It is an electromechanical
device that can measure the force of acceleration
caused by some movement or gravity on each of the
three physical axes. These forces can be static (e.g.,
gravity) or dynamic (e.g., movements or vibrations).
Accelerometers are mainly used for orientation sensing
in smartphones. The ability to distinguish between
different types of transportation by detecting the
changes in the acceleration and deacceleration patterns
of vehicles, and its low battery consumption, has made
this sensor very attractive for TMD systems. In fact, the
accelerometer uses about ten times less battery than the
other motion sensors, particularly on Android [22, 23].

Despite the wide range use of the accelerometer
for TMD applications, the similarity of acceleration
patterns of some vehicles such as cars and buses
(or subways and trains) have limited its ability to
distinguish all modes correctly [2]. For instance, single
accelerometer solutions are not able to differentiate
between stationary, cycling and motorized vehicles as
accurately as in solutions where the accelerometer is
combined with the GPS [8].

Accelerometer data is beneficial when it comes
to the detection of changes in motions during an
activity. For example, stationary activities have a
very low acceleration variance. Motorized transports
exhibit similar characteristics as the stationary mode
in spite that motorized transports are affected by
road conditions and vehicle vibrations. Walking and
cycling show similar acceleration and deceleration
motions in certain body areas, while running has a
large acceleration variance in comparison with other
modes [8].

• A GPS sensor is commonly used for recording a
person’s location (speed can then be obtained rather
easily). Most current smartphones provide built-in GPS
sensors. They are able to locate a user’s position based
on the distance of her/his device to four or more visible
satellites. Then, the user’s speed is also known by
locating the user and calculating the time taken to move
from source to destination. However, a GPS sensor
has some limitations in a TMD context. First, it has

16024 M. Kamalian et al.



been shown that a GPS sensor consumes a considerable
amount of battery and, as a result, smartphone battery
lasts only for a few hours with continuously logging [2].
Second, a GPS sensor is unable to work properly
in cases that a user is traveling underground, in a
tunnel, along urban canyons, or anywhere else where
the GPS signals get blocked or jammed. Specifically,
accurate GPS localization requires an unobstructed
view of at least four satellites, and the precision
increases with more visible satellites. Third, current
GPS-based only TMD approaches (i.e., without the help
of other sensors) can only detect fine-grained motorized
transportation modes with modest accuracy [9, 24].
Using GPS along with other sensors such as the
accelerometer, gyroscope and magnetometer improve
the accuracy but not significantly [24].

• A Gyroscope is able to measure a smartphone’s rate
of rotation around each one of the three physical
axes. Gyroscopes are categorized into three differ-
ent groups: mechanical, optical and Micro-Electro-
Mechanical Systems (MEMS). MEMS gyroscopes are
predominately used within mobile devices (which we
call simply gyroscopes in the rest of this article) [25].
The gyroscope complements the built-in accelerome-
ter to understand which way a device is orientated,
adding another level of precision. An accelerometer
measures the smartphone’s linear acceleration or direc-
tional movement, whereas the gyroscope sensor mea-
sures the angular velocity, tilt and lateral orientation of
the smartphone. However, some metrics such as off-
set error, shock and vibration sensitivity, temperature
sensitivity, etc., can affect the gyroscope’s quality and
calibration [25]. Thus, single gyroscope solutions are
not efficient for TMD.

• AMagnetometer sensor on a smartphone uses modern
solid-state technology to create a miniature Hall-effect
sensor that detects the Earth’s magnetic field along
with each one of the three physical axes [26]. The
magnetometer is crucial for detecting the orientation
of a device relative to the Earth’s magnetic north.
Some approaches have exploited this feature to detect
motorized vehicles in combination with other sensors
(i.e., the accelerometer) [2]. Comparisons of battery
consumption between different sensors suggest that
a magnetometer uses about twice the energy than
a gyroscope sensor [13]. Another relevant aspect
is that the information such a sensor can provide
for differentiating between motorized transports and
walking or running is not sufficient for itself.

• A GSM (Global System for Mobile Communications)
sensor can be used to collect and detect a smartphone
position measuring the signal strength of a device with
respect to a base station (implemented as a cell tower)

and the fluctuation pattern of cell identifiers. A cell
is a geographic region within which mobile devices
communicate with a particular GSM base station (i.e.,
a GSM base station define sectors of coverage for
mobile phones); each cell has a unique cell identifier.
The GSM signal fluctuation pattern, together with its
strength, can provide information on a mobile phone’s
position. For instance, Sohn et al. [27] follows the
changes in GSM cell tower observations (up to seven) to
detect if a user is stationary, walking, or in a motorized
vehicle. However, single GSM sensor solutions similar
to those developed in Sohn’s work are not useful
for fine-grained classification. Also, this sensor is
dependent on cells density which varies based on the
users’ environment [8]. The Ping-pong effect is another
limitation of the usage of GSM sensors. The ping-pong
effect occurs due to the frequent movement of mobile
devices between two or more cell towers or high signal
fluctuation at the common boundary of the cell towers.
As a result of such changes in signal strength, the
system assumes that the user is moving, but actually,
he/she is stationary.

• WiFi is a technology that connects smartphones to a
network. Based on the coverage of a WiFi access point,
a smartphone’s position can be predicted. However,
the position information provided by WiFi is not
sufficiently accurate and reliable, specifically outside
the urban areas. Moreover, the WiFi sensor is (after
GPS) the most battery-consuming sensor when used
to provide just location information (i.e., without
communication) [12]. The ping-pong effect (already
mentioned above for GSM sensors) is also typical for
WiFi. As a result, WiFi has not been widely used for
TMD (see Section 6).

Some other sensors, such as a microphone, light sensor,
barometer, Bluetooth, etc., are available in smartphones.
In Wang’s work [28] the barometer along with three other
sensors (i.e., accelerometer, gyroscope, magnetometer) are
used to train a long short-term memory (LSTM) model,
which can detect bus, car, subway, and train with 96.9%
accuracy.

Bluetooth is also used in Chen and Bierlaire’s work [29]
to provide valuable information about a smartphone’s
context. For example, the Bluetooth sensor detects other
nearby Bluetooth devices. The number of nearby visible
Bluetooth devices varies with the context. In public
transports, people are more compact in the vehicle, and they
are stationary relative to each other; hence, a smartphone
has a higher chance to observe more Bluetooth devices than
in private transportation. Therefore, such TMD solutions
utilize the information about nearby Bluetooth devices to
differentiate a public/private transport context.
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In another study [30] the signal levels of Bluetooth are
used to infer information about a user’s environment. Thus,
it is possible to estimate the number of people around a
user from the number of discovered Bluetooth networks
around a user. Also, if other people happen to move with the
user (e.g., when taking the same bus or metro, sharing the
same car) these networks will stay in range throughout the
journey.

In addition to the sensors, some studies have exploited
the information of external resources such as route maps,
public transportation timetables, and network infrastruc-
tures (e.g., road and rail maps), etc. [29, 30]. However, these
types of external sources are not commonly used among
local TMD systems because of the extra complexity and
memory required.

To the best of our knowledge, local TMD systems
have not widely used neither the previously mentioned
sensors (microphone, light sensor, barometer, Bluetooth)
nor external resources. Therefore, we do not address them
further in this survey.

4 TMD steps

As previously mentioned, most local TMD approaches rely
on some ML algorithms and the detection follows four
steps: 1) data collection or sensing, 2) preprocessing, 3)
feature extraction, and 4) classification with a previous
training phase. A few local TMD approaches have an
additional step for post-processing which aims at correcting
the miss-classification results of an ML algorithm [3]. In
this section, we first describe each one of these steps.
We conclude this section with details on local vs. remote
classification and the most important TMD metrics.

4.1 Data collection

As mentioned in the previous section, in the most current
local TMD approaches data is collected through one or a
set of built-in smartphone sensors such as the accelerom-
eter, GPS, magnetometer, gyroscope, etc. (such sensors
were described in Section 3). Sensor selection, position-
dependency of the sensor (where the user put her/his
smartphone usually during data collection), number of test
users and test duration are the key factors for data collection
affecting the accuracy of the classification. As discussed in
Section 6, most local TMD approaches use several sensors
to be able to detect fine-grained transport modes accurately.

In most ML-based TMD studies, when building the
classification model, the collected data-set is divided into
three parts, each used for a different phase of modeling [8]:
training, validation, and test set. A training data-set trains
the ML model using a supervised ML algorithm (e.g.,

decision tree). Then, the model that resulted from the
training phase is used to predict the responses for the
observations in the validation data-set. The validation data-
set provides an unbiased evaluation of a model fit on the
training data-set while tuning the model’s hyper-parameters.
Finally, the test data-set is used to evaluate the final
classification model [31]. The test data-set can also be
known as a holdout data-set in case that it has never been
used during the training phase.

4.2 Preprocessing

In this step, raw collected data is processed in various
ways; e.g., performing data cleaning or removing sensing
or user errors within the data. In all ML-based approaches,
some participants collect a training data-set and label the
transport modes used after every trip to build a true basis.
Such participants use a collecting application on their
smartphones, and sometimes, in addition to labeling, they
have to record the start and the end of a trip. In these
cases, there is a possibility for users to (mistakenly) insert
wrong labeling and recording. Therefore, it is essential to
remove such trips from the data-set before training the
ML algorithm. Moreover, it is possible for the data-set to
have some noise or systematic errors, particularly in raw
GPS data. Smartphone mobility introduces such a noise
when it moves close to the human body or when it is
placed at different positions. In order to provide an accurate
classification it is fundamental to use some techniques
such as data filtering (i.e., removing the data that does
not represent real user positions) and smoothing (to help
reduce random noise present in the data) to ensure better
accuracy [32].

4.3 Feature extraction

Raw data collected by different sensors is typically
segmented into frames using a sliding window, and then
features are extracted from such frames. The extracted
features are used for learning and classification tasks [12,
33].

The size of the sliding window can affect the classifi-
cation accuracy, response time, and memory size [13]. On
the one hand, a small window size decreases the classifi-
cation accuracy due to certain features not being effective
(e.g., accelerometer frequencies); on the other hand, a large
window size may introduce new sources of noise in the
data. Moreover, both window size and sampling rate are
vital parameters which influence computation and power
consumption of ML algorithms.

Most local TMD solutions rely on time and frequency
domain features to transform sensing information into lower
dimensional sets of features [3, 8, 10]:
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• Time-domain features are basic statistical data such as
mean and variance, based on a frame of samples. Time-
domain features express envelope metrics of the frame
through features such as minimum, maximum, mean
and median of the data frame [13, 25].

• Frequency-domain features are based e.g., on the fast
Fourier transformation (FFT) or wavelet decomposition
of a frame of samples. Frequency domain features can
quantify periodic patterns within the signal, which are
typically generated by repetitive physical movements
such as walking or cycling [25].

4.4 Classification and training

This section provides an overview of the classification step
and details regarding the training phase. We address the two
categories for classifiers (discriminative and generative), the
different approaches for performing classification (locally
or remotely) and the various useful metrics for evaluating
the classifiers. Moreover, in this section, we detail the two
different methods of training a TMD model: local and
remote training.

Classification is a supervised learning approach in which
a classification model is trained, based on a collected data-
set; this learning is then used to classify a new observation.
The data-set may be bi-class (i.e., assigning a given email
to the “spam” folder or to “inbox”) or it may be multi-class
such as several possible transport modes used by a mobile
user.

The main objective of supervised learning is to build a
concise model of the distribution of class labels in terms
of predictor features [34]. The resulting classifier is then
used to assign class labels to the testing instances where the
values of the predictor features are known, but the value of
the class label is unknown.1

The classifiers commonly used for TMD can be cate-
gorized into two different groups: generative and discrim-
inative. In general, a generative model explicitly models
the actual distribution of each class, while a discriminative
model, models the decision boundary between the classes.
Both models predict the conditional probability p(y|x) and
learn different probabilities. Generative classifiers learn a
model of the joint probability, p(x,y), of the inputs x and
the class label y, and make their predictions by using Bayes
rules to calculate p(y|x) and then pick the most likely label
y. Discriminative classifiers model the posterior probability

1In ML, observations are often known as instances, the explanatory
variables are termed predictor features, and the possible categories to
be predicted are defined with class labels; e.g., for detecting transport
modes, trips are instances that based on the extracted features (e.g.,
average, maximum, minimum and standard deviation of acceleration)
are categorized into one of the class labels (e.g., walking, running,
biking, car, bus, train, metro, etc.).

p(y|x) directly, or learn a direct map from inputs x to the
class labels [35].2.

Table 1 presents common classifiers and their corre-
sponding categories, for local TMD. The algorithms consid-
ered are those used at least for two different studies. As it is
shown in the table, discriminative classifiers have been used
more frequently for local TMD due to their lower computa-
tional cost (thus being suitable to run in a smartphone) [12].
Furthermore, the total studies (last column of Table 1) rep-
resents the number of local TMD solutions which have
evaluated each algorithm.

As already mentioned, based on the steps described in the
previous section, which can be performed either locally (on
a smartphone) or remotely (on a server), TMD approaches
can also be categorized as being local or remote [7]:

• Local approach. The TMD steps are done locally
on the smartphone. These steps include sensing,
preprocessing, feature extraction, and classification
(note that the training phase can still be done on a
remote server or locally on the smartphone). Obviously,
with this approach, some information regarding raw
data and/or the automatically detected transport mode
can still be sent to a server either for further analysis
or for long-term storage; note that this would happen
opportunistically and the local approach is not required
to have a network connection to work. In fact, the
main four steps already mentioned are done on the
smartphone. Therefore, even if the generated classifier
has been trained on a remote server beforehand, it
must be adapted to resource-constrained devices such as
smartphones (i.e., fewer resources when compared to a
server) where the transport mode of a traveler is found.

• Remote approach. The data collection is done on
a smartphone, and the raw data is sent to a server
for preprocessing, feature extraction, and classification.
The preprocessing step can be partially done on the
smartphone, but the classification algorithms run on a
server. As mentioned in Section 2, remote classification
leads to longer delays when compared to a local
approach, given that raw collected data travels through
the (possibly slow) network from a smartphone to a
remote server. In short, the requirement of Internet
access imposes more delay to the classification step.

During the last few years, various classifiers have
been developed to run locally on smartphones. The most
commonly-used classifiers in local approaches (see Table 1)

2Discriminative classifiers do not attempt to model underlying
probability distributions. Instead, they estimate parameters of posterior
probability directly from training data [12, 36]. The posterior
probability is the probability an event will happen after all evidence
has been taken into account [37].
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Table 1 Common
implemented classifiers on
smartphones for local TMD

Classifiers Category Relevant Total

systems systems

Random Forest (RF) discriminative [3, 20, 22, 32] 4

Decision Tree (DT) discriminative [8, 9, 22, 32] 4

[K-]Nearest Neighbors ([K]NN) discriminative [3, 8, 20, 22] 4

Support Vector Machines (SVM) discriminative [8, 22, 32, 38] 4

Naive Bayes (NB) generative [3, 8, 22] 3

Neural Networks (NN) discriminative [10, 21, 22] 3

Adaptive Boosting (AB) discriminative [9, 22] 2

Hidden Markov Model (HMM) generative [8, 9] 2

Bayesian Networks (BN) generative [22, 38] 2

are decision tree (DT), random forest (RF), support vector
machine (SVM), and K-nearest neighbor (KNN).

In some studies, two classifiers are combined in
different ways, thereby creating a hierarchical or multi-
layer classification system [2, 8]. For instance, in Reddy’s
work [8], a decision tree followed by a dynamic hidden
Markov model (DHMM), has been proposed as a two-stage
classification system.

Most the previous works evaluated between different ML
algorithms to determine the most accurate classification
model (or their combination) for TMD. Performance
evaluation of the resulting classifier is commonly measured
through four different metrics: accuracy, precision, recall,
and F-measure (all detailed below). The most standard
metric for a classifier’s evaluation is based on its prediction
accuracy [34]. The other metrics are useful to provide
an overall insight into classifier performance. Therefore,
in this document, we first introduce all the metrics and
then emphasize the accuracy of TMD approaches for
comparison.

The classification results for a particular TMD system
can be organized in a confusion matrix Mn×n for a
classification problem with n classes. This is a matrix in
which the element Mij is the number of instances from class
i that were actually classified as class j . Thus, for a binary
classification problem, the following values can be obtained
from the confusion matrix:

• True Positives (TP) - The number of positive instances
that were classified as positive.

• True Negatives (TN) - The number of negative
instances that were classified as negative.

• False Positives (FP) - The number of negative instances
that were classified as positive.

• False Negatives (FN) - The number of positive
instances that were classified as negative.

The values above can be generalized for a problem with
n classes such as it happens with TMD. In such a case,
an instance could be positive or negative according to a

particular class, e.g., positives might be all instances of walk
while negatives would be all instances other than walk.

As mentioned above, performance evaluation of the
resulting classifier is commonly measured through four
different metrics which we now present in detail:

• Accuracy - indicates how correct or wrong the
classifier prediction is (see (1)). The accuracy is
the most standard metric; it summarizes the overall
classification performance for all classes. So, accuracy
can tell us immediately whether a TMD model is being
trained correctly and how it may perform generally.

Accuracy = T P + T N

T otalP redictions
(1)

• Precision - indicates the number of instances correctly
classified as positive out of the total instances classified
as positive (see (2)). Precision is a good measurement
for determining when the costs of false positives are
high. For instance, in email spam detection, a false
positive means that an email that is non-spam has
been identified as spam (predicted spam). Therefore,
the user might lose important emails if the precision is
not high for the spam detection model. The precision,
often referred to as positive predictive value, is the ratio
of correctly classified positive instances to the total
number of instances classified as positive.

Precision = T P

T P + FP
(2)

• Recall - indicates the number of items correctly
classified as positive out of the total actual positives
(see (3)). Applying the same understanding, recall is
a good measure to determine when the costs of false
negatives are high; e.g., in sick patient detection, if a
sick patient (actual positive) goes through the test and
is predicted as not being sick (predicted negative). The
cost associated with a false negative will be extremely
high if the sickness is contagious. The recall, also called
true positive rate, is the ratio of correctly classified
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positive instances to the total number of actual positive
instances.

Recall = T P

T P + FN
(3)

• F-measure - is useful when we need to seek a balance
between precision and recall and there is an uneven
class distribution. The F-measure combines precision
and recall in a single value (see (4)).

F − measure = 2 × Precision × Recall

P recision + Recall
(4)

As already mentioned, all the above metrics are defined
for a binary classification, but they can be easily generalized
for a problem with n classes, such as the TMD problem.
Note that the importance of each of the metrics mentioned
above depends on the TMD use case. For instance, assume
that the municipality of a city uses a TMD system for
measuring the total amount of CO2 emission by cars. The
municipality is responsible for warning possible respiratory
patients to stay at home when CO2 pollution is higher
than a specific threshold. In this situation, recall is a
crucial metric because detecting cars mistakenly as other
modes (FN) leads to measuring less CO2 emission and
can put respiratory patients in danger. Also, assume that
the municipality defines fines for car drivers in the most
polluted days. In this use case, precision is more important
than recall. The reason is that fining individuals who did
not actually drive a car (FP) is against the law. In order to
classify test data into various pre-defined transport mode
classes such as walk, run, bicycle, car, train, tram, metro,
bus, etc., the classifier needs to be initially fitted (trained)
with a training data-set. Specifically, in the context of
mobile phones and with local TMD, the training phase can
be done in two different ways, known as local or remote:

• Local training means that the training of the classifier
is done on the smartphone. To the best of our
knowledge, local TMD approaches have not used this
method due to smartphones’ computation and battery
limitations.

• Remote training means that the training of the clas-
sifier is usually done on a server or on any computer
which is capable of running the corresponding algo-
rithm. Most studies have used the remote method since
computationally, it is cheaper and more feasible in the
real world scenarios [20].

5 TMD requirements

In this section, we introduce the main requirements of TMD
systems. Different TMD approaches made an effort to meet

(at least) one or a combination of the requirements already
mentioned: high accuracy, minimize delay, minimize
resource consumption and high generalization. In the
following, we provide a detailed description of these
requirements and various techniques used by TMD systems
to fulfill them.

5.1 Accuracy

Achieving the highest accuracy is a fundamental require-
ment for every TMD system. As already mentioned (see
the previous section), accuracy is a metric that states how
many correct predictions the classification model has made
(i.e., the percentage of correct predictions divided by the
total number of predictions). Obviously, having a TMDwith
100% accuracy is the ideal goal; however, note that there
may be some systems which can still perform perfectly with
a lower level of accuracy as there is always a low bound-
ary of acceptable accuracy depending on the context. For
example, when a TMD application provides a personalized
scorecard for tracking environmental impacts of one’s activ-
ity, the accuracy should be more than 90% [8]. Another
example is a company using a TMD application to count the
number of people (and possibly reward them) using their
bicycles (in the home-office path) instead of their own car
or public transportation; in this case, the accuracy should
be 100%. The assessment of previously proposed local
TMD systems suggest that none of them is able to achieve
the highest accuracy (i.e., 100% accuracy) for detecting
all transportation modes (i.e., fine-grained transport mode
detection) [3, 9, 20]. These systems are detailed in Section 6.

A critical factor that directly affects the accuracy in a
supervised classification is the choice of the specific ML
algorithm that is used to train the classification model. There
are at least three techniques that are used to evaluate a
classifier’s accuracy. One technique is splitting the training
data-set by using two-thirds for training and the third for
estimating performance. In the second technique, known
as cross-validation, the training data-set is divided into
equal-sized subsets, and for each subset the classifier is
trained on the union of all the other subsets. Therefore, the
error rate of the classifier can be estimated based on the
average of the error rate of each subset. Finally, the leave-
one-out validation is a special case of cross-validation in
which all validation subsets (i.e., on which the model is
evaluated) consist of a single instance. Although this type
of validation is computationally more expensive, it is useful
when the most accurate estimation of a classifier’s error rate
is required [34].

Another critical factor that affects the accuracy of
a classification model is the amount of training data.
Having more data means that the ML algorithm has
more information to understand the various situations and
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correlate them before giving the correct answer. In other
words, by providing the ML algorithm with a variety of
data that can cover wide-ranging scenarios, it is possible to
avoid biased decisions. Hence, the more the classification
model is fed with various data, the more its accuracy will
improve.

In practice, it is always recommended to try and compare
different algorithm’s accuracy, in order to choose the most
appropriate solution. Such accuracy is influenced by the
collected data and extracted features. Therefore, the number
of sensors and their quality (i.e., typically more recent
and/or expensive smartphones provide a better quality of
sensors than the older ones), number of test users, test
duration, number of features and samples, window size, the
different classes and whether they are linearly separable or
not, are the contributing factors that improve the accuracy
of a TMD system.

5.2 Delay

One of the main requirements of TMD systems is to provide
users with real-time responsiveness. This means that TMD
systems must be quick enough (i.e., at a human time
scale) to detect the transport mode used. Real-time TMD
offers context-awareness for location-based services (LBS),
making it possible to provide customized information
delivery based on user’s needs and her/his interactions.
Where a user expects to be provided with some assisted
feedback, the lower delay is a crucial factor (in addition to
accuracy).

For example, a TMD application should alert a user when
she/he should start walking towards the bus station in order
to be on time for work [11], or to inform the user about
the real-time location of the relevant buses [8]); so, in such
cases, delay in detection is intolerable, i.e., if the TMD
application does not detect the transport mode in real-time,
it is not able to send the user an in-time alert regarding the
next bus. In order to achieve such high responsiveness (i.e.,
real-time capability) a TMD system requires minimizing the
delay of the TMD application.

Delay in TMD systems has three components: 1)
computing-time, 2) transmission time or (network) latency,
and 3) modal change time. Computing time is the time
spent by the proposed classifier (running locally) to classify
different transport modes taking into account their pre-
defined classes. It is clear that a complex classifier and too
many features may cause a long delay in the prediction time.
Transmission time or latency is the time required to send
data (collected) from a smartphone to a server (which would
host the transport mode classifier in a remote approach) and
receive the results (i.e., such as “the user was in a car” or
“the user was in a train”) back from the server. It is clear
that with a local approach, latency is minimized. The reason

is that, with local classification, the delay which is imposed
to the application as a result of sending/receiving data
through the (possibly slow) network is avoided. Moreover,
the application does not need to be connected to the
Internet for detecting the transport modes and presenting the
results.

There is another type of delay that can affect the TMD’s
overall time; we call it modal change time. Modal change
time has been considered in a few studies, particularly
in Hemminki’s work [9] in which this type of delay is
named latency. However, it has a different meaning from
what we referred to previously. In Hemminki’s study, the
delay of detecting changes in the transport mode has
been introduced [9] meaning the delay in detecting the
correct modality when the transport mode has changed. To
measure the modal change time, Hemminki used underfill
rate metric; this metric measures the rate at which there
is a delay in detecting the correct modality when the
modality has changed. Hemminki compared the modal
change time of their approach with Reddy’s solution. From
the results, it was observed that detecting changes from or
to pedestrian activities in both approaches impose a similar
delay. However, Hemminki’s system has a higher modal
change time than the system of Reddy when it comes to
the detection of motorized modalities. To reduce such a
delay, Hemminki suggests infusing any sensor capable of
stationary detection (i.e., GPS, GSM, or WiFi) when the
importance of low modal change time outweighs the battery
usage.

5.3 Resource consumption

Resource consumption accounts for the number of resources
in terms of CPU, memory (RAM), and battery that the
classifier takes up while running on a device (i.e., a
smartphone). Such analysis must be done in order to
validate if the proposed local TMD system can be run in
real-world settings, and to measure how much it impacts the
performance of other applications that a smartphone may
run simultaneously.

5.3.1 CPU andmemory usage

CPU and memory consumption is an important aspect of
TMD systems. The constant fast pace of advancements
in smartphones capabilities regarding their computing and
storage power, besides the decreasing trend in their prices,
allows TMD developers to use smartphones for local
classification (and local training). To the best of our
knowledge, there is only one study that has evaluated the
CPU and/or memory usage of their solution running on
smartphones [8]. However, it is a vital parameter to evaluate
a TMD application performance.
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5.3.2 Battery usage

Most users expect a TMD application without a significant
impact on their smartphone battery. That is why one of the
main challenges of a smartphone-based TMD application
(along with the quality of its sensors and the local
classification) is battery usage minimization.

Different factors influence battery usage in a TMD
application. The type and number of sensors (used for
the data collection step), amount and dimensionality
of collected data, window size, sampling rate, and the
computing power used for classification are the important
factors that can define the amount of energy that a TMD
application uses. The sensor selection is one of the most
important stages for a TMD system. Sensors should be
chosen in a way that the highest accuracy is promised, and
the battery usage is kept minimum (not to influence the user
experience during the application usage).

5.4 Generalization

A generalized system, in the context of TMD, is a system
in which its accuracy is not significantly affected by
different parameters such as the smartphone position (i.e.,
during data collection), user variation or the geographical
location. In fact, a generalized system provides great
flexibility regarding the position of the sensing device
during data collection (e.g., a smartphone carried in a
backpack, pocket, etc.); it also shows almost the same
detection accuracy regarding new users with different ages,
education, and different travel behaviors (e.g., different
walking patterns, different walking or running speed, etc.).
Furthermore, such a TMD system should be generalized
geographically and not only tested in a specific location and
road conditions. Therefore, system generalization includes
three major independency aspects: device position, user, and
location.

5.4.1 Device position independency

As far as user convenience is concerned, it is important to
design and develop a TMD system whose accuracy is not
dependent on the smartphone placement. Individuals often
carry their smartphone in different positions. For example,
males often attach their mobile phones to a belt holder or
carry them in their pocket; females often put their phones
in their bag; and individuals during running often attach
the phone to the arm or chest area. Instantaneous changes
in the smartphone position may affect the classification
and cause low accuracy [3]. Therefore, when designing a
TMD system, it is important to collect the data with various
smartphone placements to ensure the system generalization
regarding the device position.

5.4.2 User independency

Another factor that defines a generalized classifier for TMD
is user independency. We can validate a TMD system
generalization regarding user independency with the help of
two different aspects. The first aspect actually discuss how
user-friendly a TMD application is; is it easy for different
users of different ages, gender, education, and job status
to use the app or not? In fact, new users also should be
able to use the proposed TMD application without the need
for user-specific training. The second aspect concerns how
the user variation impacts the classification accuracy itself.
The proposed classifier should detect transport modes with
the same accuracy for users with different walking/running
patterns, speed, and travel behaviors. To accomplish this
goal, the classifier must be trained with a variety of data that
covers a wide range of users with different walking/running
patterns, speed, and travel behavior.

5.4.3 Location independency

A TMD application running on smartphones should work
“everywhere,” meaning that the enclosed classifier should
be able to detect the transport mode with almost the same
accuracy in different geographic locations with various
road and public transportation conditions. To achieve this
requirement, data-sets should be collected from various
locations with different road and public transportation
conditions.

For example, when the classifier is trained with collected
data from some European cities and then tested with the data
collected from various destinations abroad (e.g., Germany,
Luxembourg) the classifier generalization can be evaluated.
For this purpose, the results of the tests with the generalized
classifier should be almost the same as the result of the
trained classifier. The reason is that when the classifier is
trained with different data-sets from different locations, it
has a wider view for the new observations. Furthermore,
as far as the speed limits and standards of various public
transportation in different cities are concerned, assessing
the classifier generalization with different locations is
necessary.

6 Existing TMD systems

There are some other surveys reviewing different TMD
approaches. Nikolic et al. [12] provides a review of
TMD solutions based on smartphones but not necessarily
for local classification; Biancat et al. [14] reviews the
solutions based on both smartphones and other devices
(e.g., accelerometer and GPS loggers) without any focus
on local classification; Perlipcean et al. [11] presents an
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analysis of the research for TMD with an emphasis on
three different disciplines: location-based services (LBS),
Transportation Science (TSc) and Human Geography (HG);
Wang et al. [13] proposed a standardized and publicly
available data-set while suggesting recognition scenarios
and sensor combinations. However, this study was tested on
only one single type of smartphone (i.e., Huawei Mate 9),
thus suffering from not investigating dependent parameters
to different types of smartphones such as sensor battery
usage. Huang [39] provides a systematic review of TMD,
which only concentrates on the mobile phone network
data that telecommunication operators collect. However,
access to such data is not always feasible in all areas and
by all operators, thus making Haungs’ study impractical.
Therefore, in this section, we describe the solutions that
local TMD systems apply to meet the requirements already
described in Section 5: high accuracy, minimum delay,
minimum resource consumption (i.e., battery, CPU and
memory usage), and high generalization. We compare local
TMD solutions in terms of their different approaches for
each step, including data collection, preprocessing and
feature extraction, classification and training. Thus, we
follow the same structure of the four steps mentioned
in Section 4. We start by presenting data collection in
Section 6.1. When addressing each work within each step,
we also consider how each one behaves regarding the
requirement that is most affected by that step. Thus, when
collecting data (first step) we present the generalization
requirement in Section 6.2, given that it is mainly affected
by the first step. We merged the preprocessing and feature
extraction (steps 2 and 3) in Section 6.3 because of the
strong relation of these two steps that we observed.

As far as resource consumption (i.e., battery, CPU, and
memory) is concerned, we address it in Section 6.4 after the
data collection, preprocessing, and feature extraction steps.
The reason is that all these three steps impact the number of
resources used. We have compared the accuracy of different
approaches and presented their classification solution in
Section 6.5. Finally, the delay is mostly influenced by the
last step (classification and training) which is presented in
Section 6.6.

6.1 Data collection

The sensors used, the data collection duration, and the
number of test users are the key parameters for the data
collection step of local TMD systems, which influence the
classification accuracy.

Moreover, collecting data from a wide range of users
with different ages, gender, education, or job status
(referred to as users’ attributes) is an important parameter
regarding the generalization requirement. This requirement
defines a generalized TMD system that is provided

for new users without individual user-specific training
(which is also interpreted as the friendliness of the TMD
application).

Additionally, position independency of the sensor (where
the user puts her/his smartphone usually during data col-
lection) is another critical factor affecting a TMD system’s
generalization. Table 2 provides a brief comparison of the
sensors used, the duration of data collection, the number of
test users, users attributes, and sensor positions (during the
data collection step) for each local TMD solution that we
present next.

6.1.1 Reddy

Reddy et al. [8] proposed a classification system that uses
both the GPS and the accelerometer to detect transportation
modes. The data-set used for training and testing was
obtained from 16 individuals, 8 male and 8 females between
ages 20-45. The total amount of data (for training and
testing purposes) was collected during 120 hours and from
16 users, comprising 1.25 hours of data (15 minutes of
data for each of the five transportation modes including
still, walk, run, bicycle, motorized) per position (six) per
individual (sixteen). During the collection, all the users
were volunteers who performed the activities in an urban
area with six phones attached to different positions of their
bodies (i.e., arm, waist, chest, hand, pocket, and in a bag
with preferred orientation). As a result, the proposed system
in Reddy’s work is position independent.

To validate the user independency requirement, two
distinct experiments were performed: 1) user-specific mode
- where only a particular user’s data is used for training and
testing purposes with 10-fold cross validation (i.e., this test
is repeated for each one of the 16 users individually), and
2) leave-one-user-out mode - where the classifier is trained
with all but one user (fifteen out of sixteen) and tested with
the user out of the training set.

With the user-specific mode experiment (when training
and testing is done on an individual user basis) the accuracy
increased only 2.2% compared to the generalized classifier
(which is trained and tested on all individuals). With the
leave-one-user-out mode experiment, an average accuracy
of 93.6% and a minimum accuracy of 88.2% were achieved.
Overall, the results of these two experiments suggest that
the proposed system in Reddy’s work can fulfill the user
independency requirement. The reason is that the increase
in the accuracy achieved by the two experiments is minimal
compared to the generalized classifier (which is trained
and tested on all individuals). In addition, the classifier
generalization in challenging urban environments is also
analyzed in this work. However, given that the data-set is not
collected and tested in different locations, Reddy’s solution
does not meet the location independency requirement.
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Table 2 Sensors usage in local
TMD systems Systems Sensors Data Number Users Sensor

collection of test attributes positions

duration users

Reddy GPS, 120h 16 gender: 8 males arm, waist,

[8] ACC and 8 females, chest, hand

age: 20-45 pocket, bag

Hemminki ACC 150h 16 NA trouser pockets,

[9] bag,

jacket pockets

Martin GPS, 96.59h of 6 gender: 2 males

[20] ACC GPS data, and 4 females, pocket,

98.62h of age: 18-25, hand bag

ACC data students

Guvensan ACC, 79h 8 various gender, rear/front

[3] Mag, age: 20-45 trouser pocket,

Gyr jacket pocket

Marra GPS 1053 days, 41, 39 students, NA

[32] 4625 days1 625 2 2 co-authors

Soares GPS, NA 18 students NA

[38] WiFi,

Cellular

Liang ACC 14h 4 users user’s

[22] (about 2h preferences

for 7 modes)

Zhao ACC, 71.4h,3 11 volunteers waist

[21] Gyr 18h4

Wang ACC, 25.3h NA students NA

[10] Gyr,

Mag

0Note: ACC=Accelerometer; Gyr=Gyroscope; Mag=Magnetometer; GPS=Global Positioning System;
GSM=Global System for Mobile communication; NA=Not Available.
1Validation data-set
2Number of user for validation
3Training set
4Testing set

6.1.2 Hemminki

Hemminki et al. [9] presented a novel accelerometer-based
technique for fine-grained TMD on smartphones. One of
the main contributions of this work is estimating the gravity
component of accelerometer measurements, which provides
more accurate and robust estimation during motorized
transportation.3 Hemminki et al., collected over 150 hours
of transportation data by 16 individuals from 4 different

3A fundamental challenge in accelerometer-based TMD is to
distinguish information relevant to movement from other factors
that can affect the accelerometer signals. In particular, gravity,
user interactions, and other sources of noise can mask the relevant
information [9].

countries (both for the training phase and for the testing
when evaluating the system). Three smartphone models
(Samsung Nexus S, Galaxy S2, and S3) were used for data
collection with 60Hz and 100Hz accelerometer sampling
rates.

The data-set was collected from different placements
to ensure the position independency requirement. The
three most common placements for smartphones were
considered: trouser pockets, bag, and jacket pockets.
The result of an evaluation using leave-one-placement-
out cross-validation indicates the robustness of this work
against variations in device positioning. When using
leave-one-user-out cross-validation, the small variance of
the results demonstrates their system’s robustness across
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user variations, as well. Finally, the generalization capa-
bility of Hemminki’s work regarding location indepen-
dency is also assessed. The data is collected from
various destinations abroad, including Japan, Germany,
Helsinki, and Finland and the results demonstrate that
their approach generalizes well across different geographic
locations.

6.1.3 Martin

Martin et al. [20] proposed a system that collects data using
the smartphone’s GPS and accelerometer. The data was
collected by 6 students (i.e., 2 male and 4 female) aged
18-25, participating in an undergraduate summer project.
Limiting the users to a single-type (only students) group is
one of the drawbacks of their system. This feature limits the
classifier generalization regarding user independency.

The six students collected 96.59 hours of GPS data
and 98.62 hours of accelerometer data. The smartphones
were carried in ordinary positions such as pockets and
handbags, and the linear magnitude of the acceleration
is computed to ensure that the classifier is generalized
regarding device position changes. The authors tried to meet
the location requirement by not feeding their algorithm
with mapping information such as bus routes. Hence, their
algorithm would be more generalizable by removing the
dependence on location-specific data. Although such an
action is helpful for location independency, based on our
definition, Martin’s work is unable to fulfill the location
independency requirement. The reason is that, there is no
clear information about the evaluation or test of such a
requirement with data coming from a wider variety of
locations.

6.1.4 Guvensan

Guvensan et al. [3] introduced a novel multi-tiered
architecture which relies on the accelerometer, gyroscope,
and magnetometer to collect a total of 79 hours of data
involving 8 participants of various gender and age (from 20
to 45 years old). During the tests, participants carried the
phone always on the body (i.e., rear/front trouser pocket
and jacket pocket) in different positions. The participants
also made their journeys in different modes (such as on
foot, sitting, etc.) and in multiple directions including
forward, backward and sideways. The variety of users and
the different positions in which phones are carried during
the tests, generate a generalized classifier in relation to the
user and position independency requirements. Real life tests
demonstrate the robustness of the system against the weight
of the vehicle, the driving style, the role in a vehicle (driver
or passenger) and the road conditions. Moreover, the final

system was also tested with the public data-set provided
by HTC [40] which collected transportation mode data in
Taiwan. The results of such a test suggest that the system
proposed by Guvensan respects the location independency
requirement.

6.1.5 Marra

Marra [32] proposes a GPS tracking application; he claims
that their system consumes very little battery by reducing
the GPS sampling rate. However, there is no evaluation
of such a claim in Marra’s article. The ML algorithms
were designed to use this lower quality of location data to
understand all user trips over a period of several weeks.
Past travel information from users are also used to identify
the missing transfers between two vehicles (i.e., where the
algorithm is unable to identify the transfer point and the
two vehicles involved) thus improving the TMD accuracy.
This feature (i.e., using individuals’ past travel information)
may raise users’ privacy concerns and is a limitation for
the mode detection system when such information is not
available.

The smartphone application and algorithms were tested
in Zurich. The resulting data-set, referred to as the Zurich
data-set, consists of travel diaries of 39 students and 2 co-
authors. In total, 1053 days of travel diaries were collected.
Another data-set was collected, referred to as validation
data-set, with a different smartphone app from 625 users
with an average of 7.4 days (4625 days in total) of travel
each in the city of Basel; this was used to validate the
proposed system. The use of such a data-set for validation
ensures the user independency requirement. Whereas the
algorithms are dependent on the public transport operational
data (mentioned in Section 6.5) and testing is performed
without any data from outside Zurich and Basel, the location
independency requirement is not respected; the reason being
that in many cities such information is not available. Finally,
there is no information to justify the position independency
requirement in this work.

6.1.6 Soares

Soares et al. [38] proposed a real-time TMD application
based on location traces using a data mining technique.
Their proposed system uses GPS, WiFi and cellular
networks data to collect the locations of 18 smartphone
users (i.e., 18 students) in the metropolitan area of Rio
de Janeiro. A total of 1338 chunks (i.e., set of traces)
and 120176 locations were collected. Collecting data from
a limited number of students (a single type of user)
makes Soares work a non-generalized system regarding user
independency. Moreover, no information about the sensor
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positions while collecting or testing the data is available.
Finally, traces for this study were collected mainly in the
city of Rio de Janeiro. Traces were also collected in the
Duque de Caxias, Nilopolis, and Nova Iguaçu regions, in
the route between these cities and in the downtown of Rio
de Janeiro. However, this data does not suffice to respect the
location independency requirement.

6.1.7 Liang

Liang work [22] proposes a light-weighted TMD system
using only the accelerometer in a smartphone. This solution
is not completely clear about being a local TMD approach,
but we assume it is local based on the information in its
conclusion section. In total, 14 hours of data (about 2 hours
of data for 7 different modes: stationary, walk, bicycle, car,
bus, train, subway) was collected by 4 users. Users can
hold their phones freely in any orientation (according to
their preference), making this system generalized regarding
the position independency requirement. To minimize the
influence of position and rotation, the magnitude value of
the accelerometer is calculated. However, the small number
of participants in this study limits its user independency
capability. Users take trains from New Jersey to Washington
D.C. to collect data for train mode, collect subway data
in New York City, drive cars in local roads and highways
in NJIT campus and collect walk and stationary data
on campus. Collecting data for each mode in different
locations introduces a generalized approach regarding
location independency.

6.1.8 Zhao

Zhao et al. [21] used built-in accelerometer and gyroscope
sensors of smartphones for data collection. The data-
sets were collected using Huawei P9 and Xiaomi smart-
phones. The data was collected by 11 volunteers carrying
their smartphones on their waists, with the smartphone
monitor faced out. Therefore, the Zhao system is not
generalized when it comes to position independency. The
data of 8 subjects is used for training and the 3 others for
testing.

In total, 16755 × 128 × 6 of data is used for training
and 4239 × 128 × 6 of data is used for testing. The authors
sampled data with a 50 Hz frequency and divided it into
windows (i.e., frames) of 128 values each; each frame is
2.56s long (128÷50). Having 16755 frames for 6 different
modes (i.e., stationary, walk, run, bicycle, bus, and subway)
results into 71,4h (i.e., 16755 × 2.56s × 6 ÷ 3600) of data
for training. Likewise, 4239× 6 frames results into 18h (i.e.,
4239 × 2,56s × 6 ÷ 3600) of data for testing. This work
provided no information regarding the users’ attributes and

location when collecting data. Therefore, the assessment of
this system regarding user and location independency is not
possible.

6.1.9 Wang

Wang et al. [10] collected a data-set of accelerometer,
gyroscope, and magnetometer sensors on an Android
application. The total duration of the data set is 25.3h. The
data-set includes data of all subway lines in Beijing, 20 bus
lines also in Beijing and High Speed Railway(HSR) trains
between Beijing and Shanghai. Such a location variation
(only for the HSR mode) is not enough to categorize
this system as being generalizable regarding location
independency. In addition to the general data set, a data
set known as shaking data is collected as complementary
in each mode to evaluate the system’s robustness. Shaking
data is an alternative to the movement of smartphones by
users. However, this work did not provide any information
regarding the placement of the smartphones and the number
of test users. Therefore, position and user independency are
not reported by this work.

6.2 Generalization

In Table 3 we provide a comparison between different local
TMD solutions regarding their independence with respect
to sensor position (position independency), user variation
(user independency), and location independency. In some
solutions, position independency has been considered, and
such TMD systems have used different ways to show
their classifier generalization. For example, some solutions
trained the classifier with the data collected from different
smartphone positions such as arm, bag, hand, rear/front

Table 3 Generalization requirements fulfilled by local TMD
approaches

Systems Position User Location

independency independency independency

Reddy [8] Yes Yes No

Hemminki [9] Yes Yes Yes

Martin [20] Yes No No

Guvensan [3] Yes Yes Yes

Marra [32] NA Yes No

Soares [38] NA No No

Liang [22] Yes No Yes

Zhao [21] No NA NA

Wang [10] NA NA No

Note: NA=Not Available
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pocket, chest or waist [3, 8, 9, 20, 22] to validate that the
classifier generalization is fulfilled; some other solutions
used different approaches to limit the side effects of sensor
position changes during data collection [9, 22].

Moreover, in some systems, user and location inde-
pendency are examined; for user independency, data from
different users with a variety of attributes is collected, and
for location independency some approaches have investi-
gated their system generalization by training and testing
classifiers with the data coming from different geographical
locations.

6.3 Preprocessing and feature extraction

Different local TMD approaches use different techniques
to filter the collected data (i.e., data filtering removes the
data that do not represent the correct information [32])
and transform the filtered data to a computationally effi-
cient set of features. Features are extracted from the whole
trip (trip-based extraction), from a segment4 (segment-
-based extraction), or from a frame (frame-based extrac-
tion). Therefore, in this section, we provide a comparison
of local TMD approaches regarding the preprocessing and
feature extraction steps. The sensors, sampling rate, window
size, preprocessing technique, and feature selection tech-
nique influence the accuracy and the resource consumption
of TMD systems. In Table 4 we provide these parame-
ters for the preprocessing step along with the achieved
accuracy.

6.3.1 Reddy

Reddy et al. [8] proposed a noise filtering step in which
invalid GPS points are discarded; such invalid points occur
when the smartphone is significantly shielded or if the user
is in a covered area. The filtering process also analyses
accelerometer data. If too few samples are received from
the accelerometer sensor to calculate the frequencies of
interest (i.e., frequencies between 1-10Hz are chosen for the
accelerometer), this data is discarded as well.

A window of one second is used for the period of
classification. The variance along with the Discrete Fourier
Transform (DFT) energy coefficients between 1-3 Hz from
the accelerometer and the speed from the GPS receiver were
selected as the feature set. This feature set is selected by the
use of correlation-based feature selection (CFS) method.5

4It is assumed that within each segment, the transportation modality
remains unchanged.
5Correlation-based feature selection (CFS) is a feature subset selector
that eliminates irrelevant and redundant attributes.

Accelerometer variance can be used to infer if the user is
running and the DFT coefficients help in differentiating
between foot-based modes. Moreover, GPS speed can help
to determine if the user is still or in a motorized transport
mode.

6.3.2 Hemminki

Hemminki [9] uses a low-pass filter to remove the
jitter from the accelerometer measurements. Then, the
measurements are aggregated using a sliding window
with a 50% overlap and a duration of 1.2 seconds each.
After preprocessing, both horizontal and vertical gravity
effects from the accelerometer measurements are removed.
Then, features on three different levels of granularity
including frame-based, peak-based, and segment-based are
extracted. Peak and segment-based features describe the
movement patterns of vehicles, instead of movements of the
user, making these features robust against different device
positioning (i.e., it helps to meet position independency
requirement).

Frame-based features capture characteristics of high-
frequency motions caused by a user during pedestrian
activity or motorized periods (i.e., from vehicle’s engine and
contact between its wheel and the surface). For movements
with lower frequencies such as acceleration and breaking
periods of motorized vehicles, peak-based features are
proposed. Segment-based features characterize patterns of
acceleration and deceleration periods over the observed
segment (i.e., during a period of stationary or motorized
movement).

6.3.3 Martin

In Martin’s work [20] GPS and accelerometer data were
recorded at a rate of 1 Hz and 5 Hz, respectively. In
the preprocessing step, data before and after a transport
mode change (within 10 seconds) is removed because mode
transitions may yield intrinsic properties uncharacteristic
of the five modes of interest (i.e., walk, bicycle, car, bus,
rail). Moreover, short trips that did not contain at least 120
seconds of data were removed; they are too short to create
the desired time series features and they are uncharacteristic
for representing the correct transport mode.

There are three different relevant techniques introduced
in Martin’s article. The first one (described further in the
classification step, Section 6.5) uses the raw GPS and the
accelerometer time series to identify unique signatures of
modes of transportation. The last two techniques summarize
extracted features of the time series and built classification
models based on these. The extracted features are the
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Table 4 Preprocessing and
Feature extraction performed
by local TMD approaches

Systems Sensors Sampling Window Pre- Feature Overall

rate1 size2 processing selection accu-

racy

Reddy ACC, ACC:1-10 1 filtering CFS 93.6%

[8] GPS GPS: frame-

Variable 3 based

Hemminki ACC 60, 100 1.2 low pass [frame-, 80.79%

[9] filtering segment-,

peak-]

based

Martin ACC, ACC:5 30, 60, filtering PCA, 96.8%

[20] GPS GPS:1 90, 120 RFE

segment-

based4

Guvensan ACC, 5, 10, 5, 10, NA frame- 94.57%

[3] Gyr, 10, 50, 20, 40, based

Mag 1005 605, 80

Marra GPS every 38 whole filtering, trip- 86.75%

[32] seconds trip smoothing6 based

Soares GPS, between 1, 90 filtering frame- 69.8%

[38] WiFi, 2 seconds based

Cellular

Liang ACC 50 2.56, smoothing, frame- 94.48%

[22] 5.12, filtering7 based

10.24

Zhao ACC, 50 2.56 filtering frame- 92.8%

[21] Gyr based

Wang ACC, 10 1 filtering8 frame- 91.28%

[10] Gyr based

Mag

Note: ACC=Accelerometer; GPS=Global Positioning System; Mag=Magnetometer; Gyr=Gyroscope;
PCA=Principal Component Analysis ; RFE=Recursive Feature Elimination; CFS=Correlation-based
Feature Selection; NA=Not Available.
1Sampling rate is presented in Hz; except those mentioned in the table
2Window size is in seconds.
3GPS is not uniformly sampled instead the GPS sampling is started when the user is outdoor.
4Movelets
5Best choice
6Kalman filter
7Gravity filter
8Gravity and Auto-regressive Moving Average Model (ARMA) filter

results of time windows with 30 second intervals (i.e., 30
s, 60 s, 90 s, 120 s). Features such as mean, median,
variance, minimum, maximum, etc., are calculated on
speed, acceleration and their iterated differences. Two

dimension reduction strategies, named principal component
analysis (PCA) and recursive feature elimination (RFE),
were used to summarize the feature sets and thereby reduce
the dimensionality of the data.
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6.3.4 Guvensan

In Guvensan’s work [3], data from the accelerometer,
gyroscope, and magnetometer is gathered at a frequency
of 100 Hz. In fact, based on their observation during data
collection, each transportation mode includes at least one
minute of walking and stationary actions; therefore, the
acquired data is evaluated within a 60 seconds window using
40% overlap in order to not miss-classify actions, especially
a transition between two activities. Other sampling rates
including 5, 10, 20, 50, and 100 Hz, with window sizes
of 5, 10, 20, 40, 60, and 80 seconds are also evaluated in
this work to examine their influence on the recall metric
(see Section 4). The results suggest that the sampling rate
does not seem to have much effect on recall; with window
size greater than 60 seconds, the recall starts to decline.
In total, 29 time-domain features are extracted consisting
of 17 common features and 12 new features. Common
features are those that have proven success in the area
of TMD [41]. The new set of features is suggested to
understand better the movement of a vehicle (e.g., the total
amount of time that a vehicle accelerates, decelerates, and
remains at a constant speed). To achieve this, the author
explores statistics regarding the distribution of the data
within a determined range.

6.3.5 Marra

The application proposed in Marra’s work [32] collects
users’ location information approximately every 38 sec-
onds. To reach a balanced trade-off between data quality
and battery usage the proposed app sends requests with dif-
ferent priorities at different intervals: a low priority request
every 30 seconds and a high priority request every 3 min-
utes; this led to an average sampling rate of 38 seconds in
the collected data-set.

In the preprocessing step, the data cleaning process is
executed; it filters and smooths the collected data. Data
filtering removes the data that does not represent a user’s
real position; the smoothing process reduces the random
noise present in the data. Two main features are used
to filter erroneous GPS points: speed and angle between
points. Points with speeds equal to zero and over 150
km/h were removed; moreover, all points with an angle less
than 15 degrees and a distance greater than 60m from the
previous point were also removed. After completing the
data filtering, the Kalman filter [42] is applied to smooth
the latitude and longitude of the GPS data. The extracted
features from this data-set include maximum, average and
median speed; maximum, average and median acceleration,
median angle, etc.

6.3.6 Soares

In Soares et al. work [38], user location traces (containing
altitude, latitude, longitude, precision and timestamps) are
captured for 90 seconds. During the tests, location traces
of volunteers were captured with an average accuracy of
25.1 meters and frequency between 1 and 2 seconds. Traces
with a horizontal error margin bigger than 200 meters or
timestamp difference lower than 1 second are discarded. At
the end of each 90 seconds of collection, the summarization
attributes of the set of traces (called a chunk) are extracted.
The summarization attributes extracted are maximum speed,
maximum acceleration and number of direction changes.

6.3.7 Liang

Liang et al. [22] performs data preprocessing with Mat-
lab [43] in two steps. In the first step, the gravity component
of acceleration measurements, which is generated by the
earth, is removed. It is important to remove the gravity
component from the collected acceleration data. The reason
is that the gravity component influences all the travelers;
thus, it does not help to differentiate different modes. After
removing the gravity component, the acceleration data is
called linear acceleration.

In the second step, the data is smoothed to reduce the
influence of large fluctuations. These fluctuations result
from sudden user movements (such as picking up the
phone while driving). The data smoothing is performed
with the help of the central moving average algorithm [44].
After preprocessing, the magnitude of the acceleration is
calculated and the resulting data is divided into small
windows to enable real-time TMD. The window sizes
considered in this study are 2.56, 5.12, and 10.24 seconds
with 128, 256, and 512 values, respectively. The sampling
rate of 50 Hz is chosen to balance battery usage and data
precision.

6.3.8 Zhao

In Zhao et al. system [21], the data which is sampled at
the rate of 50 Hz is filtered to remove the random noise.
Then, the data is divided into windows of the same size
(i.e., 2.56s) and 50% overlap size from which later features
are extracted. This study uses bidirectional long short-
term memory (Bi-LSTM) to extract the features. Hence,
the output of the current moment is related both to the
previous and the next state. Bi-LSTM, in contrast to a
classical RNN, is not limited to one-way transmission of
the state (i.e., from front to back), thus increasing available
information.
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6.3.9 Wang

In Wangs’ system [10] data preprocessing is composed
of 3 phases: coordinate transformation (i.e., removing the
gravity component from the acceleration on all three axes),
Auto-Regressive Moving Average (ARMA) filtering, and
data splitting. The ARMA model is a time series model
which is usually used to model or compensate for random
noise from the sensor readings without introducing a high
delay. The ARMA filter preserves the low-frequency part of
the signal and removes the high-frequency ones. After data
preprocessing, the data is processed into uniform, smoothed,
and structured frames. Wang et al. use a frame size of 1
second with a sampling rate of 10Hz. Then, 9 time-domain
and 5 frequency-domain features are extracted from the
generated frames. Finally, the features extracted by the use
of min-max scaling6 are normalized before being fed to the
classifier. Such a normalization accelerates the convergence
of the LSTM network and alleviates overfitting7 to some
extent.

6.4 Resource consumption

This section shows different local approaches regarding
their battery, CPU, and memory usage. Such approaches
have proposed distinct solutions to achieve minimum energy
spending. Some used less power consuming sensors (when
compared to others) such as the accelerometer [9, 21, 22] for
the data collection, or used a low sampling rate [32]. Note
that only a few studies (summarized in Table 5) investigated
the resource consumption of their solution [8–10]. Along
with resource measurements, we provide the list of sensors,
sampling rate, and F-measure value.

Except Reddy et al. [8], other studies did not measure
CPU and memory usage of their system. Comparison of
battery usage of Reddy’s and Hemminki’s works suggest
that (possibly) achieving higher F-measure requires the
use of more battery-consuming sensors (such as the GPS).
However, such a claim is not justifiable when comparing the
sensors used in Wang and Hemminki’s systems. A possible
explanation for this contrast is the difference in sampling
rates in these two systems. Based on a study previously
done [46] there is a correlation between sampling rate
and battery usage. Moreover (in addition to the sensors

6Min-max scaling re-scales the features in any range into a new range.
Usually, the features are scaled between 0-1 or (-1)-1. When min-max
scaling is applied, each feature remains the same while taking place in
the new range thus, preserving all relational properties in the data [45].
7Overfitting occurs when the model perceives the noise and random
fluctuations of the training data as concept and learns them. Therefore,
it affects the generalization ability of the classifier negatively[45].

used), there are many other factors that influence the F-
measure; the ML algorithm, features extracted, number of
motorized modes differentiated, etc., are such influencing
factors.

6.4.1 Reddy

Reddy’s work [8], using the Nokia Energy Profiler,
performed trials, 20 minutes each, that compared the CPU
and memory resources used by the classifier to other
activities normally running on a smartphone such as game
playing, music playing, etc. Reddy et al. reported 6.91
percent for CPU usage (i.e., far below services such as
playing games, music, or videos) and 29.64 MBs for
memory usage (i.e., just above memory usage when the
smartphone is idle). To limit the battery consumption,
Reddy et al. [8] (i.e., used accelerometer and GPS sensors)
proposed a solution with an algorithm that turns on the
classifier and starts GPS logging only when a user status
changes to an outdoor setting. The classifier is turned off
once the GPS locks are lost for a predefined period (e.g.,
when the user status is indoors). The algorithm proposed
in Reddy’s work relies on changes in the primary GSM
cell tower as a trigger to check the start of outdoor trips.
Thus, instead of uniformly sampling the GPS receiver (as
a high energy-consuming sensor), the classifier turns it on
and GPS sampling starts when the user outdoor status is
determined. Even so, in rural areas, where cell towers are
less dense, a large portion of the trip (when it starts) might
not be recorded. Furthermore, continuously turning on and
off the GPS sensor spends energy because of the so-called
tail power state (i.e., many smartphone components such as
the GPS keep using energy for a period of time after the end
of its activity) [47]. The reported battery usage for Reddy’s
system is 0.425 watts.

6.4.2 Hemminki

Hemminki et al. [9] did not analyze the CPU and memory
usage but performed a coarse-grained evaluation of power
consumption (0.085 watts as shown in Table 5). In addition,
not using the GPS sensor helped to outweigh the associated
energy costs.

6.4.3 Martin

Martin [20] did not analyze the CPU and memory usage.
With regards to battery usage, Martin proposed a method
that reduces the dimensionality of the data as much
as possible to reduce the substantial burden on battery
life.
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Table 5 Local TMD studies with resource consumption analysis

Systems Sensors Sampling CPU Memory Battery F-measure

rate usage usage usage

(Hz) (%) (MBs) (W)

Reddy ACC, ACC:1-10 6.91 29.64 0.425 93.64%

[8] GPS GPS:

Variable

Hemminki ACC 60, 100 NA NA 0.085 81.08%

[9]

Wang ACC, 10 NA NA 0.063 90.43%

[10] Gyr,

Mag

Note:ACC=Accelerometer; GPS=Global Positioning System;Mag=Magnetometer; Gyr=Gyroscope; NA=Not Available; W=Watts. We calculated
F-measure based on values for recall, precision and/or confusion matrix provided in the papers.

6.4.4 Guvensan

Guvensan et al. [3] did not analyze the resource consump-
tion of their system. However, this work has implicitly con-
sidered battery usage by choosing low battery-consuming
sensors (i.e., gyroscope, accelerometer, and magnetometer).

6.4.5 Marra

Marra et al. [32] claimed that their proposed approach
consumes very little battery power by reducing the GPS
sampling rate. However, there is no evaluation of such
a claim in the article. Instead, at the end of the study,
35 respondents have provided feedback on the app by
completing a survey. Their feedback states that battery
consumption was acceptable. No information regarding
CPU and memory usage is provided.

6.4.6 Soares

Similar to Marra’s work, Soares et al. [38] claimed that
users provided positive feedback about battery consumption
while using their application. However, no evaluation was
done regarding battery, CPU and memory consumption in
this work.

6.4.7 Liang

Liang et al. [38] have a claim over a light-weighted
and energy-efficient TMD system by using only the
accelerometer sensor, which consumes less energy than the
other motion sensors [23]. However, the authors did not
provide any evaluation for their claim. Thus, no information
regarding CPU and memory usage was provided.

6.4.8 Zhao

Zhao’s work [21] is similar to Guvensan’s work with regard
to not analyzing any resource consumption. However,
this work has used two sensors (i.e., gyroscope and
accelerometer) of the sensors used in Guvensan’s work by
removing the most battery-consuming one from the list (i.e.,
magnetometer). So, we can say that this work also has
implicitly considered battery usage. However, the authors
did not evaluate their system regarding any resource (i.e.,
battery, CPU, and memory).

6.4.9 Wang

Wang et al. [10] used light-weighted sensors (i.e.,
accelerometer, gyroscope, and magnetometer) with a low
data sampling rate (10 Hz) to reduce battery usage. The sug-
gested system in Wang’s work consumes 16mAh per hour
(i.e., 0.063 watts assuming the battery voltage equal to 3.8
V) with data collecting, processing, and classification on
smartphones. This work did not report the CPU and memory
usage of the developed system.

6.5 Classification and training

Choosing which specific learning algorithm a system should
use is a critical step for TMD. Most current systems have
developed different classifiers on smartphones during the
last years. The most widely used classifiers for local TMD
approaches are decision tree (DT), random forest (RF),
support vector machine (SVM), nearest neighbor (NN) and
naive Bayes (NB) [48].

In some systems, two classifiers are combined in
different ways, thereby creating a multi-layer or hierarchical
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classification; e.g., decision tree and dynamic hidden
Markov model (DHMM) are combined in Reddy’s work [8].

As explained in Section 5, having a TMD with 100%
accuracy is the ideal goal. Nevertheless, none of the systems
reviewed in this survey could achieve such a requirement.
In Table 6 we present the smartphones model and their
platform on which the ML algorithms were implemented.
Moreover, in this table, the training phase approach (i.e.,
local or remote) is also mentioned; this table does not
mention any system with a local training approach because
we did not find any.

Table 7 summarizes the overall accuracy of each
mentioned proposed solution along with the walk/stationary
accuracy and motorized accuracy (i.e., the average accuracy
of motorized modes). The reason for such a separation is
that most TMD solutions can detect walk and stationary
modes with a higher accuracy which will affect the

overall accuracy. However, it is of great importance to
assess the ability of different approaches regarding fine-
grained motorized TMD. Note that in this table, all three
reported accuracy metrics (overall, walk, motorized) are the
evaluation results of the best proposed solution for each
work. Furthermore, note that for Hemminki’s, Guvensan’s
and Soares’s systems, we calculated the accuracy metrics
based on the provided confusion matrix (provided in their
article) and (1).

6.5.1 Reddy

Reddy et al. [8] compared different ML algorithms to
determine the most accurate classifier. Three distinct
metrics (accuracy, precision, and recall) were employed.
The final results suggested that a classification system that
consists of a decision tree (DT) followed by a first-order

Table 6 Classifiers implemented locally

Systems Algorithms Phone Platform Training

approach

Reddy [8] DT, KMC, Nokia N95 Symbian NA

NB, NN, SVM

CHMM,

DT+DHMM

Hemminki [9] AdaBoost Samsung Nexus S Android NA

+DHMM Samsung Galaxy S2

Samsung Galaxy S3

Martin [20] KNN, RF NA NA remote

Guvensan [3] KNN, RF, Samsung Galaxy Android NA

J45, NB S4, LG G3

Marra [32] LR, SVM, NA Android NA

DT, RF 1

Soares [38] SVM, BN, Samsung Galaxy Android NA

Dtab, MLP S3 Mini

Liang [22] NB, BN, Google Nexus 5X, Android remote

DT, KNN, Google Nexus 6

SVM, CNN,

LSTM, AB,

RF, RNN

Zhao [21] Bi-LSTM NN, Huawei P9, Android remote

RNN, LSTM, Xiaomi,

Multi-LSTM,

Bi-LSTM

Wang [10] LSTM NA Android remote

Note: DT=Decision Tree; KMC=K-Means-Clustering; NB=Naive Bayes; SVM=Support Vector Machine; [K]NN=[K-]Nearest Neighbors;
HMM= Hidden Markov Model; CHMM=Continuous Hidden Markov Model; DHMM=Discrete Hidden Markov Model; RF=Random Forest;
LR=Logistic Regression; BN = Bayesian networks; MLP=Multilayer Perceptron; Dtab=Decision Table; LSTM= Long-Short Term Memory;
RNN=Recurrent Neural Network; CNN= Convolutional Neural Network; AB=Adaptive Boosting; Bi-LSTM NN=Bidirectional Long Short-Term
Memory Neural Network; NA=Not Available.
1Algorithms used for private mode detection)
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Table 7 Local TMD approaches modes, classifier and accuracy

Existing Classes Algorithms Overall Walk/ Motorized

systems accuracy stationary accuracy

accuracy

Reddy stationary, DT, KMC 93.6% 90.8%/ 94.5%

[8] walk,bicycle, NB, NN 97.8%

run, SVM, CHMM

motorized DHMM+DT1

Hemminki stationary, DHMM+ 80.79% 98.18%/ 80.01%

walk, bus, , AdaBoost 93.92%

[9] train, car,

tram, metro

Martin walk, bicycle, KNN, RF1 96.8% 99% 95%

[20] car, bus, rail

Guvensan stationary, KNN, RF1 94.57% 98.75%/ 95.6%

[3] walk, car, NB, J48 98.64%

bus, tram,

train, metro,

ferry

Marra walk, bus, LR, SVM, 86.75% 95.83% 77.08%

[32] train, tram DT, RF1

private

modes2

Soares walk, bicycle, SVM, BN, 69.8% 69.7% 66.6%

[38] bus Dtab, MLP

Liang stationary, NB, BN 94.48% 93%/ 92.47%

[22] bicycle, car DT, KNN 99.7%

bus, subway, RF, RNN

train, walk SVM, CNN1

LSTM, AB

Zhao stationary, Bi-LSTM NN1 92.8% 99%/ 96.59%

[21] walk, run, RNN, LSTM 95%

bicycle, bus, Multi-LSTM,

subway Bi-LSTM

Wang bus, subway, LSTM 91.28% 88.59%3 95.97%

[10] HSR, others,

elevator

Note: DT=Decision Tree; KMC=K-Means-Clustering; NB=Naive Bayes; SVM=Support Vector Machine; [K]NN=[K-]Nearest Neighbors;
HMM= Hidden Markov Model; CHMM=Continuous Hidden Markov Model; DHMM=Discrete Hidden Markov Model; RF=Random Forest;
LR=Logistic Regression; BN = Bayesian networks; MLP=Multilayer Perceptron; Dtab=Decision Table; LSTM= Long-Short Term Memory;
RNN=Recurrent Neural Network; CNN= Convolutional Neural Network; AB=Adaptive Boosting; Bi-LSTM NN=Bidirectional Long Short-Term
Memory Neural Network; HSR= High Speed Railway; NA=Not Available.
1Best solution
2Bicycle and car
3Others class (i.e., walk and stationary)

discrete hidden Markov model (DHMM) is the best solution
with an overall accuracy of 93.6%.

Reddy’s system is implemented on a Nokia N95
smartphone with the Symbian platform. Although both the

smartphone and the underlying operating system are old,
the results of preliminary tests with alternative platforms
indicate that the classification is robust against such
changes.
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The transport modes identified by this system include
stationary (i.e., still mode), walk, run, bicycle, and
motorized. Reddy’s system’s main limitation is its inability
to differentiate fine-grained motorized modes (e.g., car, bus,
train, etc.). Furthermore, it is not reasonable to compare
the achieved overall accuracy with other local TMD
solutions which have proposed a system with the ability
to differentiate between motorized modes (e.g., Liang’s
solution [22]).

6.5.2 Hemminki

A three stage hierarchical classification system is suggested
in Hemminki’s work [9]. At the root, a kinematic motion
classifier performs a coarse-grained distinction between
pedestrian and other transport modes; it uses a combination
of an instance-based classifier with a discrete hidden
Markov model (DHMM). The accuracy of the kinematic
motion classifier is over 99%. If the kinematic classifier
fails to detect a substantial physical movement, the process
progresses to a stationary classifier which determines
whether the user is stationary or uses a motorized
transport. When motorized transportation is detected, the
classification proceeds to a motorized classifier which is
then responsible for classifying the current activity into five
modalities: bus, train, metro, tram, and car. Each one of the
three classifiers mentioned above is considered a variant of
AdaBoost as an instance-based classifier.

Adaptive boosting or AdaBoost (introduced by Fre-
und [49]) extends the idea of boosting by tuning the weight
of samples that are miss-classified by previous classifiers.
The basic idea in boosting is to iteratively train weak clas-
sifiers which focus on different subsets of training data
and to combine these classifiers into one strong classifier.
The AdaBoosting algorithm tries to build a strong classifier
from the mistakes of several weaker classifiers. Thus, reduc-
ing the bias error that arises when weak classifiers can not
identify relevant trends in the data.

In Hemminki’s system, decision trees with a depth of
one or two are used as the weak classifiers.8 Compared
to the system suggested by Reddy et al., this approach
suggests over 10% higher precision and recall. In addition,
not using the GPS sensor has helped to decrease the battery
usage when compared to Reddy’s system. Whereas modal
change delay (see more details in Section 5), especially
for distinguishing between different motorized modes, has
considerably increased.

8A weak classifier is one that performs better than random guessing
but still performs poorly at classification.

6.5.3 Martin

Martin’s work [20] compares three techniques for predicting
several transport modes (walk, bicycle, car, bus and rail).
The first technique is an extension of the so-called movelets
approach which was introduced by Bai et al. [50]. Movelets
are a dictionary-based ML technique based on matching
time series vectors; this technique is used for predicting
position changes (standing, sitting, lying down, etc.) on
the basis of accelerometer readings. It involves partitioning
accelerometer time-series data into segments (movelets) and
clustering the segments known to be from the same mode
(e.g., standing) to define a set of characteristic signatures
for that mode. The mode is detected for new data by
determining which mode contains movelets that closely
match the new observed time series. The movelets approach
is extended to handle the two parallel time series defined by
GPS and accelerometer measurements. The experiments in
this work show that movelets performed poorly in predicting
the mode of travel. For evaluation, the data-set is split into
60% for training, 20% for validation and 20% for testing.

The second and third techniques are specialized versions
of k-nearest neighbors (KNN) and random forest (RF),
incorporated with two dimension reduction strategies
referred to as PCA and RFE (mentioned in Section 6)
to reduce the burden on smartphones battery. Overall,
using random forest with RFE introduces the best and
computationally efficient solution with an overall accuracy
of 96.8%. Furthermore, 10-fold cross-validation is used
to train each one of the RF models (i.e., RFE-RF and
PCA-RFmodels). Leave-one-out cross-validation is used on
the training data to determine the optimal value of k for
KNN.

Some limitations of this work are: 1) not differentiating
between different rail-based transport modes, and 2)
proposing a method that only classifies trips that were
known to be of a single mode of transportation (which
diminishes the system’s ability to predict transitions
between modes).

6.5.4 Guvensan

The multi-tiered architecture proposed by Guvensan
et al. [3] consists of performing the TMD by employing a
vehicular activity detector and a vehicular activity classi-
fier. The vehicular activity detector determines whether a
vehicular, stationary, or walking activity occurred in the cur-
rent window. Next, if no stationary or walking states were
detected, vehicular activity classification commences. The
vehicular activity classifier decides on the type of vehicle
used for transportation.
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The authors evaluated four different ML algorithms for
classification: K-nearest neighbors, naive Bayes, random
forest, and J48 (J48 is an open-source Java implementation
of the C4.5 algorithm).9

Finally, a segment-based post-processing algorithm,
named a healing algorithm, aims to correct the miss-
classification results of the previous ML-based solutions.
For this purpose, the classified data stream is partitioned
into segments using walking activity as a separator. The
healing algorithm determines that most activities occur
between two walking events and labels the whole segments
with the corresponding activity.

The vehicular activity classification performance is eval-
uated by real-time tests conducted with a mobile application
running on Android-based smartphones: Samsung Galaxy
s4 and LG G3. The detected transport modes include sta-
tionary (i.e., still), walk, car, bus, tram, train, metro, and
ferry with an overall accuracy of 94.57%. In order to tune
and examine the effects of the system parameters, 3-fold
cross-validation has been applied to 70% of the collected
data and the system performance is evaluated with the
remaining 30% of the data-set (mentioned in Section 6.1).

6.5.5 Marra

Marra et al. [32] suggests an application with different
algorithms: 1) activity and trip identification (i.e., dividing
the users’ records into activities and trips), 2) trip
segmentation (i.e., grouping trips into walking or other-
stages), and 3) transport mode detection (i.e., identifying the
transport means).

An activity is defined when there are at least 2 successive
points within 250 meters radius for at least 10 minutes.
In turn, a trip is identified as a movement between two
activities. For the trip segmentation, a walk occurs when
the user is walking or is waiting for transport in a single
place. Other stage occurs when the user travels using some
transport means (i.e., car, bus, train, or other vehicles). TMD
detection consists of assigning a specific mode of transport
to the stages that are identified as other stages in the trip
segmentation.

A specific mode detection algorithm is developed to
use low sampling rate GPS data. The proposed mode
detection algorithm is unsupervised and does not rely on the
ground truth of modes or any statistical inference model.
Instead, it uses actual public transport operational data. The
actual public transport operational data consists of planned
and actual arrival/departure times for all vehicles and all
stops in Zurich. The mode detection algorithm uses this

9C4.5 is an algorithm used to generate a decision tree developed by
Ross Quinlan mentioned earlier. C4.5 is an extension of Quinlan’s
earlier ID3 algorithm. The decision trees generated by C4.5 can be
used for classification [51].

operational data to label other stages as being carried out
by bus/tram, train, or otherwise a private mode vehicle (i.e.,
car, bicycle).10

To determine which vehicle out of a set of possible
vehicles best matches the user’s other stage, a likelihood
function is used. This function computes the degrees of
similarity between a user’s path and the paths of the vehicle
to determine the corresponding vehicle. After assigning
modes to other stages, the mode detection algorithm tries to
detect missing transfers based on the user’s visited places
map (i.e., a personalized map of the places visited by each
user from their travel history).

To determine private modes (i.e., bicycle and car), an
additional module is integrated into the proposed system.
The private mode detection uses machine learning to
identify modes. This required a ground truth; therefore, the
validation data-set was used to train and evaluate the private
mode detection model. The private mode detection module
used 70% of the validation data-set as the training set and
30% for the test set.

Several ML algorithms such as logistic regression,
support vector machine, decision tree, and random forest
are tested for private mode detection. The best solution
was random forest. The results suggest that private mode
detection algorithm achieved an overall accuracy of 86.75%.

6.5.6 Soares

Soares [38] proposes a real-time TMD application based
on location traces using a data mining technique. These
traces are preprocessed, grouped in motion segments, and
classified by supervised ML algorithms. The application is
made available with training chunks collected by a Samsung
Galaxy S3 Mini device running Android version 4.3. The
set of traces are classified into motorized and non-motorized
by a support vector machine (SVM) and into walk, bicycle,
bus, car, and motorcycle by a Multilayer Perceptron.11

Those chunks classified as non-motorized by the SVM
are then classified into walk or bicycle using a Bayesian
network and a decision table. The other chunks which are
classified as motorized by the SVM are grouped in bus,
car or motorcycle by a decision table. Therefore, this work
suggests a hierarchical classification that uses SVM, MLP,
decision table, and Bayesian network.

The mean accuracy observed by the Multilayer Per-
ceptron inference was approximately 69.8%. Due to the

10Note that in this work, bus and tram modes are considered as one
mode (bus/tram) since the validation data-set contains only one label
for bus and tram.
11A Multilayer Perceptron (MLP) is a deep, artificial neural network.
An MLP consists of at least three layers of nodes: an input layer,
a hidden layer and an output layer. An MLP is often applied to
supervised learning problems [52].
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absence of training data for the motorcycle and car classes,
these transport modes were not considered in the calcula-
tions and evaluation. Given that, the actual transport modes
that can be detected by Soares solution are limited to walk,
bicycle, and bus. For the SVM inference, the mean accuracy
observed was approximately 65.5%; the SVM algorithm
classified correctly 632 chunks (out of the 1338 chunks) as
motorized. The inference of the motorized travel transport
mode done by the decision table algorithm obtained a mean
accuracy of 87.5%. As for non-motorized chunks, the SVM
algorithm was able to identify 244 chunks correctly. From
these chunks, approximately 43.8% and 42.2% were cor-
rectly classified by a Bayesian network and by a decision
table, respectively.

6.5.7 Liang

In Liang’s work [22] a deep learning model using
convolutional neural network (CNN) is suggested. In this
system, a CNN is built on the one-dimension acceleration
data to detect stationary, walk, bicycle, car, bus, subway, and
train in every time window. The proposed CNN model is
compared with the other traditional ML algorithms such as
random forest (RF), decision tree (DT), K-nearest neighbor
(KNN), Adaptive boosting (AB), etc. with different window
sizes (see Section 6.3). This comparison suggests that the
proposed CNN model in this work outperforms all the other
comparedML solutions with 94.48% overall accuracy. They
also concluded that among the traditional ML algorithms,
RF is the most accurate one. Moreover, this study shows that
accuracy improves with larger window sizes.

6.5.8 Zhao

In Zhao’s work [21] a deep Bi-LSTM neural network model
is trained to detect 5 modes (in addition to stationary): bus,
bicycle, run, subway, and walk. Bi-LSTM neural network is
compared with RNN and other variants of RNN including
LSTM, Multi-LSTM, Bi-LSTM. The results suggest that
Bi-LSTM neural network outperforms the aforementioned
algorithms with an overall accuracy of 92.8%. The results
of experiments show that the most challenging modes to
differentiate by deep Bi-LSTM neural network are subway
and stationary.

6.5.9 Wang

Wang et al. [10] proposed a novel two-stage long short-term
memory (LSTM) classifier to achieve a trade-off among
accuracy, complexity, and delay. The proposed classifier
consists of two classifiers with different sequence lengths.
The shorter one is a binary classifier distinguishing elevator
mode and the longer one implements a finer classification of

4 modes, including bus, subway, high-speed railway (HSR),
and others (i.e., low-speed modes such as stationary and
walking). Finally, the classification results are smoothed in
the time domain as a post-processing step. The authors used
an ensemble decision module to smooth the predictions in
the post-processing step. Wang’s system achieved 91.28%
overall accuracy and 88.59% accuracy for others class when
applying the two-stage classifier.

6.6 Delay considerations

As explained in Section 2, performing local classification
diminishes the delay (i.e., network latency) of a TMD sys-
tem. Therefore, in this survey, all of the systems reviewed
have implicitly improved the latency of their solution (in
comparison with remote classification). However, most of
the studies did not evaluate all components of the delay of
their system. Note that in Hemminki’s work [9], a different
definition of latency is presented as it expresses the delay
between modal changes (see Section 5.2).

One can conclude that in addition to the classification
approach (i.e., remote or local), the window size and the
complexity of the classifier’s algorithm affect the delay of a
TMD system. The results presented by Wang [10] prove our
claim when comparing the performance of their proposed
system using different LSTM window sizes; it suggests that
the accuracy increases with the increase of window size
since the prediction attends to more information. However,
larger window size leads to higher delays during mode
switching (what we refer as modal change time). For
example, in this work for a window size of 5 seconds there
is a delay equal to 2.5 seconds; for a window size of 10
seconds, the delay is equal to 5 seconds and for a window
size of 30 seconds, a 15 seconds delay is reported.

7Methodology

While doing this survey, we were concerned about
minimizing bias and ensuring reproducibility of the results
regarding the previously considered works. Thus, to provide
reliable findings from which conclusions can be drawn,
we first looked for all TMD approaches which used built-
in sensors available in smartphones. Then, we looked
for studies that clearly stated that their TMD application
or system runs locally on a smartphone. To ensure the
reproducibility of the current research study, we now
describe the overall methodology in detail.

To explore state of the art, we searched four databases
using the following keywords: transportation mode
detection, mode of travel, travel mode
detection, and travel behavior. The databases
searched were ScienceDirect (www.sciencedirect.com),
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ACM digital library (dl.acm.org), MDPI (www.mdpi.com),
and IEEE Xplore (ieeexplore.ieee.org).

To find local TMD studies among almost 40 that were
found with the previous query, we carefully investigated
their design, implementation, and evaluation to find how
the proposed solution worked. Some of them only used
a smartphone for the data collection step; these were in
fact based on a remote approach (thus being out of the
scope). Others clearly mentioned that the implementation
of the whole system was done locally on the smartphone.
From the clearest studies, we found some references to
others with some probability of offering a local TMD (using
Google Scholar - https://scholar.google.com). Among these,
studies such as Reddy’s and Hemminki’s are included in our
review, despite being old, given that their solutions are not
only relevant and important but also they are referenced or
compared by some other recent local TMD systems [3, 22,
32].

We excluded those studies and applications which used
camera and microphone during data collection (such as
Miluzzo’s work [15]), or those that used cameras for
annotating the ground truth during the data collection step
(e.g., Mun’s work [53]). The reason is that using cameras or
microphones raise many concerns regarding users’ privacy.
As a result, such concerns may lead users to not use the
application in all their trips and situations, and produce
incomplete (and therefore uninteresting) results. Moreover,
studies that defined class labels such as sitting, standing,
walking downstairs or upstairs are excluded because such
class labels are out of the scope (i.e., they are not our goal
classes).

8 Discussion

In this section, we provide a summary of our findings,
an overview of the limitations of available local TMD
systems, and a possible solution for addressing them. This
information can guide future TMD system designers.

The first decision for designing a TMD system is to
choose the correct set of sensors. The accelerometer and
the GPS are the two most common sensors used for data
collection. The results show that using single accelerometer
solutions [9, 22] combined with a suitable classifier and
feature extraction can achieve a good result (i.e., 80.79%
overall accuracy for Hemminki’s and 94.48% for Laing’s).
Although, to differentiate between motorized transportation
modes, adding other sensors (such as GPS) can be helpful.
GPS only solutions also work well for coarse-grained
transportation mode classification, but perform poorly
for detecting transport modes with similar speed and
acceleration profiles [8].

The most relevant requirement of all local TMD
approaches is accuracy (i.e., achieving the highest possible).
The overall accuracy achieved by different approaches
is quite different due to the differences in their applied
solutions for TMD. Some systems detect different types
of modes, some can differentiate only between motorized
and non-motorized, and some consider all rail modes
transportation as a single group [20]. For example, in
Reddy’s work [8] motorized modes are not differentiated,
while Guvensan [3] provides a fine-grained TMD system.
Thus, it is important to compare the different local TMD
solutions regarding their walk/stationary accuracy and fine-
grained motorized accuracy separately. One can conclude
that the more the TMD is fine-grained, the more difficult it
is to achieve high accuracy.

The comparison of proposed approaches suggests that
discriminative classifiers are more common for local TMD
(compared to generative classifiers) due to their lower
computational cost (see Table 1).

Some approaches examined other algorithms rather than
ML-based. However, their final assessment suggests that
their approach did not necessarily achieve better results;
for example, using movelets in Martin’s work [20], or
introducing algorithms matching a user’s path with the
available operational data of the public transports and
detecting transitions using user’s travel history in Marra’s
work [32].

When it comes to the selection of an ML algorithm, the
comparison of the different proposed ML-based approaches
suggests that tree based ML algorithms (i.e., random forest
and decision tree) can achieve the best classification results
for local TMD(it does not matter if different sensors and
sampling rates are used as shown in Tables 7 and 4).

TMD systems are designed to be used by service
providers to provide their users with fast responses based
on their detected mode. So, designing a local TMD
system which considers the delay of the system is of
great importance. However, most of the reviewed papers
in this survey did not evaluate the delay of their system.
As mentioned in Section 5.2, delay of a TMD system
consists of three components: computing-time, latency and
modal change time. Some studies proposed a solution
to reduce the dimensionality of data (i.e., simplify the
data by using two dimension reduction techniques such as
principal component analysis (PCA) and recursive feature
elimination (RFE)) in order to minimize the computing-
time [20]. Moreover, it is clear that a complex classifier
with too many features may cause a long computing time.
To minimize latency, local classification is preferable to
remote classification. The last component of delay is modal
change time. When the classifier have sufficient data within
a resealable window size, it can faster detect the modality
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change. For example, Hemminki et al. [9] suggests that
using sensors such as GPS, GSM, or WiFi can minimize
modal change time when detecting motorized modes. Wang
et al. [10] also suggests that shorter window size leads
to lower delay (i.e., modal change time) during mode
switching (see Section 6.6 for more details). To control
delay of a local TMD system, future works should choose
a classifier with low complexity, resealable window size,
engineered number of features, and low latency network
architectures.

Resource consumption is another important aspect
of local TMD systems. Given that smartphones have
limitations regarding available resources (i.e., compared to
servers), local TMD designers should report the resources
consumed by their system to identify the most resource-
consuming TMD step. The overall observation about
resource consumption (e.g., in Reddy’s work) is that most
of the CPU usage of the proposed system is related to the
data collection step (i.e., 2.88%). In fact, such CPU usage
is mostly due to the sampling of the sensors. For instance,
in Reddy’s work accelerometer is sampled 32 times in a
second, while the feature extraction and classification may
get processed every second. Therefore, compared to the data
collection step, the CPU usage for the feature extraction and
classification steps is insignificant (i.e., 1.85%). The amount
of RAM used by a local TMD system is related to the
ML algorithm complexity, the number of extracted features,
and the sliding window size; thus, it mostly depends on
the feature extraction and classification steps. Frequent
sensing by battery-consuming sensors (such as the GPS)
can significantly increase the amount of battery usage.
Therefore, data collection is the most battery-demanding
step. For example, the battery usage in Reddy’s work is
0.425 Watts in total, of which only 0.003 is used for feature
extraction and running the classifier.

The generalization of a local TMD system is a
requirement that can define its usefulness regardless of its
accuracy. A very accurate local TMD system which limits
the group of users is not useful. Moreover, users will stop
using the smartphone application after a while if they must
carry their smartphone in a specific place of their body
to get the most accurate result. Similarly, if a local TMD
system performs very well in one geographical location
and poorly in another, it may disappoint users. Developing
a generalized TMD system requires collecting data from
various users and locations with different smartphones in
distinct positions.

9 Conclusion

In this survey, we reviewed local TMD solutions regarding
their steps and requirements. We described the most

common steps of all such TMD systems: 1) data collection,
2) preprocessing, 3) feature extraction, and 4) classification
with a previous training phase. A local TMD is clearly
differentiated from a remote TMD, given that it performs
all the above-mentioned steps on the smartphone (note that
training can still be done on a server remotely).

Local TMD approaches exploit some advantages over
remote approaches given that the classification step is
completely performed on the smartphone locally: smaller
data size, less delay, no need for Internet connectivity,
improved users’ privacy, better or same accuracy, and
possibility of taking advantage of evolving smartphones.

Each local TMD system made an effort to fulfill (at least)
one or a combination of the four main requirements pre-
sented: high accuracy, minimize delay, minimize resource
consumption, and high level of generalization. To the best of
our knowledge, none of the existing local TMD systems are
able to detect fine-grained transport modes with 100% accu-
racy. So, all local TMD approaches used different sensors,
features and ML algorithms to define the best combination
to achieve the highest accuracy.

As far as delay is concerned, all the local TMD
approaches have implicitly met this requirement by
performing classification locally. However, except two [9,
10], the rest of the studies reviewed in this survey did not
measure any component of the delay of their approach.

Thus, we could not make a reasonable comparison
regarding the delay measurements in this survey.

Regarding resource consumption, most local TMD
studies proposed a solution to limit the battery consumption;
however, only three of them [8–10] provided the evaluation
for their claim. Moreover, only one study measured the CPU
and memory usage of the proposed system [8].

A generalized classifier is defined as being one that
maintains the same accuracy regardless of the smartphone
position, user variation, and the geographical location
(where and when the classification is done). When
considering the reviewed local TMD systems, only two of
them [3, 9] meet all the generalization requirements.
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