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Abstract
Knowledge graph embedding (KGE) is effectively exploited in providing precise and accurate recommendations from many 
perspectives in different application scenarios. However, such methods that utilize entire embedded Knowledge Graph (KG) 
without applying information-relevance regulatory constraints fail to stop the noise penetration into the underlying infor-
mation. Moreover, higher computational time complexity is a CPU overhead in KG-enhanced systems and applications. 
The occurrence of these limitations significantly degrade the recommendation performance. Therefore, to cope with these 
challenges we proposed novel KGEE (Knowledge Graph Embedding Enhancement) approach of Hashing-based Semantic-
relevance Attributed Graph-embedding Enhancement (H-SAGE) to model semantically-relevant higher-order entities and 
relations into the unique Meta-paths. For this purpose, we introduced Node Relevance-based Guided-walk (NRG) modeling 
technique. Further, to deal with the computational time-complexity, we converted the relevant information to the Hash-codes 
and proposed Deep-Probabilistic (dProb) technique to place hash-codes in the relevant hash-buckets. Again, we used dProb 
to generate guided function-calls to maximize the possibility of Hash-Hits in the hash-buckets. In case of Hash-Miss, we 
applied Locality Sensitive (LS) hashing to retrieve the required information. We performed experiments on three benchmark 
datasets and compared the empirical as well as the computational performance of H-SAGE with the baseline approaches. 
The achieved results and comparisons demonstrate that the proposed approach has outperformed the-state-of-the-art methods 
in the mentioned facets of evaluation.
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1  Introduction

With the current burst of data-overload on the web, choos-
ing feasible options in the bulks of analogous choices is 
challenging. The process of streamlining the online data-
overload and suggesting relevant options to the end users 
to satisfy their needs and interests is personalized recom-
mendation. Recommender Systems (RS) exploit the infor-
mation of individuals and their concerned people to provide 
suggestions about their potential interests [1, 2]. Previously, 
the interaction information was acquired from the user’s pre-
vious interaction-logs on the web and preferences about their 
hidden interests were generated via CF1-based techniques 
[3] – the most common and widely utilized recommenda-
tion algorithms [4]. Although these methods achieved great 
importance and consideration, their performance was signifi-
cantly affected by the issues of data-sparsity, gray-sheep and 
cold-start [5, 6]. To cope with these challenges, researchers 
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adapted to utilize side information acquired from different 
knowledge resources as input to the recommender systems. 
Although the side information exploited by the recommen-
dation methods has many types, KG-based side information 
gained valuable attention and popularity. It describes infor-
mation via entities and relations among them and exhibits 
easy theme of manipulation, processing and understanding.

The information structure of Heterogeneous Information 
Graph (HIG) can easily be modelled into feature vectors [7, 
8]; and this ideology is highly empowered by the exploita-
tion of language-modeling techniques with graph theory. 
Previously, inter-connections among words in the docu-
ments (e.g., like relations among nodes in KG) was intro-
duced via pairwise-interaction in the vector space. Similarly, 
based on the distance among vectors in the Euclidian space, 
NLP2-research defined distance-based language modelling 
to represent the structured-embedding of triplets. Moreover, 
translation-based models represent relations among entities 
as translation in vector space and assign preferential values 
to the entities based on the distance among them via dis-
tance function. NLP-based language-models that support 
random-walk strategies over the highlighted “words in the 
documents” up to 1st-order relation, proposed idea about 
the possibility of sequential flow among nodes via relations. 
Later, random-walk “in the documents” up to the 2nd-order 
relation was developed which introduced the concept of walk 
over nodes in KG.

To efficiently exploit KG-based side information via sys-
tems and application domains, entire KGs are embedded to 
the low dimensional Euclidian space – the process is termed 
as KGE. It is basically vector-notion of nodes and paths that 
preserves the semantics and topologies of KG data in the 
embedded state. KGE is significantly contributing to RS by 
providing the data in feasibly-interlinked-mode of presen-
tations, i.e., KG-based side information [9, 10]. RS utilize 
KG-based side information to provide personalized recom-
mendations based on item-relations, user-item-interactions 
and user-feedback.

Although “paths” are information channels among nodes 
in the KG to infer reasoning-facts for recommendation, suf-
fer from constraints and limitations wrt the implementation 
concerns. To well demonstrate the scenario, we picturize a 
tiny exemplary situation from KG-based news recommenda-
tion, as shown in Fig. 1. Let consider path “P1: Babar → 
Kamal → eco-News → News Publisher → Covid News → 
Pandemic → World’s Economy”. A length constraint LC has 
to be imposed on “P1” that results in truncation of nodes 
exceeding the length limit of LC. For instance, “→ Covid 
News → Pandemic → World’s Economy” will be discarded 
from “P1” if LC = 3. Moreover, linear paths fail to reflect 
the graph structure in information aggregation, and a CPU 
overhead in processing all of the outgoing paths on “Babar” 
without having a concern of information relevance. Simi-
larly, the current methods that aggregate information from 
neighbors of the entities regardless of applying information 
relevance constraints aggregate noise with information. Let 
see how noise penetrates into the information being aggre-
gated; e.g., if everything in under-consideration part of KG 

Fig. 1   News Recommendation’s – an exemplary scenario; where Babar interacts with “Aljazeera News” and “Afghanistan News” whereas 
“Kamal” visited “eco-news” published by “Bing-News”. In response, “Covid-News” and “Economy News” are recommended to both of them

2  Natural Language Processing
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is irrelevant except this meta-path, “Kamal → eco-News → 
Pandemic → US’s Economy”, then all of the aggregated 
information coming-in and going-out via the node “Pan-
demic” is noise.

Subsequently, to effectively deal with the above discussed 
research challenges, we proposed a novel hashing-based 
semantic relevance attributed Knowledge Graph Embedding 
Enhancement (KGEE) approach for effective recommenda-
tions. The framework contains Relevance-based Influential-
graph Construction (RIG) and Hashing-based Recommen-
dation (HR) modules. The data (i.e., KG-in-raw and user 
interaction-logs) is given as input to the RIG module. RIG 
captures higher-order semantically relevant entity-informa-
tion via the connecting relations, and HR transforms the 
corresponding information to the hamming space to generate 
recommendations. To the best of our knowledge, KGEE is 
a first ever contribution to the hashing-based recommenda-
tion in the scope of heterogeneous data. The experimental-
work and theoretical-comparison confirm that H-SAGE has 
outperformed the state-of-the-art methods with significant 
improvements.

The key contributions of this study are given below;

•	 We proposed Node Relevance-based Guided-walk 
(NRG), i.e., path-modeling technique, to highlight 
Unique Meta Path (UMP) based on semantically relevant 
entities in KG. NRG works like the spreading effect of an 
influential-graph.

•	 We converted UMPs to hash-codes and placed the cor-
responding hash-codes in semantically relevant hash-
buckets-based on their mutual likelihood to maximize 
the possibility of Hash-Hits via function calls.

•	 In case of Hash-Miss, we used LS-hashing to acquire the 
required hash-codes around the location of Miss up to a 
maximum length of 3 × 3 hash-indices. Upon success, we 
return the required hash-codes to the function, otherwise 
we return 0.

•	 We exploited a predictive presentation interface that col-
lects the retrieved hash-codes, processes them, calculates 
the potential preferences and generates the formal recom-
mendation responses.

•	 We performed extensive experiments on three real 
world benchmark datasets to assess and analyze the per-
formance of H-SAGE in comparison with the baseline 
methods. The experimental results and theoretical com-
parison demonstrate that the proposed approach has out-
performed the baseline methodologies.

Further organization of this paper is as follows; Sec-
tion 2 covers the Related Works, Section 3 describes the 
Preliminaries, Section 4 presents The Proposed Methodol-
ogy, Section 5 demonstrates the Experimental, Empirical 

& Theoretical comparative analysis; and finally, Section 6 
concludes this paper with Conclusion and Future-work.

2 � Related works

Although current KG-based recommendation undergoes var-
ious considerable methods in particular, we broadly catego-
rize the relevant work in three classes from the perspectives 
of implementation techniques, i.e., Path, Embedding and 
Propagation, and Hashing-based recommendation methods.

2.1 � Path‑based recommendation

Path-based methods exploit similarity of the interaction-
sequence of previous occurrences to provide new recom-
mendations. For example, PER [8] learned user to item and 
item to item relations through feature extraction with Meta-
path-based walk. It is basically HIG-based entity recommen-
dation approach. Typically, it introduced hidden features via 
meta-paths to demonstrate the relations among entities (i.e., 
users and items) wrt different connectivity-types in the data. 
Formally, it modelled HIG-based data differently wrt differ-
ent users to provide quality recommendations based on user-
to-item implicit interactions and defined recommendation 
models. SemRec [11] introduced the concept of weighted 
information structure (i.e., HIG and meta-paths) to demon-
strate the semantics of relations via differentiating the values 
of different link-attributes. Further, it predicted user-to-item 
potential preference (i.e., rating scores) via its proposed 
semantic meta-path-based recommender system. FMG [12] 
calculated similarities of path-sequences between users and 
items in KG wrt the flow of previous interactions and gener-
ated new recommendations. Similarly, MCRec [13] utilized 
meta-path-based random connectivity-processing to obtain 
the representations of user-to-item context. It combined 
Deep Neural Network (DNN) with Attention Mechanism 
(AM) to exploit the rich information context of HIG through 
Meta-paths for top-N recommendation. It applied priority-
guided path sampling technique to choose quality-path sam-
ples from the context to construct meta-paths.

KGR [14] analyzed reader’s exploration history to model 
his research interest, and extracted the required material 
from different research proposals. KGR considered the dis-
tance between the reader’s research interest and his required 
information as the knowledge gap or path. Correspondingly, 
HERec [15] learned the entity embedding representations 
via the Meta-path-based random-walk sampling technique. 
Although these methods attained significant performance 
and popularity in the context of path matching, their major 
drawback is being fully dependent on manual or random 
selection of the meta-paths. As a solution to the problem, 

2297Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep…



1 3

[16] proposed RKGE approach to learn semantical repre-
sentations of users, items and relations among them to fore-
cast the preferences of users towards items of their potential 
interest. Typically, it applied Recurrent Neural Network 
(RNN) to sample the semantical context of the paths con-
necting same or identical entity pairs. Similarly, KPRN [17] 
exploited neural networks to automatically mine the required 
meta-paths of the defined length.

However, capturing user to item graphical structure via 
independent, limitedly-lengthened and linear meta-paths; 
and computing path-based static similarities to retrieve the 
potential preferences lead to the wastage of notable extent 
of information and unwanted CPU overhead respectively.

2.2 � Embedding and propagation‑based 
recommendation

KG-based information is embedded to the low dimensional 
vector space via translation techniques, enriched through 
mapping to the relevant entities in the external Knowledge 
Bases (KBs) and tackled through the recommendation tech-
niques for recommendation. For instance, CKE [18] aggre-
gated CF-technique with item-based side information in a 
Bayesian network to acquire the semantic embedding of 
items via TransR. KSR [19] accomplished the sequential 
recommendations via TransE, and DKN [20] acquired the 
representations of entities-and-relations embedding based 
on KG-features-learning via TransD. Similarly, RCF [21] 
used DistMult and attention mechanism to access item-
to-item relations for preference computation. Typically, it 
utilized various types of item-relations for recommenda-
tion. It proposed that relation-type (i.e., Allen Turing) and 
relation-value (i.e., Turing Machine) both are significant 
for recommendation and greatly impact the performance 
wrt the preference calculation. KTUP [22] used TransH to 
jointly learn the recommendation and KG completion mod-
ules without preserving the semantic connections among 
the data instances. RippleNet [23] propagated the historical 
interactions of users to items over the graph and aggregated 
the potential preferences of users about unseen-items of their 
interest based on the propagated and aggregated informa-
tion. KGCN [24] incorporated the information of neighbors 
of items into the neural network to learn the embeddings of 
items with GCN3 via propagation to calculate the prefer-
ences of users.

Correspondingly, KGAT [25] enriched the embeddings of 
users and items, and recursively performed the information 
propagation over the graph to enhance the performance; and 
AKGE [26] applied the Euclidian-distance-based similarity 
technique to filter out the irrelevant information, constructed 
local subgraph with relevant entities, and performed relation 

aware propagation over the network to enhance the perfor-
mance. Moreover, NACF [27] also identified the potential 
interests of the users via preference propagation based on 
the information collected from the neighbors of the entities. 
DKEN [28] highlighted the impact of information-exchange 
between the implicit-interactions and explicit-semantics in 
user-to-item interactions and KG-features respectively to 
acquire a better grip on semantical and hierarchical struc-
ture of information-flow in the graph. Regularization-based 
approaches utilized the graphical structure of underlying 
data to acquire the entity representations via accessing the 
regularization terms; and Unification-based approaches 
combined the regularization terms with path-based methods 
to enhance the recommendation performance.

Although the majority of these methods attained great 
focus and consideration due to their overwhelming perfor-
mance, noise-free and effective undertaking of the semanti-
cal and hierarchical structure of KG-based relevant infor-
mation via the recommendation algorithms is nevertheless 
a challenge.

2.3 � Hashing‑based recommendation

Hashing techniques are exploited to reduce the computa-
tional time complexity of algorithmic processes in different 
application scenarios [29]. Currently, to make data manage-
ment efficient and smoother, KG-based information process-
ing is being notably incorporated in many domains of com-
putational intelligence. Although KG retains powerful theme 
of information presentation and management, it undergoes 
quadratic and higher computational time complexity in 
normal cases. Unsurprisingly, KG-based side information 
is utilized for recommendation generation in particular, and 
hashing-enhanced techniques are used to reduce the com-
putational time complexity of the recommendation as well.

In this section, therefore, we enlist such relevant 
approaches that exploited hashing techniques in recommen-
dation and information retrieval to lighten the computation. 
For instance, [30] proposed semantic hashing method to deal 
with query and document-based textual data to retrieve the 
required information, and [31] proposed hash-graph-kernel-
based approach to extract the interaction of protein-to-protein 
from the context of node-neighboring in the graph. Similarly, 
HashNet [32] proposed deep-learning-based approach to use 
hashing-by-continuation with convergence to learn the exact 
binary-codes from the imbalanced experimental data. Moreo-
ver, [33] introduced KG2Rec to exploit the Locality-sensitive 
Hashing [34] though CF-algorithms for KG-enhanced rec-
ommendation. NeuHash-CF [35] proposed their approach of 
content-based neural hashing via CF-algorithms to address the 
limitations of cold-start in recommendation. RSLH [36] tried 
to reduce the length of hash-codes to the minimal possible 
extent of applicability via the exploitation of reinforcement 3  Graph Convolutional Network
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learning. Also, HashGNN [37] proposed GNN4-based deep-
hashing approach to accomplish recommendations with KG. 
Last but not least, HALF [29] applied search oriented KGE-
technique via hash-learning framework to enhance time-com-
plexity-based performance of computation.

The above discussed hashing-based approaches achieved bet-
ter performance in their applied circumstances to improve the 
computation against time-complexity, but these methods have 
overlooked the issues of noise inclusion (emergence, exist-
ence) to/in the experimental data. Also, they did not apply 
any information relevance check or noise filtration constraint to 
verify (i.e., validate) the applicability-health of the underlying 
data. On the other hand, our main objectives are to keep the 
irrelevant data excluded from the underlying information (i.e., 
experimental datasets), and to perform KG-enhanced recom-
mendation in a lighter-environment of computation. For this 
purpose, therefore, we propose novel hashing-based semantic 
relevance attributed KGEE approach of computationally less-
heavier recommendation over optimally noise-free KG-data.

3 � Preliminaries

In this section, we define primary notations, recommenda-
tion task and some of the basic concepts.

3.1 � Notations

S e t  o f  e n t i t i e s  E =
{
e1, e2,… , ek

}
∣ k = |E| ,  s e t  o f 

u s e r s  U =
{
u1, u2,… , ul

}
∣ l = |U|  ,  s e t  o f  i t e m s 

V =
{
v1, v2,… , vm

}
∣ m = |V| given that U,V ∈ E  , and 

set of relations R =
{
r1, r2,… , r�

}
∣ � = |R| belongs to 

KG. Entities belong to Entity matrix E as ej ∈ E ∣ j = 1, 
2, …, k, and relations r belongs to Relation matrix R as 
rj ∈ R ∣  j = 1, 2, …, k, given that, ej = [nij] ∈ {±1}μ and 
rj = [pij] ∈ {±1}μ, and correspondence of ith instance with 
jth entity or jth relation represents the node nij or path pij, 
respectively, belongs to μth dimension of the feature vec-
tor. The interaction I  among entities is handled through 
1 or 0 in interaction-matrices M ∣ M ∈ ℝ

k×d as if there 
exists an interaction or ith instance is similar to jth entity 
or jth relation, the entry of node nij = 1 or path pij = 1, 
respectively, and 0 else to the corresponding matrix. 
The neighbors of node n are shown as N(n) . Moreover, 
anchor-points γ belongs to the training set X and placed 
in Anchor matrix A as γi ∈ A ∣ i = 1, 2, …, υ, where the 
items of A are randomly selected from X. Similarly, h 
belongs to Hash matrix H ∣ H ∈ {±1}l × k as hi ∈ H ∣ i = 1, 
2, …, l, ‖H‖2 is normalization of H, and H⊤ is transpose 
of H. Thus, He and Hr are the hash matrices of the cor-
responding E and R matrices respectively.

3.2 � Problem description

This approach is supposed to produce a list of top-K recom-
mendations out of a bulk of candidate items. Therefore, it 
scans raw-data and interaction-log I� as inputs, exploits the 
relevance factor and I� to filter-out the irrelevant data, and 
utilizes relevant information to construct the influential sub-
graph Gs . The Gs is transformed to hash-codes to forecast the 
probability of ui selects vj via 𝛿(ui,vj) = 𝜑

[
eui,vj ⊗ CH

]
 ; where 

� ∣ �
(
eh, r, et

)
∈ {E ×R × E} is the prediction function that 

predicts true likelihood among the entities of the unseen 
triplets (eh, r, et), ⨂ is the set of environment parameters, e 
is entity and CH represents the hash-codes. The descending-
order sorted outcome of 𝛿(ui,vj) illustrates the list of top-K 
recommendations.

3.3 � Definitions

In this section, we define some technical terminologies that 
are to be utilized in implementation or comparison.

3.3.1 � Hash function

A  f u n c t i o n  f  i s  h a s h  f u n c t i o n  f h  i f 
fh ∶ Y�

→ Y�(�) ∣ fh =∣ � ∣ ∧fh ∈ F� where Υ = {−1, 1} satis-
fies the polynomial bounded predetermined constraint 
α : Γ → Γ ∣ α(μ) < μ, ∀ μ ∈ Γ, and belongs to the infinite family [
F�

]∞
�=1

 of functions. A fh is collision-proof if it map infor-
mation instances from a non-fixed bulk of triplets into a 
fixed set of independent data entities with an expected ideal 
hit-ratio of A ← fh(B) ∣ fh(A) = A optimally for all cases, but 
it is NP-hard task.

3.3.2 � Information hashing

It is the process of transforming data-instances to the ham-
ming space, i.e., {−1,   1}μ where 𝜇 < |E| , to learn non-linear 
mapping fh : y ⟶ h ∈ {−1,   1}μ to transform each entity y ∈ E 
into a μ-bit binary hash-codes h = fh(y), such that; the relevance 
among the transformed entities can be preserved in hash-codes.

3.3.3 � Hamming‑space constraints

Hamming space imposes un-correlation and balance as 
validation constraints on the bits of transformed informa-
tion. Un-correlation and bit-balance refer to the sparseness 
of vector’s dimensions and equal probability of hit or miss 
respectively. Specifically, un-correlation is the rows must not 
have any correlation with other rows in the corresponding 
matrix, and bit-balance is out of any two bits of 0 and 1, we 
must have a 1.

4  Graph Neural Network
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3.3.4 � Locality sensitive (LS) hashing

The LS function depends on the distance between two con-
secutive data-points and the probability of collision of the 
data-points is inversely proportional to their mutual dis-
tance. LH belongs to the family of hash functions fh that 
maps a location α from testing information instances to 
retrieve a location β from z hash-bucket (HB) as HBz in the 
bucket-space Ω as LS = {z : α → β}. Formally, to retrieve 
β from HBz via a function call fc, the following condition 
defines LS as:

Where  P[ · ]  i s  p robabi l i s t ic  func t ion  and 
Φ(α, y) = {�|Ω(�, �) ≤ y} is a rectangular-shaped lengthy 
box having β as a target location of the projected location 
α, and † shows the number of possible attempts (i.e., y = 3 ) 
to get the required location in the case of miss. Moreover, 
α ≃ β is assumption of hit, αh + 1 and αh + 2 are constants; h = 0, 
y > 0 and 0 < αh + 1 < αh + 2 < 1. The probability of collision of 
α and β decreases with each increase in the distance between 
them in Ω.

3.3.5 � Knowledge graph and Meta‑path

A graph G = (E, P, Φ, Ψ), where E represents the set of enti-
ties, P shows the set of paths-between-entities, Φ denotes 
the entity-type mapping function fe as �fe

∶ E ⟶ E, and Ψ 
describes the path-type mapping function fp as 
�f p

∶ P ⟶ R . Therefore, each entity e ⊆ E is mapped to the 
specific entity-type in E, i.e., �fe

(e) ∈ E , and each path 
p ⊆ R is mapped to the concerned path-type in R , i.e., 
�f p

(p) ∈ R . If |E| > 1 or |R| > 1 then G is heterogeneous. 
Meta path℘ is a sequence of finite paths p between the con-
secutive nodes in G. For instance, a Meta path from na to nd 
i s  w r i t t e n  a s ℘ ( n a ,  n d)  =  p 1  ∘  p 2  ∘  p 3  i m p l i e s 
that ℘ ⇒ na

p1
→ nb

p2
→ nc

p3
→ nd , where ∘ is the composition 

operator.

3.3.6 � Interaction log and session

Interaction log I� is a timespan-based series of user-inter-
actions preserved through user profiling [38] and stored in 
I� tracks. The I� contains set of items V =

{
v1, v2,… , vm

}
 , 

set of interactions I =

{
i1, i2,… , i�

}
 like viewed, rated, pur-

chased, etc., set of sessions S =

{
s1, s2,… , s�

}
 , and set of 

timespans T = {t1, t2, …, tψ}. For instance, an arbitrary session 
sj =

(
vj, ij, tj

)
∣ sj ∈ V × I × T  or s

j
=
(
v
j
, i
j

)
∣ s

j
∈ V × I  

where T is implicitly retrieved from sessions S or explicitly 
collected from interactions I  respectively.

(1)fc =

{
P
[
𝜇h(𝛼) = 𝜇h(𝛽)

]
> 𝛼h+1, if β ∈ Φ(α, y)

P
[
𝜇h(𝛼) = 𝜇h(𝛽)

]
< 𝛼h+2, if β ∉ Φ(α, y)

4 � The proposed methodology

This section contains Pre-Processing, Hashing and Pres-
entation modules. In this section, we purify the datasets, 
construct the influential (local subgraph) graph, perform 
Hashing, and compile-&-display the recommendation 
outcomes.

4.1 � Pre‑processing module

Data Embedding, Dimension Rationalization, Data Puri-
fication and subgraph Construction are described in this 
module.

4.1.1 � Data embedding

We used TransD [39] to embed entities and relations to the 
independent vector spaces and preserved their isolation 
through the following precise matrices

Where h, p, t denote a triplet, and p and n show the 
embedded information; entities belong to ℝd and relations to 
ℝk, Ik×d represents the identity matrix having 1 s on diagonal 
and 0 s elsewhere, and Mp,h and Mp,t are used to project 
the vectors of head and tail entities to concerned relation-
spaces respectively. Subsequently, the plausibility factor fp 
of a given triplet (nh, p, nt) is defined as

4.1.2 � Dimension rationalization

Although placing identical information instances in identical 
vector spaces is important for efficient computation, the ini-
tial embeddings span over vast vector dimensions, and filter-
ing out the less relevant instances is a possible solution [40]. 
Therefore, to filter out the less relevant data-instances we 
introduced a Relevance-Factor Rel constrained by the thresh-
old ϑ. Rel evaluates the relevance-extent Relc, j between cur-
rent node nc and the candidate node nj to validate whether 
to discard nj or not. If the candidate of Relc, j satisfies ϑ, that 
is assigned with 1 and 0 otherwise. All entries with 1 are 
orthogonally stored via Eq. (2) or (3) and rest of the entries 
are discarded and updated with 0 according to Lemma 1, 
based on their relative relevance-extents with nc. Therefore, 
the transition matrix is linearly computed because further it 
doesn’t depend upon the previous entries.

(2)Mp,h = p · n
⊤

h
+ I

k×d

(3)Mp,t = p · n
⊤

t
+ I

k×d

(4)fp
(
nh, p, nt

)
= −

‖‖‖Mp,h · nh + p −Mp,t · nt
‖‖‖
2

2
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Lemma 1  Mutually relevant data instances are orthog-
onally co-related in nature and present a unit matrix 
k × l in the Euclidian embedding space.

Proof: Eq. (2) and (3) represent ordinary matrices that can 
be operated wrt different matrices for storage or transforma-
tion. Therefore, we transform the information instances nk 
to the orthogonal basis 

{
nk
}
=
(
nk
l
, nk

l
,… , nk

L

)
 of orthogo-

nal basis matrix MO =
(
nk
i

)
 to maintain a sequential flow 

among them. Let’s recall from the basic matrix theory, for 
each i of MO , the first i instances ni form orthogonal base 
from [k, l] ∣ k = l = 0 to [K, L] wrt the winding instance of 
{nk}, is expressed as nk = nk

l
 by increasing [k, l] by 1 with 

each iteration; where k and l increase with an increase in row 
and column respectively. The highest index value of k and l 
in the matrix depends upon the row-head index of k.

Henceforth, i + 1 instances (i.e., ni + 1) creates cosine 
angles with i instances ni from [k + 2, l + 2] to [K, L] wrt 
{nk + 1} as simi, i + 1 = cos(nk + 1, nk + 2). Since, the underly-
ing instances have unit length; thus, their cosine is equal 
to their dot product as cos(nk + 1, nk + 2) = nk + 1 · nk + 2, by put-
ting nk

l
= 0 , ∀l > i, we formulate the expression of similar-

ity between two instances as nk+1 · nk+2 =
∑k

i=0
nk+1
l+1

nk+2
l+2

 , 
where nk+1

l+1
 is the first instance of i, and thus �l = nk+1

l+1
 . 

As, we already mentioned that the instances have unit 
lengths, thus, the length of nk + 1 is equal to 1. Thus, 
nk+1 · nk+2 =

∑k

i=0
nk+1
l+1

nk+2
l+2

=
∑k

i=0

�
nk+i
l+i

�2
= 1.

Since, for index [1, 1] in Eq. (5), nk+1
l+1

 is the first instance 
of nk + 1 wrt i, and hence �l = nk+1

l+1
 . Let us consider nk+1

l+1
= 0 

for all l > k + 1 and α = k = l, then from �� = n�+1
�+1

 ; for the 
previous instance of k, we have ωα + 1 = 1 as

Hence it is proved that for all instances, ωα + 1 effec-
tively describes the coordinates of i against l wrt 
{nk}. On substitution of 1 against k = l in Eq. (5), we 
h a v e  

[
n1
]
=
[
1 0 0 0 …

]
 ,  

[
n2
]
=
[
0 1 0 0 …

]
 , [

n3
]
=
[
0 0 1 0 …

]
 and so on. Further, we also described 

(5)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

n
k+1

n
k+2

n
k+3

n
k+4

n
k+5

⋮

n
K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

n
k+�

l+�

n
k+2

l+1

n
k+3

l+1

n
k+4

l+1

n
k+5

l+1

⋮

n
K

l+1

0

n
k+�

l+�

n
k+3

l+2

n
k+4

l+2

n
k+5

l+2

⋮

n
K

l+2

0

0

n
k+�

l+�

n
k+4

l+3

n
k+5

l+3

⋮

n
K

l+3

0

0

0

n
k+�

l+�

n
k+5

l+4

⋮

n
K

l+4

0

0

0

0

n
k+�

l+�

⋮

n
K

l+5

⋯

⋯

⋯

⋯

⋯

⋮

⋯

0

0

0

0

0

⋮

n
K

L

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(6)��+1 =

√
1 −

∑k

i=0
nk
l
nk+1
l+1

=

√
1 −

∑k

i=0

(
nk+1
l+1

)2

the raw iteration set wrt all of the related entries in corre-
sponding matrix as shown in Eq. (5).

4.1.3 � Data purification and influential‑graph construction

We introduce Node Relevance-based Guided-walk (NRG) 
modeling technique to refine data by determining, highlight-
ing and maintaining the prominent paths in the embedded 
space. Although a large quantity of works exist in the litera-
ture [14, 15] on meta-path-based random crawl sampling 
techniques, it face diverse types of limitations that signifi-
cantly degrade the performance of recommendation. For 
instance, path length constraints, inability to effectively 
capture the graph structure due to linear paths, difficulties 
in optimized path selection, etc. are a few notable examples 
of their drawbacks. But the major drawback is applying no-
constraint on information relevance concern; all cadres of 
the data is considered as the part of the underlying informa-
tion that result in performance degradation and unwanted 
computational overhead. Therefore, we apply NRG mod-
eling technique to determine such unique meta-paths that 
portray semantically relevant information to construct the 
influential-graph Gs . The modeling mechanism of NRG is 
similar to the spreading effect of a pandemic. The main 
objectives of NRG modeling technique are; (i) Determin-
ing semantically relevant nodes, (ii) Maintaining single hop 

prominent paths, (iii) Unifying single hop prominent paths 
together to create meta-paths, (iv) Identifying the meta-paths 
via unique identifiers (IDs), (v) Interlinking the meta-paths 
wrt their IDs to create Gs , (vi) Discarding the irrelevant data.

Using Eq. (7) and (8), we randomly consider a node as a 
central node nC , termed it as the current node nc ∣ nc = nC , 
calculate the relevance between nc and the candidate nodes 
nj ∣ j = 1, 2, 3…, and selected the node having the highest 
similarity with nc as the target node nt for the next step of 
the walker. Then for the second hop, we again consider nt as 
nc ∣ nc = nt and repeated the process to get the next relevant 
node, and so on. After completing a 5-hops long meta-path 
and assigning it with the identifying ID, e.g., ℘1, we come 

2301Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep…



1 3

back to the initial point, i.e., 1st-hop, and consider the node 
having the second highest relevance with nc, and repeated 
the process for the next meta-path. After evaluating all of the 
neighbors of nC , we considered the highest-relevant neighbor 
of the nC as the next nC and repeated the process. Iteratively, 
the model performed the same technique for all of the nodes, 
and subsequently, the meta-paths were stored in an indexed 
track wrt their assigned IDs, as described in Algorithm 1. 
Finally, the meta-paths are combined based on their IDs to 
construct the local subgraph.

We calculated the relevance between the corresponding 
nodes in two steps of comparison and sum-up the outcomes; 
(1) tendency between nc and nj, (2) Local similarity between 
nc and nj, and the similarity between nc and the information 
on the path going from nc to nj.

For (1), we calculated the factor of similarity-based node-
to-node tendency to predict the next node, as:

Where f(·) shows the function that calculates the tendency 
between the concerned nodes, defined as:

Where x ∣ 0 < x < 1 and ten represent the co-efficient and 
parameter of tendency; I

r
 and Ip show the recent and previ-

ous user-interactions, respectively. In the case of tendency, 
the ten factor greatly depends upon the input of I�.

(7)TenSim
�
nc , nj

�
=

��
N
�
nc
�
∩N

�
nj
��

+ 1
�
+ f (ten)nc ,nj��

N
�
nc
�
∪N

�
nj
��

+ 1
�
∗
∑

∀Γ∣�∈N(nc)
f (ten)nc�

∗ 100

(8)f (ten)nc,nj = x · Ir(ten) + (1 − x).Ip(ten)

In case of (2), for (nc, nj) and (nc, nj, p), we apply Adamic 
and Jaccard (AJ) similarities, respectively:

Where X =

[
(N(nc)∩N(nj))+1

]
∗∣p∣

[
(N(nc)∪N(nj))+1

]
∗∣p∣

 represents the ratio of 

common to all neighbors of the candidate node.
To get the required relevance between nc and nj, we 

summed up Eq. (7) and (8) into (10) as,

Where Rel describes the extent of the relevance between 
the current and the candidate nodes. The greater is the value 
of Rel(nc, nj), the higher is the probability of nj to become 
the next step of the crawler. The nodes are interlinked in Gs 
based on their relevance factor with each other in the graph. 
For instance, a current node nc is linked to its neighbors 
N
(
nc
)
 , if N

(
nc
)
 fulfills the applied relevance constraints on 

inclusion to Gs as f (x) ⊆ Gs and f(x) is defined as:

Where 1 shows the existence of influential connection 
between neighbors, 0 represents no connection, ϑ is a thresh-
old and its value is 30% in this case, and G

(
nc
)
 defines gen-

eralization expression for Rel as

(9)
Sim

AJ

((
n
c
, n

j

)
+
(
n
c
, n

j
, p
))

= 0.25 ∗

(∑
y∈

(
N(nc)∩N

(
nj

)) 2

log |N(y)|
+ 2 ∗ X

)

(10)
Rel

(
nc, nj

)
= TenSim

(
nc, nj

)
+ SimAJ

((
nc, nj

)
+
(
nc, nj, p

))

(11)f (x)∀𝛤 ∣𝛤∈N(nc) =

{
1, if G

(
nc
)
· I� ≥ 𝜗

0, if G
(
nc
)
· I� < 𝜗
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Where G
(
nc
)
 is the first-order influential graph, ∧ is the 

sequential concatenation operator, nc − i is the next node that 
is linked to nc, and nc − j is the node that is not-connected to nc.

4.2 � Hashing module

In this section, we transform Gs to hash-codes, place identi-
cal hash-codes in identical hash-buckets, retrieve informa-
tion and generate the final outcomes.

4.2.1 � Transformation

We transform k-dimensional actual-valued continuous-
embeddings nk to b-dimensional binarized embeddings 
nb, where |k| =  ∣ b∣. We applied tanh activation function for 
transformation as

Where W ∈ ℝk × b and z ∈ ℝ
b show weight parameters and 

bias factor respectively. We independently denote ui-vj hash-
codes as hui = huj = {±1}μ, where μ represents the length of bits. 
For formal hash-codes hi, we applied sign function to formalize 
fb wrt all instances as, if fbi ≥ 0 the function enters +1 against 
each i into M otherwise−1. To overcome the limitations5 of the 
sign function, we incorporated SRS6 [41] with margin weight 
γ on continuous increase, as an activation function, till the con-
vergence of instances. We defined the SRS through margin 
weight γ as follows.

Where γ ∣ γ > 0 shows the cumulative margin weight and 
x is the actual input. Formally, with a continuous increase in 
the value of γ, SRS approaches the original sign function, as

Thus, the hash-codes of the corresponding entities are 
preserved, but to enhance the performance via maximizing 
the Hash-Hits, it is essential to embed the similar hash-codes 
into the similar hash-buckets.

4.2.2 � Identical hash‑codes to identical hash‑buckets

Although the orthogonal arrangement of instances is 
feasible, we verified their apparent relevance with their 

(12)
G
(
nc
)
= ∧s

i=1

{
nc−i|Rel

(
nc, nc−i

)
> Rel

(
nc, nc−J

)}
nc−i, nc−j

(13)

(14)SRS(� , x) =
� · x

� ·x

�
+ e

−� ·x

�

(15)lim
�→∞

SRS(� , x) = sign(x)

corresponding neighbor’s through Deep-Probabilistic 
(dProb) technique, as shown in Algorithm 2.

We provided the hash-codes hi to the DNN as 
hi = [i = 1, 2, …, K] to calculate the mutual likelihood of the 
corresponding entities through the following process:

Where k is the depth of layer and σ is the non-linear acti-
vation function; W(k) represents the model’s weight matrix 
wrt k, h(k)

i
 shows the outcome and b(k) is bias factor of kth 

layer; L is the loss function, λk is the regularization of kth 
layer, Θ describes the set of model’s hyper parameters, and 
‖·‖2

2
 is the Euclidian norm.

Through the dProb, we formulated the interlinking prob-
ability Ncj of nc and nj wrt their concerned hash-codes hc and 
hj respectively. Ncj is defined as:

Additively, path pz selection probability Pcz by nc to go 
to nj, to consider it as relevant node, wrt to their concerned 
hash-codes hc and hz respectively. Pcz is defined as:

Thus, the total probability is the sum of Eq. (17) and (18), 
we have:

where Φ = x · σ(x), Ψ = 1 − x · σ(x); x = Δ(hc, hj), σ is sigmoid 
function, i.e., σ(x) = (1 +  exp (−x))−1, Δ represents the dis-
tance; and to activate the hash-codes, we used the swish 
activation function, i.e., f(x) = x · σ(x) [42].

T h e  P
(
Ncj|hi ∣ i = 1, 2,… ,K

)
 i s  s u b j e c t e d 

to the probabilistic density function fD(Π) as 
P
(
Ncj|hi ∣ i = 1, 2,… ,K

)
∈ fD(Π) to preserve the selection 

head in the data-range determined by the density function 
fD(Π), defined as:

The information instances are placed in relevant hash-
buckets-based on their mutual likelihood, as shown in the 
Fig. 2, to enhance the hit-ratio of hash functions up to a 
maximum possible extent.

(16)h
(k+1)

i
= �

�
W (k) · h

(k)

i
+ b(k)

�
s.t. L = �k‖Θ‖22

(17)P
(
Ncj|hc, hj

)
= ΦNcj · Ψ1−Ncj =

{
Ncj = 1, if Φ

Ncj = 0, if Ψ

(18)P
(
Pcz|hc, hz

)
= ΦPcz · Ψ1−Pcz =

{
Pcz = 1, if Φ

Pcz = 0, if Ψ

(19)
P
(
Ncj|hi ∣ i = 1, 2,… ,K

)
=

P
(
Ncj|hc, hj

)
+ P

(
Pcz|hc, hz

)

2

(20)fD(Π) = P
(
xmin ≤ � ≤ xmax

)
=
�

xmax

xmin

f (�)d� ≥ 0

5  Zero gradient on non-zero inputs, non-zero mean, false or negative 
missing, unrealistic response on zero-input
6  Soft-Root-Sign activation function

f
b
= tanh(W

⊤
n
k
+ z)
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4.2.3 � Information retrieval

Data retrieval via hashing-method recovers the loss of 
information with radial-based data spreading technique. 
It captures the local-structure of information and reduces 
its feature’s dimensionality via nonlinear-projection. The 
retrieval process is presented in Algorithm 3. Moreover, 
graph anchors are incorporated to highlight the selective 
features (hash-codes) in the information instances. We con-
figured the graph anchors to alleviate the burdensome of 
blind matching in the buckets. We transformed the items of 
A to the representations of graph anchor as:

Where f(a) is a function used to represent the graph anchors 
and i = 1, 2, …, υ, and ‖‖hi − a‖‖

2

2
 shows the Euclidean distance 

between the selected feature i and the graph anchor a.

(21)f (a) = e
0.5×

‖hi−a‖22
�2

The defined linear models E, R, He, Hr are binary rep-
resentations of information in hamming space, therefore 
according to [36], linear auto-encoder regression (LAR) 
is feasible for projection. To persist the semantic rele-
vance among the information instances, we applied LAR 
for matrix projection to minimize the regression loss and 
used transpose for matrix multiplication to optimize the 
computational overhead. We performed two-way linear 
projection from He into E (1st way) and conversely with 
the graph anchored factor a from E into He (2nd way). 
We aggregated the projections via additive association 
by keeping the hit-rate maximized among the instances 
of He and E matrices. The objective function is formu-
lated as:

(22)

max
He,E

‖‖‖‖
E −

((
H⊤

e

)−1
E⊤

)⊤

He

‖‖‖‖

2

2

+ 𝜉
‖‖‖He − HeE

⊤
(
EE⊤

)−1
E
‖‖‖
2

2
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Fig. 2   Conversion of prominent Meta-Paths to Hashed Tracks of Binarized Information. Abbreviations used: MP – Meta Path, ep – Entity Path 
(one relation distance between two nodes), r – relation, eh & et – Head & Tail entities respectively
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Similarly, we projected Hr and R into each other by defin-
ing through the following expression:

Where ξ shows a hyper parameter used to counterbalance the 
projection impact on both sides. After the required projections, 
we again applied dProb via Eq. (19), to attack the hash-buckets 
via function calls H(α) to directly retrieve the required hash-
codes and return them to the presentation module.

Where R represents the sequential retrieval, α shows the index 
of fc to hit the target, H represents the hash-bucket and β is the spe-
cific hash-code being retrieved during the Hash-Hit in Eq. (19). In 
case of Hash-Miss, we call LS function exactly from the location 
in the bucket that returned 0 to the 1st call, and try to retrieve the 
required code in a margin of 3 indices above and below the loca-
tion of Hash-Miss. The LS expression for retrieval is described as:

Where R̂𝛼,𝛽 is Relevance between α and β, Ru is mean 
of all user references, Hi is the corresponding hash-buckets 
of the very specific hash-codes, Y = N(i)sim𝛼,𝛽×(R̂𝛼,𝛽−𝛿i) and 
T = N(i)∣sim�,i∣.

Any set of bits Δ ∈ {−1, 1}𝜇 ∣ Δ ⊂ HB ∧ {−1, 1}𝜇 ∈ E 
represents a matrix of binary instances. In {−1,   1}μ, where 
μ = nb × k, each tuple is a hash-code of instance ni of nb dimen-
sion and k is the total number of instances. In order to preserve 
the semantic relevance among the representations of identical 
instances and to optimize their entropy, we exploit un-correla-
tion of each bit as ∆∆⊤ = Ιn and balance of each bit as ∆bk = 0, 
where ∆∆⊤ is a dot product to acquire the unity diagonal index 
Ιn of vector of bk with a length k having all ones as b = 1. Typi-
cally, to make the objective function to retrieve the identical 
hash-codes in the maximum number of its iterations, un-corre-
lation demands to preserve the condition that each Δ-row must 
not be co-related with any other row-index of ∆ by ignoring the 
concern of correlation of the column-index; whereas, balance 
demands to preserve the condition that each bit must demon-
strate 1 in half of the frequency of its occurrences. We applied 
these constraints through the extended normalization technique, 
i.e., Elastic Net Regularization (ENR) [43].

4.3 � Presentation module

This module triggered the hash calls; and in return collected, 
IDfied and stored the responses wrt the function calls in the 

(23)

max
Hr ,R

‖‖‖‖
R −

((
H⊤

r

)−1
R⊤

)⊤

Hr

‖‖‖‖

2

2

+ 𝜉
‖‖‖Hr − HrR

⊤
(
RR⊤

)−1
R
‖‖‖
2

2

(24)R�,� = H(�)

(25)R̂𝛼,𝛽 =
Ru +

∑K

i=1
∈ Hi(𝛼,K) ∩ Y

∑K

i=1
∈ Hi(𝛼,K) ∩ T

result pool. Thus, the received hash-codes about the inter-
entity interactions are processed and potential preferences 
are generated as;

Where 𝛿(u,v) is the required preference score from user 
u to the potential item v, φ is multilayer perceptron, ⨂ is 
focus projection operator and, hu and hv are the hash-codes 
of the concerned information instances of users and items 
(i.e., the source and destination h-codes), and R�,� and R̂𝛼,𝛽 
are hash hit and miss expressions, respectively. We adopted 
an equally divide and conquer strategy on each higher layer 
by overwhelming the hidden units to model the abstracted 
information. We applied Swish to activate the hidden layers 
and to regulate the outcomes of 𝛿(u,v) between 0 and 1 wrt the 
Elastic Net Regularization. Finally, based on the predicted 
preferences about the potential interests of the users, this 
module generated the recommendation results.

4.4 � Optimization

ENR is aggregation of ridge and lasso coefficients, i.e., ℓ1 
and ℓ2 norm regularizations respectively, to generate an opti-
mized output. ENR creates λ elastic net by tuning α param-
eters to 0 for ridge and 1 for lasso coefficients. In ENR, we 
selected α between 0 and 1 to optimize the elastic-net7 to 
effectively shrink the coefficients and to set them to 0 for 
dealing with the sparse selections [44]. In overall regulariza-
tion, we applied ENR to optimize the experimental setup via 
the following loss function.

Where β represents the retrieved instances, x and y are the 
classes of present and required instances, α is the coefficient 
of ENR-regularization set for fc, and λ is a hyper-parameter 
to counter-balance the impact of loss.

4.4.1 � Testimony loss

Transformation outputs fall in two categories wrt comple-
tion, i.e., correctly transformed and reported with 1, and 
faced some issue and reported with 0. The correctly trans-
formed instances belong to pool |(k) , and rest are considered 
as the transformation forfeiture (loss), that is defined as:

(26)𝛿(u,v) = 𝜑

[(
hu, hv

)
⊗

(
R𝛼,𝛽 , R̂𝛼,𝛽

)]

(27)J
(
�1, �1,… , �

m

)
=
∑n

i=1

(
y
i
−
∑m

j=1
x
ij
�
j

)2

+ �

(
�
∑m

j=1
|�| + 1 − �

2

∑m

j=1
�2
j

)

(28)F
TF

=
�

(ti)∉|
(k) log

�
1 − f

�
x
t
· �

�
x
t

���
−
�

(ti)∈|
(k) log

�
f
�
x
t
· �

�
x
t

���
+ �‖Ω‖2

2

7  The term is “elastic” because weightage of any or all regulariza-
tion-parameters can be adjusted according to the requirements of the 
experimental setup.
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Where FTF is the testimony of transformation forfeiture, 
t is the index of transformation, f (x) = W|(k) + b , λ is ENR 
coefficient, Ω is the set of model’s parameters and ‖·‖2

2
 is 

Euclidian norm.

4.4.2 � Interaction loss

In information retrieval, the observed interactions between 
user and item are considered as 1 and not-observed (or miss-
ing) interactions as 0. The 1 s possess upper edge in loss 
declaration as compared to 0 s because they contribute to 
preference generation [45]. The testimony of optimal inter-
action loss is expressed as:

Where I1 and I0 are the observed and un-observed inter-
actions among users and items, respectively.

4.4.3 � Training

According to [46], we optimized the overall loss via SGD8 
that streamlines learning-rate according to the absolute-
value of the concerned gradients. We trained hyper-param-
eters via back propagation by maximizing the log-likelihood 
of (u, v) ∈ I1 as:

Where Π operates the swish activator that is triggered via 
softmax-function as:

4.4.4 � The overall loss (forfeiture)

Collectively, the overall loss belongs to four different 
aspects of the proposed approach; i.e., (i) Relevance calcu-
lation FRel , (ii) Translation FTL , (iii) Transformation FTF , 
and (iv) Decoding FDec . For (i), we declared relevance 
error-ratio between the relevant and the irrelevant nodes as 
F

Rel
=
∑

∀Y∉G log [1 − (Rel(Y) · �Rel(Y))] −
∑

∀Z∈G log [Rel(Z) · �Rel(Z)]  W h e r e 
Y = (a, b) are the nodes that are mutually irrelevant – suggested 
by the function, and Z =

(
n
t
, n

c

)
 are relevant ones. For (ii), we 

declared F
TL

=
∑

∀B∉Ḡ log
�
1 − (g(B) · 𝜎g(B))

�
−
∑

∀A∈Ḡ log
�
g(A) · 𝜎g(A)

� 
where B ∣ B = (a, p, b) describes a triplet that is invalid because 
the facts in a or b or both are either unreadable or missing. 
Although the required information is automatically inserted 

(29)F
IL
=
∑

(u,j)∈I0
log

[
1 −

(
𝛿(u,j) · 𝜎

(
𝛿(u,j)

))]
−
∑

(u,v)∈I1
log

[
𝛿(u,v) · 𝜎

(
𝛿(u,v)

)]

(30)Ytrain =
∑S

s=1

∑
(u,v)∈I1

log Π
(
�̂(u,v) ⋅ �

(
�̂(u,v)

))

(31)

Π
�
𝛿(u,v) · 𝜎

�
𝛿(u,v)

��
=

exp
�
𝛿(u,v) · 𝜎

�
𝛿(u,v)

��

∑
∀(u,V)∈I1 exp

�
𝛿(u,V) · 𝜎

�
𝛿(u,V)

��

to the concerned representations by the regularization-layer 
of the translator based on the structure of triplets, yet the tri-
plets are not-validated by the triplet-validator [47], whereas 
A =

(
nt, p, nc

)
 is a validated triplet. For (iii), FTF is declared in 

Eq. (28), and similarly for (iv), FIL is given in Eq. (29). There-
fore, FH−SAGE = FRel + FTL + FTF + �FIL is the total loss of 
the proposed approach; where η is a hyper parameter used to 
counter-balance the impact of overall loss.

4.4.5 � The time complexity

Collectively, the Time Complexity (TC) belongs to five dif-
ferent aspects of H-SAGE; (i) Rel, (ii) Meta-Path aggrega-
tion, (iii) Translation and Transformation, (iv) Hashing on 
Hit, and (v) Hashing on Miss. For (i), the TC of entity-rele-
vance is O(|Rel|d2) and that of semantic-relevance is 
O(|SRel|d) where, SRel is semantic-Relevance. So, the total 
TC of (i) is O(|Rel|d2 + |SRel|d) ≃ O(|Rel|d2). For (ii), we col-
lected the facts wrt aggregation of meta-paths from (i), that 
possesses the TC of modeling entities to meta-paths and 
meta-pa ths  to  in f luen t ia l  g raph .  Therefore , 
O(|pN|d + |plogN|d) and O(|℘M|d + |℘logM|d) are TCs of 
aggregation of paths and meta-paths respectively. So, the 
total TC of (ii) is O(|pN +  ℘ M|d + |plogN +  ℘ logM|d) ≃ O(
|C|d + |logC|d), where p is path, N is number of paths in 
meta-path, ℘ is meta-path, M is number of meta-paths in the 
influential graph and C is constant. Similarly, for (iii), the 
TC for translation is O

(||Ḡ||d2
)
 because it belongs to the con-

struction module in offline processing, we already discussed 
it in (i); and in case of transformation, it possesses offline 
linear computing time of O

�∑k

i=1
��Ḡ��di

�
 , where Ḡ is the 

influential graph. For (iv), TC is O(1), and for (v), TC is 
O
�∑3×3

i=1
�H�bi

�
 , where H is hash-code and b is bucket. By 

adding the TCs of all parts, we have �M�
∑S

s=1
��Ḡs

��d2s ≃ O
�
n2
�
 

as the highest optimal TC of non-hashing part of H-SAGE; 
that is not always executed. On the other hand, TC of Hash-
Hit and Hash-Miss is O(1) and O

�∑3×3

i=1
�H�bi

�
≃ O(n) 

respectively. Thus, the overall TC of H-SAGE is feasible for 
experiments on preprocessed datasets.

Concerning to the individual TC of the proposed algo-
rithms, we provide statement-wise computational time t(n) 
and total computational time T(n) of each algorithm in the 
following section.
Algorithm 1  In this algorithm, we fetch prominent meta-paths 
in the raw data and inter-connect them to construct the subgraph. 
We mention the t(n) as: foreach (nc, nj) pair do; t(n) = n. The TC 
of all statements in the outer-loop is t(n) = n, but these statements 
are not involved in the sequential computation, therefore, their 
t(n) = 1. In the inner block; while  (h !  = H)  do; t(n) = n, 
nj ← nearest N

(
nc
)
 ; t(n) = n + 1, if(cmp(nc, nj) > ϑ; t(n) = 2n − 1, 

if
|||N

(
nj
)||| > 0 ; t(n) = log n, identify & store ℘ as ℘ [ ] ← ℘i; 

8  Stochastic Gradient Descent
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t(n) = n, Rest, in all of the k statements; t(n) = n = kn. The TC of 
the inner block is T(n) = n + n + 1 + 2n − 1 + log n + kn = 5n + kn 
+ log n, and the total TC via the outer loop is T(n) = n(5n + kn + 
log n) = 5n2 + kn2 + nlogn ≅ O(n2).

Algorithm 2  This algorithm is based on YES/NO strategy 
in a sense the required hash-code FOUND/NOT-FOUND 
to move that to the hash-buckets. In other words, the inner 
calculations rely on discrete values having no concern with 
the sequential processing and management. The t(n) is as: 
do; t(n) = n; is initiator, foreach

(
nc, nj

)
inM do ; t(n) = n, 

func N2N-P; t(n) = n, for i = 1 to K wrt H(hc, hj) do; t(n) = n, 
P
(
Ncj|hc, hj

)
= ΦNcj · Ψ1−Ncj in Eq. (17); t(n) = log n, 

P
(
Pcz|hc, hz

)
= ΦPcz · Ψ1−Pcz from Eq. (18); t(n) = log n, 

P
(
Ncj|hi ∣ i = 1, 2,… ,K

)
 in Eq. (19); t(n) = constant, return 

P
(
Ncj|hc, hj

)
 ; t(n) = n, store P

(
Ncj|hi

)
 in bucket i; t(n) = n, 

For rest of the k statements; t(n) = kn. Hence expressively, 
the total TC is T(n) = n(n(klogn) + kn) = n2klogn + kn2 ≅ O(
n2); but this algorithm have no sequential processing. For 
each outer-loop, the instant-inner loop is just iteration if 
there is no sequential processing, deem the computation in 
such nested loops with additive property as T(n) = O(n + n) 
instead of multiplicative property as O(n ∗ n). Thus, in our 
case the overall T(n) is n + n + klogn + kn ≅ O(n).

Algorithm 3  In this algorithm, we retrieve the target hash-
code via Hash-hit or Hash-Miss. The t(n) is: do; t(n) = n; it 
is basically the initiator, foreach index α in P do; t(n) = n, 
func H-Retrieval; t(n) = n, for i = 1 to K wrt Hi do; t(n) = n, 
β in Eq. (19); t(n) = constant; if it gives 1 (Hash-Hit), β; 
t(n) = log n; if it gives 0 (Hash-Miss), In case of 0, we need 
to do the following process: R̂𝛼𝛽 in Eq (25); t(n) = log n, 
For rest of the k statements; t(n) = kn. Hence based on 
the discussion in Algorithm  2, in case of Hash-Hit, 
T(n) = n(constant) ≅ O(1), because β gives 1, and an indi-
cation along-with the target hash-code is sent to the main 
function saying that this hash-code has matched and control 
is also transferred to the main function, therefore, the TC 
of Hash-Hit is O(1). On the other hand, during the Hash-
Miss, β gives 0, and the statement after the else statement is 
executed for locality-sensitive hashing. Therefore, the total 
TC in Hash-Miss is T(n) = nlogn ≅ O(n).

5 � Experiments

In this section, we deal with the following research questions 
– the main objectives of this work.

RQ1: Can H-SAGE outperform the-state-of-the-art meth-
ods wrt performance?

RQ2: Can H-SAGE outperform the-state-of-the-art meth-
ods wrt computational complexity?
RQ3: How is the performance of H-SAGE in dealing with 
the issues of data-sparsity?
RQ4: What is the impact of different modules of H-SAGE 
on performance?
RQ5: Is H-SAGE sensitive to the different adjustments 
of hyper-parameters?
RQ6: Can H-SAGE provide explainable personalized 
recommendations?

5.1 � Experimental setup

In this section, we discuss the exploited datasets and the 
applied evaluation techniques (metrics). Also, we define 
the baseline methodologies selected for comparison with 
H-SAGE and the environment settings of hyper-parameters.

5.1.1 � Data and data pre‑processing

We came across extensive experimental work on three real 
world benchmark datasets, i.e., Amazon-Book, Last-FM 
and Bing-News to evaluate the performance of H-SAGE. 
Amazon-Book9 contains users, items, interactions and over 
20 M user ratings (in a range of 1 to 5) about the books. It 
is retrieved from Amazon-product’s data – a widely used 
knowledge base for various product’s recommendation 
[48]. Last-FM10 contains information about the perfor-
mance of musicians and previous music-listening records 
of the interacted users (i.e., music-tracks). The tracks are 
considered as items. The information is retrieved from 
online music-system, i.e., Last.fm [49]. Bing-News,11 also 
known as MIND12 - an assemblage of implicitly collected 
user-feedbacks from the server-side logs of MS News,13 
contains users with their feedbacks and small statements of 
news with titles from December 22, 2020, to May 30, 2021, 
according to [50]. There exist many other benchmark and 
ordinary datasets having various versions or variations like 
Movie-Lens (e.g., Movie-Lens-100 K, Movie-Lens-1 M, 
Movie-Lens-10 M, etc.), YELP (e.g., Yelp-2013, 2014, 
2018, etc.), Douban-Book, Book Crossing, KKBox, CEM, 
Dianping-Food, etc. But, by keeping the space limitations in 
our consideration, we selected only these three benchmark 
datasets to perform the experiments because they are popu-
lated and hereby commonly utilized datasets. In particular, 

9  http://​jmcau​ley.​ucsd.​edu/​data/​amazon/
10  http://​files.​group​lens.​org/​datas​ets/​hetre​c2011/​hetre​c2011-​lastfm-​
readme.​txt11  https://​www.​bing.​com/​news
12  MIcrosoft News Dataset, https://​msnews.​github.​io/
13  https://​micro​softn​ews.​msn.​com/
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they contain explicit/implicit ratings from the users towards 
items in different ranges (i.e., 1–5/1–10) and provide posi-
tive argumentation to augment the decision-making process.

In the datasets, although we have users-to-items 
interactions, we are required to create an enriched item 
knowledge-base for each dataset with or without the 
help of an external knowledge-base – to enrich the entity 
representations of the datasets. Therefore, for Amazon-
Book, we preprocessed the actual dataset to highlight the 
interactions between users and items. As initial input, we 
used ID-embeddings of entities and considered 1 if we 
obtained any interaction between users and books. Fur-
ther according to [50], we identified triplets with word 
“book” anywhere in the context of the dataset, validated 
via the imposed constraint of RAV14 >0.5 among the 
nodes, and retrieved their entities and relations to enrich 
the entities of the local subgraph. To maintain the con-
secutive streams of relevant information in the graph, 
we enriched Meta paths by incorporating such triplets in 
the concerned sequence that had “book” in minimum at 
3 places out of 5 in ℘. We guaranteed feasible relations 
among entities in the ℘ via unique triplet identifiers, i.e., 
TIDs, to preserve the synchronized relations among old 
and new information instances in the Meta-paths. To fur-
ther enrich the underlying information, we kept the RAV 
fixed and used a formatted query (i.e., <eh, r, et >  =  <  ∗ . 
book. ∗ , ∗ . book. ∗ , ∗ . book. ∗ >) to retrieve feasible and 
relevant information from MS-Satori. Finally, we used 
TransE [47] to validate triplet’s granularity and redun-
dancy and discarded the inappropriate instances.

According to KB4Rec,15 we retrieved map-able informa-
tion instances and their mappings from DBpedia-ontology16 
and exploited to enrich the entity-information of the local 
subgraph of Last-FM. We aligned the data-items of Last-FM 
according to the highlighted information instances of the 
external KG, and retrieved only those instances that have 
a relation-frequency rf ≥ 3 wrt their first-order neighbors. 
We continued the process under the applied constraints to 
enrich each data-item in the local subgraph up to the Meta-
path extent of 5 hops from every current item. Moreover, for 
Bing-News we mapped the embeddings of corresponding 
items of the subgraph, via concatenation of item-IDs, to the 
embeddings of string-tokens of titles and statements of news 
retrieved from MS-Satori. The information in string-tokens 
of news-titles and statements is greater than information in 
titles of books and music-tracks; thus, Bing-News is com-
paratively more feasible for effective decision making.

We removed those items that had no relevant map-
pings in the external KGs as well as users with ratings 
<5, and calculated the data sparsity via “subtracting the 
ratio of interactions to the product of users and items 
from 1” as sp = 1 −

I

u×v
 . Moreover, we divided the data-

sets in 70%, 20% and 10% of ratings as Training, Testing 
and Validation, respectively. The statistics are displayed 
in Table 1, as well as we released and published the data-
sets in Mendeley-Data entitled “H-SAGE-Dataset”.17

5.1.2 � Evaluation

We used well-known CTRP18 and top-K recommenda-
tion for performance evaluation. In CTRP, we calculated 
the predictive possibility of next click wrt the testing 
data given the learning interactions of training data. We 
applied (AUC & Acc)19 for the performance evaluation 
of H-SAGE and baseline methods wrt CTRP. Similarly, 
we obtained top-K items with having the highest proba-
bility of the next possible click via utilization of training 
data-interactions for each instance of user in the testing 
data. We applied (Prec, Rec, NDCG)@K20 for the perfor-
mance evaluation of top-K recommendation.

5.1.3 � Comparison

To evaluate H-SAGE, we selected eight state-of-the-art meth-
ods from various relevant implementation and application 

Table 1   The Statistics of Datasets Utilized

Literals Datasets

Amazon-Book Last-FM Bing-News

Domain Books Music News
Users u 55,255 1865 40,237
Items v 20,235 6526 32,562
Interactions I 232,562 68,456 192,356
Entities 77,253 12,039 76,586
r-Types 29 58 45
r-Counts 122,562 29,650 115,620
Sparsity sp 0.999792 0.994375 0.999853
Training Ytrain 162,793 47,919 134,649
Testing Ytest 46,512 13,691 38,471
Validation Yval 23,256 6845 19,235

14  Relation-Assurance-Value Factor
15  A Dataset for Linking Knowledge Bases with Recommender Sys-
tems
16  https://​wiki.​dbped​ia.​org/​servi​ces-​resou​rces/​ontol​ogy

17  https://​doi.​org/​10.​17632/​bszht​7j9hd.1
18  Click Through Rate Prediction
19  Area Under the roc (Receiver Operating Characteristic) Curve & 
Accuracy
20  Precision@K, Recall@K, Normalized Discounted Cumulative 
Gain @K
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perspectives. PER [8] designates user to item and item to 
item relations and represents the heterogeneity of KG based 
on features extraction among nodes via Meta path inter-
connections. CKE [18] formulates aggregated Bayesian 
framework to empower matrix factorization with the help 
of TransR-based embeddings and combines this knowledge 
base with CF-mechanism for recommendation. MCRec [13] 
co-attentively supports HIG and attains the context and actual 
representations of entities via meta-path-based random walk 
technique. RippleNet [23] aggregates path and embedding-
based recommendation methods and enriches the representa-
tions of users by adding the representations of items to the 
paths interconnecting users via propagation. KGAT​ [25] uti-
lizes TransR to obtain the initial representations of users and 
items and performs representations propagation. It enriches 
entity representations with the information of correspond-
ing neighbors of items. AKGE [26] models higher order 
relations though information propagation on less-distance-
similarity-based self-constructed subgraph. NACF [27] col-
lects neighborhood information of the entities to mine the 
potential relations between users 0an0d items to generate the 
potential preferences for their unobserved items. DKEN [28] 
exploits the impact of data exchange between implicit and 
explicit semantics of information in user to item interactions 

and KG-based features respectively, through CIS21 layer to 
preserve a better grip on semantical and hierarchical structure 
of the information in KG.

5.1.4 � Parameterization

We tried hyper-parameters wrt different tentative settings, 
and finalized an optimized environment of parameteri-
zation via Grid-Search technique [46] as summarized in 
Table 2; literals are defined in the caption of Table 2. We 
maintained μ between −0.2 to 0.8 and b = 1024 for all data-
sets. Moreover, we selected optimized parameter-values 
for all datasets from the collections of candidate values, as 
η = 7 × 10−4 out of {5 × 10−2, 5 × 10−3, 7 × 10−3, 7 × 10−4}, 
λ = 10−7 out of {10−10, 10−9, …, 102, 103}, and ε = 10−3 out of 
{10−4, 10−3, 10−2, 10−1}. Similarly, we kept s as 3, 4, 4, d as 
32, 64, 64, and K as 16, 32, 32, for Amazon-Book, Last-FM 
and Bing-News respectively. We kept d unchanged for the 
implementation of baseline methods and utilized grid-search 
technique to adjust rest of their parameters. We repeated the 
experiments thrice and reported averages of the achieved 
results.

Table 2   The settings of hyper parameters wrt the experimental Envi-
ronment. Literals: μ – Dropout Ration, b – Batch Size, η – Learning 
Rate, λ – L2 Regularization Weight, ε – KGE Weight, s – hop-length 

wrt path-steps, d – Dimensions of Embedding, K – The sampling size 
of influential neighboring

Datasets Environment Setting

Amazon-Book μ = [−0.2, 08], b = 1024, η = 7 × 10−4, λ = 10−7, ε = 10−3, s = 3, d = 32, K = 16
Last-FM μ = [−0.2, 08], b = 1024, η = 7 × 10−4, λ = 10−7, ε = 10−3, s = 4, d = 64, K = 32
Bing-News μ = [−0.2, 08], b = 1024, η = 7 × 10−4, λ = 10−7, ε = 10−3, s = 4, d = 64, K = 32

Table 3   CTRP Results: 
Evaluated wrt AUC and Acc. 
Terms: Upper-Bound (α), 
Lower-Bound (β), Mean ( x)

*The numbers in bold represent the most significant values among the identical comparing outcomes, and 
the numbers in italic with '*' describe the second important values accordingly

Approaches Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

PER 0.6210 0.5812 0.6129 0.5866 0.5153 0.4932
CKE 0.6419 0.6056 0.7389 0.6632 0.5432 0.5011
MCRec 0.6421 0.6287 0.7412 0.6701 0.5814 0.5633
RippleNet 0.6646 0.6419 0.7611 0.6787 0.6418 0.6002
KGAT​ 0.6789 0.6498 0.7691 0.6823 0.6796 0.6437
AKGE 0.6641 0.6399 0.7785 0.6891 0.6632 0.6411
NACF 0.7063 0.6734 0.7913 0.7232 0.6952 0.6741
DKEN 0.7309* 0.6911* 0.8019* 0.7415* 0.7215* 0.6959*

H-SAGE 0.7597 0.7208 0.8313 0.7727 0.7436 0.7189
Improved: (%)-age α 03.79 04.12 03.54 04.04 02.97 03.20

β 03.94 04.30 03.67 04.21 03.06 03.31
x 03.87 04.21 03.60 04.12 03.02 03.25

21  Cross Information Share
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5.2 � Comparative study (RQ1)

Formally, Table  3 represents the complete results of 
CTRP wrt AUC and Acc, whereas Table 4 demonstrates 
the results of top-K recommendations wrt (Prec, Rec and 
NDCG)@K = 5 and 10 only. Regarding top-K recommen-
dation, we clarify that we performed experiments on eight 
different variations of K, i.e., 1, 2, 5, 10, 25, 50, 75, 100, 
but due to the space limitations, we could only present the 
results via K = 5 and 10 in Table 4, and the complete out-
come of this process is shown in Fig. 3.

In this section, we discuss the results analysis of the con-
ducted experiments wrt the comparative study. The proposed 
approach has outperformed the baselines on all datasets with 
decent margin of improvement, shows that H-SAGE is capa-
ble of providing effective recommendations due to its strong 
mechanisms of data filtration and information-hashing.

H-SAGE preserves meaningful information via dedicated 
meta-paths-based on the inter-entities semantic relevance. It 
relies on semantic relevance instead of depending on short 
distance or fixed weights among entities. In DKEN [28]; 
first, there is no mechanism to filter out the irrelevant infor-
mation. Second, redundant data is provided to two paral-
lel layers simultaneously. Third, handling more instances 
of data on different places increases the computational 

overhead. Although it can cause space complexity, currently 
it’s not a big issue on smaller datasets. In NACF [27], atten-
tion mechanism is used to assign weights in the subgraph; 
and similarities among them are calculated based on the 
assigned weights, regardless of the syntactic or semantic 
relevance among entities or their mutual relations. NACF 
is outperformed by DKEN notifying that incorporation of 
CIS and KEN layers contributed more to the performance 
of DKEN during distribution and aggregation of informa-
tion. Likewise, Generalization-Layer22 enhanced the gener-
alization capability in learning high level information fea-
tures from the data. During the construction of subgraph 
in AKGE [26], the stance lesser is the distance between 
two entities in the Euclidian space, greater is the similar-
ity between them is considered as the basic rule to find the 
similarity among entities in KG, caused the emergence of 
noise to the information.

In KGAT [25], extensive propagation is performed 
and information is gathered without the application of 
any noise filtration constraint caused noise emergence to 
the local knowledge base. Moreover, KGAT fails to effi-
ciently attain the hierarchical and sequential structure of 
nodes in KG due to its attentive-embedding-propagation 

Table 4   Top-k Recommendations via Prec, Rec & NDCG. Terms: Upper-Bound (α), Lower-Bound (β), Mean ( x)

a RippleNet. *The numbers in bold represent the most significant values among the identical comparing outcomes, and the numbers in italic with 
'*' describe the second important values accordingly

Datasets & Evaluation 
@K = 5, 10

Comparison and Improvements of H-SAGE wrt the Baseline Approaches

PER CKE MCRec RNeta KGAT​ AKGE NACF DKEN H-SAGE Improved: (%)-age

α β x

Amazon-Book Prec@05 0.057 0.060 0.067 0.074 0.077 0.078 0.090 0.095* 0.110 13.64 15.79 14.71
Prec@10 0.052 0.050 0.060 0.076 0.080 0.080 0.088 0.094* 0.105 10.48 11.70 11.09
Rec@05 0.027 0.031 0.030 0.032 0.035 0.035 0.039 0.040* 0.042 04.76 05.00 04.88
Rec@10 0.029 0.032 0.034 0.035 0.037 0.040 0.043 0.045* 0.048 06.25 06.67 06.46
NDCG@05 0.031 0.031 0.031 0.032 0.033 0.034* 0.034* 0.034* 0.036 05.56 05.88 05.72
NDCG@10 0.032 0.032 0.034 0.035 0.037* 0.035 0.037* 0.037* 0.039 05.13 05.41 05.27

Last-FM Prec@05 0.057 0.060 0.067 0.064 0.073 0.075 0.073 0.077* 0.081 04.94 05.19 05.07
Prec@10 0.050 0.053 0.060 0.061 0.064 0.064 0.066 0.068* 0.071 04.23 04.41 04.32
Rec@05 0.020 0.030 0.040 0.050 0.050 0.040 0.050 0.053* 0.058 08.62 09.43 09.03
Rec@10 0.030 0.040 0.050 0.060 0.070 0.060 0.080* 0.077 0.091 12.09 13.75 12.92
NDCG@05 0.030 0.033 0.045 0.045 0.050 0.045 0.055 0.057* 0.063 09.52 10.53 10.03
NDCG@10 0.060 0.080 0.090 0.100 0.110 0.114 0.119* 0.113 0.130 08.46 09.24 08.85

Bing-News Prec@05 0.004 0.004 0.006 0.007 0.007 0.007 0.009 0.010* 0.011 09.09 10.00 09.55
Prec@10 0.004 0.004 0.006 0.007 0.008 0.008 0.010* 0.010* 0.011 09.09 10.00 09.55
Rec@05 0.027 0.027 0.028 0.032 0.035 0.035 0.039 0.040* 0.045 11.11 12.50 11.81
Rec@10 0.028 0.029 0.030 0.035 0.037 0.036 0.043 0.045* 0.055 18.18 22.22 20.20
NDCG@05 0.010 0.011 0.015 0.017 0.023 0.025 0.029 0.033* 0.037 10.81 12.12 11.47
NDCG@10 0.050 0.070 0.100 0.110 0.110 0.115 0.120 0.125* 0.132 05.30 05.60 05.45

22  DNN Layer is Generalization Layer in DKEN
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– a reason that AKGE outperformed it. But, both AKGE 
and KGAT are outperformed by NACF in about all 
cases, justifying that the incorporation of similarity 
mechanism is in favor of performance. Moreover, the 
propagation of attentive embedding and aggregation is 
capable of generalizing the corresponding frameworks 
smoothly as compared to the straight-propagation and 
aggregation, and the meta-path-based random walk tra-
versal techniques in RippleNet [23] and MCRec [13] 
respectively. It is why AKGE and KGAT outperformed 
RippleNet and MCRec wrt different aspects. Counter-
wise, MCRec, CKE [18] and PER [8] are outperformed 

by RippleNet in majority of their comparisons intensi-
fying the supremacy of information propagation over 
the limited meta-path-based or simple embedding and 
regularization-based methods. Further, compared to 
CKE and PER, MCRec comparatively performed well 
highlighting the significance of information selection 
technique of Meta-path-based methods over simple 
regularization or embedding-based methods. Finally, 
although it’s evident from the empirical values that CKE 
has a tiny upper edge over PER in some cases, their aver-
age performance is almost indistinguishable according 
to the experiments.

(a) Prec@K on Amazon-Book (b) Rec@K on Amazon-Book (c) NDCG@K on Amazon-Book

(d) Prec@K on Last-FM (e) Rec@K on Last-FM (f) NDCG@K on Last-FM

(g) Prec@K on Bing-News (h) Recall@K on Bing-News (i) NDCG@K on Bing-News

Fig. 3   Result-Analysis of top-K recommendations wrt (Prec, Rec, NDCG)@K on the three Mentioned Datasets
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5.3 � Complexity study (RQ2)

We tabularized the comparison of all approaches wrt the 
executional time-complexity, as shown in Table 5. For 
instance, PER and MCRec defined complexities but not 
defined modules or layers, so, we only put ticks under M 
/ L Mentioned and mentioned their complexities under 
Defined Time Complexity. We put information of CKE, 
NACF and DKEN based on their defined pseudocodes; 
CKE and NACF neither defined complexities nor men-
tioned modules or layers; whereas, DKEN not defined 
its complexity but mentioned its layers. Moreover, Rip-
pleNet, KGAT and AKGE defined complexities as well 
as mentioned their modules. Analysis demonstrates 
that the overall complexities of PER, CKE, MCRec and 
NACF are greater than O(n2).

Similarly, in both modules RippleNet and in one M/L 
KGAT, AKGE and DKEN each, undergo TC greater 
than O(n2). Moreover, one M/L of KGAT, AKGE and 
H-SAGE each, and two of DKEN possess TC of O(n2); 
and one M/L of KGAT, AKGE, DKEN and H-SAGE 
undergo TC of O(n). Formally, the worst TC of H-SAGE, 
i.e., O(n2), is experienced by its first layer due the calcu-
lation of similarity; but, its second layer can experience 
time complexity of O(1) in case of Hash-Hit, otherwise 
O(n) in Hash-Miss. Conclusively, H-SAGE has the mini-
mum contribution to Table 5, we can claim that it has 

outperformed the-state-of-the-art methods in comparison 
of the computational time complexity.

5.4 � Sparsity study (RQ3)

The experimental results (i.e., Tables 3 and 4, and Fig. 4) 
demonstrate that the performance of H-SAGE is not bad 
on sparse datasets as well. For AUC in Fig. 4, the perfor-
mance continuously increased up to 70% of data-utilization 
on all datasets, where H-SAGE attained the highest perfor-
mance. After this till the end, the performance on all datasets 
decreased gradually except Amazon-Book that abruptly fell 
down after 90% utilization of data, as shown in Fig. 4(a). 
On the other hand, it is evident from Fig. 4(b) that the error-
rate wrt AUC is considered as the additive inverse of the 
performance of AUC. Similarly, for Acc, the performance 
on Amazon-Book and Bing-News gradually increased up 
to 70% of the data where the performance is highest. How-
ever, on Last-FM from 20 to 55% of the data, the Acc kept 
variating, but achieved the highest performance on 60%. 
After the highest values, the performance wrt other data-
sets decreased gradually except Bing-News that abruptly 
degraded after 80% of data, as in Fig. 4(c). It implies that 
while dealing with larger sizes of information of news titles 
and snippets, the model loosed its grip on information struc-
ture that caused overfitting. Contrariwise, from Fig. 4(d), 
the error-rate on Acc is additive inverse of its performance. 

Table 5   Study of Time 
Complexity Comparison of the 
proposed Approach with the 
baseline approaches. Terms 
used: M – Modules, L – Layers, 
T – Type of the mentioned item, 
X – No. of Modules or Layers

Approaches M / L Mentioned Defined Time Complexity Time Complexity of M / L

No Yes ≥O(n2) O(n2) O(n) O(1)

T X

PER ✓ O(mn2) ✓
CKE ✓ Not Defined ✓
MCRec ✓ O(lLN + lN log N) ✓
RippleNet M 2 O(YHKHd2 + Gd2) 2

O(YHKH + 1d + YHKHd2)
KGAT​ M 3

O

�
��G2

��d2 +
∑L

i=1
�G�d

i
d
i−1 + �G�d

i

�
1 1 1

AKGE M 3 O(PQ + QlogQ) 1 1 1

O

�
�R�

∑K

k=1
��Es

��d2
�

NACF ✓ Not Defined ✓
DKEN L 4 Not Defined 1 2 1
H-SAGEMiss L 2 �M�

∑S

s=1
��Ḡs

��d2s ≃ O
�
n
2
� 1 1

 
O

�∑3

i=1
�H�b

i

�
≃ O(n)

H-SAGEHit L 2 �M�
∑S

s=1
��Ḡs

��d2s ≃ O
�
n
2
� 1 1

O(1)
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Finally, we claim that H-SAGE is capable to effectively deal 
with the limitations of data sparsity.

5.5 � Ablation study (RQ4)

In section, we demonstrate the ablation study of H-SAGE 
wrt two different applicability variations. First, wrt the 

importance of information relevance; and second, wrt the 
significance of H-SAGE’s architecture.

5.5.1 � Impact of prominent Meta‑paths

We present the comparison of the proposed Node Relevance 
Guided-walk (NRG) with four state-of-the-art path modeling 

(a) AUC with increase in Data (b) Error Rate in AUC with increase in Data

(c) Acc with increase in Data (d) Error Rate in Acc with increase in Data

Fig. 4   AUC and Acc results analysis wrt the Data-Sparsity on the proposed datasets

Table 6   The comparison of 
performance among variations 
of H-SAGE based on path 
selection techniques

The numbers in bold represent the most significant values among the comparing outcomes

H-SAGE Variants Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

H-SAGEMS 0.6832 0.6601 0.7532 0.6786 0.6656 0.6515
H-SAGEMR 0.7011 0.6689 0.7609 0.6910 0.6708 0.6602
H-SAGEMW 0.7219 0.6799 0.7723 0.6987 0.6898 0.6692
H-SAGESN 0.7342 0.6957 0.8011 0.7235 0.7029 0.6720
H-SAGE 0.7597 0.7208 0.8313 0.7727 0.7436 0.7189
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methods. First, we applied Meta-path guided Similarity 
(MS) to create subgraph with similar Meta-paths-based 
on their mutual similarity [11]. Second, we used Meta-
path guided Retrieval (MR) technique to construct local 
subgraph based on retrieval of selective meta-paths [12]. 
Third, we utilized Mata-path guided random Walk (MW) 
approach to acquire prominent paths from KG to create the 
subgraph [15]. Fourth, we used Shortest-distance steered 
Node-selection (SN) method to access salient paths to con-
struct subgraph [26].

We experimented the constructed subgraphs via H-SAGE 
under the titles of H-SAGEMS, H-SAGEMR, H-SAGEMW, 
H-SAGESN and H-SAGENRG (H-SAGE), and summarized 
the results in Table 6. The achieved outcomes express small 
variations with minimal increase in the results from SAGEMS 
to SAGEMW via SAGEMR. However, the SAGESN is a bit 
better than the previous techniques due to the utilization of 
shortest-distance-based similarity. The experimental results 
demonstrate that H-SAGE has outperformed the state-of-
the-art methods by clarifying that the relevance-based infor-
mation collection can better contribute to the performance.

5.5.2 � Impact of different modules

For an easy conduct, we verbalize H-SAGE wrt differ-
ent modules as H-SAGELS, H-SAGELH, H-SAGELS + LH, 
H-SAGENR + LS, H-SAGENR + LH, H-SAGENR + LS + LH i.e., 
H-SAGE. In case of H-SAGELS, the performance is low-
est because the locality-based hashing alone can neither 
access the higher order relations nor effectively maintain the 

required graph structure. H-SAGELH – the standalone learn-
ing to hash – is however better than LS wrt the achieved 
performance, however it cannot effectively tackle the graph 
structure in hash-miss. Moreover, H-SAGELS + LH has effec-
tively tackled the hash-miss and produced better performance 
as compared to LS or LH but still it is not satisfactory. The 
main reason of performance degradation is the occurrence 
of noise and irrelevant data in the underlying information.

Next, we applied H-SAGENR + LS and H-SAGENR + LH, 
one by one, to judge the difference in their results. Amaz-
ingly via H-SAGENR + LS, the performance is better than 
that of H-SAGELS + LH; and more amazingly, the results of 
H-SAGENR + LH are better than those of H-SAGENR + LS. At 
this point, we tried a collection of all, i.e., H-SAGENR + LS + LH, 
and achieved extraordinarily better performance compared 
to the previously discussed modules and their combinations 
with H-SAGE, as summarized in Table 7. Thus, we confirmed 
H-SAGENR + LS + LH as the proposed model, i.e., H-SAGE with 
the set of NR + LS + LH as the necessary modules.

5.6 � Sensitivity study (RQ5)

In this section, we demonstrate the impact of hyper-param-
eter’s sensitivity on the performance of H-SAGE.

5.6.1 � Length of Meta‑path in higher‑order relations

We evaluated the performance of H-SAGE based on the 
increase in hop-length s wrt the Meta-paths. We performed 
experiments on s = 1 to 5 with increase of 1 in s at each next 

Table 7   The comparison of 
performance wrt different 
variations of H-SAGE. 
Abbreviations: H-SAGELS is 
H-SAGE through LS (Locality 
Sensitive-hashing), LH 
(Learning to Hash), NR (Node 
Relevance), H-SAGELS + LH 
H-SAGE LS and LH and so on, 
& H-SAGE means H-SAGEALL 
i.e., NR + LS + LH

The numbers in bold represent the most significant values among the comparing outcomes

H-SAGE Variants Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

H-SAGELS 0.6875 0.6578 0.7698 0.7192 0.6912 0.6434
H-SAGELH 0.7099 0.6626 0.7768 0.7278 0.7007 0.6508
H-SAGELS + LH 0.7120 0.6791 0.7811 0.7332 0.7065 0.6621
H-SAGENR + LS 0.7331 0.6902 0.8023 0.7519 0.7203 0.6842
H-SAGENR + LH 0.7482 0.7099 0.8134 0.7589 0.7289 0.6923
H-SAGE 0.7597 0.7208 0.8313 0.7727 0.7436 0.7189

Table 8   The result analysis of 
H-SAGE’s performance wrt the 
Meta-path length of higher-
order relations

The numbers in bold represent the most significant values among the comparing outcomes

s Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

1 0.7326 0.7023 0.8091 0.7485 0.7101 0.6819
2 0.7506 0.7179 0.8259 0.7622 0.7298 0.7011
3 0.7597 0.7208 0.8309 0.7727 0.7436 0.7181
4 0.7547 0.7122 0.8313 0.7681 0.7388 0.7189
5 0.7101 0.6599 0.7546 0.6697 0.6755 0.6257
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iteration. In the results, we noticed a continuous and rapid 
increase in the performance up to s = 3. With a further increase 
in s, i.e., s = 4, the performance of H-SAGE still remained bet-
ter but undergone a slight downfall compared to that on s = 3 
wrt a few instances. However, on s > 4; the performance faced 
such an extraordinary downfall that on s = 5, H-SAGE under-
gone the worst performance, as shown in Table 8. Hence, we 
can conclude that on s > 4, the framework faces overfitting that 
hinders it in effectively capturing the graph structure.

5.6.2 � Length of embedding dimensions

The levels of embeddings are shown through ℓ ∣ ℓ = 2d where 
d = 1, 2, …, 7. We performed the experiments wrt d = 1 to 7 
with an increase of 1 in d for each next iteration. From the 
results, we noticed that with the increase in d, the perfor-
mance is continuously and rapidly increasing up to d = 5, 
where it acquired the highest performance as compared to 
the most of the incurred instances. With the next increase in 
d, i.e., on d = 6, though the performance of H-SAGE is still 
in a better and persisting position, a trivial decrease is under-
gone wrt a sound number of instances in the observations. 
However, on d > 6, a significant degradation is observed, 
and on d = 7, H-SAGE acquired the worst performance. 
It means that H-SAGE can generalize the representations 
effectively up to d = 6 only. Therefore, we can conclude that 
after d = 6, the framework has lost its grip on information 

structure, considered the triplet’s false granularity as valid, 
included that irrelevant data to the information and degraded 
the performance. Finally, we summarized the performance 
analysis of H-SAGE in Table 9.

5.6.3 � Sampling length of influential neighboring

We represent the levels of neighborhood sampling through 
K ∣ K = 2i where i = 1, 2, …, 7. We performed the experi-
ments wrt i = 1 to 7 with an increase of 1 in i for each next 
iteration. From the results, we observed that with increase in 
i, the performance of H-SAGE is continuously and rapidly 
increasing up to i = 5, and preserved an optimal performance 
on i = 4, 5 and 6 wrt the sampling size. However, on i > 6; a 
significant degradation is observed in the performance, and 
on i = 7; the model acquired the worst performance. The 
conclusion is similar to that of Section 5.6.2, and we sum-
marized the results in Table 10.

5.7 � Case study (RQ6)

H-SAGE is capable of providing satisfactory explanations 
about its generated recommendations. To further explain its 
working mechanism, we present a daily life recommendation 
scenario from Bing-News; that provides news suggestions to 
the users based on their previous-interactions with the online 
news catalogues via click-record. We retrieved the following 

Table 9   The result analysis of 
H-SAGE’s performance wrt 
the embedding length of entity 
representations

The numbers in bold represent the most significant values among the comparing outcomes

ℓ Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

21 0.7124 0.6675 0.7839 0.7314 0.6892 0.6723
22 0.7299 0.6835 0.8036 0.7497 0.7036 0.6860
23 0.7432 0.7018 0.8199 0.7536 0.7212 0.7011
24 0.7521 0.7156 0.8313 0.7622 0.7376 0.7127
25 0.7597 0.7208 0.8311 0.7724 0.7436 0.7189
26 0.7501 0.7125 0.8232 0.7727 0.7388 0.7117
27 0.6855 0.6432 0.7623 0.7109 0.6645 0.6433

Table 10   The result analysis of 
H-SAGE’s performance wrt the 
sampling length of influential 
neighboring

The numbers in bold represent the most significant values among the comparing outcomes

K Amazon-Book Last-FM Bing-News

AUC​ Acc AUC​ Acc AUC​ Acc

21 0.7367 0.6731 0.7823 0.7278 0.7065 0.6802
22 0.7432 0.6891 0.8067 0.7412 0.7208 0.6898
23 0.7509 0.7030 0.8235 0.7546 0.7316 0.7032
24 0.7597 0.7156 0.8313 0.7622 0.7376 0.7127
25 0.7552 0.7208 0.8311 0.7724 0.7436 0.7189
26 0.7501 0.7125 0.8232 0.7727 0.7388 0.7117
27 0.6835 0.6445 0.7456 0.6875 0.6643 0.6457
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seven random click-samples from the user’s interaction-logs 
and presented below:

C1: None is safe: Osaka, Japan also crumples under 
COVID-19 onslaught.
C2: Biden’s COVID warning: “Unvaccinated will end 
up paying the price”
C3: Biden’s remarks announcing Afghanistan troop 
withdrawal.
C4: US announces plans to cut troop levels in Afghani-
stan.
C5: Trump backs Afghanistan withdrawal, putting him 
at odds with some Republicans.
C6: COVID-19 pandemic effected the US economy 
badly.
C7: Economy grew at 6.4% in 1st quarter of 2021 – the 
massive vaccination rollout and the army withdrawal.

According to [50], we considered the heading-entities 
as instances in the text of the retrieved click samples, and 
indexed as i1 = “COVID-19 onslaught”, i2 = “COVID 
warning”, i3 = “price”, i4 = “troop withdrawal”, i5 = 
“cut troop level”, i6 = “Afghanistan withdrawal”, i7 = 
“COVID-19”, i8 = “affected”, i9 = “economy”, i10 = 
“Economy grew”, i11 = “vaccination rollout” and i1 = 
“army withdrawal”. After the required preprocessing, we 
categorized these instances into the semantically relevant 

hash-buckets-based on their likelihood, as discussed in 
Section 4.2.2. We tackled the information in the stated 
buckets through function calls. In case of hash-hit, the 
target hash-code is returned, otherwise locality sensitive 
hashing technique is applied to acquire the required hash-
codes around the location of hash-miss in the buckets. 
The working phenomenon of the case study is portrayed 
in Fig. 5. Formally, in response to the above click his-
tory, stating from the random system’s outcome, top 
three of the candidate news are copied and pasted below. 
Although the framework of H-SAGE has smoothly gener-
ated the news recommendations, it is quite evident from 
the system’s response that the performance still needs a 
sound improvement. For instance, it is well clear that N1 
is normal, N2 is ambiguous, whereas N3 is totally based 
on unrealistic assumption, as shown below.

N1: US announces troop withdrawal from Afghanistan; 
considering an economy overload.
N2: COVID: Bad to economy or Good; currently unde-
cidable.
N3: US announces troop withdrawal, due to COVID-19.

Therefore, based on demonstration of the case study wrt 
the working mechanism, we can conclusively narrate that 
H-SAGE is capable of providing satisfactory explanations 
about its generated recommendations.

Fig. 5   Case Study of a daily-based news recommendation scenario
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6 � Conclusion and future work

In this work, we proposed a novel semantic-relevance-and-
hashing guided KGE enhancement approach for recommen-
dation. We introduced Node Relevance Guided-walk (NRG) 
modeling technique to construct entity-relevance-based 
influential graph by capturing higher-order semantically rel-
evant nodes in KG. We converted the graph to hash-codes 
for implementation. We proposed dProb to place hash-codes 
in identical hash-buckets-based on their mutual likelihood 
to maximize the Hash-Hits. We also used dProb to generate 
feasible hash function-calls. For Hash-Miss, we applied LS-
hashing to extract the required hash-codes from the target 
hash-bucket around the location of Hash-Miss and return the 
information. Finally, we used a predictive interface to evalu-
ate the retrieved hash-codes, compute the preferences and 
generate the formal recommendation responses. We evalu-
ated H-SAGE on three real world datasets and compared its 
performance and time-complexity with eight baseline meth-
ods. The experimental and theoretical analysis signifies that 
H-SAGE has outperformed the-state-of-the-art methods.

In future work, we plan to exploit KGEE for drugs and 
precautionary alerts recommendation against any happened 
or happening disease/pandemic’s outspread. Further, we 
plan to enhance KGE-based retrieval of semantically inter-
linked entities and relations to further preserve actual infor-
mation structure of the triplets.
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