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Abstract The retina is one of the most developed sensing organs in the hu-
man body. However, the knowledge on the coding and decoding of the retinal
neurons are still rather limited. Compared with coding (i.e., transforming vi-
sual scenes to retinal spike trains), the decoding (i.e., reconstructing visual
scenes from spike trains, especially those of complex stimuli) is more complex
and receives less attention. In this paper, we focus on the accurate reconstruc-
tion of visual scenes from their spike trains by designing a retinal spike train
decoder based on the combination of the Fully Connected Network (FCN),
Capsule Network (CapsNet) and Convolutional Neural Network (CNN), and
a loss function incorporating the structural similarity index measure (SSIM)
and L1 loss. CapsNet is used to extract the features from the spike trains, that
are fused with the original spike trains and used as the inputs to FCN and
CNN to facilitate the scene reconstruction. The feasibility and superiority of
our model are evaluated on five datasets (i.e., MNIST, Fashion-MNIST, Cifar-
10, Celeba-HQ andCOCO). The model is evaluated quantitatively with four
image evaluation indices, i.e., SSIM, MSE, PSNR and Intra-SSIM. The results
show that the model provides a new means for decoding visual scene stim-
uli from retinal spike trains, and promotes the development of brain-machine
interfaces.
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1 Introduction

The human beings have the following five senses: eyes to see, tongue to taste,
nose to smell, ears to hear, and skin to touch. However, 80% of these sensa-
tions are perceived visually. Thus, if a few of the sensations such as taste or
smell are incapacitated, the eyes can still help us perceive the environment
to enable us avoid any potential danger. Vision is our most important and
complex sensing process [2]. Thus, it is very important to study the working
principle of the human vision system as it lays the foundation for the treat-
ment of eye diseases (e.g., helping blind people to regain their sight) and the
development of visual system applications (e.g., brain-machine interfaces and
neuroprosthetic devices) [1].

Visual scenes that are observed by humans are projected onto the eyes,
where the photoreceptors on the retina transform the light rays into electrical
signals. These electrical signals, commonly referred as “spikes” or “action po-
tentials”, are transmitted to the brain via the Retinal Ganglion Cells (RGCs),
a special type of neurons in the retina and the optical nerve. The brain then
decodes the signals to mentally construct the visual scenes that we perceive
[3]. Interestingly, the RGCs are the only neurons capable of transmitting vi-
sual information to the brain, and the only variable encoded by RGCs is the
time-varying stimuli on the retina [4]. The visual information is encoded by
RGCs as a series of action potentials or spike trains that are decoded by the
brain.

Although the spike trains of RGCs can be directly used to develop the
model of visual scene reconstruction, compared with the encoding process,
the decoding of RGCs spike trains is more complex for the following three
reasons. First, since the the retina does not receive any feedback from the
visual cortex or higher part of the cortex, the encoded RGCs spike trains are
considered as minimal in representing the entire visual information. Second,
RGCs encode the shape and colour of objects by varying their spike rates
or temporal pattern of spike signals through a specific coding method rather
than random activations [15]. Third, the spike trains of RGCs are the only
outputs of the eyes that are transmitted to the brain that contain information
of the visual scene under study [5]. Since the decoding of RGCs spike trains
is complex, very few models are available that reconstruct visual scene from
RGCs spike trains. In these models the decoder is considered as statistical
representation in linear or nonlinear fashion [5]. Thus, the effective decoding
of spikes to a scene is still a challenge.

In this paper we address the challenge by proposing a deep learning model
which combines three artificial neural networks (ANNs), i.e., FCN, CapsNet
and CNN as an effective RGCs spike train decoder. The novel contributions
of this paper are as follows. We propose a decoder which operates as follows.
First, the visual scenes are encoded into spike trains via a retinal simulation.
Second, a combined FCN and CapsNet module is employed to capture the
characteristics of the spike train along with their spatial relationship. FCN is
used to convert the one-dimensional spike train into a two-dimensional image.
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Finally, the extracted features are fused with the original RGCs spike train and
introduced as input of the reconstruction module which comprises FCN and
CNN or reconstructing the visual scene stimulus. We also proposed a new loss
function (i.e., the combination of structural similarity index measure (SSIM)
loss and L1 loss) which effectively improves the quality of the scene reconstruc-
tion. We evaluated the model on five publicly-available datasets (i.e., MNIST,
Fashion MNIST, Cifar-10, Celeba-HQ and COCO). The evaluations based on
SSIM, MSE, PSNR and Intra-SSIM [23] show that the model performs well
both quantitatively and qualitatively.

The paper is organised as follows. Section 2 reviews the related work. Sec-
tion 3 presents the proposed approach to reconstruct the visual scene stimuli
from RGCs spike trains. Section 4 presents the experiments we conducted and
the evaluation metrics. Section 5 presents the experimental results and com-
parison. Finally, Section 6 draws the conclusion from the experimental results.

2 Related Work

RGCs are the only output neurons that contain all the encoding information
of a visual scene that have led to investigations to determine the encoding
process, i.e., a mapping between the visual scene and RGCs spike trains via
mathematical modelling [5]. These include the formulation of a closed form
mathematical model of the encoding process (i.e., visual scene to the spike
trains generated by the RGCs), and the decoding process (i.e., the reconstruc-
tion of visual scenes from spike trains.) Many progressive efforts have been
undertaken to study the RGCs encoding process that have led to various neu-
roscience mechanisms for understanding the neurons and neural circuits of
retinal computing in visual scenes [6–9]. Furthermore, to better understand
the retinal coding principle, many retinal coding models have been developed
[10–13].

The recent development on RGCs spike train decoders can be summarized
as follows. Botella-Soler et al [14] constructed a nonlinear (kernelized and neu-
ral network) decoders and proved that the results of nonlinear methods are
better than those of linear methods. Brackbill et al. [25] analyzed the exper-
imental records of RGCs response to natural images in macaque retina, and
made a simple linear reconstruction test. They used linear regression to fit
the reconstruction filter. However, the reconstruction results only display the
spatial properties similar to the visual scene stimuli, but cannot completely
reconstruct the visual scene stimuli. Kim et al. [26] combined a low-pass linear
decoder with a high-pass nonlinear decoder to obtain preliminary reconstruc-
tion results, which are then input to a neural network to improve the clarity of
the reconstruction of simple visual scenes, such as bicycle tires, cylinders and
simple black-and-white textures. Zhang et al. [5] divided the reconstruction
process into two stages: (a) A spike-image converter which is used to map a
population of spikes to a pixel-level intermediate image; and (b) An image-
image autoencoder for mapping the reconstructed results to the target pixels in
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the reconstructed images. The images are better than those generated by pre-
vious methods, but suffer from problems related to blurring. Although visual
scene reconstruction has been studied for many years, the decoding perfor-
mance of the current methods requires further improvement especially in the
reconstruction of complex visual scenes [5,14,16]. This makes spikes to scene
neural decoding still a challenge, requiring further development and innova-
tion. In recent years, deep learning has been successfully used to solve many
complex computer vision problems. Since deep learning models are resilient to
high variability in spike trains, they can generalise the complex relationship
of RGCs spike trains in space and time, providing a means to accurate scene
reconstruction from spike trains.

3 Proposed Method

Fig. 1(A) illustrates the the operational processes in the proposed method
from the encoding of the visual scene stimuli to the decoding to reconstruct
the visual scene. These include: (1) Using a Bilinear Interpolation method, the
original image is resized to 32×32; (2) Using the retinal simulation software
PRANAS, the stimuli are encoded into spike trains. More details on how to
simulate spike trains is provided in Section 4.2; (3) The module comprising
FCN and CapsNet is used to extract the features of spike trains; and (4)
The extracted features are fused with the original spike trains, and the visual
scene is reconstructed by a module comprising FCN and CNN. The decoder
combines FCN, CapsNet and CNN, and enables their respective advantages to
overcome their individual shortcomings, providing complementary advantages
between them. We introduce our decoder from five aspects: FCN, CapsNet,
CNN, loss function and training model.

3.1 FCN and CapsNet as Feature Extractor

Fig. 1(B) shows the architecture which combines FCN and CapsNet as the
feature extractors of the proposed method. In order to match the input shape
requirement of the CapsNet, a three-layer FCN is used as a preliminary con-
verter which converts the RGCs spike trains into an image. The first layer of
the FCN receives the spike trains as input, and hence the number of neurons
in the first layer corresponds to the number of RGCs used, i.e., of size of 10000
(refer to Section. 4.2 for how the spike trains are generated). The second layer,
the hidden layer, is composed of 512 neurons. The third layer has 1024 neurons
whose outputs are reshaped to give a feature map of 32×32 pixels, the input
of the CapsNet.

CapsNet [17] is made up of capsules, each of which is a group of neurons.
The activity vector of a capsule represents the instantiation parameters of a
specific type of entity such as an object or an object part. The length of the
activity vector represents the probability of the existence of an entity, and its
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Fig. 1 Overview of the proposed method. (A) Illustration of the model operation. (B) FCN
and CapsNet as spatial relationship feature extractors. (C) FCN and CNN for visual scene
reconstruction.

orientation represents the instantiation parameter. In the proposed method,
the CapsNet consists of three parts: the Convolutional layer, Primary Cap-
sule (PC) and Secondary Capsule (SC). The Convolutional layer extracts the
features from the 32×32 outputs of the FCN, using a kernel size 256 of 5×5
and stride 1, and outputs 256×28×28 feature maps. The PC performs three
main operations: Convolution, Reshaping and Squashing. The initial convo-
lution with the kernel size of (128,3,3) and stride 2 has 128×13×13 outputs
that are reshaped into a set of vectors, each representing a unique location in
the image. As the length of vectors represents the probability of the presence
of a feature, the squash function (Eq. 4) is used to limit the length between
0 and 1. In total, PC has 16×13×13 capsule outputs (each output is a 8-
dimenasional vector) and each capsule in the 13×13 grid shares their weight
with each other. The SC layer has 10 capsules and has 10×16 capsule outputs
(where each output is a 16-dimenasional vector).

The PC predicts the output of the capsules in the SC layer by Dynamic
Routing algorithm. Since the output of the Convolutional layer is one dimen-
sional, there is no orientation in its space to agree on and hence the Dynamic
Routing is performed only between the PC and SC layers as follows. Let ui
denotes the output vector of a capsule in the PC and j being a capsule in the
SC layer, the Dynamic Routing is formulated as

u′j|i = Wijui , (1)

where u′j|i is the prediction vector of the jth capsule from the capsule i in the
PC layer, and Wij is the weighted transformation matrix. In order to decide
whether capsule i should be routed to capsule j, a coupling coefficient cij is
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used, which is computed from the log prior probability of logits bij (raw values
for our predictions), i.e.,

cij =
exp(bij)∑
k exp(bik)

. (2)

At the first iteration, all the routing logits bij are initialized to zero. In succes-
sive iterations the dot product of the coupling coefficient cij and the predicted
output vector u′j|i is calculated to decide if the capsules i and j agree with
each other. A large dot product value denotes that capsule i is related to cap-
sule j, and the corresponding coupling coefficient increases, and vice versa.
Each capsule j in the SC layer receives a weighted sum of all individual PC
predictions for j (i.e., u′j|i for all i in the PC layer) and is formulated as

sj =
∑
i

ciju
′
j|i , (3)

where sj is the total input of capsule j in the SC layer. Since the squashing
function is applied to each capsule j, the output vector vj is

vj =
‖ sj ‖2

1 + ‖ sj ‖2
sj
‖ sj ‖

. (4)

A CapsNet is used as an attempt to more closely mimic biological neural
organization which efficiently represents its hierarchical relationships [17]. The
Dynamic Routing with agreement in the CapsNet overcomes the limitations
(loss of spatial information) of the max-pooling layers in CNN, thus allowing
for efficient feature globalization and compression. Unlike other networks, the
output of a CapsNet is a vector consisting of the probability of an observation,
which represents the uniqueness of the observation. This enables the “Picasso
problems” to be addressed in image recognition that cannot be solved by other
networks, i.e., images that have all the right segments but do not have the cor-
rect spatial relationship among them (e.g., the positions of the mouth and one
eye in a face are swapped) [18]. This distinct attribute of CapsNet can be used
to extract the features of the spike train along with their spatial relationship,
which are useful for reconstructing the visual scenes more accurately. Refer to
[18] for more details of CapsNet.

3.2 FCN and CNN for Reconstruction

Fig. 1(C) shows the combined FCN and CNN module for scene reconstruction.
A three-layer FCN is used before the CNN to match the shape of its input.
The structure of FCN is the same as that of FCN for the feature extractor in
Section 3.1, except that the size of the input layer is 10160 since it integrates
the features extracted by CapsNet.

The CNN comprises two phases as shown in Fig. 1(C). The first phase
(left side of the figure) is the contraction path (also called the encoder) which
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is used to capture the context in the feature map of the spike trains from
FCN. This phase contains three convolutional layers. Each layer consists of the
repeated application of two convolutions and followed by a 2×2 max pooling
with stride 2 for downsampling, transforming feature maps from 32×32 to 8×8.
The number and size of the kernels for the three layers are (16,5,5), (32,5,5),
(256,3,3), where the first dimension denotes the number of kernels and the rest
is their size. As the inputs pass through these layers the distinct information
in the feature maps are preserved, and any noise and redundant contents
are filtered [5]. The second phase (right side) is the symmetric expanding
phase (also called the decoder) which provides precise spatial localization of
the feature map via transposed convolutions. The decoder also contains three
layers, with expanding phases that consist of a 2×2 transposed convolution and
two convolutions transforming feature maps from 8×8 to 32×32. The kernel
sizes of these three layers are (256,3,3), (128,3,3), (64,3,3). The final layer has
1×1 convolution followed by a tanh activation function, employed to map each
64-component feature vector to the corresponding target value. In the entire
model, all layers except the last output layer use the Leaky ReLU activation
function, i.e.,

f(x) = if (x < 0) then ax, else if (x > 0) then x, (5)

where a is a small constant. The Leaky ReLU introduces a non-linearity but
prevents the vanishing gradient problem by allowing a small negative slope
[22].

3.3 Loss Function

In this paper, we define a new loss function for the training model. The loss
function is a weighted combination of SSIM loss and L1 loss. Our experiments
show that the proposed loss function is better than the binary cross-entropy
loss function in terms of generalization and overall reconstruction ability.

SSIM is introduced in detail in [19], which is summarized as follows. It is
based on three comparison measurements between the samples of x and y,
i.e., luminance (l), contrast (c) and structure (s). Let µx, σ2

x and σxy be the
mean of x, the variance of x, and the covariance of x and y, respectively. The
comparison measurements are:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
, (6)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
, (7)

s(x, y) =
σxy + c3
σxσy + c3

, (8)
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where c1, c2 and c3 are small constants respectively given by

c1 = (k1L)2, c2 = (k2L)2 and c3 = c2/2, (9)

where L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel
grey scale images), and k1 = 0.01 and k2 = 0.03 are two scalar constants [19].
The general form of the SSIM index between signal x and y of common size
N×N is defined as

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
, (10)

where α, β and γ are parameters that define the relative importance of these
three components. Specifically, we set α = β = γ = 1, and the resulting SSlM
index is

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(11)

to satisfy the following conditions:

1. Symmetry: SSIM(x, y) = SSIM(y, x);
2. Boundedness: SSIM(x, y) ≤ 1;
3. Unique maximum: SSIM(x, y) = 1 if and only if x = y.

The SSIM index is used for measuring the similarity between two images (i.e.,
the output of the model, x, and the ground truth, y. The SSIM loss is defined
as

LSSIM = 1− SSIM(x, y) . (12)

Previous approaches [20] have utilised the benefits of combining targeted
loss functions with traditional loss (e.g., L2 distance). In our method we employ
L1 distance rather than L2, as L1 encourages less blurring [21], i.e.,

LL1 = ‖ y − x ‖1 . (13)

Our final objective is
Lsl = αLSSIM + λLL1 , (14)

where α and λ denote the weights, and Lsl represents the new loss function
that integrates the benefits of LSSIM and LL1.

3.4 Training model

The training model employs Adam as the optimizer and Lsl as the loss func-
tion. The learning rate is adjusted to 0.1 times of the previous value when
the val-loss (Lsl) is not reduced after 5 consecutive iterations, with a lower
limit set to 0.00005. Therefore, by optimizing the learning rate, the model
gets generalized faster [23]. Furthermore, an early stopping mechanism which
terminates the training after 20 consecutive iterations is utilised if Lsl is not
reduced, i.e., inferring that the model has been trained to the optimal level.
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4 Experiments

4.1 Implementation

We implemented the proposed reconstruction algorithm on our server with two
GPUs, Tesla K40c and P4000. The Tesla K40c GPU has 12GB VRAM and
3.5 compute capability, while P4000 GPU has 8GB VRAM and 6.1 compute
capability. The use of dual GPU aids in training the model to the optimal
level more quickly and greatly reduce the computation time. The generation
process of datasets and the evaluation of results were performed on the same
server. Our code is based on the environment of tensorflow 1.13.1 and python
3.6.12. The code and results are publicly-available at https://github.com/

jalexnoel/Decoder_of_Retinal_Spike_Trains

4.2 Simulated spike train datasets

Hitherto, we have not found a suitable real dataset for training the model.
Either the dataset is too small to meet the training requirements [24]; or too
large (dataset >5 TBs) requiring complex processing pipeline [25]. Therefore,
we generated spike trains through retinal simulator.

In recent years, there have been more and more publications on retinal
processing models [12]. The models are used to simulate the coding process
of retina (i.e., the generation process of RGCs spike trains) by establishing
mathematical models so as to better understand the coding principle of the
retina. There are three main classes of models. The first class applies the linear-
nonlinear-poisson (LNP) models [27] to simulate the spike activity of Ganglion
cells (and Cortical cells) in response to synthetic or natural images. However,
these models ignore the details of neuronal mechanisms and the inner details
of the retina, that help in transforming the perceived image as inputs at the
ganglion cell (or any type of cell) stage. The second class includes parvocellular
and magnocellular pathways that use different non-separable spatio-temporal
filters that are optimal for form or motion detection and serve as front-end
models for subsequent computer vision task [28]. The third class represents
a detailed retinal model based on circuits that predict individual or collec-
tive responses measured at the ganglion cell level [12,29]. These models have
the following characteristics: a) Understand how to accurately reproduce spike
activity statistics at the population level [30]; b) Coordinate connectionomics
and present simple computational rules for visual motion detection [31]; and c)
Investigate how such canonical microcircuits implement different retinal pro-
cessing modules [32]. Since the third model can specifically explore the process
of retinal image processing, we chose this model to simulate the generation of
retinal RGCs spike trains.

PRANAS [12] is a retinal simulation software based on third generation
model. It allows large scale simulations while keeping a strong biological plau-
sibility and also includes a toolbox for statistical analysis of spike train popula-
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tion. The simulator has a good Graphical User Interface with options provided
to include and tune various retinal parameters. It also provides preset retina
configuration file (cat X cell DLIF.xml) which we used to configure the pa-
rameters of the retina. While simulating the spikes, the default settings were
chosen: stimulation duration of each image = 100ms, and the response of 100
neurons within a millisecond was considered. The software and configuration
files can be found online. Refer to [12] for more information about PRANAS.

Fig. 2(A) illustrates the generation of spike trains using PRANAS. The
input is a sequence of images with spikes recorded from 100 RGCs over 100
milliseconds, i.e., the length of the spike trains is 10000. The spike trains are
generated from three images over a duration of 300 milliseconds. The algorithm
for generating spike trains consists of three main stages. The Outer Plexiform
Layer, representing the first two layers of the retina namely receptors and hor-
izontal cells, receives the incoming light rays from a scene which are processed
by spatio-temporal linear filters to present band-pass excitatory current to
bipolar cells in the next stage. The second stage, a nonlinear Contrast Gain
Control is applied to the bipolar cells through a variable feed back loop to
enhance the influence of the contrast in the scene on the transfer properties of
the retina. The third stage is the Ganglion Layer which simulates the workings
of the retinal ganglion cells and presents the spike trains that are triggered
from the activity of bipolar cells. Fig. 2(B) illustrates the algorithmic flow of
the PRANAS simulator showing the inputs and the outputs at various stages.
Further details on how to simulate the generation of spike trains can be found
in [33].

Fig. 2 (A): An example of how to generate spike trains from visual scene stimuli using
PRANAS retinal simulation platform. (B): The algorithmic workflow of the simulator con-
sists of three main stages: Outer Plexiform Layer, Contrast Gain Control and Ganglion
Layer.
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For our experiments we used five datasets (i.e., MNIST, Fashion-MNIST,
Cifar-10, Celeba-HQ and COCO), each of which has 30000 images, including
28000 for training and 2000 for testing. The resolution of the images in all
datasets is 32×32. These datasets include simple handwritten digital images
and slightly more complex clothing images, as well as complex natural images
and face images. Samples images are shown on the odd rows of column (a) in
Fig. 4.

4.3 Reconstruction of visual scene stimuli from RGCs spike trains

In this paper, we present the reconstructed visual scenes using four different
methods, and compare them quantitatively and qualitatively. The first method
(Method-I) is based on the method of Zhang et al [5]. The model includes two
parts and uses the binary cross-entropy loss function. Its model uses a FCN
as the spike-image converter, and a CNN as the image-image autoencoder,
as shown in Fig 1(C). In the second model (Method-II), we used the same
architecture of Zhang et al [5] but trained the model using the proposed loss
function (Lsl). The third model (Method-III) is based on the first model, and
CapsNet is introduced as the feature extractor. The fourth model (Method-IV)
represents the proposed model obtained from the combination of different arti-
ficial neural networks (i.e., FCN, CapsNet and CNN). Through the controlled
variables method, we formed four groups of controlled experiments. The quan-
titative analysis of Method-I and -II, and Method-III and -IV (i.e., the same
model structure but with different loss functions) help in demonstrating the
advantages of the proposed loss function in providing better generalization.
The comparison of Method-I and -III, and Method-II and -IV (where Cap-
sNet are used in Method-III and -IV) presents the goodness of using CapsNet
as an additional feature extractor. The experimental results show that the
introduction of CapsNet along with the proposed loss function significantly
improves the reconstruction ability of the proposed model. Table 1 shows the
components of each method.

Table 1 Components of four different methods.

Method Method-I Method-II Method-III Proposed
FCN+CNN X X X X
FCN+CapsNet X X
Binary cross entropy X X
Lsl X X

4.4 Evaluation metrics

SSIM is used for measuring the similarity between two images. It is a full
reference metric, i.e., the measurement of image quality is based on an initial
uncompressed or distortion-free image (where in this paper the reference is
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the original visual scene stimuli). It is a perception-based model which con-
siders image degradation as perceived change in structural information, while
also incorporating important perceptual phenomena, including both luminance
masking and contrast masking terms. Mean squared error (MSE) measures the
average squared difference between the estimated values (i.e., the reconstruc-
tion) and the actual value (i.e., the original visual scene). Peak signal-to-noise
ratio (PSNR) is defined via the MSE, and is commonly used to quantify the
reconstruction quality of images and video that are subjected to distortion and
lossy compression. Intra-SSIM [23] is a new image quality evaluation method
recently proposed by us. It is different from the other three evaluation indices,
since the evaluation is based only on the image under test (i.e., no refer-
ence image or ground truth is required). Higher SSIM and PSNR (i.e., lower
MSE) and higher correlation coefficient (CC) of Intra-SSIM maps between
the considered images indicate better quality of image reconstruction. Thus
through these four evaluation metrics, we can comprehensively evaluate the
reconstructed results.

Intra-SSIM is implemented based on SSIM. To compute Intra-SSIM, the
image with the size of N×N pixels is divided into n×n cell blocks. Let b
= {bm|m = 1, 2, ..., n×n − 1} be the cell block, and let B = {B(i, j)|i, j =
1, 2, ..., n−3} represent a 3×3 cell blocks where each cell block is (N/n)×(N/n)
pixels. The SSIM index between the central cell block and the remaining
cell blocks in eight directions of each B(i, j), i.e., SSIM 0, SSIM 1, SSIM 2,
SSIM 3, SSIM 4, SSIM 5, SSIM 6, SSIM 7, are calculated, and the average
SSIM values are

B(i, j) =
1

8

7∑
m=0

SSIM m. (15)

Likewise, the sliding window technique with a stride of 1 along the row and
column of the image is employed to calculate the Intra-SSIM of the whole
image, i.e.,

Intra-SSIM =
1

(n− 2)2

n−3∑
j=0

n−3∑
i=0

B(i, j). (16)

To enable a realistic comparison and provide better clarity, the Intra-SSIM
is computed on an image of size 256×256, where the original and reconstructed
images are upsampled using bilinear interpolation. Therefore, we divide the
image into 32×32 cell blocks, so that each cell block comprises 8×8 pixels.
The process to compute Intra-SSIM is illustrated in Fig. 3(a) and (b), and is
as follows:

Calculate Intra-SSIM of an image
1: Let k = 32 · j + i
2: For B(i, j)|i=29,j=29 in image:

3: B(i, j) = 1
8
SSIM [bk+33, (bk, bk+1, bk+2, bk+32, bk+34, bk+64, bk+65, bk+66)]

4: Intra-SSIM = 1
900

∑29
j=0

∑29
i=0 B(i, j)

return Intra-SSIM
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Fig. 3 Process to compute Intra-SSIM: (a) A 256×256 image divided into 32×32 cell blocks.
At each step of the sliding window, the mean SSIM is computed for the central block by
considering the eight neighbouring blocks as illustrated in (b). Intra-SSIM: (c) Visualization;
and (d) Contour map.

The advantages of using Intra-SSIM in evaluating the images include: a)
Intra-SSIM provides better understanding of the internal structure of an image
(non-referenced) by calculating the similarity from its internal structures. The
more complex the structure of the image, the smaller is the score, and vice
versa; b) Intra-SSIM can be employed to evaluate the goodness of a non-
referenced image, or to obtain a correlation between two associated images
by comparing the Intra-SSIM scores of the images. The closer the scores are,
the higher is the correlation between them (i.e., the reconstructions and the
stimuli); and c) The Intra-SSIM contour maps (e.g., Fig. 3(d)) present visual
representations for qualitative comparison of the images.

5 Results and Comparison

The performance of our method was evaluated quantitatively and qualita-
tively on four datasets. Compared to Method-I, Method-II and Method-III,
our results are the best in all aspects of the evaluation.

5.1 Quantitative Analysis

Table 2 shows that the performance of our reconstruction method surpasses
the other three methods by a large margin. On five different datasets, our
method achieves the best score in each of the evaluation indices, especially
for the complex datasets. On the Cifar-10 dataset, compared with Method-I,
SSIM, PSNR and CC increased by 0.054, 0.48 and 0.073, respectively, and MSE
decreased by 0.0037 for our method; compared with Method-II, SSIM, PSNR
and CC increased by 0.037, 0.30 and 0.027, respectively, and MSE decreased by
0.0017 for our method; and compared with Method-III, SSIM, PSNR and CC
increased by 0.048, 0.77 and 0.096, respectively, and MSE decreased by 0.0026
for our method. On more complex datasets (i.e., Celeba-HQ and COCO), the
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improvement of our method is more significant. Compared with Method-I, -II,
and -III on COCO dataset, our method improves by 0.0115, 0.061 and 0.036,
respectively on SSIM, and 0.181, 0.033 and 0.065 on CC, respectively.

Table 2 Quantitative comparison of the reconstruction results of three methods.

Dataset Metrics Method-I Method-II Method-III Proposed

MNIST

SSIM 0.824 0.85 0.831 0.871
MSE 0.015 0.0134 0.0147 0.0113
PSNR 18.74 19.32 18.81 20.0
CC 0.871 0.916 0.890 0.929

Fashion-MNIST

SSIM 0.723 0.748 0.726 0.774
MSE 0.0168 0.0159 0.0169 0.0143
PSNR 18.38 18.73 18.37 19.14
CC 0.672 0.749 0.682 0.778

Cifar-10

SSIM 0.498 0.515 0.525 0.552
MSE 0.0326 0.0306 0.0339 0.0289
PSNR 15.61 15.79 15.40 16.09
CC 0.199 0.245 0.224 0.272

Celeba-HQ

SSIM 0.528 0.601 0.592 0.624
MSE 0.035 0.0306 0.0322 0.0291
PSNR 14.97 15.57 15.45 15.83
CC 0.288 0.393 0.33 0.433

COCO

SSIM 0.346 0.4 0.425 0.461
MSE 0.0433 0.0378 0.0388 0.0351
PSNR 14.25 14.72 14.73 15.09
CC 0.012 0.16 0.128 0.193

* CC computed between the Intra-SSIM maps of the original image and the reconstructed
results from Methods I, II, III and Proposed.

Table 3 shows that the Intra-SSIM score of the proposed method is closer
to the score of the original visual scene stimulation (also evident from the high
CC scores in Table 2) which indicates that the structural relationship of the
reconstruction results of the proposed method is indeed similar to the original
image.

Table 3 On five datasets, the internal structure similarity between the reconstruction re-
sults of the four methods and the original visual scene stimuli is quantitatively compared
by using Intra-SSIM.

Dataset Original Method-I Method-II Method-III Proposed
MNIST 0.7693 0.7898 0.783 0.7887 0.7825
Fashion-MNIST 0.7216 0.8205 0.7962 0.8181 0.7854
Cifar-10 0.754 0.9773 0.9503 0.9648 0.9463
Celeba-HQ 0.6216 0.9276 0.8571 0.8988 0.833
COCO 0.6471 0.9799 0.9465 0.9755 0.9337

The above quantitative analyses show that employing the proposed loss
function along with the introduction of CapsNet to improve the training and
generalization ability of the model, resulted in accurate reconstruction of visual



Fusion of ANNs as Decoder of Retinal Spike Trains for Scene Reconstruction 15

Fig. 4 Groups (1) to (5) refer to MNIST dataset, Fashion-MNIST dataset, Cifar-10 dataset,
Celeba-HQ dataset and COCO datasets, respectively. The contour map of Intra-SSIM is
displayed below the original images and reconstruction results. The odd rows of Column
(a) are the original images; Columns (b) to (e) are the reconstruction results of Method-I,
Method-II, Method-III and the proposed method, respectively. The scores of SSIM, MSE,
PSNR and CC (CC computed between the Intra-SSIM maps of the original image and the
reconstructed results) are indicated on the right side of the reconstructed image and the
Intra-SSIM score is indicated on the right side of the contour map.
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scenes. Comparing Method-I and -II, and Method-III and -IV (i.e, the model
structure is the same but with different loss functions) shows that using the
proposed loss function enables the model to improve in all evaluation indices.
This clearly shows that the proposed loss function improves and optimizes
the model parameters, so as to increase the accuracy of the visual reconstruc-
tion. Comparing Method-I and -III, with Method-II and -IV (i.e., introducing
CapsNet as the feature extractor), shows that when CapsNet is used as an
additional feature extractor, the indices that evaluate the structural similarity
(i.e. SSIM and CC) of the reconstructed images have significantly improved.
This indicates the goodness of CapsNet in increasing the overall structural
accuracy of the reconstruction.

5.2 Qualitative Analysis

Fig. 4 shows the performance comparison for the proposed method with three
other methods. It shows that Method-I (refer to column b) can roughly recon-
struct simple visual scenes (i.e., handwritten digits and clothes), but fails to
deal with complex visual scene stimuli (i.e., natural images and face images).
Method-II (refer to column c) used the architecture of Method-I but replaced
binary cross-entropy loss function with the proposed loss function (Eq. (14)).
Its reconstruction is clearer and the details are more obvious than that of
Method-I. However, its performance is still poor for stimuli from complex vi-
sual scenes and there is still room for further improvement in the reconstruc-
tion of details. Similarly, comparing the results of Method-III and -IV shows
that the proposed loss function achieved better generalization during training
than the traditional binary cross-entropy loss function.

Comparing Method-I and -III with Method-II and -IV clearly suggests
that CapsNet as an additional feature extractor enables more accurate recon-
struction, especially on the structure of the image. The reconstructions of the
proposed method (Method-IV) are shown in column e of Fig. 4, where the ar-
chitecture integrates CapsNet as an additional feature extractor and uses the
proposed loss function (Lsl). Compared with the reconstructions of Method-
I, -II and -III, the clarity of the reconstructed visual scenes by the proposed
method is significantly improved, with less blurring than Method-I and -II,
and provides more clarity than Method–III. The proposed method is excellent
in presenting the reconstruction details, particularly in restoring the spatial
structure of visual scenes. For example, on the face dataset (refer to Group 4 of
Fig. 4), the proposed method reconstructed the facial expressions more closely
to the original image. This is evident from the contour maps of Intra-SSIM
that clearly show that the reconstructions of the proposed method contain
more details that capture the spatial relationship between different regions
more precisely. We attribute this improvement to the introduction of CapsNet
and the use of Lsl, which aids in preserving the spatial links accurately. The
proposed method (Method-IV) achieves excellent performance, especially with
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complex visual scenes under various image categories, such as those in Cifar-10
and COCO datasets.

6 Conclusion

In this paper, we proposed an RGCs spike trains decoder which integrates
three ANNs. FCN acts as a spike trains to image converter. CapsNet acts
as spatial relation feature extractor. CNN acts as an image to image autoen-
coder. The three networks complement each other as follows. FCN of the
feature extraction module plays a preliminary role in extracting features and
other information from the spike trains. To improve the feature extraction pro-
cess, CapsNet is introduced to extract spatial-relationship features that neither
FCN nor CNN can provide. CNN of the reconstruction module has simple en-
coding and decoding structure, which extracts information, filter noise and
accurately reconstruct visual scenes from the spike trains. In addition, we also
proposed a new loss function, which combines SSIM loss and L1 loss. The loss
function provides: (a) An advantage that SSIM focuses on evaluating struc-
tural similarity; and (b) The goodness of L1 in reducing the ambiguity which
in turn reduces the blurring effect.

The proposed method, Method-IV, was evaluated on five datasets, using
four evaluation parameters to evaluate the reconstruction results quantita-
tively and qualitatively. The experimental results show that our proposed
method greatly improves the reconstruction ability of the model, presenting
higher clarity, richer details and more accurate spatio-structural relationship.
Our contributions include:

– Combining different ANNs that achieve good results, introducing new re-
search ideas.

– Combining SSIM loss and L1 loss to improve the generalization ability of
the model, thereby improving the accuracy of the scene reconstructions.

– The proposed RGCs spike trains decoder forms a complete system that
decodes the encoded spike trains, paving the way for better understanding
of the working principle of the retina and the dynamics of the brian.

– The proposed method provides a new method for reconstructing visual
scenes from RGCs spike trains, and promotes the development of com-
puter vision and brain-machine interface. For example, it can improve the
reconstruction quality of bionic retinal camera and helps the visually im-
paired recover their vision.

Although our method has achieved good results at this stage, the process of
reconstructing visual scene stimuli from RGCs spike trains is still a challenge.
In the future work, we will further improve the model from the following
aspects to make it closer to the functioning of the human eye: a) Improve
the resolution of reconstructed visual scenes and maintain the quality of the
reconstruction; b) Transform grey-scale images to colour images to restore
the real scenes as seen by human eyes; c) Propose models for dynamic video,
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achieve the reconstruction at real-time, and restore the visual scenes more
realistically; d) Employ naturally recorded spikes rather than the simulated
RGCs spike trains to provide model and results closer to practical applications;
and e) The use of temporal filter to integrate a spatial filter to closely represent
the brain’s processing mechanism of spike trains. In short, we hope that our
work will inspire other researchers and jointly promote the development of
retinal visual scene reconstruction.
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