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Abstract

The Cloud paradigm is at a critical point in which the existing
energy-efficiency techniques are reaching a plateau, while the computing
resources demand at Data Center facilities continues to increase exponen-
tially. The main challenge in achieving a global energy efficiency strategy
based on Artificial Intelligence is that we need massive amounts of data
to feed the algorithms. This paper proposes a time-series data augmen-
tation methodology based on synthetic scenario forecasting within the
Data Center. For this purpose, we will implement a powerful genera-
tive algorithm: Generative Adversarial Networks (GANs). Specifically,
our work combines the disciplines of GAN-based data augmentation
and scenario forecasting, filling the gap in the generation of synthetic
data in DCs. Furthermore, we propose a methodology to increase the
variability and heterogeneity of the generated data by introducing on-
demand anomalies without additional effort or expert knowledge. We
also suggest the use of Kullback-Leibler Divergence and Mean Squared
Error as new metrics in the validation of synthetic time series genera-
tion, as they provide a better overall comparison of multivariate data
distributions. We validate our approach using real data collected in an
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operating Data Center, successfully generating synthetic data helpful
for prediction and optimization models. Our research will help opti-
mize the energy consumed in Data Centers, although the proposed
methodology can be employed in any similar time-series-like problem.

Keywords: Data Augmentation, Sensor Data, Data Center, Generative
Adversarial Networks, Synthetic Data, Scenario Forecasting

1 Introduction

Our society is immersed in an unstoppable digitalization and interconnection
process. By 2023, 66% of the world’s population (5.3 billion people) will have
access to the Internet, up from 51% in 2018 (3.9 billion people). Besides, the
number of connected devices will increase to more than three times the world’s
population by 2023 [9]. This digitization trend brings significant benefits but,
at the same time, enormous challenges. Nearly 80% of global Internet traffic
is generated by video streaming, online gaming, and social media applications
[45], which base their operations on the Cloud Computing paradigm. This con-
text, together with the demand for novel applications on the Internet of Things
(IoT), Artificial Intelligence (AI), and Smart Cities (e.g., eHealth, autonomous
vehicles), will lead to an unprecedented amount of data traffic and requests
for computing resources in the Cloud. The ever-increasing demands placed on
Data Center (DC) facilities will make their energy inefficiencies even more evi-
dent and worrisome. It is estimated that cooling energy alone represents, on
average, 40% of the total energy consumed in DCs [51].

DCs have become the backbone of both the Internet and the telecommuni-
cations industry. Between 2010 and 2018, DCs compute instances increased by
550% and IP traffic by 1,000%. This increase resulted in global energy use of
about 205 TWh in 2018, representing around 1% of global electricity consump-
tion [35]. Most research on the subject agrees that the energy demand of DCs
will continue to grow, although the magnitude of this increase is a controver-
sial topic [35] [5] [28]. This controversy is due to the remarkable improvements
in DCs’ and servers’ energy efficiency, which have led to a 24% decrease in
the overall energy intensity per compute instance, thus leading to exaggerated
energy consumption forecasts in many studies [11]. However, we are reaching
the limits of current optimization methods. The next doubling of global DC
compute instances may occur within the next 3 or 4 years [8], and we will
require assiduous efforts to handle the likely abrupt growth in energy demand
once the existing efficiency resource is fully exploited.

In recent years, the discipline of data-driven optimization has under-
gone a revolution thanks to Machine Learning (ML) and Deep Learning
(DL) techniques. These AI-based algorithms have enabled the implementa-
tion of proactive policies that react to real-time changes, giving a considerable
competitive advantage to the companies that implement them. Besides, its
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development is cheaper and less time-consuming than other more classical
techniques. On the other hand, the alternative approach to data-driven opti-
mization is explicit physical models. The main limitations of using this more
classical approach are: (i) they are more expensive and time-consuming; (ii)
cannot quickly adapt to internal or external changes (e.g., weather, physi-
cal layout, data anomalies); (iii) when the system under analysis is highly
complex, minor errors in the models may lead to considerable errors in the
predictions; (iv) require individual and specialized models, making the general-
ization of solutions impractical. Consequently, more proactive, automatic, and
cost-effective alternatives have been sought using data-driven optimizations.

The modern DC is a very complex system, incredibly challenging to
optimize due to the sheer number of configurations and nonlinear interde-
pendencies. These facilities involve many mechanical, electrical, and control
systems communicating dynamically. The global improvements in Cloud
energy efficiency are led by hyperscale DCs, from companies like Google,
Amazon, and Facebook. These giant corporations have access to AI-based opti-
mization technologies beyond the reach of more traditional DCs since vast
amounts of data and computing power are required. Data-driven science and
engineering optimization techniques have enabled hyperscale DCs to work with
Power Usage Effectiveness (PUE) of 1.1 or lower (very close to the ideal 1),
whereas the global average PUE is 1.59 [23]. DeepMind reported that the use
of AI-driven solutions in Google’s DCs had yielded cooling energy savings of
40%, which equates to a 15% reduction in overall PUE [14]. They achieved
the lowest PUE ever seen in a Google facility. These results would be a vast
improvement in any large scale energy-consuming environment but, consid-
ering how sophisticated Google’s DCs are already, it is a phenomenal step
forward.

The main challenge to globally applying this AI-based approach is that we
need massive amounts of data to feed the algorithms, especially those based on
the DL paradigm. Gathering sufficient data is expensive, time-consuming, and
resource-intensive. Furthermore, we can endanger the electronic equipment’s
integrity by including high variability in the data (i.e., anomalies), necessary
for a good model generalization. Companies with access to large amounts of
DC data decide not to share them because it can pose a significant security risk.
In practice, the benefits of AI-driven optimizations are restricted to those cor-
porations who own the data. Therefore, a fundamental question arises: What
can we do if we do not have enough data?

To solve this challenge, AI can help us again through synthetic data gen-
eration. Interest in synthetic data has been increasing over the last few years.
Companies like NVIDIA [32], IBM [12], Google [30], and agencies such as the
US Census Bureau [27] have adopted different synthetic data methodologies
for improved model building, application development, and data dissemina-
tion. This technique provides realistic data efficiently and at scale when access
to real data is too costly, dangerous, or unethical. The generated data can
improve data-driven models and statistical analysis. Furthermore, it is applied
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as a data anonymization method, preventing sensitive information leakage and
promoting data-sharing between companies and institutions. At a conceptual
level, synthetic data are generated from real samples and have similar statisti-
cal properties. Real data are complicated and messy, and data synthesis needs
to work within that context. The degree to which a synthetic dataset is an
accurate approximation for the real one is a standard measure of realism.

It is well known that for supervised learning-based techniques, training on
augmented datasets can increase the performance of the models [54] and that
too small a training dataset can lead to overfitting. While many dataset aug-
mentation techniques exist for image data [46], these methods do not generalize
well to time series. Traditional methods for time-series data augmentation
either arbitrarily cut the time series, tending to remove temporal correlation
in the data, or do not generalize well in general. For these reasons, we consider
appropriate the use of Deep Learning in the generation of synthetic data, and
specifically Generative Adversarial Networks (GAN) [17], which have proven
in recent years to be one of the most successful algorithms for generating high-
quality synthetic data (particularly images and videos). In addition, the use
of GANs allows us to handle large amounts of multivariate data with complex
nonlinear relationships and different natures (e.g., categorical). Furthermore,
Z. Li et al. [33] empirically demonstrate the use of GANs to generate syn-
thetic time series data increase the performance between 8.3% to 12.5%, on
85 datasets of the UCR 2015 archive.

This paper will apply a Conditional WGAN-GP architecture [18] to gen-
erate heterogeneous multivariate computing scenarios, thus addressing the
proposed problem of synthetic data generation in DCs and some limitations
identified in the state of the art. Our proposal also includes a method to gener-
ate anomalous situations on demand, increasing the variability of the data so
that the DC’s operational management can be trained to handle these sporadic
situations. Specifically, the main contributions of our work are the following:

• A data augmentation methodology for DCs that brings together the dis-
ciplines of GAN-based data augmentation and scenario forecasting. This
proposal fills the gap in the generation of synthetic data in DCs, enabling
the increase in the volume of open and diverse data in this field.

• The generation of on-demand anomalous scenarios, which increases the
data heterogeneity without additional effort and without compromising the
electronic equipment’s integrity.

• The suggestion to use the Kullback-Leibler Divergence and Mean Squared
Error as metrics in the results, providing a more global comparison between
the multidimensional distributions of real and synthetic data.

The remainder of the paper is organized as follows: Section 2 gives a
comprehensive literature review of the classical and the most innovative meth-
ods of time-series data augmentation. Section 3 describes the state-of-the-art
improvements implemented in this research to stabilize the GAN training
phase and the metrics used to evaluate the quality of the results. Section
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4 presents the use case through which we validate our proposal. Section 5
provides an analysis of the conducted experiments and the results obtained.
Finally, in Section 6 presents the main conclusions drawn from this research.

2 Literature Review

There are severe limitations in obtaining massive and highly representative
amounts of time-series data. The primary constraint is indeed the time required
for their collection. If we wish to gather data from a process during one
year, we must gather them for that entire year. This limitation arises because
the fundamental characteristic of time-series data is that they exhibit a time
dependency in their values. To address this restriction, generating synthetic
time-series data has been an open challenge in industry and academia. If suc-
cessfully achieved, it would dramatically boost the optimization of the most
relevant real-world processes.

Nevertheless, generating synthetic time-series data that preserve time
dependency is far more challenging than synthesizing other data types such as
images or tabular data. Tabular data assumes that a single row stores all the
information from a particular event. On the other hand, sequential data has
time-sensitive information spread across many rows and columns. The length
of these sequences is often variable, and many historical events potentially con-
dition each data point across multiple variables. Therefore, minor errors can
propagate throughout the sequence, introducing considerable deviations.

Statistical and ML methods for time-series data generation have been
extensively studied. Unfortunately, many of these efforts have resulted in low
quality or limited flexibility of the generated data. The proposed models were
designed for each specific problem in many cases, thus requiring specialized
domain knowledge. We will now examine some fundamental approaches on
which the literature on time-series generation is based.

2.1 Classical Approaches

The most commonly used traditional methods of time-series data aug-
mentation include Gaussian noise addition, rotation, scaling, warping, and
permutation [53]. B. K. Iwana et al. [25] recently conducted an empirical survey
comparing the results of classical data augmentation methods for time series
classification with neural networks. K. Bandara et al. [4] empirically proved
that specific classical statistical techniques for time-series data augmentation
(e.g., moving block bootstrapping, dynamic time warping barycentric averag-
ing) improve the performance of global forecasting models based on recurrent
neural networks. These classical techniques are helpful in many problems and
can be used in conjunction with other more complex methods, although the
available data severely restrict the variability of the extractable synthetic data.
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2.2 Simulation-based Models

This field consists of building a model that mimics a real system’s behavior
based on explicitly defined physical laws and heuristic expressions [59] [16]. If
the simulator approaches real-world systems, they provide high-fidelity data.
However, in practice, tuning the model parameters is a challenging task, even
with data-driven methods. Moreover, executing the simulations is computa-
tionally expensive, and it requires redesigning and readjusting the simulator
for each DC.

2.3 Discriminative Machine Learning (ML) based Models

These are general parametric models, in which the parameters are adjusted in
a training phase, generally through gradient descent algorithms, using actual
data examples. This approach is usually applied for time-series analysis, clas-
sification, and forecasting. However, we can use the obtained predictions as
synthetic data to train other ML and DL models.

2.3.1 Autoregressive (AR) Models

AR models are linear recurrent stochastic processes, where each point in the
time series depends linearly on the previous n steps and a stochastic term. AR
generalizations such as Autoregressive Integrated Moving Average (ARIMA)
are powerful and extensively used approaches in time-series forecasting [47]
[10]. However, AR models have a fidelity problem, producing simplistic models
that cannot capture nonlinear temporal relationships, and their predictions
are highly dependent on the available data.

2.3.2 Markov Models

Markov Models are a general approach for modeling dynamic pseudo-stochastic
categorical systems. They assume the Markov property, meaning that future
states depend only on the current state rather than past events. These models
are widely adopted in predictive modeling and probabilistic forecasting fields.
Variants such as Hidden Markov Models have been applied in time series distri-
butions modeling [64]. Like AR models, the major limitation of these methods
is that they cannot correctly capture nonlinear temporal relationships, and
their predictions are highly dependent on the available data.

2.3.3 Bayesian Models

Bayesian statistics are widely used in time series modeling [41] [56] and
are ideal for noting an event and predicting that any one of several known
possible causes was the contributing factor. For example, it could repre-
sent the probabilistic relationships between diseases and symptoms. Dynamic
Bayesian Networks are a particular class of Bayesian networks that can per-
form sequential data modeling. Other thriving models include the Bayesian
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Structural Time Series (BSTS) and Bayesian Model Averaging. The main lim-
itation of these approaches involves the manual definition of prior probabilities
and cannot correctly capture complex long-term relationships. Besides, their
predictions are highly dependent on the available data.

2.3.4 Recurrent Neural Networks (RNNs)

RNNs are a type of Artificial Neural Networks (ANNs) in which the con-
nections between neurons incorporate feedback loops and internal states
(memory), thus exhibiting a dynamic temporal behavior. The best-known
example are the Long Short-Term Memory networks (LSTMs). In recent years,
they have been one of the pillars of progress in Artificial Intelligence and
have been used with great success in Natural Language Processing, Computer
Vision, finance, and prediction of all kinds of complex multivariate time series
[40] [57] [39], including multirate time series [22]. However, due to limitations
in training methods and the amount of data available for many applications,
RNNs have shown substantial limitations. Moreover, like all other methods
based on discriminative ML, their predictions highly depend on the available
data.

2.4 Generative Adversarial Networks

In recent years, methods based on Generative Adversarial Networks (GAN)
have emerged as a popular technique for augmenting datasets, with outstand-
ing results in images and videos. Unlike more classical statistical methods,
neural networks can handle multivariate data with nonlinear relationships
from different natures (e.g., categorical data, text, etc.). Due to their nature
as generative algorithms, GANs may understand better the complex nature
of time-series data. Models from the discriminative ML paradigm attempt to
learn the conditional probability distribution of the labels Y given the observa-
tions x, symbolically expressed as P (Y | X = x). On the other hand, generative
models such as GANs directly estimate the conditional probability distribution
of the data X given the observations x, symbolically expressed as P (X = x).

GANs have been proposed in some research for time-series data augmenta-
tion. The ground-breaking publication was presented by C. Esteban et al. [13].
The authors produce realistic-looking heterogeneous medical time-series data
using a Recurrent Conditional GAN architecture (RCGAN). Related solutions
to generate synthetic data have been successfully applied in the energy sector
[31] [15] [61], sensory data [2], and health applications [1] [38] [19]. There are
also remarkable works in the literature that address the issue of noisy time
series or missing data [33] [44]. The state-of-the-art algorithm so far in the
augmentation of synthetic time-series data was TimeGAN [58]. Recent valu-
able research has addressed some limitations of the TimeGAN approach, such
as that of H. Ni et al. [37], where they propose a new metric to simplify GAN
training. Another crucial example is Z. Lin et al. [34] (DoppelGANger), where
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Table 1 State of the art comparison in synthetic time-series data augmentation and
scenario generation using GANs

Research Features
TimeGAN DoppelGANger Scenario Generation

Ours
[58] [34] [6] [26] [62]

Data Augmentation ✓ ✓ ✗ ✗ ✗ ✓
Scenario Generation ✗ ✗ ✓ ✓ ✓ ✓
Generation from any

time instant
✗ ✗ ✓ ✗ ✗ ✓

Multivariate Generation ✓ ✓ ✗ ✗ ✗ ✓
Categorical Variables ✗ ✓ ✗ ✗ ✓ ✓
On-demand anomalies ✗ ✗ ✗ ✗ ✗ ✓

authors explore augmenting time-series datasets related to communication
network systems with outstanding results.

The main limitation of these proposals is that their objective is solely to
obtain similarity in their predictions, i.e., to generate synthetic data almost
indistinguishable from real data. We believe they could benefit significantly
by taking advantage of the flexibility offered by generative algorithms such
as GANs. Therefore, our work focuses on merging the data augmentation
approach with scenario forecasting to increase the exploitation of available real
data to extract synthetic data.

Regarding scenario forecasting methods, some publications address it
through classical statistical methods [55], although these approaches require
extensive knowledge of the specific problem and have severe limitations in
the quality and flexibility of the obtained results. The emergence of GANs
has provided a renewed impulse to this field. In 2018, Y. Chen et al. [6] pro-
posed a novel data-driven scenario forecasting approach of energy systems
(e.g., wind, solar, load). This model-free approach produces a set of realistic
scenarios based on historical data observations. To the best of our knowledge,
this approach has only been used in the energy sector [6] [26] [62]. The main
difference between these researches and ours is that they aim to generate real-
istic scenarios but do not intend to use them as synthetic data. In contrast, our
work benefits from the variability offered by GANs to generate large amounts
of synthetic data. Furthermore, all these proposals operate only with univari-
ate data, and just one proposal [62] handles data of different nature (e.g.,
categorical data).

Our work combines GAN-based data augmentation and scenario genera-
tion approaches to generate a large amount of synthetic data, increasing the
exploitation of available real data. GAN-based data augmentation approaches
aim only to obtain synthetic data similar to real data and do not use the power
of control in the generation that GANs offer. In contrast, our research uses
the control flexibility offered by GANs to generate numerous realistic scenarios
to increase the volume of synthetic data generated significantly. In addition,
we propose a method for generating anomalous situations, explained in more
detail in Section 3.2. This allows us to increase the heterogeneity of the syn-
thetic data without additional effort or expert knowledge. Scenario prediction
approaches solely aim to generate different realistic scenarios and examine the
uncertainty between these scenarios to support predictive models. Moreover,



Springer Nature 2021 LATEX template

Data augmentation through multivariate scenario forecasting 9

the state-of-the-art proposals for GAN-based scenario generation do not take
advantage of the multivariate data handling with complex nonlinear relation-
ships that GANs allow. In contrast, in this work we generate scenarios to be
used as a reliable source of synthetic data, and we make use of multivariate
data with complex relationships and different natures (e.g., categorical). Table
1 summarizes the state-of-the-art limitations and the contributions of our pro-
posal. To demonstrate the usefulness of the presented work, we will address a
case study of real sensor data from an operating DC.

3 Methodology

3.1 Implemented GAN Training Improvements

In the following, we describe the GAN training improvements found in the lit-
erature that have been implemented for this research. However, it should be
noted that many of these enhancements have been proposed for image gener-
ation. Therefore, further research is needed to investigate their usefulness for
time series generation. To further this purpose, some improvements mentioned
above will be analyzed in Section 5, in the hyperparameter tuning phase.

A GAN training phase consists of a minimax game between two neural
networks, the Generator and the Discriminator (Equation 1). In this and the
following equations, the Generator network is expressed as G(z) and its param-
eters as θg. The Discriminator network is expressed as D(x) and its parameters
as θd. The sampling distribution of the data is expressed as pdata, and that of
the Gaussian noise as p(z). This process can be translated into a more general
objective of the whole GAN architecture to make the generated data distri-
bution look similar to the real data distribution. In practice, training a GAN
is a complex and unstable process. During the last few years, many proposals
have been made to solve some of its most common training issues.

min
θg

max
θd

[
Ex∼pdata

logDθd(x) + Ez∼p(z) log
(
1−Dθd

(
Gθg (z)

))]
(1)

Most algorithm stability problems during training are due to the Binary
Cross Entropy (BCE) loss function. To solve this challenge, Arjovsky et al. [3]
presented the Wasserstein GAN (WGAN), a novel GAN architecture imple-
menting the Wasserstein loss function, which attempts to approximate Earth
Mover’s Distance (EMD). Since the Wasserstein function can take any real
value (unlike the BCE function, which is limited between 0 and 1), the Dis-
criminator is renamed the Critic. The WGAN solves many stability and fidelity
problems. However, it requires a particular condition to approximate the EMD
correctly: the loss function must be 1-Lipschitz continuous (i.e., the function’s
gradient norm must be less than or equal to 1 at all points).

To ensure that 1-Lipschitz continuity is satisfied, WGAN authors suggested
the Weight Clipping method [3]. They propose forcing the Critic network’s
weights to a fixed interval after updating through gradient descent algorithm.
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However, this solution needs intensive hyperparameter tuning to perform
correctly. Ishaan Gulrajani et al. [18] proposed a successful alternative: the
Wasserstein GAN with Gradient Penalty (WGAN-GP). Consist in sampling
some points by interpolating (using a random number ϵ) between real and
fake samples, and it is on the critics’ prediction of these interpolated images
that you want the 1-Lipschitz continuity condition to be met. Empirically, the
Gradient Penalty method tends to produce higher quality results more stably.
For its implementation, only a regularization factor needs to be added to the
W-Loss cost function, weighted by a penalty coefficient λ (Equation 2). In this
equation, the interpolated data sample is expressed as x̂, and the sampling
distribution of the interpolated data as px̂.

Ld = E[D(x)]− E[D(G(z))]︸ ︷︷ ︸
Original critic loss

+λ · Ex̂∼px̂

[(
∥∇x̂ (D(x̂)∥2 − 1)

2
]

︸ ︷︷ ︸
Gradient penalty

with x̂ = ϵx + (1− ϵ)G(z)
and ϵ ∼ U [0, 1]

(2)

Miyato et al. [36] proposed Spectral Normalization, another technique
for improving GAN training’s stability, which can be used in conjunction
with WGAN-GP. It consists of normalizing the Critic weight matrices by
their corresponding spectral norm, which also helps control the 1-Lipschitz
continuity.

Heusel et al. [21] proposed the Two Time-Scale Update Rule (TTUR).
This method consists of using a higher learning rate in the Critic than in
the Generator. The training is more stable and converges better towards
Nash’s equilibrium. The authors empirically demonstrate that this approach
outperforms the original WGAN-GP proposal.

S. Chintala, a co-author of the prosperous DCGAN architecture [60], made
a presentation at Neural Information Processing Systems (NIPS) 2016 [7] sum-
marizing many tips for stable training of GANs. For instance: (i) normalize
inputs between -1 and 1; (ii) sample noise from Gaussian distributions; (iii)
build different batches for real and false data; (iv) use LeakyReLU activation
function; (v) use Adam optimizer algorithm [29]; (vi) use Embedding layers
for discrete variables; (vii) use regularization methods such as Dropout [48]
and Batch Normalization [24].

All the above-mentioned GAN training improvements have been imple-
mented for this research, and some (e.g., Dropout, TTUR) have been analyzed
in the hyperparameter tuning phase to test their effectiveness on the results.

3.2 On-Demand Anomalies

One of the significant advantages of using GAN over other algorithms in the
literature to synthetically augment the data is that it gives us more control
over the generation through the latent space. This feature can be particularly
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beneficial when working with unbalanced datasets. In the use case under study,
we find that most of the samples change little from the previous step. To
increase the heterogeneity of the data produced, we propose a method for
generating on-demand anomalies, i.e., data where the time difference with the
previous step is significantly high.

Algorithm 1 On-demand anomaly scenario generation algorithm

Input: Number of scenarios S, Lenght of each scenario prediction L, multi-
dimensional time-series data H, categorical variable sensor Id C, Generator
network G, anomaly occurrence step γ, standard deviation for anomalies σ′.
let Scenarios[0, 1, ..., S − 1] be a new array
let Prediction[0, 1, ..., L− 1] be a new array
for s ∈ [0, S − 1] do

X will be the time-series input to G:
X ← H

for t ∈ [0, L− 1] do
if t = γ then

z ∼ N (0, σ′)
else

z ∼ N (0, 1)
end if
Obtain the next step prediction:
Prediction[t]← G(X,C, z)
Update X by concatenating it with Prediction[t]:
X ← X[1 :]⌢Prediction[t]

end for
Allocate the obtained predictions as a new scenario:
Scenarios[s]← Prediction[ ]

end for

The generation of new data using a GAN implies introducing a vector at
the input of the Generator network. One of the improvements mentioned in the
previous section recommends sampling these input vectors from a Gaussian
distribution, parameterized by a mean of 0 and a standard deviation of 1. We
propose increasing the standard deviation of the Gaussian noise distribution
(during the generation phase) when the anomaly is desired, obtaining results
that are far from the mean (i.e., unusual cases), leaving the standard deviation
at 1 in the remaining time steps. Algorithm 1 summarizes this process. After
the computational analysis of Algorithm 1 and a series of empirical tests, we
can conclude that the computational complexity of the proposed method is
O(k ·n), where k is a constant dependent on the number of scenarios generated
and their length, and n the input length.

Consequently, no expert knowledge is required to generate the anomalies.
This method can generate ”outlier” data for the models, which, despite losing
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certain realism (i.e., similarity to the real data), helps the model gain more
stability. In Computer Vision tasks, data augmentation techniques that also
make images ”lose realism” (e.g., mixing, random erasing) have demonstrated
their usefulness in numerous research studies [50] [46]. However, its usefulness
in time-series tasks has not yet been studied in depth. Our solution does not
require additional efforts, and the physical integrity of the electronic equipment
is not jeopardized by exposing them to extreme situations.

3.3 Evaluation Metrics

Validating the quality of the generated scenarios is more challenging than
measuring the performance of point forecasts. On the one hand, scenarios must
be realistic enough to reflect the structural and variable interdependencies of
predicting values at different prediction horizons. On the other hand, they
must have enough variability to provide valuable additional information when
used as synthetic data.

The most commonly used approach in the literature of synthetic time-
series data generation is to compare the autocorrelation of the generated data
with that of the real data. However, we consider this method to be limited for
assessing the usefulness of synthetic data and is not suitable for multivariate
data because it does not analyze the relationships between variables. This
paper proposes to use two different metrics to verify the similarity of the
generated multidimensional data: Kullback-Leibler (KL) Divergence and Mean
Squared Error (MSE).

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3)

The KL Divergence, also known as relative entropy, is an asymmetric mea-
sure of the difference between a given probability distribution P and a reference
probability distribution Q (Equation 3). This metric gives us an overall assess-
ment of the multidimensional distribution of the generated data compared to
the real data, thus ensuring that the relationships between the variables are
maintained. A KL divergence of 0 indicates that the two distributions are
identical. In the context of coding theory, this metric can express the extra
amount of bits (using log2) needed to code samples of a distribution P using
a code optimized for the compared distribution Q. In the Bayesian inference
field, this divergence metric can express a measure of the information gained
by revising one’s beliefs from the prior probability distribution Q to the poste-
rior probability distribution P . A great advantage of this metric is that it can
be used with multivariate data, using n-dimensional probability distributions.

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

(4)

The MSE of an estimator measures the squares’ average of the commit-
ted errors (Equation 4). Unlike the mean errors in absolute values, this metric
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gives greater weight to large errors. The MSE evaluates the punctual differ-
ence between the generated and actual time series, thus ensuring the temporal
coherence of each variable. The lower the MSE score, the better the forecast.

Combining these two metrics aims to achieve realistic scenarios in the
synthetic data generated, both in terms of multidimensional probability
distribution and punctual prediction of each variable.

4 Case Study

This section describes the use case employed to validate our proposal and the
complete architecture implemented. In this research, we have used real sensor
data collected from an operating DC of the company Adam Data Centers1. The
data was collected during 2019 at Adam Data Centers’ facility in Navalcarnero
(Madrid, Spain). The sensors were designed and developed by the startup
company TycheTools2.

Fig. 1 Plot of the data collected by one sensor. Samples are collected every 10 minutes.

DC facilities are primarily based on air-based cooling solutions, following
the Hot Aisle / Cold Aisle strategy [49]. It consists of lining up the racks (i.e.,
computing units) to face cold air intakes and hot air exhausts alternately, form-
ing cold and hot aisles. The air conditioning units cool down the heated air
from the hot aisles and then reintroduce it to the cold aisles using the ventila-
tion ducts on the room’s floor. The sensors were placed equally in the cold and
hot aisles in the Adam Data Centers’ facility. To model a DC facility’s behav-
ior, it is crucial to monitor as many system variables as possible. However,
temperature and relative humidity are the most relevant and straightforward
variables to capture. Besides studying the cooling system dynamics, there is
a clear correlation between these variables and the total power consumed [43]

1Adam Data Centers [https://adam.es/data-center/]
2TytheTools [https://www.tychetools.com]

https://adam.es/data-center/
https://www.tychetools.com
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[52]. Considering them sufficiently relevant, only relative humidity and tem-
perature were captured. Nevertheless, following our approach, the number of
variables can be easily expanded.

Fig. 2 On the left: Rolling segmentation on dataset. The green bars represent the entire
dataset, the blue bars represent the model inputs, and the orange bars represent the model
outputs. On the right: Kernel Density Estimation plot confronting Relative Humidity and
Temperature data from all sensors.
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We have a total of 35 sensors available. The measurements are taken every
10 minutes and sent to the gateway that inserts them into the database. In
Figure 1, we can observe the data collected by one of the sensors. We can
observe a certain negative correlation by comparing both variables (humidity
and temperature) from all sensors and computing the Kernel Density Estima-
tion (Figure 2). These two variables show a Pearson correlation coefficient of
-0.784. When the humidity is low, higher temperatures are registered, and vice-
versa. This phenomenon occurs because water vapor concentration impacts the
air’s thermal conductivity, affecting the power consumption of cooling systems
[52].

We segmented the dataset with a fixed-size rolling window (Figure 2).
Figure 3 shows the complete GAN architecture, specifying each input and
output. The architecture is designed to introduce one sensor at a time, which
will give us high flexibility in the data generation phase. Although, due to this
decision, the model may have more difficulties finding the correlations between
the different sensors.

The Generator network has three inputs: (i) the conditional categorical
input: a variable indicating the sensor ID, treated by an embedding layer;
(ii) the conditional time-series input: a multidimensional historical data from
the sensor, in our case, humidity and temperature, treat by LSTM neurons;
(iii) Random noise input: vectors sampled from a multidimensional Gaussian
distribution (i.e., latent space), treat by Fully Connected neurons. With this
approach, the Generator will produce synthetic data based on the random
noise input, conditioned to the particular sensor being handled and the tem-
perature and humidity data it has measured in the last hours. Therefore, the
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Generator network must reproduce the patterns and relationships between the
conditioning variables. The Critic network has two inputs: (i) the conditional
categorical input: a variable indicating the sensor ID, treated by an embedding
layer of the same dimension as in the Generator network; (ii) the data input:
multidimensional time-series data, alternating between real and fake data.

The Generator network produces a multidimensional output, attempting
to predict the next step of the introduced time series correctly. Therefore, if
we wish to obtain longer-term predictions, we must reintroduce the previously
produced output to the input data and repeat it to the desired point. Once
the training phase is completed, we will analyze the results by exploring the
latent space. We will also illustrate the generation of on-demand anomalous
situations to increase the data’s variability.

Fig. 3 Complete GAN architecture.

5 Experiments and Results

This section describes the performed experiments and discusses the quality of
the obtained results. The code developed for this research was developed in
the Google Colab platform, using Python 3.6, and the TensorFlow DL frame-
work. The decision to develop the project using the Google Colab platform is
primarily due to its free-charge Graphics Processing Unit (GPU) executions
to train models. Besides, this platform encourages the projects’ reproducibil-
ity and compliance with open science’ best practices by offering ubiquitous
programming virtual environments. The complete code is openly available on
GitHub [42].

As explained in Section 3.1, GAN training is a complex and delicate pro-
cess. Training stability depends on many hyperparameters that must be set by
hand and have complex interrelationships. In image generation, the research
community has made a great effort to find the hyperparameters that pro-
duce better results and more stable training. Unfortunately, the use of GANs
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Table 2 Initial GAN training hyperparameters

Hyperparameters Values

Feature Scaling Min-Max Scaler [-1, 1]

Training Loss Function
Wasserstein Loss

with Gradient Penalty
Batch Norm in Generator network ✓

Spectral Normalization ✓
Gaussian Noise Dimension 8

Embedding Layer Dimension 8
Networks Size Ratio (Critic / Generator) ∼4.5

Batch Size 64

Table 3 GAN training hyperparameter tuning process. Experiments result using
validation set (10% of the dataset).

Hyperparameters Results Metrics

Optimizer Skip
Connection

Output
Activation TTUR Dropout KL Divergence

[bits]
MSE

Temp. [◦C2] Humid. [%2]

Adam ✗ linear ✗ ✗ 1.888 1.943 1.011
Adam ✗ linear ✗ ✓ 1.801 2.359 1.092
Adam ✗ linear ✓ ✗ 1.771 2.206 0.778
Adam ✗ linear ✓ ✓ 1.825 2.468 0.844
Adam ✗ tanh ✓ ✗ 2.431 2.203 0.987
Adam ✓ linear ✓ ✗ 2.358 2.244 0.721

AdaBelief ✗ linear ✗ ✗ 2.375 3.134 1.083
AdaBelief ✗ linear ✗ ✓ 2.013 1.473 0.662
AdaBelief ✗ linear ✓ ✗ 1.707 1.359 0.583
AdaBelief ✗ linear ✓ ✓ 1.432 0.977 0.438
AdaBelief ✗ tanh ✓ ✓ 1.872 1.317 0.419
AdaBelief ✓ linear ✓ ✓ 2.018 1.556 1.187

for time-series data has been scarcely explored, and no in-depth studies have
explored the best hyperparameters for this field. Therefore, in this work we
have employed many recommendations from the GANs’ state of the art, com-
bined with an empirical heuristic search to set some reasonably good initial
hyperparameters reflected in Table 2.

After the first hyperparameter selection process, and based on state-of-
the-art examples and some empirical tests, we decided to use LSTM neurons
in the Generator and 1D Convolution neurons in the Critic. The number of
trainable parameters in the Critic network is approximately 735,000, and in
the Generator network, around 165,000.

Once the architectures are fixed, we adjust the following hyperparameters:
(i) Optimizer algorithm: Adam [29] or AdaBelief [63]; (ii) Skip-Connection: An
additional connection in the Critic network inspired by the ResNet architecture
[20] architectures; (iii) Activation function at the Generator output: Linear or
tanh; (iv) TTUR [21]; (v) Dropout [48].

Table 3 illustrates the results of this hyperparameter adjustment. The met-
rics shown are performed by comparing a random scenario generation of 24
time-steps ahead (4 hours) with the ground truth from a randomly selected
validation set (10% of the dataset).

We have achieved the following results in a validation set (10% of the
dataset): KL divergence of 1.432 bits and a Root Mean Squared Error (RMSE)
accuracy error of 0.988°C for temperature and 0.661% for humidity. Figure 4,
using the Kernel Density Estimation, illustrates the comparison of the distri-
butions from the scenarios predicted of 24 time-steps (4 hours) ahead and the
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Fig. 4 On the left: Diagram showing how the ”Real” and ”Generated” sets of data were
obtained. The Generated data consist of 24-steps random scenarios from a validation set of
data (10% of the dataset). On the right: Kernel Density Estimation plot confronting Real
and Generated data distributions.
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ground truth from a randomly selected validation set. Hence, the predicted
scenarios appear consistent with the available real data.

To demonstrate the quality of the results generated by our model, we have
conducted experiments in a randomly selected test set (15% of the dataset),
achieving a KL divergence of 1.363± 0.071 bits and an RMSE accuracy error
of 0.995±0.08°C for temperature and 0.661±0.03% for humidity, very similar
results to those obtained in the validation set (Table 3).

It should be noted that a comparison of these results with the methods
discussed in the literature would be meaningless since, as we have explained
in Section 2.4, the reviewed approaches focus only on similarity metrics (e.g.,
autocorrelation). However, our goal is to achieve both similarity and variability
in the scenarios to obtain as much synthetic data as possible, taking advantage
of the possibilities offered by GANs through the exploration of their latent
space.

The obtained results are indicators that the synthetic data we have gener-
ated have high similarity (a standard measure of realism) to the actual data.
However, we are not guaranteed that these generated data have significant
variability or help train predictive or optimization models. To this end, in the
following subsections, we will visually explore examples of the scenario and on-
demand anomaly generation and evaluate their utility by training a predictive
model.

5.1 Scenario Generation

During the GAN training phase, we introduced noise vectors sampled from
a multidimensional Gaussian space, known as latent space. This procedure
implies that when creating a new scenario, the Generator’s output will change
depending on the noise vector introduced at the input. Therefore, by randomly
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sampling vectors from latent space, and if the GAN has trained correctly, we
get different realistic scenarios for the same given situation.

Fig. 5 Scenario Generation example of 24-steps (4 hours) ahead. Example with low uncer-
tainty. The scenarios were generated by concatenating (reintroducing) each 1-step prediction
at the input of the Generator.

Fig. 6 Scenario Generation example of 24-steps (4 hours) ahead. Example with increasing
uncertainty. The scenarios were generated by concatenating (reintroducing) each 1-step pre-
diction at the input of the Generator.

In the following, we find some examples of scenarios generated, which help
us visualize the results’ quality and the achieved variability. Specifically, six
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different scenarios have been generated in each example, with a duration of 24
time-steps concatenated predictions (4 hours ahead). In Figure 5, we present
a situation where the scenarios exhibit low uncertainty, indicating that the
Generator has higher confidence in the results. Figure 6 shows scenarios where
the uncertainty is relatively low in early prediction steps, but it increases as
we advance in the number of steps ahead. We can observe how the correla-
tion between temperature and humidity variables remains consistent in all the
generated scenarios.

Fig. 7 On the left: Heat maps showing the data collected by the 35 available sensors during
24 time steps (4 hours). Each row represents a different sensor. On the right: Heat map
showing a scenario generated in the 35 available sensors. 24-step prediction (4 hours ahead).
Each row represents a different sensor.

To provide an overview of a scenario generated on all sensors, in Figure 7,
we find heat maps where each row represents a different sensor. On the right
side of the Figure 7, we show the data generated with a duration of 24 time-
steps predictions (4 hours ahead). On the left are the actual data collected. The
rows (representing each sensor) have been sorted from highest to the lowest
initial temperature.

Fig. 8 Hot aisle/cold aisle scheme used in DC cooling systems.

The significant differences in temperature (and humidity) between the sen-
sors result from their position in the DC. The higher temperature sensors are
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located in the hot aisles of the DC (server outlets), and the lower tempera-
ture sensors are located in the cold aisles (server inlets). The cold air enters
the servers and flushes the heat generated by the computation to the outside.
Moreover, as the workload is not homogeneously distributed, the temperature
of a server’s outlet also varies depending on the computation performed by
the adjacent servers. On the other hand, the temperature of the inlets is not
homogeneous either, as it depends mainly on the height at which the server
is located. The cold air is driven through the raised floor and ascends to be
absorbed by the server’s front. The air’s temperature reaching the servers at
the top of a rack is usually higher than at the bottom. Figure 8 shows a dia-
gram of this scheme widely used in DC cooling systems. The heat maps in
Figure 7 show how this heterogeneity in the data is consistently maintained by
the generated data, thus indicating that our approach allows the generation
of realistic data coherent with the particularities of the use case under study.

Table 4 Utility evaluation, training a prediction model. Train on Synthetic, Test on Real
(TSTR); Train on Synthetic and Real, Test on Real (TSRTR); Train on Real, Test on Real
(TRTR)

TSTR TSRTR TRTR
MSE Temperature 0.106± 0.013 0.0525± 0.004 0.0738
MSE Humidity 0.018± 0.005 0.0087± 0.001 0.0094

To empirically test the effectiveness of the data generated for training pre-
diction or optimization models, we have followed the approach proposed by C.
Esteban et al. [13] of comparing the metrics achieved in Test on Synthetic, Test
on Real (TSTR) with Train on Real, Test on Real (TRTR). This approach
has also been used in other related work in the state of the art [15]. Addition-
ally, we compared these metrics with Train on Synthetic and Real, Test on
Real (TSRTS) to test the effectiveness of combining both synthetic and real
datasets during the training phase.

We have developed a simple model based on feedforward neural networks to
perform these tests. This model has 2 hidden layers with 256 and 32 neurons,
respectively, and an output layer with 2 neurons (one for each variable to be
predicted). To facilitate the evaluation, the objective of this model will be
to predict the next step of the multivariate time series. Specifically, in each
performed experiment, we have generated 15,000 data samples of 24 time steps,
and on each sample, we have generated 10 different scenarios. Making a total
of 150,000 data samples of 24 time steps, which is a larger volume than the
original dataset. Table 4 shows the results of the conducted tests. Since the
synthetic data generation phase involves a certain degree of randomness, the
results using synthetic data in training show the mean of 5 experiments and
the confidence interval. We can observe that training with synthetic data only
(TSTR) provides similar results to training solely with real data (TRTR).
Nevertheless, both are satisfactorily outperformed by simultaneously training
with synthetic and real data (TSRTR). These results are consistent with the
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conjecture that in the field of DL, a larger amount of useful data improves the
performance of the models.

5.2 On-Demand Anomaly Generation

As explained in Section 5.1, we have introduced randomly sampled vectors
from a multidimensional Gaussian space during each training step, employ-
ing a distribution with a 0 mean and standard deviation of 1. Our proposal
for generating on-demand anomalies (Section 3.2) consists of increasing the
standard deviation of the Gaussian noise distribution (during the generation
phase) when the anomaly is desired, obtaining results distant from the mean
(i.e., unusual cases).

Fig. 9 On-demand anomaly generation on the 10th step of the prediction. 24-steps predic-
tion ahead (4 hours).

Figure 9 shows an example in which we have introduced an anomaly in
the 10th prediction step by increasing the standard deviation from 1 to 8.
We can appreciate that some scenarios produce the desired anomaly and that
the following steps of the forecasting are consistent with this event. Not all
scenarios produce anomalies because we are solely increasing the standard
deviation of the Gaussian distribution. Thus, some sampled vectors will be in
the same range (or close) as those used during the GAN training phase.

To precisely determine whether we have successfully generated an anomaly,
we propose a threshold of ±5 times the standard deviation (σ) of the deriva-
tive on each variable. This means that we observe if the difference between
one data point and the next one is exceptionally anomalous (5σ). For tem-
perature, this value is ±1.2°C, and for humidity, it is ±0.45% (Figure 10). In
Figure 10, we notice that for the vast majority of contiguous data points, the
difference is close to 0. This makes sense because workloads in data centers do
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Fig. 10 Temperature and humidity derivative histograms indicating the difference between
contiguous data points. The red dashed lines indicate ±5 times the standard deviation (σ).

Table 5 Evaluation of the generated anomalies, training a prediction model. Train on
Synthetic, Test on Real (TSTR); Train on Synthetic and Real, Test on Real (TSRTR);
Train on Real, Test on Real (TRTR)

TSTR
(5% Anomalies)

TSTR
(10% Anomalies)

TSRTR
(5% Anomalies)

TSRTR
(10% Anomalies)

TRTR

MSE
Temperature

0.103 ± 0.008 0.0899 ± 0.004 0.0532 ± 0.004 0.0584 ± 0.005 0.0738

MSE
Humidity

0.0168 ± 0.003 0.0139 ± 0.002 0.0078 ± 0.004 0.0086 ± 0.002 0.0094

not usually undergo abrupt changes. These abrupt changes could be indica-
tors of server failures or poor workload distribution in the DC. The maximum
value measured in the temperature derivative is 11.9°C, and the minimum is
-9.79°C. In the case of the humidity derivative, the maximum value is 2.64%
and the minimum -3.59%.

As in Section 5.1, we have evaluated the generated anomalies using the
method proposed by C. Esteban et al. [13], in which the metrics of TSTR,
TSRTR, and TRTR are compared in a predictive model. In this case, the
anomalies are introduced in a certain percentage of the synthetic data with
which the model is trained. That is, we do not train the model solely on anoma-
lous situations. It is crucial to note that the objective of anomaly generation
is not to improve the model’s predictions but to make the model more stable
and robust to anomalies that may be encountered in the real world. Since no
remarkable anomalies have been identified in the original dataset, the evalu-
ation process we are about to carry out aims to empirically check that the
predictions of the developed model are not devalued when artificial anomalies
are introduced.

The prediction model employed for the tests is the same as in Section
5.1 based on feedforward neural networks with 2 hidden layers of 256 and
32 neurons, respectively, and an output layer with 2 neurons (one for each
variable to be predicted). The objective of the model will also be to predict
the next step of the multivariate time series. The amount of synthetic data
generated is the same as in Section 5.1, 15,000 samples with 10 scenarios each.
Table 5 shows the results of the tests performed. In the tests where synthetic
data and anomalies are used for training, the results show the mean of 5 tests
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performed and the confidence interval. We can observe that in the case of
training only with synthetic data and anomalies (TSTR), the results are very
close to the case of training the model only with real data (TRTR). In fact,
adding anomalies even improves the TSTR results from the previous Table
4, where no anomalies are used. In the case of training with synthetic and
real data together (TSRTR), adding anomalies still gives better results than
training only with real data (TRTR). Although in this case, the results do not
improve from those of the previous Table 4.

Based on the tests performed, we can confirm with certain confidence that
the addition of anomalies to the training dataset does not devalue the predic-
tions made by the model and even improves them in some cases. Therefore, by
integrating synthetic anomalies, we can achieve greater robustness and stability
in the models without compromising their predictive performance.

6 Conclusions and Future Directions

This paper presents a methodology for the augmentation of time-series data
from DCs using GANs. For this purpose, we have combined the approaches
of data augmentation using GANs and scenario forecasting, allowing us to
generate large amounts of synthetic data, taking advantage of the significant
generation flexibility provided by GANs. The use of GANs also allows us to
handle multivariate data with complex relationships and of different nature
(e.g., categorical data). Furthermore, we propose a method to produce on-
demand anomaly scenarios, increasing the synthetic data heterogeneity and
the robustness of the models to be trained with these data. The production of
anomalies does not require additional efforts and avoids endangering the elec-
tronic equipment’s integrity. By including on-demand anomalous situations,
the DC optimization algorithms will be able to cope more safely with unseen
situations without compromising the physical integrity of electronic equipment
while gathering these data.

To the best of our knowledge, our work is the first to propose a data aug-
mentation methodology for DC facilities. Our research makes it possible to
generate large volumes of synthetic data without compromising the security of
DCs. To demonstrate our proposal’s feasibility, we have used real data gath-
ered from an operating DC, obtaining satisfactory results. However, our work
can be easily adapted to any similar time-series-like problem in any field of
application. These large volumes of synthetic data can improve AI-based opti-
mization algorithms, enabling potential improvements in model optimization
and energy consumption in DC facilities; thus, enabling a more sustainable
and greener future.

Future work lines include a more extensive hyperparameter search pro-
cess and an empirical demonstration of our proposal’s scalability to a larger
number of variables. In DL literature, experiments have shown that providing
additional information may improve the results and reliability. In the field of
time series, we could add frequency spectrum information, predictions with



Springer Nature 2021 LATEX template

24 Data augmentation through multivariate scenario forecasting

classical methods (e.g., ARIMA), or time information (e.g., time, day of the
week, time of the year). In this paper, we have also proposed two metrics to
verify the realism of the generated data (KL Divergence and MSE). However,
alternative metrics can be explored that, for example, contemplate the fre-
quency spectrum. The field of generative models is one of the most active in
the academic community today. Therefore, we believe it is essential that future
research consider incorporating new state-of-the-art approaches, such as novel
architectures and new training enhancements.
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