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Abstract—Knowledge Tracing is the process of tracking mas-
tery level of different skills of students for a given learning
domain. It is one of the key components for building adaptive
learning systems and has been investigated for decades. In
parallel with the success of deep neural networks in other
fields, we have seen researchers take similar approaches in
the learning science community. However, most existing deep
learning based knowledge tracing models either: (1) only use
the correct/incorrect response (ignoring useful information from
other modalities) or (2) design their network architectures
through domain expertise via trial and error. In this paper,
we propose a sequential model based optimization approach
that combines multimodal fusion and neural architecture search
within one framework. The commonly used neural architecture
search technique could be considered as a special case of our
proposed approach when there is only one modality involved. We
further propose to use a new metric called time-weighted Area
Under the Curve (weighted AUC) to measure how a sequence
model performs with time. We evaluate our methods on two
public real datasets showing the discovered model is able to
achieve superior performance. Unlike most existing works, we
conduct McNemar’s test on the model predictions and the results
are statistically significant.

Index Terms—knowledge tracing, multimodal fusion, neural
architecture search

I. INTRODUCTION

For a given educational domain, the learning goal for a
student is to master a set of skills (knowledge components) that
are usually designed by experts or discovered automatically
by computational models [1]. For instance, in Geometry,
calculating the area of a circle is considered one skill in
a larger learning goal. Based on the student’s proficiency
with varying skills, customized learning materials could be
provided, potentially improving learning efficiency. The pro-
cess of tracking the mastery level of different skills is called
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Knowledge Tracing (KT), and it is a key component for build-
ing adaptive learning systems. During the interaction between
one student and an adaptive learning system, data like the
sequence of responses to some questions, the time one spent
on each specific question, hints that asked, etc. will be logged.
All these interaction data between students and the adaptive
learning system can be used to build KT models—however, the
most often used data is a single sequence of correct/incorrect
responses, as indicated by previously proposed knowledge
tracing models [1]-[6]. In these works, the objective of the
model is to analyze a sequence of one student’s responses and
predict which future questions the student will answer correct
or incorrect.

Various methods for KT have been proposed. Bayesian
Knowledge Tracing (BKT) [2] is a type of Hidden Markov
Model (HMM), with latent variables modeling the skills and
observed variables modeling the student responses. Perfor-
mance Factors Analysis (PFA) [3| calculates the accumulated
learning as a function of the number of success attempts and
failure attempts for different skills. The empirical success
of deep learning in other fields motivated researchers in
the learning science community to incorporate deep neural
networks for knowledge tracing. Deep Knowledge Tracing
(DKT) [1] typically uses a recurrent neural network which
takes one-hot encoding of the skill tag and correctness as
input. The output vector corresponds to the mastery level of
different skills. Dynamic Key-Value Memory Network [4]] uses
one static key memory to encode the skill tags and one value
memory to store the mastery level of skills. The value memory
is updated accordingly after every attempt. Other works like
Paney et al. incorporates attention mechanisms for knowledge
tracing [5]]. Ding et al. exploits neural architecture search for
recurrent cell discovery for knowledge tracing [6].



When building Knowledge Tracing models, all above men-
tioned works use only the correct/incorrect response history of
a student. However, most existing adaptive learning systems
or intelligent tutoring systems usually provide additional in-
formation about the interactions of a student. Along with the
correct/incorrect responses, these systems monitor information
like the time spent on each item, whether one student asks
for a hint or not, accommodations used, etc. [7]-[9]. Some
existing works have shown that incorporating more features
(we use features and modalities interchangeably in this paper)
have the potential of improving model performance [[10]—[12].
For example, Zhang et al. [11]] concatenated correct/incorrect
response together with additional discrete features into a vector
and used Auto-Encoding to learn a representation with lower
dimensionality. In parallel, Yang er al. [[12]] proposed a similar
work. However, instead of discretizing features first, they
used a decision tree which could handle both continuous and
discrete input. The decision tree will first take in all the
features and then output a prediction about the next response.

Most existing deep neural network based knowledge tracing
models only use one modality and manually crafted archi-
tectures, with some exceptions either using one modality and
neural architecture search [[6], or using multimodal inputs with
manually designed architectures [11], [12]. In this work, we
try to bridge the gap by proposing an approach that combines
multimodal fusion and neural architecture search within one
framework. Our contributions are summarized as follows:

o We propose an approach that combines multimodal fusion
and neural architecture search within one framework.
The commonly used neural architecture search technique
could be considered as a special case of our proposed
approach when there is only one modality involved.

o We propose to use a new metric called time-weighted
area under the curve (wWAUC) that could measure how
one model performs with time.

« We evaluate our method on two public real datasets. Our
method is able to find neural architectures having superior
performance. We run McNemar’s test on the predictions
and the results are significantly different.

II. RELATED WORK

Knowledge Tracing is a well established research area with
roots in traditional modeling like those based on item response
theory models [13]], [[14]], Bayesian Knowledge Tracing (BKT)
[2], and Performance Factors Analysis (PFA) [3]], and has
evolved to more recent deep neural network based models
[1]], [4]-[6l]. In this section, we focus on the most recent
works based on deep neural networks. Compared to traditional
statistical models, these works have shown state-of-the-art
performance in predicting student responses.

A. Knowledge tracing based on deep neural networks

The first work to propose Deep Knowledge Tracing (DKT)
was from Piech et al. [1]. The DKT model uses a standard
recurrent neural network architecture, for example LSTM [[15]].
Each student response that is analyzed by the model contains

information about what skill the question is designed to assess
(the skill ID). The input to this model is a one hot encoding
of the skill ID crossed with the correctness of the problem.
For example, if there are M skills, the size of the input vector
will be 2 x M. The authors tried other options, like encoding
the skill ID and correctness separately, but results proved
unsuccessful. The output layer of the model is a vector of
probabilities predicting if the student could answer each of M
skills correctly. However, this output vector is not trained as a
whole. For each student, the DKT model takes the combination
of the skill ID and correctness from the previous problem to
predict the next problem. The next problem ID will be used to
choose the corresponding element in the output vector, based
on which the cost function is created. Also, the DKT model
does not distinguish different students.

Dynamic key-value memory network for knowledge tracing
(DKVMN) [4] is based on the work from Weston et al
[16]. DKVMN has one static key memory MP*, which is the
embeddings of all skills. The content of M* does not change
with time. DKVMN also has one dynamic value memory M}
for storing the current mastery level of corresponding skills.
The content of M} is updated after each response. There are
two stages involved in the DKVMN model. In the read stage,
a query skill g; is first embedded to get k;, then a correlation
weight and the mastery level of skill ¢ is calculated using:

wy (i) = softmax (kX M* (1))

re =Y w(i)M; (i)

The authors concatenate the query skill ¢; with ry to get the
final output p; arguing that the difficult level of each skill
might be different. The second stage is to update the memory
network M. The embedding of the combination of the skill
query ¢; and the actual correctness r; is used to create an
erase vector e; and an add vector a;. The new value matrix is
updated using:

Mtv(l) = M;_ 1 (1)[1 — wi(i)e]
My (i) = M (i) + wi(i)a;

Pandey et al. [5] proposed using self attention mechanism
for solving the sparsity issues recurrent neural networks could
face, since the next prediction only depends on a few most rel-
evant attempts in the past. Most existing deep neural network
architectures for knowledge tracing are designed manually by
trail and error or from intuition. Ding et al. [6] proposed using
reinforcement learning for the automatic design of recurrent
cells for knowledge tracing. In their approach, a recurrent cell
is encoded as outputs of an agent which is another recurrent
neural network. The performance of the generated models are
treated as rewards that could guide the agent to output better
models. In our work, we also use neural network search to
automatically look for the best architectures—however, unlike
the above mentioned works, we incorporate this search with
additional feature modalities.
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Fig. 1. Search space for a recurrent cell, higher level nodes (layers) are fully

connected with lower level nodes. Red arrows indicate a sampled architecture.
Parameters are shared among all sub models.

B. Multimodal deep knowledge tracing

Most online intelligent tutoring platforms track not only the
correctness of a response, but also quantities such as how many
attempts one student has tried, what is the result of the first
attempt, how much time was spent on an item, and “does one
student ask for a hint?”, among many other factors.

Based on the DKT model, Zhang et al. [|11] tried including
more features like response time, attempt count, first action,
and others. The only difference between their model and the
DKT model is the input. Features are first discretized if they
are continuous, then these features are concatenated to form
one input vector. However, this input vector grows exponen-
tially with the number of features. Thus, they used neural
network Auto-Encoding [|17]] to learn a representation with
lower dimensionality. They evaluated this model on different
datasets and the results show improved performance. However,
using simply concatenation to incorporate these features has
a number of downsides including increased memory footprint
and exponential growth in the number of parameters needed
for training the encoding.

Yang et al. [12] proposed a similar work. Instead of dis-
cretizing features first, they used a decision tree which could
handle both continuous and discrete inputs. The decision tree
first analyzes all the features and then outputs a prediction
about the next response. The predicted response is combined
with the actual response to form a 4 bit one-hot encoding
(1000, 0010, 0100, 0001 representing true positive, false
positive, false negative and true negative respectively). This
one hot encoding then is concatenated with the original one
hot encoding of correctness and exercise tag to form the final
input. They evaluated this technique on several datasets and
the results also show improved performance compared with
using only the correctness as input.

However, the way these models combine different modal-
ities neglects the hierarchical and representational learning
ability of deep neural networks. Thus, our work builds upon
the evidence from [[11]], [12] that incorporating modalities can
increase performance, but we further incorporate methods to
find the correct fusion of these modalities, rather than relying
solely on ad-hoc or expert designs.

III. METHODS
A. Neural architecture search

A lot of successful deep neural network architectures are
developed by experienced experts through trial and errors.
Apparently, this process is tedious and not very efficient.
Neural Architecture Search (NAS) [[18]—[20] aims to find good
architectures for some specific task automatically and has
gained more and more attention in the past few years. It has
been shown that some architectures found through NAS have
achieved better performance than those developed manually
by human experts [21[]. Evolutionary algorithm [22] is one
of those earliest used for NAS. The idea is to represent
the neural network architecture with a fixed size vector. For
example, the first element in this vector could be the type
of the first layer (conv layer, max pooling layer, etc). Off
springs are generated using mutations of the parents vectors.
The generated architectures are evaluated based on some
metrics (accuracy on a validation set). This process keeps
going until we have found some good architectures or we hit
the maximum number of iterations. If we look more closely,
we could further decompose the model finding problem into
architecture search and parameters optimization. In such cases,
Evolutionary algorithms are usually used together with gra-
dient based methods, in which Evolutionary algorithms are
used for finding the architecture, and gradient based methods
are used to optimize the weights. Other techniques used for
NAS include Reinforcement Learning (RL) [18], [19], [23],
gradient based methods [24]]-[26]], sequential model based
optimization (SMBO) [20], etc. For a comprehensive survey
of NAS, readers could refer to this survey [21].

Neural architecture search could be computationally de-
manding if used directly, thus several mitigations have been
proposed. Parameters sharing [18] is a technique to share
parameters among generated models. The idea is not to reini-
tialize the parameters for each new generated model, instead,
subsequent models use the parameters from previous trained
models. Some works [[19] take a greedy approach, looking for
one unit that could be stacked to form the final architecture.
For example, for a recurrent architecture, we could search for
the best recurrent cell type or best activation function to use in
the cell. Sequential Model Based Optimization (SMBO) [20]]
gradually unfold more complex networks and use a surrogate
function to predict the performance of potential models. Only
these models with predicted high performance will be trained,
thus reduce search space.

In this work, we look for the best recurrent cell that could
be further stacked into our model. We regard cell architecture
search as the process of sampling a sub-graph from the global
graph as shown in Figure [T} This idea is similar to the one
in [[18]]. Each node (layer) is fully connected to its previous
nodes. The outputs of earlier nodes will be used as inputs
to later nodes and a later node could choose the output
of any its previous node. A sampled sub graph (model) is
indicated as red arrows in this figure. Node 1 is the input
node, node 3, node 4, and node 5 are leaf nodes and their
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Fig. 2. Different levels of fusion. (a) Early level fusion, (b) Late level fusion, (c) Intermediate level fusion, as categorized by [27].

outputs will be combined to generate the final predictions.
A fully connected layer involves the operation of a matrix
multiplication and activation function. For the input node, the
following computations are performed:

(D
he = fr(at - WM R W+ (1= )« b ()

¢t = ol - W™ + byt - W)

where ¢ and f; are both activation functions. - refers to dot
products, * refers to element wise vector multiplication. For
subsequent layers, the following computations are performed:

) = o(hl, - Wy (3)
“)

where ¢ and f; are activation functions, we use sigmoid
function for ¢, and W;; are the feedforward weights from
node j to node [. We get the final output by averaging the
leaf nodes. In the case of the sampled architecture shown in
Figure [T} we get:

hj = ¢ x fl(hé,z : Wj},ll) +(1—c))* hé,z

hi = (hs + ha + hs)/3 )

To save search time, in this study we use the parameters
sharing technique [[18]]. The idea of parameters sharing is that
weights are only initialized once at the very beginning of
search and are shared among all sub-models. Thus, for each
new generated model, we do not reinitialize the weights, but
start from the last training period. We also use Sequential
model based optimization (SMBO) [20] technique to generate
new models. SMBO assumes that the search space could be
gradually unfolded from simple to complex. When construct-
ing a recurrent cell, the architecture becomes more and more
complex when more layers are added. Lying in the heart of
SMBO is a function that could predict the accuracy of a
generated model. This function is usually called the “surro-
gate function.” The search starts from the simplest case (for
example only one layer), after all possible models are trained.
The architectures and their accuracies will be used to train the
surrogate model. Then more complex models are unfolded (by

adding more layers). When the search space becomes too large
to train all possible models, a sampling process is taken. In
this case, the surrogate function will be used to predict the
accuracies of these models. Then k£ models are sampled (with
higher accuracy, higher the probability to be sampled, allowing
exploration of numerous architectures). Then the sampled &
models are trained. Their accuracies and architectures are then
used again to update the surrogate function. Thus, it is an
alternative process. Compared with reinforcement learning,
SMBO has a simpler implementation and has increased sta-
bility. Because the sampled architectures could be encoded as
a sequence of list like [[p1, a1], [p2,as], -..[ps, a;]], where p;
stands for previous node and a; stands for activation function,
we could use a recurrent neural network as our surrogate
function.

B. Multimodal fusion

When considering the use of multimodal inputs, the key
insight is about crafting a strategy for fusion of each mode.
Figure [2] shows three possible ways of fusing different modal-
ities. Prior to the appearance of Deep Learning, there are
mainly two ways that multi modalities could be used in a
machine learning model. The first one is to combine different
modalities at the very beginning (Figure [] (a)). For example,
simply concatenating different modalities into large feature
vector. The hope was that the model could learn all useful
information from this vector. This method is also called early
fusion. Another way is to train a different model for each
modality, then combine the outputs from these models to
make a final decision (Figure [2] (b)). This is similar to the
ensemble modeling and also known as late fusion or decision
level fusion. Neither early fusion nor late fusion is proved
to perform better than the other in all situations. Which
methodology to use highly depends on the application.

One of the reasons why deep learning is so successful
on perceptual tasks is its ability to learn hierarchical rep-
resentations. Features are learned from data automatically
instead of manually crafted. Figure [2| (c) shows an example
of using deep neural networks for intermediate fusion. As
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Fig. 3. NAS for multimodal fusion with each skill has its own separate
encoder. The representation from the encoder goes through a regular recurrent
neural network (DKT model). In this case, the modality 1 and modality 2 will
be fused first, then modality 3 (the activation functions used are not shown
in this figure).

we can see intermediate fusion allows features from different
modalities to be gradually integrated. Empirical results have
shown the advantages of intermediate fusion. However, to
use intermediate fusion, we still need to decide the fusion
architecture first (which modalities to fuse at which level).
Such kind of intermediate fusion using deep learning is also
called deep multimodal learning [27]. In this study, instead
of manually designing the fusion architecture for deep neural
networks, we use neural architecture search to automatically
look for the best fusion structure.

C. Combining neural architecture search and multimodal fu-
sion

In this section, we discuss different ways of combining
neural architecture search and multimodal fusion within one
framework. We will first consider the simplest case which is
to search for the best representation for one skill.

1) Look for the best representation for one skill: A simple,
baseline approach is to first learn a representation that contains
information from all modalities and then send this represen-
tation to the recurrent neural network (DKT model). Our first
proposed architecture is shown in Figure 3] Two significant
differences from the DKT is that we use multimodality and
we have a separate encoder (fully connected layer) for each
skill. Using a separate encoder for each skill also means we
do not consider skill ID as one modality, like others. Piech et
al. [1]] also discussed to encode the skill ID and correctness

Fig. 4. Extend sub-graph sampling to multimodality. Red arrows indicate a
sampled architecture using two modalities. Modality m1 is used as input to
node 2 and then further node 4. Modality m2 is used as input by node 3, then
further by node 5. Node 4 and node 5 are leaf nodes here and their outputs
will be combined as the final output.

separately. However, they did not achieve results as performant
as using one-hot encoding. Also, they did not give the details
about how they conducted separate encoding. Using a separate
encoder has at least two benefits here. Firstly, we argue that
each skill is different from others (to some degree), thus using
a separate encoder allows custom transformation of a skill.
Secondly, it is more convenient to combine more modalities.
The final fused representation could be processed through
the corresponding encoder and without needing to attach the
skill ID to each modality. To make sure the performance
improvement is due to the actual fusion structure, not because
of the using of separate encoders, we did an experiment only
using the response and separate encoders and find the results
are similar to the ones from the DKT model.

Each modality will be first embedded using an embedding
layer. We use embedding size 100, this is the same for all
modalities. We consider the problem of which modalities to
fuse at which order and what activation functions to use. The
architecture could be encoded as a list of sequence of numbers.
For example, the fusion architecture [[m1, ma, fol, [m4, M3,
f1]1] could be interpreted as: Fuse modality m; and modality
me first using activation function fy (e.g., hyperbolic tangent).
Then fuse in another modality ms (here m,4 means the fused
representation of modality m; and modality ms) using the
activation function f1. From this perspective, the fusion ar-
chitecture search process also functions as a features selection
process. Thus, harmful or noisy features will be automatically
filtered out. In this work the number of modalities and types
of activation functions used is somewhat small—however, the
proposed methodology could be easily extended to any number
of modalities and activation functions. Adding more modalities
could be considered as gradually increasing the complexity of
the sampled space.

2) Extend sub-graph sampling process to multimodality: In
the previous section, we applied NAS for multimodal fusion
search while keeping the cell architecture fixed (LSTM).
In this section, we take one step further and consider the



possibility of combining multimodal fusion search with cell
architecture search. We accomplish this by extending the sub-
graph sampling approach discussed in section There
are few works that combine multimodal fusion search and
architecture search within one methodology. One exception
is the work from Pérez-Rua et al. [28]. However, they only
considered the case of two modalities. They used two pre-
trained networks for two different modalities. Each modality
is represented by a pre-trained multi-layer neural network.
Their goal is to extract representations from different layers
from these two modalities and fuse them in a specific order to
achieve good prediction performance. Strictly speaking, their
work is representation search from two pre-trained networks,
not architecture search.

Now, we focus on how can we extend the sub-graph sam-
pling process of [18]] to multimodality search. Our proposed
architecture is shown in Figure |4] Similarly, each node (layer)
is fully connected with its previous nodes and it could choose
the output from any of these previous nodes. The difference is,
instead of one input node, we have multiple input nodes with
one for each modality. Again, we first apply an embedding
layer for each modality to achieve a representation easier for
further processing. Each skill has its own encoder, one for
each modality. We can see this search space is a superset of
the one previously discussed. Within this methodology, any
amount of modalities could be fused at any layer. The sampled
architecture could also be represented by a list of sequence of
numbers [[p1, a1], [p2, azl....[pi, a;]], where p; refers to the
previous node and a; refers to the activation function. The red
arrows in Figure [ indicates a sampled architecture. Modality
my is used as input to node 2 and then further node 4. Modality
mo 1s used as input by node 3, then further by node 5. Node
4 and node 5 are leaf nodes here and their outputs will be
combined as the final output.

D. A new metric for Knowledge Tracing

Area under the curve (AUC) and coefficient of determina-
tion (r2) are two standard metrics used for knowledge tracing.
However, neither metric is designed to be used to measure
how one model performs over a sequence. That is, does the
model perform better after it sees more responses from one
student? Thus, we propose to use weighted AUC (wAUC)
for this purpose [29]. For a series of items to be predicted
i € {1,...,n}. There is a series of corresponding weights
{wy,wa,...wp }. Let S; = {i : y; = 1} be the set of positive
examples. Sy = {7 : y; = 1} be the set of negative examples.
Weighted false positive rate and weighted true positive rate
could be defined as follows:

1
FPR = e Z 1ly; = Nw;
1€Sp
1
1€S]
where, Wy = Zie 5o Wi is total negative weights and W =
D ic 5, Wi 1is the total positive weights. Thus, the weighted

ROC curve could be plotted for all thresholds. Weighted AUC
could be used in cases in which we want to emphasize low
false positive rate, etc. In our case, we employ it to measure
how the knowledge tracing model performs with emphasis on
time. We choose to assign more weights to the most recent
responses. That is, we are not concerned that when the model
first begins predicting student responses. In this work, we use
a simple strategy that is to increase the weight by one each
time the student sees the same skill. This strategy of weight
assigning is simple, but sensitive to measures that occur later
in the sequence. We believe more mature weights assigning
strategies using domain knowledge exist. But, as an initial
analysis, this simple metric and weight assigning strategy
allows us to measure how one model performs with time. We
hope this work could inspire more knowledge tracing model
measurement research in the future.

IV. EXPERIMENTS

We evaluate our proposed approach on two public real
datasets. The overall dataset statistics are given in Table [I]

TABLE I
DATASET STATISTICS
Records  Students  Skills
Assistment 09-10 337,236 3,884 123
Oli Engineering Statics
344,403 566 1251

2012 Fall

Assistment skill builder 09-10 The ASSISTment system is
an online tutoring system originally built on 8¢" grade MCAS
test items (mathematics) [7]. The 8t* grade mathematics test
includes the following five domains: The number system,
Expressions and equations, Functions, Geometry, Statistics and
probability.

OLI Engineering statics 2012 Fall: The Carnegie Mellon’s
Open Learning Initiative (OLI) is an online platform that
provides customized learninﬂ OLI aims for higher education.
The OLI Engineering Statics course is the study of methods for
quantifying the forces between bodies. The data were collected
for the term 2012 Fall.

Both these two datasets contain other modalities than re-
sponses. Great care need to be taken when combining these
different modalities for knowledge tracing. After removing
those modalities that have too many empty values, the ones
considered in this study include the following:

e Response. This is a binary variable indicating either one
correct or incorrect answer for the current problem. For
models like DKT and DKVMN, this modality is the only
one used.

o Time spent. The total time spent on the current problem.
This is a continuous variable.

o Attempts. This feature indicates how many opportunities
the current student has had for applying the associated
skill.

Thttps://oli.cmu.edu/
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o Hints. How many possible hints are there for this prob-
lem. This one is problem specific.

o First Action. This is a binary variable indicating whether
one student tries to attempt or ask for hint. If this student
asked for a hint, the response is set to be incorrect.

Note, we do not consider the skill id as a separate modality
like other work, instead we use different encoders (fully
connected layers) for different skills.

It is difficult to perform a fair comparison between two
different deep neural network models for a number of rea-
sons. Firstly, we only have a limited understanding of how
neural networks function or make exact use of training data.
Secondly, techniques like batch normalization [30], weights
initialization, learning rate, regularization, selection of opti-
mizer, and many others can have a significant impact on the
performance of models. Can one model with a novel weight
initialization technique be considered a different model? What
exacerbated this problem is that one set of hyperparameters
that works well on one dataset might not work well on another
dataset. To explore all possible hyperparameters combination
is also impractical. A recent paper [31] states that a simple
model with careful picked settings could achieve better results
than many deep neural network models. Thus, the success
of complicated models have might due to the fine tuning
of hyperparameters, not because they have better decision
strategies. In this work, to make a fair comparison, we follow
the conventions from other researchers. We did a reasonable
amount of hyperparameters tuning (limited only by time and
available computation) for the baseline models used in this
study and we limit the tuning parameters to learning rate,
weight decay, the epilson value of adam optimizer. However,
we would not claim that we are using the best hyperparameters
combination and we believe it is always possible to improve
these numbers shown in Table [l1I| by tweaking a little bit more
on these hyperparameters. Thus, we hope readers will focus

more on the architecture innovations and other contributions.
Despite the fact that there is no significant test on most
deep neural network papers, We did McNemar’s test on the
predictions [32]. McNemar’s test focuses on the distributions
of predictions. The test is applied to a 2x2 table as shown
below:

M2 positive M2 negative  Row total
M1 positive a b a+b
M1 negative c d c+d
Column total at+c b+d n

The null hypothesis and alternative hypothesis are:
Hy : pp = pe
Hy :py # pe

The McNemar’s test statistic is:

o (b=¢)?
X b+c

X has a chi-squared distribution. If the results are significant,
it will reject the null hypothesis, in favor of the alternative
hypothesis. Thus, the predictions from these two models are
considered different. Although these significance testing tools
have their own limitations [33]. And some of the underlying
assumptions might be violated. For example, the dataset we
used is not i.i.d data (independently and identically distributed
data). They are more like time series data.

Since the process of neural architecture search is highly
time consuming and we have two different datasets. The
methodology we took is we use the assistment 09-10 dataset
for the finding of best architectures, then we apply these
architecture to the Oli Engineering Statics dataset. In other
words, we did not perform architecture search for the Oli
Engineering Statics dataset. We believe the performance might
be further improved if we also conduct NAS on the Oli



TABLE III
COMPARISION OF DIFFERENT MODELS FOR KNOWLEDGE TRACING. SM STANDS FOR SINGLE MODALITY. MM STANDS FOR MULTIMODALITY. SC
STANDS FOR SIMPLE CONCATENATION. FS STANDS FOR FUSION SEARCH.

Assistment 09-10

Oli Statics 2012

2 AUC wAUC 2 AUC wAUC

DKT 0.1628  0.7326  0.7367 0.4106 0.8819  0.8622

SM DKVMN 0.1507 0.7299 0.7354  0.3557 0.8793 0.8614
NAS cell 0.1678  0.7364 0.7408 0.4169 0.8844  0.8661

DKT +SC  0.1743 0.7371 0.7441 0.4316 0.8884 0.8734

MM DKT + FS 0.1844 0.7454 0.7493  0.4239 0.8863 0.8651
NAS Extend 0.1829  0.7458 0.7545 0.4348 0.8902  0.8779

statistics dataset. Another reason of taking this approach is
we want to see if the architectures found in one dataset could
also generalize to another. In other words, we want to see if
some modality fusions are helpful when making predictions
in unseen datasets. Our implementation code could be found
here

Our found best model for DKT + FS is shown in Fig. |
left. Intuitively, this result can be interpreted as combine time
spent and attempts first using activation function tanh, then
merge in first action using activation function tanh. At last,
merge in the response using activation function sigmotd. The
best model for NAS extend is shown in Figure [3] right. This
model means using the first action as the input for node 1 and
use sigmoid activation function. Then, use the response as the
input for the node 2 and apply activation fucntion relu. The
output of the node 1 and node 2 will be combined to generate
the final output. From the discovered best architectures, both
the response and the first action are selected. We also noticed
the performances of these architectures decrease significantly
if we exclude the response modality. This makes intuitive
sense, since a correct response indicates that there is a high
probability that this student has mastered the corresponding
skill. And the response is the only modality used for models
like DKT and DKVMN. The modality first action is also
selected for two models. This modality indicates if one student
chooses to answer the problem or takes other actions, for
instance, ask for a hint. If one student asked for a hint, the
response will be automatically marked as incorrect. Thus, there
are two different situations that may result in an incorrect
response and we should be aware the difference. In one
situation, student A tried to answer the problem but got an
incorrect response. On the other hand, student B asked for a
hint, thus resulted in an incorrect response. This first action
modality might reflect the different confidence levels of these
two students for some skill. Our model may have learnt
assigning different mastery level probabilities for these two
situations. Another observation is that using all modalities
available might worsen the performance. This is especially true
if the dataset itself is noisy. We evaluated the proposed models
on two different datasets from the domains of mathematics
and engineering separately. However, we believe the proposed
models are generalizable to domains as long as skills could
be precisely defined.

Zhttps://github.com/dxywill/multimodal_nas

We conducted 5 fold cross validation and the results are
shown in Table We compare our proposed methods with
three models using only the correct/incorrect responses (DKT,
DKVMN and NAS cell). The NAS cell [6] has a recurrent
architecture, but the recurrent unit is automatically designed
by neural architecture search. We also compare different ways
of fusing different modalities. DKT+SC simply concatenate
all the modalities into a big vector. DKT and DKT+SC only
differs in the input. DKT+FS as shown in Fig[3] looks for
the best fusion architecture. NAS Extend as shown in Fig.
[Z_f] extend the work [6] to the case of multimodality. As we
can see, incorporating more modalities does help improve the
performance. All three models using multi modalities (NAS
Extend, DKT+FS and DKT+SC) achieved better performance
than those only used the response modality. And our proposed
model(NAS Extend) that combines the architecture search
and model fusion search has the best performance. We also
noticed that conducting fusion search (DKT+FS) is not always
better than simply concatenation (DKT+SC) as for the Oli
Statics 2012 dataset. This could be explained either the fusion
search process is not able to fuse these different modalities
effectively or the LSTM cell is not able to learn from this fused
representation. We performed Mcnemar’s test (with p < 0.01)
on the predictions from the NAS Extend model and the DKT
model. The results show significant difference.

However, we also notice that the improvement is not very
big (this is actually one of the reasons we conduct significance
tests). One possible explanation is that both datasets are
noisy, which makes it hard for the model to learn meaningful
relations among modalities. For instance, for the time spent
feature, there are some transactions with time spent values
less than 1 second. Thus, we argue better procedures for
collecting these data for future research. Besides, it seems the
improvement is more obvious on the assistment 09-10 dataset
than on the Oli Statistic 2012 Dataset. This could be explained
by the fact that we used assistment 09-10 for NAS.

In short, from the results, the found architectures do gen-
eralize to the Oli statics dataset. Besides, we could always
run the same methodology separately on a new dataset to
see if that could further improve the performance (but we
need to consider the tradeoff here, since this process is
computational demanding). Because it is possible, due to
settings, one modality may have more signal than another
in different datasets. In this case, NAS may return different
architectures for two different datasets. Readers should be



aware of the difference between the generalizability of the
models discovered by the methodology and the generalizability
of the methodology itself.

V. DISCUSSION

Other than the two proposed approaches of using neural ar-
chitecture search for incorporating more modalities discussed
in the previous sections. We also considered other possibilities.
For example, we also tried to extend the LSTM cell for
multimodality. We used one architecture similar to the LSTM
cell. However, instead of using the sigmoid and tanh activation
functions as in LSTM, we make them tunable (¢; and ¢s).
We use one such LSTM variant unit for one modality. All the
modalities share the same memory cell ¢ and hidden state h.
The search process is to find in which order to fuse what
modalities and what activation functions to use. Similarly,
one sampled architecture could be represented as a list of
sequence of numbers. For example, [[mi, a;, apl, [me, a9,
as]] represents the architecture that first incorporates modality
my and use activation functions as and ag for ¢; and ¢s.
Then incorporate modality mo and use activation functions as
and ay for ¢; and ¢,. However, we did not see significant
improvements using this methodology, thus their results are
not shown in Table More research might be needed to
understand if this methodology is useful.

VI. CONCLUSION

In this paper, we discussed ways of using neural architecture
search for incorporating multiple modalities for knowledge
tracing. We do not aim to develop a new neural architecture
search technique for the general purpose, instead we focused
on how multiple modalities could fit in neural architecture
search, thus improving model prediction performance. We
proposed an approach that combines neural architecture search
and multimodal fusion within one framework and applied this
method for knowledge tracing. We evaluated our proposed
approach on two public real datasets, our discovered model is
able to achieve superior performance. We did McNemar’s test
on the predictions and the results are significantly different.
Besides, we argue the importance of measuring how one model
performs with time in knowledge tracing and proposed to use
time weighted area under the curve (WAUC). We also propose
a simple strategy of assigning weights, hoping this will inspire
more research work on the evaluation of student response
modeling.
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