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Abstract

Molecular property prediction is an essential but challenging task in drug discovery. The recurrent neural network (RNN)
and Transformer are the mainstream methods for sequence modeling, and both have been successfully applied independently
for molecular property prediction. As the local information and global information of molecules are very important for
molecular properties, we aim to integrate the bi-directional gated recurrent unit (BiGRU) into the original Transformer
encoder, together with self-attention to better capture local and global molecular information simultaneously. To this end,
we propose the TranGRU approach, which encodes the local and global information of molecules by using the BiGRU and
self-attention, respectively. Then, we use a gate mechanism to reasonably fuse the two molecular representations. In this
way, we enhance the ability of the proposed model to encode both local and global molecular information. Compared to
the baselines and state-of-the-art methods when treating each task as a single-task classification on Tox21, the proposed
approach outperforms the baselines on 9 out of 12 tasks and state-of-the-art methods on 5 out of 12 tasks. TranGRU
also obtains the best ROC-AUC scores on BBBP, FDA, LogP, and Tox21 (multitask classification) and has a comparable
performance on ToxCast, BACE, and ecoli. On the whole, TranGRU achieves better performance for molecular property

prediction. The source code is available in GitHub: https://github.com/Jiangjing0122/TranGRU.
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1 Introduction

Molecular property prediction is one of the key tasks in
the drug screening process. Deep learning-based methods
have achieved great success in drug discovery, material
science, and related fields [1-3], and they further optimize
the drug screening process and improve the speed and
efficiency of drug discovery, such as the discovery of anti-
SARS-CoV-2 drugs [4]. Rational drug discovery involves
a series of molecular properties, including binding affinity,
toxicity, solubility, and so on. Many successful applications
of machine learning and deep learning methods have been
successfully adopted for molecular property prediction.
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A neural network can learn molecular features from
molecular representation data more directly, efficiently, and
concisely [5], such as Simplified Molecular-Input Line-
Entry System (SMILES) [6, 7] strings. Compared with
natural language processing (NLP), modeling a suitable
representation of the biological or chemical structures
of molecules remains a challenging task. Molecules can
be represented as SMILES strings or molecular graphs.
Considering the similarity between the molecular language
and natural language, some NLP-based models have
been successfully applied to encode useful features of
molecules from the complex structure of SMILES strings
for molecular property prediction [8—12]. We focus on
SMILES-based methods in this paper.

The recurrent neural network (RNN) [13] and Trans-
former [14] are two mainstream methods of extracting
molecular representations from SMILES. RNN is usually
used as an independent feature extractor for molecular prop-
erty prediction [3, 15-18]; these methods only use RNN or
its variants. Transformer effectively alleviates the sequence
dependencies in RNN, and it has achieved great success in
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no matter whether 1, 2 and 3 dimensions for molecular prop-
erty prediction [19-21]. However, the self-attention mecha-
nism of Transformer makes it good at capturing global infor-
mation, but weak at capturing the local information (such as
structural information) from SMILES sequences [22, 23]. In
summary, RNN and Transformer tend to focus on different
types of features in the process of feature extraction [24], and
both of them have their tendencies in molecular property
prediction. However, there has been little work integrating
both models for molecular property prediction.

As is well known, molecules are usually composed of a
series of atomic groups, and molecular properties are often
determined by several closely related atoms. Sub-sequences
in SMILES strings are not just a flat sequence of atoms
[25, 26]. For example, the binding between a molecule
and any of its targets essentially involves the interactions
between some specific atomic groups and the target protein
[27]. These atomic groups are called functional groups,
which are an important feature, and they usually appear
in adjacent positions of the SMILES string. Usually, the
local information of the molecule is expressed by functional
groups, while the effective global information of the
molecule needs to be extracted from the whole molecule. As
mentioned above, both the local and global information of
molecules is essential for molecular property prediction.

Considering the different behaviors of the bidirectional
gated recurrent unit (BiGRU) [28] and Transformer in
extracting molecular features, we aim to integrate the
BiGRU into the encoder layer of the original Transformer,
as well as self-attention to better capture local and
global molecular information simultaneously. To this end,
we propose a new deep neural network model called
TranGRU. Specifically, TranGRU enhances the ability of
the Transformer model with BiGRU to encode the local
and global information of molecules, respectively. Then,
a gate mechanism is used to reasonably fuse the two
molecular representations. That is to say, we aim for the
BiGRU to strengthen the ability to capture the local features
of molecules while the original self-attention captures the
global features. We adjust the features encoded by the
BiGRU and Transformer through the gate mechanism to
obtain a better molecular representation adaptively. The
experimental results of single- and multi-task classification
show strong performance on a wide range of tasks for
molecular property prediction.

Overall, there are three main contributions of our paper:

1. We propose a deep neural network integrating the
BiGRU and self-attention into the Transformer archi-
tecture, yielding a new model called TranGRU for
molecular property prediction.

2. We explicitly model both the local and global infor-
mation of the molecule and effectively fuse them via

the gate mechanism to capture both local and global
molecular representations simultaneously.

3. We carry out a series of experiments on benchmark
datasets of single- and multi-task classification. When
treating each property as a single-task classification
on Tox21, the proposed approach outperforms the
baselines on 9 out of 12 tasks and state-of-the-art
methods on 5 out of 12 tasks. The approach also
obtains the best performance on BBBP, and FDA, and
has comparable performance on BACE, LogP, Tox21
(multi-task classification), ToxCast, and ecoli.

The rest of the paper is organized as follows: In
Section 2, we give a brief literature review of the SMILES
language and tokenization, then review models of RNN
and Transformers used for molecular property prediction.
In Section 3, we introduce TranGRU in detail. The
performance of TranGRU is presented in Section 4, and
we compare it with baselines and state-of-the-art methods.
Finally, we summarize the achievements and highlights of
our paper in Section 5.

2 Related work
2.1 SMILES language and tokenization

SMILES is a line notation that represents the atoms, bonds,
and rings that make up molecules as a string. Each atom
is represented in the alphabet of the element symbols. The
bonds are represented by different symbols for the single
bond (-), the double bond (=), the triple bond (#), and the
quadruple bond ($); a detailed specification of SMILES can
be found in OpenSMILES.! The types of bonds that can
be easily inferred through the atoms or the ring structure of
the surrounding atom are generally omitted. For example,
the 6-carbon ringed molecule benzene can be represented
by ‘C1=CC=CC=C1l’, where the ‘=" represents a double
bond and ‘1’ represents the start or the closing of a cycle
or ring. SMILES strings are tokenized before encoding; for
example, atom-level tokenization and SPE [25] are common
methods. Figure 1 shows SMILES representations of two
molecules from Tox21. SMILES is a common method
for representing molecules in recent deep learning models
[3, 17, 25, 26, 29, 30]. In this paper, we use canonical
SMILES to represent molecules, which ensures that a
molecule corresponds to a single SMILES string.

2.2 RNN for molecular property prediction

The bi-directional long short-term memory (BiLSTM)
[31, 32] and BiGRU are two variants of RNN, which
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@ Springer


http://opensmiles.org

15248

J. Jiang et al.

Fig. 1 Examples of the process
of generating SMILES
representations. Both molecules
are chosen from Tox21

TOX6612
CC(C)COC(=0)C(C)C

have widely used for molecular property prediction [33,
34]. Methods of RNN and its variants used for molecular
property prediction can be categorized into two main
groups: 1) encoding the molecular representations, and 2)
extraction of key features of molecules. For the first group
of methods, BiLSTM is utilized to encode a representation
of each node and learn the contextual information of a
molecule [15-18, 30, 35]. For example, Lv et al. [18]
propose Mol2Context-vec, which adopts the deep Bi-LSTM
to model the local information and semantic information of
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Fig. 2 Overall framework of the proposed approach for molecular
property prediction
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molecules, which represents the high-dimensional features
of the interactions between atomic groups. Specifically, the
lower-level LSTM state model the local information inside
atomic groups, and the higher-level LSTM state capture the
semantic information. For the second group of methods,
merging the merits of LSTM [36], or combining a multi-
step attention mechanism to BiLSTM [3] to facilitate the
extraction of key features of neighborhoods from SMILES
strings. For example, SMILES2vec [17] is a deep RNN
that automatically learns features from SMILES strings to
predict a broad range of chemical properties, including
toxicity, activity, solubility, and solvation energy.

All the above works leveraged RNN and its variants to
extract molecular information. In practice, RNN is good at
capturing the local information of a sequence [23], except
for the related fields of molecular property prediction,
RNN is widely used in other fields [37-39]. Therefore,
we continue to make full use of the tendency of the
BiGRU to capture the local information of molecules for
molecular property prediction. In contrast to the above work,
we aim to extract molecules’ local and global information,
simultaneously.

2.3 Transformer for molecular property prediction

Compared with RNN, Transformer [14] is another powerful
feature extractor [24, 40], which makes use of self-
attention networks [41] to extract global information. The
related work of Transformer used for molecular property
prediction is mainly focused on capturing the global features
of molecules [23, 42] by self-attention. For example,
Transformer obtains the feature representations to learn
the graph-structured data [19], or are used to extract self-
supervised features in MolCloZe [20]. Except capture the
general features of molecules, Transformer is used to
extract the structural features of molecules. For example,
Transformer uses an attention mechanism to understand
molecular structures beyond the limitations of the chemical
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language itself, which causes semantic discontinuity by
paying attention to characters sparsely [43].

Considering the advantages of the existing methods,
RNN tends to capture the neighborhood information of
SMILES strings, while Transformer tends to extract global
information. Unlike the above methods, we propose an
appropriate method, which focuses on modeling both the
local and global information of molecules by integrating
an RNN into a Transformer encoder. TranGRU is a simple
yet effective method that leans local and global molecular
representations simultaneously.

3 TranGRU for molecular property prediction

The details of TranGRU for molecular property prediction
are presented in this section. First, we give the representa-
tion of molecules used in our approach in the pre-processing
step. Second, we introduce the original BiGRU [13] and
Transformer [14] briefly since our model mainly relies on
both of them and we also introduce the proposed TranGRU
in detail. Third, we show the method of molecular property
prediction used in this paper. Last, we give the model train-
ing and inference of the proposed approach. An overview
of the TranGRU model is shown in Fig. 2, the tokenized
molecular sequences are fed into TranGRU to encode the
molecular representation, in which the outputs of both the
BiGRU and self-attention are fused via a gated mechanism
to adjust the weights. Finally, we obtain the predictions of
the molecular property via the softmax function.

3.1 Pre-processing

Formally, given a molecule X represented by a SMILES
sequence from a dataset, X = (xy, -+, X, -+, XT). X¢
represents a token of the SMILES sequence, and T
represents the length of the sequence. Note that tokens can
be atom-level or substring-level tokens. First, the SMILES
strings of a molecule are pre-processed into atom-level
tokens or substring-level tokens by RDKit.Chem or SPE,
respectively. Then, the tokenized string is converted into a
set of embeddings. Next, the embeddings are fed into the
first layer of TranGRU to encode feature representation.

3.2 The TranGRU model

The TranGRU model receives the molecular embeddings
from the pre-processing step. Since the TranGRU has n
identical encoder layers, the outputs of the current layer will
be fed into the next layer iteratively. Finally, the outputs of
the top layer are considered as the molecular representation
for molecular property prediction. Specifically, for a
TranGRU layer that receives the inputs from the previous

layer, followed by layer normalization, the outputs are
fed into self-attention and BiGRU sub-layers, respectively.
The two output states from the self-attention and BiGRU
with the same length are fused by the gated mechanism,
and followed by a layer normalization operation, then the
fused states are fed into the position-wise feed-forward
layer to generate the current layer outputs. We present the
details of TranGRU in the following. Note that BiGRU
in Section 3.2.1 and Transformer in Section 3.2.2 are
the original models, which will be used in the proposed
TranGRU. Section 3.2.3 presents the detail of TranGRU
integrating BiGRU into Transformer encoder.

3.2.1 BiGRU encoder

We adopt BiGRU to capture the local information of
molecules. For simplicity, we use the function BiGRU(:)
to represent the transformation from x; to s, via a BiIGRU
encoder:

h; = BiGRU (x;) (1)

After encoding, we get a sequence of hidden states, H =
(h1,---, hr). H denotes the representation of a molecule.

The BiGRU gradually encodes the whole molecular
representation in a sequential way, which usually captures
more local molecular features. BiGRU tends to capture local
information, paying more attention to encoding information
close to the current token and less attention to encoding
information far from the current token. Consequently, we
integrate the BiGRU into Transformer to enhance the ability
to extract local molecular information.

3.2.2 Transformer encoder

Transformer [14] encoder consists of a stack of identical
layers, whereas a Transformer encoder layer consists of a
multi-head self-attention sub-layer followed by a position-
wise feed-forward sub-layer. For a molecular representation
X, which will be fed into the encoder to extract features
for molecular property prediction. The i-th encoder layer
receives a sequence state X; as input and computes a new
sequence state H; of the same length, note that wheni = 1,
X =X.

Self-attention encodes the inputs, then gets the interme-
diate state Z;. Z; is computed as follows:

Zi =SA (WQLN(X,'), WELN(X)), WVLN(Xi)) +X;
2

where X;,Z; € RT*P, T is the sequence length of a
molecule and D is the hidden state size. LN(-) denotes layer
normalization [44]. Note that, we apply pre-normalization
to each sub-layer to alleviate gradient problems. SA(:)
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represents the multi-head self-attention network. The
matrices W<, WK andWV e RP*P linearly map X; into
query, and key-value sets via linear transformation.

Z; is the intermediate state of the outputs of the encoder
with residual connections. Then, Z; is fed into the feed-
forward sub-layer. H; is the output of the feed-forward
sub-layer, which can be represented by:

H; =FFN (LN (Z))) + Z; (3)

where H; € RT*P  and FFN(.) represents the feed-
forward neural network. Residual connection [45] and layer
normalization are applied in both sub-layers to alleviate
gradient problems [46].

For simplicity, we use the function Trans(-) to represent
the transformation from X; to H; via a Transformer encoder
layer. The computation is as follows:

H; = Trans (X;) “4)

Because there are multiple identical layers in Transformer,
X; = H; — 1, where 1 < i < I. The output of the current
layer is considered as the input of the next layer.

Although Transformer has achieved satisfactory perfor-
mance for molecular property prediction [21], we argue
that the self-attention mechanism may not be sufficient to
encode both local- and global-level molecular features. To
improve the ability to capture molecular information, we
propose explicitly modeling the local and global informa-
tion for molecular property prediction.

3.2.3 The TranGRU encoder

To improve the ability of the model to extract both local
and global features at the same time, we adopt both BIGRU
and self-attention as the main components of the encoder
to encode both local and global information for molecular
property prediction.

A TranGRU encoder layer receives the inputs from
the previous layer, and then followed by a layer-norm
operation. Next, the outputs of the layer-norm will be fed
into BiGRU and self-attention respectively to encode feature
representations. Specifically, we integrate BiGRU into the
Transformer layer to enhance the ability to aggregate the
local information of molecules. For the i-th layer, we use ZiS
and ZiB as the first hidden state outputs of self-attention and
BiGRU, respectively. Therefore, (2) is updated as follows:

75 =SA (WQLN(Xi), WEXLNX)), WVLN(Xi)) + X; )

ZP? = BiGRU (X)) (6)
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Next, we obtain the new intermediate state Z; via the
gated mechanism to fuse the outputs of the BiGRU ZiB and
self-attention ZiS . The computation is shown as (7).

Zi=goZ +(1—g)oZP (7

where o is element-wise multiplication.
Then, (8) is the detailed computation of gate g;.

g =oW3z5 + wBz5) 8)

where o (+) is a logistic sigmoid function, WZ.S and Wl.B are
learned model parameters.

Z; is the hidden state that fuses the outputs of BiGRU
and self-attention. Z; is fed into the feed-forward sub-layer
which outputs H; by (9).

H; = FFN (LN (Z;)) + Z; C)]

Since a TranGRU encoder consists of I stacked identical
layers, the output of i-th layer will be used as the input of
the (i + 1)-th layer. The top layer output H; is considered
as the representation of the input molecule, and it is fed to
the molecular property prediction module.

3.3 Molecular property prediction

After encoding of TranGRU encoder, we obtain the final
encoder output states H; € R7*P. The final molecular
representation H € RP will be obtained by the mean-
pooling operation over H;. Finally, we obtain the molecular
property prediction via the softmax function.

P(H) = Softmax (U H) (10)

where U € RE*P| U is a model parameter, L is the
property number, and D is the hidden state size. P(H) is the
prediction of a property. It should be noted that the proposed
TranGRU model is a general molecular features encoder,
and the different molecular property prediction tasks can be
adapted by the softmax function.

TranGRU is a general method for extracting molecular
representations on molecular property prediction. Specif-
ically, TranGRU relies on BiGRU and self-attention to
encode the inputs, as BiGRU tends to capture the local
information of molecules, and self-attention tends to extract
the global information of the molecule. Both the local and
global information of a molecule is very important for
the molecular properties. Therefore, we explicitly model
the local and global information simultaneously to better
predict the molecular properties.

3.4 Training and inference

We formulate the optimization function (i.e.,training loss)
as label loss. Label loss is defined as negative likelihood
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Table 1 Details of the datasets used in the experiments

Dataset Tasks Type Size Metric Actives
BACE [48] 1 Classification 1513 ROC-AUC 691
BBBP [49] 1 Classification 2037 ROC-AUC 1567
HIV [1] 1 Classification 41127 ROC-AUC 1443
Tox21 [50] 12 Classification 7831 ROC-AUC Il
ToxCast [51] 617 Classification 7818 ROC-AUC Il

LogP [47] 1 Classification 9000 ROC-AUC 4502
FDA [47] 1 Classification 2907 ROC-AUC 1467

BACE, BBBP, HIV, LogP, and FDA are the single binary classification tasks, and the number of each task is 1. Tox21 contains 12 tasks, ToxCast
contains 617 tasks, and ClinTox contains 2 tasks. Each task is treated as a binary classification task. Note that some problems in stereochemistry

are not taken into account

of predicting correct labels of multiple downstream tasks
lelL:

Loss = — Z Zsoftmax(UH) (11)

meM €L

where M is the number of molecules, and L is the number
of property. Note that the processing in the inference is the
same with the trainning stage.

4 Experiments and discussions
4.1 Datasets

The datasets in the paper are chosen from the widely
used benchmarks MoleculeNets [1] and ZINC [47]. BACE,
BBBP, HIV, Tox21, and ToxCast are from MoleculeNet.
LogP and FDA are from ZINC. Table 1 presents a
brief introduction to the datasets used in the experiments.
Table 10 presents more details of the datasets used in the
experiments.

4.2 Experimental settings

We employ two types of tokenizers to tokenize SMILES
sequences. We use the open-source package RDKit.” to
preprocess SMILES strings from various datasets. The
embedding size is 64. Early stopping is used to stop training,
and the maximum training epoch number is set to 100;
the optimization of the models is performed by the Adam
optimizer. We split the dataset by scaffold-split or random-
split following MoleculeNet [1]. For LogP and FDA, we

Zhttp://www.rdkit.org.

use random-split. Table 11 gives the details of the splitting
methods of the datasets used in the experiments. The detail
of the parameters is shown in Table 2.

4.3 Baselines and related works

We comprehensively evaluate the performance of our model

against nine state-of-the-art methods including RNN and

Transformer variants. The details are presented as follows:

o Seq2seq [15]: Seq2seq is a typical NLP model
that uses unsupervised methods to learn molecular
representations.

® Seq3seq [9]: It is based on the seq2seq model defining
a loss function that contains both self-recovery loss and
inference task loss.

e SMILES-BERT [29]: It is a semi-supervised model
consisting of an attention mechanism-based Trans-
former Layer. The pre-trained model uses large-scale
unlabeled data to pre-train through a Masked SMILES
Recovery task that can easily be generalized into differ-
ent molecular property prediction tasks via fine-tuning.

Table2 Some hyper-parameters used in TranGRU

Name of hyper-parameter Value
input dimension 64

batch size 2

epoch 100
latent size 64
learning rate 0.001
warmup 0.15
aggregation type ‘MEAN’
Model N 6
dropout 0.1

@ Springer
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Table 3 Comparison ROC-AUC between TranGRU and baseline
models on Tox21. The best performance is denoted by bold

Tasks BiGRU Transformer TranGRU
NR-AR 0.7945 0.8207 0.8241
NR-AR-LBD 0.8035 0.8251 0.8470
NR-AhR 0.8028 0.8184 0.8327
NR-Aromatase 0.7526 0.7758 0.7838
NR-ER 0.6640 0.6792 0.6907
NR-ER-LBD 0.8315 0.8028 0.8433
NR-PPAR-gamma 0.7966 0.8254 0.8375
SR-ARE 0.7252 0.6575 0.7014
SR-ATADS 0.7097 0.6970 0.7267
SR-HSE 0.7163 0.7380 0.7362
SR-MMP 0.8296 0.7697 0.8156
SR-p53 0.8025 0.7543 0.8100

®  Smi2Vec*-LSTM [36]: It is a system that merges
the merits of various techniques, such as the long
short-term memory (LSTM) RNN, and is designed for
learning atoms and solving the classic problems in the
field of drug discovery.

® Smi2Vec-BiGRU [16]: It is designed for learning atoms
and solving single- and multitask binary classification
problems in the field of drug discovery. This approach
transforms the molecule data in the SMILES format
into a set of sample vectors and then feeds them into
the bidirectional gated recurrent unit neural networks
for training, which yields low-dimensional vector
representations for the molecular drug.

® GraphSAGE [52]: Through the method of sampling
and aggregating the neighbor embeddings of nodes,
GraphSAGE can capture graph structure information
effectively.

® GraSeq [30]: GraSeq joints graph and sequence for
molecular property prediction. Specifically, it makes a
complementary combination of GNNs and RNNs to
model two types of molecular inputs, respectively.

e Mol2vec [35]: Similar molecular structures have
similar vector representations. Mol2vec learns vector

Table 4 ROC-AUC scores on HIV. The best performance is denoted
by bold

Tokens BiGRU Transformer TranGRU
-S 0.7927 0.7484 0.8105
-B 0.7942 0.8079 0.8115

“-S” represents using an atom-level tokenizer to tokenize the SMILES
strings, and “-B” represents using SPE as the tokenizer

@ Springer

representations of molecular structures by Word2Vec
[53]. The vector representation of a compound can be
obtained by combining the vectors of its molecular
substructures.

4.4 Experimental results

We analyze the performance of the model by comparing
the performance of baselines and state-of-the-art methods
on the benchmark datasets. ROC-AUC and accuracy are
adopted as the evaluation metrics in this paper.

Comparison with baselines To verify the performance of
the proposed model, we follow the work of [16, 36]
in treating each property on the representative Tox21 as
a single task. The Transformer represents the standard
Transformer model. We adopt both BiGRU and Transformer
as the baselines; the layer depth of the Transformer is set
to 6, which is identical to the layer depth of the proposed
TranGRU. We adopt the atom-level tokenizer from RDKit.
The comparison results are shown in Table 3; our model
achieves the best performance except on the tasks of SR-
ARE, SR-HSE, and SR-MMP.

Table 4 shows the comparison results of different
tokenizers on HIV. “-S” represents using RDKit-Chem
as the tokenizer, which we also denote as atom-level
tokenization. “-B” represents that the tokenizer is SPE,
which we denote as substring-level. The performance gap
is not significant between the results obtained by atom-
level and substring-level tokenizers. TranGRU achieves the
best performance in terms of ROC-AUC on HIV compared
with the baselines. Although there is little difference in
performance between the two tokenizers, TranGRU has the
best performance.

Figure 3 presents comparisons of different baselines
on Tox21 and ToxCast. Both are multi-task classification
datasets. TranGRU outperforms the others on both datasets.
Therefore, TranGRU has better performance on multi-task
classification datasets.

As a comparison with the baselines, TranGRU achieves
the best performance on HIV and 9 out of 12 tasks on
Tox21 for single-task classification. TranGRU outperforms
the baselines on Tox21 and ToxCast, both of which are
classification problems of multi-task.

Comparison with state-of-the-art methods To Compare the
performance of ROC-AUC with the most advanced methods
(i.e., Smi2Vec*-LSTM [36] and Smi2Vec-BiGRU [16]) on
Tox21, Table 5 shows the details. TranGRU obtains the best
performance on 5 out of 12 tasks on Tox21, namely NR-
AR, NR-AR-LBD, NR-Aromatase, NR-PPAR-gamma, and
SR-p53.
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Fig.3 Performance comparison 0.9
with different baselines on
multi-classification tasks

0.8

0.7

ROC-AUC

0.6

Evaluation on single- and multi-task classification Both
FDA and Logp are single-task classification problems.
Figure 4 shows the comparison of different models on
FDA and LogP; our model outperforms the other models
on FDA and is second best on LogP. Table 6 presents the
performance on different single- and multi-classification
tasks. Our model has better performance on BBBP and
gets the second-best performance on Tox21 and ToxCast.
Pre-trained models achieve relatively better performance on
BACE, so Mol2Vec has better performance. Since GraSeq
is a fusion learning method of graph and sequence, which is
more complicated than our model, performance on BACE,
Tox21, and ToxCast of GraSeq is slightly better than that of
our model.

To evaluate the performance of TranGRU comprehen-
sively, we also present a comparison of the metric of accu-
racy on LogP. We report the accuracy given in their paper
in Table 7. TranGRU has the best performance among the
methods.

4.5 Analysis and discussion

Analysis of the layer depth To compare the performance of
different encoder depths, we set the number of layers of
TranGRU from 1 to 12. Figure 5 presents the variation of
accuracy and ROC-AUC on BBBP and LogP. The change
in ROC-AUC is slight on BBBP, while the variation in
accuracy is relatively larger. The performance tendency on
LogP is the same as that on BBBP. Figure 5 also shows that
when the layer number is set to 6, TranGRU has the best
performance on both BBBP and LogP. When the sizes of the
datasets are relatively small, such as BBBP, the influence of
the layer depth is not significant.

Tox21 ToxCast
Datasets

O BiGRU B Transformer TranGRU

Analysis of the parameters and performance Table 8 shows
the performance results of accuracy and ROC-AUC on
BBBP and LogP. According to the trade-off between the
performance and the size of the datasets, the default layer
number of TranGRU is set to 6.

Evaluation on an Al cures open challenge for drug discovery
related to COVID-19 We also use ecoli, a dataset from
Al Cures, which is an open challenge on drug discovery
aiming at discovering new antibiotics to cure secondary
lung infections caused by COVID-19. The entire dataset
consists of 2,335 chemical molecules. The prediction

Table 5 Comparison with state-of-the-art methods in terms of the
ROC-AUC scores of each task on Tox21. The best performance is
denoted by bold

Tasks Smi2Vec*-LSTM Smi2Vec-BiGRU TranGRU
NR-AR 0.6914 0.7114 0.8241
NR-AR-LBD 0.7477 0.8243 0.847
NR-AhR 0.678 0.8793 0.8327
NR-Aromatase 0.4964 0.6985 0.7838
NR-ER 0.6231 0.736 0.6907
NR-ER-LBD 0.5308 0.8675 0.8433
NR-PPAR-gamma 0.5659 0.7494 0.8375
SR-ARE 0.6414 0.761 0.7014
SR-ATADS 0.5 0.7632 0.7267
SR-HSE 0.612 0.7845 0.7362
SR-MMP 0.7425 0.8599 0.8156
SR-p53 0.518 0.7321 0.81

The performance of Smi2Vec*-LSTM and Smi2Vec-BiGRU below are
from the original papers
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Fig.4 Comparison of 1

ROC-AUC on FDA and LogP 0.995

0.99
0.985
0.98
0.975
0.97
0.965
0.96
0.955

ROC-AUC

[ GraSeq [ESeqgZseq

target is to determine whether a molecule has antibacterial
activity, or can inhibit Pseudomonas aeruginosa, which is a
bacterium leading to secondary lung infection of COVID-19
patients [54].

Table 9 is a comparison of the test ROC-AUC values
on ecoli, where the results of AdvProp and Chemprop ++
are cited from [54]. Among 27 teams participating in the
open challenge, AdvProp obtains the best performance,
and Chemprop ++ is the second best. Compared with the
performances of the participating teams, the test ROC-AUC
of our approach is better than that of Chemprop ++ but does
not surpass that of AdvProp.

5 Conclusions

We propose TranGRU to enhance the ability to capture
both the local and global information of molecules. It is
a simple and effective approach for molecular property
prediction that integrates BiGRU into the Transformer

Table 6 The performance comparison (ROC-AUC) with state-of-the-
art methods on datasets from MoleculeNet. The best performance is
denoted by bold

Dataset BACE BBBP Tox21 ToxCast
Mol2Vec 0.8137 0.8505 0.7497 0.6678
Seq2seq 0.7725 0.9073 0.7976 0.7107
Seq3seqFP 0.7725 0.9073 0.7107 -
GraSeq 0.8382 0.9426 0.8195 0.733
TranGRU 0.7896 0.9772 0.8126 0.7126

FDA LogP

Datasets

GraphSAGE EBiGRU @ TranGRU

encoder. We adaptively fuse both features via a gate
mechanism and then feed them into the next encoder
layer. Experiments on different classification tasks show
that TranGRU significantly outperforms state-of-the-art
methods on BBBP, FDA, LogP, and Tox21 and achieves
comparable performance on BACE and ToxCast. We also
make a comparison on ecoli, and the experimental results
show that TranGRU surpasses the second best method from
the AI Cures open challenge evaluated according to the test
ROC-AUC. Furthermore, the performance of TranGRU may
be further improved to some extent by deepening the layers
with a suitable mechanism.

TranGRU is a sequence encoder to extract molecular rep-
resentations, which not only can be used for classification
tasks for molecular property prediction but also can be used
for regression tasks. In addition, TranGRU can be used as
the feature extractor of molecules in the downstream tasks.
In future work, we will apply TranGRU to these scenarios,
as well as explore improving the performance of modeling
three-dimensional molecular data for molecular property
prediction.

Table 7 Comparison of the accuracy between TranGRU and the state-
of-the-art sequence models on LogP. The best performance is denoted
by bold

Methods Accuracy
Seq2seqFP [15] 0.7682
Seq3seqFP [9] 0.8972
SMILES-BERT [29] 0.9154
TranGRU(Ours) 0.941
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Fig.5 Variation of ROC-AUC
on BBBP and LogP with
deepening layers

Table 8 Comparison of the
parameters and performance of
TranGRU on BBBP and LogP

Table 9 Comparison performance
ROC-AUC

1
max-ACC =—e=max-AUC
0.98 .—.——.—.._./‘\./.‘ﬂ—.-—.__.
8 0.96
=
94
= 0.9
S
S 092
)
a. 09
0.88
0.86
1 2 3 4 5 6 7 8 9 10 11 12
Layer Number
BBBP
1
maxACC =—e=maxAUC
o 0.96
=
S 0.94
g 0.92
T 09
[5)
A 0.88
0.86
0.84
1 2 3 4 5 6 7 8 9 10 11 12
Layer Number
LogP
Model Layers att-heads Accuracy ROC-AUC Accuracy ROC-AUC
BBBP BBBP LogP LogP
TranGRU 6 4 0.9534 0.9799 0.941 0.984
TranGRU(big) 12 4 0.9134 0.9746 0.901 0.974

on ecoli by the metric of test Table 10 Details of the datasets used in the experiments

Dataset Tasks Actives Description

Model Test ROC-AUC

BACE 1 691 Binding results for inhibitors of
AdvProp [54] 0.957 human BACE-1.
Chemprop ++ [54] 0.877 BBBP 1 1567  Blood-brain barrier penetration.
TranGRU(Ours) 0.8831 HIV 1 1443 Ability to inhibit HIV replication.

. . . . Tox21 12 \ Toxicity measurements.

Appendlx A: Supportlng information ToxCast 617 '\ Another dataset provides toxicology data.
available LogP 1 4502 Solubility of molecules.

FDA 1 1467 Approved drug compounds by FDA.

A.1 Details of the datasets

The datasets used in the experiments are chosen from
MoleculeNet [1] and ZINC [47]. Table 10 gives the details.

BACE, BBBP, HIV, LogP, and FDA are binary classification tasks, and
the number of the prediction task is 1. Tox21 contains 12 tasks, and ClinTox
contains 2 tasks. Each task is treated as a binary classification task.
Note that some problems in stereochemistry are not taken into account
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A.2 Mehtods of splitting the datasets obtained from ZINC [47]. We split the datasets into training,
development, and test subsets in a ratio of 8/1/1 by random

The details of the dataset splitting methods are given  or scaffold splitting methods.

in Table 11. BACE, BBBP, Tox21, ToxCast, and HIV

are obtained from MoleculeNet [1], Lop and FDA are  A.3 The graphic abstract of the paper

Table 11 Details of the datasets used in the experiments

Dataset BACE BBBP Tox21 ToxCast HIV LogP FDA
Ins. 1513 2037 7831 7718 41127 10000 2907
Train 1210 1626 6264 6174 36604 8000 2326
Dev. 151 205 783 772 2261 1000 290
Test 152 193 784 772 2262 1000 291

TranGRU. The red dotted box Lo
indicates the main component of Predictions
TranGRU. We integrate BIGRU ]
into the Transformer encoder, as

well as self-attention to focus on -:|:T:|:-
the local and global information

of molecules A

)
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[
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