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Abstract
Nowadays, the hectic work life of people has led to sleep deprivation. This may further result in sleep-related disorders
and adverse physiological conditions. Therefore, sleep study has become an active research area. Sleep scoring is crucial
for detecting sleep-related disorders like sleep apnea, insomnia, narcolepsy, periodic leg movement (PLM), and restless
leg syndrome (RLS). Sleep is conventionally monitored in a sleep laboratory using polysomnography (PSG) which is the
recording of various physiological signals. The traditional sleep stage scoring (SSG) done by professional sleep scorers is a
tedious, strenuous, and time-consuming process as it is manual. Hence, developing a machine-learning model for automatic
SSG is essential. In this study, we propose an automated SSG approach based on the biorthogonal wavelet filter bank’s
(BWFB) novel least squares (LS) design. We have utilized a huge Wisconsin sleep cohort (WSC) database in this study.
The proposed study is a pioneering work on automatic sleep stage classification using the WSC database, which includes
good sleepers and patients suffering from various sleep-related disorders, including apnea, insomnia, hypertension, diabetes,
and asthma. To investigate the generalization of the proposed system, we evaluated the proposed model with the following
publicly available databases: cyclic alternating pattern (CAP), sleep EDF, ISRUC, MIT-BIH, and the sleep apnea database
from St. Vincent’s University. This study uses only two unipolar EEG channels, namely O1-M2 and C3-M2, for the scoring.
The Hjorth parameters (HP) are extracted from the wavelet subbands (SBS) that are obtained from the optimal BWFB. To
classify sleep stages, the HP features are fed to several supervised machine learning classifiers. 12 different datasets have
been created to develop a robust model. A total of 12 classification tasks (CT) have been conducted employing various
classification algorithms. Our developed model achieved the best accuracy of 83.2% and Cohen’s Kappa of 0.7345 to
reliably distinguish five sleep stages, using an ensemble bagged tree classifier with 10-fold cross-validation using WSC
data. We also observed that our system is either better or competitive with existing state-of-art systems when we tested with
the above-mentioned five databases other than WSC. This method yielded promising results using only two EEG channels
using a huge WSC database. Our approach is simple and hence, the developed model can be installed in home-based clinical
systems and wearable devices for sleep scoring.

Keywords EEG (Electroencephalography) · PSG (Polysomnographic) · Classification · Ensemble Bagged Tree (EBT) ·
Sleep stages · Wavelets · Filter bank · Wisconsin Sleep Cohort (WSC)

1 Introduction

Sleep is one of the most natural and essential requirements
for the human body to function properly, both physically
and mentally [1]. While we sleep, our muscles are relaxed
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while the brain retains new informations [2], eliminates
toxic waste, and releases growth hormones. The body
repairs cells and replenishes energy [3]. Normal healthy
sleep is defined by adequate length, sleep quality, suitable
timing, regularity, and the absence of sleep disruptions or
disorders. Insomnia, excessive drowsiness and obstructive
sleep apnea (OSA) are among sleep disorders that can
negatively affect our mental, physical, social, and emotional
well-being. This explains why neuro-anatomists and neuro-
physiologists have been researching sleep for over a century
[4, 5].
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Sleep scoring is the process of extracting sleep cycle
information which can be used for detecting and treating
sleep-related disorders. Traditionally Sleep scoring is per-
formed using polysomnogram (PSG) recordings obtained
from patients during their overnight sleep in a sleep
laboratory. Further, sleep scoring professionals analyze
PSG recordings and classify the sleep into stages using
either Rechtschaffen and Kales (R&K) guidelines, or the
more recent recommendations published by the American
Academy of Sleep Medicine (AASM). According to R&K’s
guidelines PSG recordings are first divided in 20 or 30-
second epochs, which are then classified as wakefulness
(W), rapid eye movement (REM) sleep, or Non-REM sleep
(NREM). Non-REM sleep is further subdivided into the
first, second, third, and fourth stages (also called S1, S2,
S3, and S4). In contrast, AASM standards merge the NREM
stages S3 and S4 to a single deep sleep stage known as N3,
often known as slow-wave sleep (SWS) [6].

PSG recordings comprise electrooculograms (EOG),
electroencephalograms (EEG), electrocardiograms (ECG),
and electromyograms (EMG). Among them, EEG is
amongst the most important physiological signals in
terms of clinical relevance and practical utility. The EEG
spectrum is categorized into five rhythms (frequency
bands), namely α, β, γ , δ and θ . The frequency and the
amplitude of these different rhythms can reveal important
insight for identifying, observing, and treating neurological
abnormalities and diseases [7].When a subject is awake,
the EEG shows β waves, high in frequency and low in
amplitude. N1 is the dozing off stage; during this stage, the
frequency of the brain waves begin to slow, and this stage
generally lasts 5-10 minutes/cycle. The body undergoes a

more subdued condition in the second stage of sleep, which
includes a decrease in body temperature and pulse rate.
The brain activity in this stage is slower than in earlier
stages, and there is a new pattern of acute and quick fall and
rise in amplitude of brain waves termed the K-complex [8]
followed by short bursts of activity called sleep spindle [9].
The second stage lasts for 20-25 minutes/cycle in a healthy
patient. The third stage of sleep is also known as deep sleep.
This is very crucial since it is when the body is most relaxed
and the brain produces growth hormones, allowing muscular
tissues to mend and grow. Inadequate deep sleep may cause
a person to be heavy and sluggish in the morning. This stage
lasts about 20-40 minutes/cycle, depending on the person’s
health and age. As humans grow older, growth hormones
decrease, resulting in less deep sleep [10]. During REM
stage of sleep, the eyes move swiftly from one side to the
other beneath closed eyelids, breathing becomes rapid and
heart rate accelerates, giving the appearance of wakefulness.
A person is more likely to experience a dream when in the
REM stage. Their arms and legs are briefly paralysed to
prevent them from acting out the dream [11].

The sleep stage begins with N1 and advances to N2, N3,
further, the body returns to N2 and then eventually reaches
REM. After this, the body returns to N2, and the complete
sleep cycle repeats. A healthy individual experiences this
sleep cycle four to five times every night, with each cycle
lasting longer than the one before it [12]. Figure 1 shows the
EEG sample epochs of a subject taken from the database for
each sleep stage.

Traditional sleep scoring is a time-consuming, labor-
intensive procedure that is vulnerable to human errors due
to many hours of continuous examination. Aside from the

Fig. 1 Signal representing all the stages of a subject (subject ID : 10198)
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expense and difficulty of assessing sleep patterns, patients
must spend the night inside a fully equipped sleep labo-
ratory with sticky electrodes and cables attached to their
heads. Although sleeping in this unfamiliar environment is
uncomfortable, these treatments may impact the patient’s
sleep efficiency. Due to these challenges, several auto-
mated methods have been proposed for sleep-stage scoring
[13–16]. In this paper, we propose an automated sleep scor-
ing system that uses subbands (SBs) obtained from optimal
stopband energy (SBE) from a biorthogonal wavelet filter
bank (BWFB) involving only two channels of EEG signals.
For each SB, Hjorth parameters (HP) are computed for clas-
sification purposes. Since this suggested approach uses only
two EEG channels, it may be easier to install compared
to prior cutting-edge systems that used PSG or numer-
ous EEG channels and other physiological inputs for sleep
scoring [17]. As a result, the patient’s comfort may be
enhanced.

In literature, many studies [18–30] have been proposed
for automatic sleep stage classification. Sharma et al. [13]
in their recent study, have presented a sleep scoring method
for healthy (good sleepers) and unhealthy subjects using
cyclic alternating pattern (CAP) sleep database [31, 32]
consisting of 108 PSG files [31], They employed norm-
based features and attained an accuracy of 85.3%. Langkvist
et al. [33] proposed a five-stage automated sleep stage
classification system based on data from St. Vincent’s
University Hospital and University College Dublin (SVUH)
[31]. They used one EEG, one EMG, two EOG signal for
their study. They developed deep belief network for the
purpose and achieved the best result of 72.2% using the
database containing only 25 subjects. Tzimourta et al. [34]
utilised the Institute of System and Robotics—University
of Coimbra (ISRUC) Sleep dataset [35] for EEG-Based
autonomous sleep stage classification [35]. They employed
a total of 118 subjects, healthy and unhealthy, out of
which they used 100 subjects and 87187 epochs (30 sec)
in total. This data was used for five-stage classifications
using six EEG channels. Using time and frequency-based
features coupled with random forest classifier, they got
the best accuracy of 75.3%. Michielli et al. [5] utilised
Physiobank’s sleep-EDF database [36, 37] for automated
sleep stage classification based on a long short-term
memory (LSTM) approach [31]. They achieved 83.6%
accuracy for two-class classification and 86.74% for five-
class classifications using ten healthy subjects. Willemen
et al. [38] in their work, achieved 69% accuracy for five-
class classification (WAKE-REM-N1-N2-N3) and 81%
for three-class classification using 85 PSG files obtained
from 36 healthy subjects acquired from Vrije Universiteit
Brussel, with SVM classifier. Fonseca et al. [39] conducted
sleep stage classification using cardio-respiratory signals
obtained from PSG recording of 48 subjects acquired from

the SIESTA project [40]. They achieved an accuracy of
69% for four-class classification and 80% for three-class
classification using multi-class Bayesian linear discriminant
with time-varying probabilities. Recently Phan et al. [41]
proposed a convolutional neural network (CNN) framework
for classification and prediction of automatic sleep stage
scoring, using two different data-sets (i) sleep cassette
(SC) from Sleep EDF [31] containing 20 subjects and (ii)
Montreal Archive of Sleep Studies (MASS) [42] containing
200 subjects. They achieved an accuracy of 82.3% for SC
and 83.6% for MASS for five-class classification. Shi et al.
[43] achieved an accuracy of 81.1 ± 0.15% for a two-
class classification employing multiple kernel learning and
using data from SVUH Dublin [31] containing 25 PSG
from 25 subjects with the suspected sleep disorder. Yuan
et al. [44] in their recent study on sleep stage classification,
used the dataset from SVUH Dublin [31] containing a total
of 25 PSG. They employed hybrid CNN as a classifier
and obtained an accuracy of 0.7424 ± 0.594. Radha
et al. [45] in their recent work on sleep stage classification
used LSTM model with dataset obtained from EU SIESTA
project [40] containing 292 subjects. Thus, all above
mentioned studies have used various publicly available
databases such as CAP, Sleep EDF, ISURC sleep data,
SVUH Dublin, Massachusetts Institute of Technology at
Boston’s Beth Israel Hospital (MIT-BIH), Vrije University
Brussel, SIESTA project and MASS. In all the above
studies, The sleep model’s classification accuracy ranged
from 75% to 85%, while the number of subjects employed
in the study ranged from 10 to 292. Hence, it is essential to
use a large and diverse database that contains a large number
of diverse subjects to generalize the results. The Wisconsin
Sleep Cohort (WSC) seems to be a good candidate that
satisfies the above requirement, which consists of two
databases containing 2570 subjects, including good sleepers
and patients suffering from various sleep disorders. Hence,
we employed the WSC sleep database in this study.

The salient features of the proposed study are mentioned
below:

• This study designed a new class of linear phase
optimum wavelet bi-orthogonal filter bank using the
least squares (LS) method wherein the filter bank is
halfband pair filter bank (HPFB).

• We have used a huge Wisconsin Sleep Cohort
(WSC) which includes WSC dataset 1 (1715 PSG) and
WSC dataset 2 (716 PSG ) compared to other state-of-
the-art studies.

• From the total of 2431 subjects, 21,65,205 (30 sec)
epochs have been extracted and used in this study.

• Our proposed model used only two unipolar EEG
signals (O1 M2 and C3 M2). Hence, it can easily be
incorporated into user-friendly hardware and devices.
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• Both single and dual-channel combined are considered
in this study.

• Feature extraction is done using HP, a good discrimina-
tor for EEG signals.

• For classification, we employed supervised machine
learning classifiers with a 10-fold cross-validation
technique.

• The existing proposed systems employed a single
database to develop models, so generalization to new
databases is unknown. To investigate the generalization
of the proposed system, we evaluated the model with
the following publicly available databases: CAP, sleep
EDF, ISRUC, MIT-BIH, and the sleep apnea database
from St. Vincent’s University.

• Our system is found to be either better or competitive
with existing state-of-art systems when we tested our
model with the above-mentioned five databases other
than WSC.

• The proposed method yielded good accuracy and
Kappa score using two unipolar EEG signals. Thus,
the proposed model may be installed in real-time,
low-cost IoT configurations and hardware, without
compromising the comfort of the subjects.

2 Dataset used

The dataset used for this study was obtained from the
National Sleep Research Resource (NSRR) and provided
by the Wisconsin Sleep Cohort (WSC). The WSC cohort
contains two different databases collected using different
systems and at different periods. The WSC dataset 1 was
collected during 2000-2009 using Grass Heritage System,
this dataset has 15 signals collected from 1715 recordings,
while the second dataset WSC dataset 2 (from 2009 -
to present) was collected using Grass Comet Lab-Based
system, and has 18 signals obtained from 716 recordings.
The detailed descriptions of both datasets are mentioned in
Table 1.

The majority of the PSG files contain atleast two
EEG, two EOG, two EMG, one ECG signal, and other
signals such as snore, nasal airflow, oral airflow, thoracic,
abdominal, position, SpO2. We employed only two EEG
channels in the proposed study, namely O1-M2 and C3-M2
(O1 and C3 with reference to M2).

The WSC cohort contains PSG recordings of 2570
subjects with 24,62,228 epochs of 30 seconds duration. For
EEG recording either O1-M2 or C3-M2 channels are used.

Table 1 Detailed explanation of the two datasets used in this work

Channel Label WSC dataset 1 WSC dataset 2

SF (Hz) fc (Hz) SF (Hz) fc(Hz)

Left EOG E1 100 30 200 35

Right EOG E2 100 30 200 35

Left Central EEG C3 M2 100 30 200 35

Left Occipital EEG O1 M2 100 30 200 35

Left Frontal EEG F3 M2 NA NA 200 35

Frontal EEG Fz M2 NA NA 200 35

Central EEG Cz M2 NA NA 200 35

Parietal EEG Pz M2 NA NA 200 35

Linked Center & Left Chin EMG cchin 1 NA NA 200 70

Chin EMG chin 100 30 NA NA

Linked Left & Right Leg EMG lleg r 100 30 200 70

Snore snore 100 30 200 70

ECG ECG 100 30 200 35

Airflow flow NA NA 200 15

Nasal Airflow nasalflow 100 30 NA NA

Oral Airflow oralflow 100 30 NA NA

Nasal Pressure nas pres 100 30 200 15

Thoracic thorax 100 NA 200 15

Abdominal abdomen 100 NA 200 15

Position position 100 NA 200 NA

SpO2 spo2 100 NA 200 NA

Cut-off frequency (*fc) , Sampling Frequency (SF), NA(Not Available)
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Table 2 Details of PSG and channel used in the study

Channels Dataset No. of PSG

O1 M2 and C3 M2 WSC dataset 1 1715

O1 M2 and C3 M2 WSC dataset 2 716

Total WSC 2431

The EEG recordings from both EEG channels (O1-M2 and
C3-M2) have been collected in most of the subjects except
for a few subjects. In this study, we have recruited only
those subjects for which EEG recordings of both channels
are available as indicated in Table 2. Thus, out of 2570
subjects, we used 2431 subjects. Hence, 21,65,205 epochs
of each 30s are generated from 2431 PSG recordings.
Table 3 contains information about WSC utilized in this
study. Further, to evaluate the generalization of the proposed
system, we have tested the model with five more publicly
available databases: CAP, Slep-EDF, MIT-BIH, ISURC and
SVUH can be found in [31, 32, 35–37, 37] and [46]
respectively.

3Methodology

The Fig. 2 depicts the proposed method. In the following
sections, we have explained the data preparation and the
technique we employed.

3.1 Segmentation of the dataset

We used two unipolar EEG channels O1 M2 and C3 M2
in this work, and classified them both individually and
collectively. As indicated in Table 4, the dataset was
segmented into nine data subsets.

Up-sampling datasets The EEG channels of
WSC dataset 1 were sampled at 100 Hz, whereas the EEG
signals of WSC dataset 2 were sampled at 200 Hz. We have
upsampled EEG signals of WSC dataset 1 to 200 Hz to
have all EEG signals at the same sampling frequency. The

upsampled dataset was segmented into three data subsets,
as indicated in Table 5. The samples were zero-padded to
increase the sampling rate from 100 to 200 Hz.

Furthermore, the EEG signal of every subject is
segmented into 30 seconds epochs. The epochs are labeled
according to the annotation files provided with the dataset.

3.1.1 Filtering and wavelet decomposition

The wavelet transform has shown to be an effective tech-
nique for evaluating non-linear, non-stationary EEG data.
The wavelets provide both the frequency and temporal
domain information. Hence, the feature extraction using
wavelets can be an ideal approach for sleep scoring using
EEG signals [47, 48]. Many signal processing applications
have used two-channel orthogonal and wavelet biorthogonal
filter banks [49]. Linear phase filters are desired in appli-
cations such as image and communication coding [50–56].
Except for Haar filter banks, orthogonal filters cannot attain
a linear phase. In few situations, biorthogonal filter banks
are favored over orthogonal filter banks. This study’s FB
was created utilizing a least-squares (LS) technique. The FB
is designed by minimizing a quadratic objective function for
the given linear constraints. The quadratic function of pass-
band and stop-band errors is used as the objective function.
With a half band analysis filter, we designed a linear phase
optimum biorthogonal wavelet filter bank.

The initial stage in designing the filter bank was to
create a half band analysis lowpass filter (HALF) by
creating a linearly restricted convex quadratic optimization
problem with a convex mixture of passband and stopband
errors. Following the design of the HALF, the synthesis
lowpass filter (SLPF) is constructed similarly to the HALF,
but with certain modifications such as (i) avoiding SLPF
being confined as halfband filters, and (ii) along with the
regularity criteria (vanishing moment) such that the perfect
reconstruction conditions are fulfilled.

3.1.2 Design of wavelet filter bank

We used a two-stage design process to create a novel class
of linear-phase biorthogonal filter banks (FBs). The FB

Table 3 Distribution of epochs
across sleep stages in two
datasets of WSC

Stages WSC dataset 1 WSC dataset 2 WSC

Wake 2,85,395 (18.5%) 1,34,267 (21.6%) 4,19,662 (19.3%)

N1 1,28,988 (8.36%) 44,091 (7.08%) 1,73,079 (7.9%)

N2 8,34,612 (54.1%) 3,26,516 (52.4%) 11,61,128 (53.6%)

N3 81,425 (5.27%) 40,539 (6.51%) 1,21,964 (5.6 %)

REM 2,12,106 (13.7%) 77,266 (12.4%) 2,89,372 (13.3%)

Total 15,42,526 (71.2%) 6,22,679 (27.4%) 21,65,205
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Fig. 2 Proposed method used
for the automated classification
of sleep stages

designed is a halfband pair filter bank (HPFB) wherein
the lowpass filter of the two-channel FB is a halfband
filter [57, 58]. The FB’s design has been characterized as
a two-stage optimization issue. In the initial stage, HALF
is designed, and in the second stage, the SLPF filter has
been designed. Both HALF and SLPF have been obtained
as solutions of least squares (LS) optimization problem.
The design process involves solving linear equations for the
given linear constraints with the two-stage approach. Using
the technique, one can design optimal filters with different
lengths and vanishing moments [13–15, 59–61] designed
easily. The filters are designed to minimize stop-band
energy (SBE). The SBE can be expressed in a quadratic
form. The vanishing moment (VM) restrictions are stated as

Table 4 Details of classification tasks (CT) and corresponding data
subsets

CT Data subset used Channel employed

CT1 WSC dataset 1 O1-M2

CT2 WSC dataset 1 C3-M2

CT3 WSC dataset 1 O1-M2 + C3-M2

CT4 WSC dataset 2 O1-M2

CT5 WSC dataset 2 C3-M2

CT6 WSC dataset 2 O1-M2 + C3-M2

CT7 WSC dataset 1 + WSC dataset 2 O1-M2

CT8 WSC dataset 1 + WSC dataset 2 C3-M2

CT9 WSC dataset 1 + WSC dataset 2 O1-M2 + C3-M2

a set of linear equations. Hence, the optimization problem
is a LS problem whose solution can be obtained easily
and effectively. We have used the CVX toolbox to solve
optimization problems [62, 63]. In this study, we have used
29/15 filter bank in which the orders of HALF and SLFP are
28 and 14, respectively. The HALF and SLFP both contain
4 VMs each. The frequency responses and pole-zero plots
of the filters used are shown in Figs. 3 and 4.

Determining the level of decomposition is critical. We
have tested 3-level, 5-level and 7-level wavelet decomposi-
tion and got best results from 5-level decomposition, thus
5-level wavelet decomposition is chosen. The frequency
components that dominate the signal and the most sig-
nificant sub-bands for categorization are retained. Based
on this, one-dimensional five-level wavelet decomposition
is conducted using the designed 29/15 FB. The wavelet
decomposition yielded the six sub-bands with frequency
ranges of 0-3.125 Hz (A), 3.125-6.25 Hz (D1), 6.25-12.5
Hz (D2), 12.5-25 Hz (D3), 25-50 Hz (D4), 50-100 Hz (D5).
In this study, the lower frequency band 0-3.125 Hz (A) is

Table 5 Details of classification tasks and data subset post upsampling

CT Dataset Channel

CT10 WSC dataset 1 O1-M2

CT11 WSC dataset 1 C3-M2

CT12 WSC dataset 1 O1-M2 + C3-M2
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Fig. 3 Frequency response obtained using the biorthogonal filter

referred as approximate coefficients [64], while the remain-
ing bands with higher frequencies are referred as detailed
coefficients.

3.1.3 Feature extraction

In our study, we extracted Hjorth parameters(HP) namely
activity, mobility, and complexity developed by Bo Hjorth
[65], from six sub-bands of each epoch’s five level one dimen-
sional wavelet decomposition. These parameters primarily
indicate the time domain properties of EEG signals. Table 6
provides a brief explanation for these parameters. After
obtaining six sub-bands from each epoch’s five-level one-
dimensional wavelet decomposition, the Activity, Complex-
ity and Mobility of the subbands are extracted.

Here y(t) represents the signal in the time domain and
dy(t)
dt

denotes the first derivative of the signal.

3.1.4 Classification

The HP features that have been chosen are fed into
supervised machine learning classifiers. In order to classify,
Support vector machines (SVM) [66, 67], ensemble bagged
trees (EBT) [68, 69], decision trees [68, 70], K-nearest
neighbours (KNN) [71] and naive Bayes [72] are used.
Among the above-mentioned classifiers, EBT delivered the
best classification as indicated in Table 7. In this work,
we have developed the classifiers using ten-fold cross-
validation (CV) strategy.

4 Results

The final classification results obtained using the extracted
features are obtained using the classification learner app

Fig. 4 Visualization of filter
pair in Z-plane
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Table 6 Details of HP used in this study

HP Description Formula

Activity Activity represents the variance of the signal y(t), Also indicates the energy of the signal y(t) var(y(t))

Mobility It provides an estimation of the mean frequency, Also represents the proportion of standard
deviation of the power spectrum.

√
var( dy(t)

dt
)

var(y(t))

Complexity It provides an estimate of the bandwidth frequency, Also represents change in frequency.
Mobility( dy(t)

dt
)

Mobility(y(t))

of MATLAB. It may be noted from Table 3 that the
observations and epochs between different sleep stages
are not the same, thus making the entire dataset very
unbalanced. Therefore, to evaluate such unbalanced systems
we have used Cohen’s Kappa coefficient (κ). Classification
accuracy and κ value for respective data subset is mentioned
in Table 8.

We have performed ANOVA test to evaluate the
statistical significance of the features, from the test
performed we obtained p-values of all the features as zero
which indicates null hypothesis is rejected and all features
are statistically significant. Therefore, we have used all
features during the classification. We have also ranked the
features. The summary of the features extracted and the
rankings are mentioned in Tables 9 and 10 respectively.

The WSC database used for this study contains two
main datasets the WSC dataset 1 and WSC dataset 2, the
method of collecting the PSG signals from subjects, make
these two datasets different from each other in terms of
sampling frequencies and channels present. As previously
mentioned, we chose these O1 M2 and C3 M2 unipolar
EEG channels since they are present in the majority of
subject files for this study. The selected channels (O1 M2
and C3 M2) from each dataset had different sampling
frequencies (100 Hz for WSC dataset 1 and 200 Hz for
WSC dataset 2), thus taking into account the diversity in
sampling frequency. Hence we decided to classify the entire
dataset in 9 different classification tasks. Ranging from
CT1-CT9, which is described in Table 4. The accuracies
obtained by these different classification tasks using EBT

Table 7 Performance of sleep stage classification achieved using
different classifiers

Classifier Classification accuracy(%)

Linear discriminant 68.4

Subspace KNN 70.3

Linear SVM 71.0

Fine gaussian SVM 74.7

Ensamble bagged trees 83.2

Subspace discriminant 67.1

classifier are presented in Table 8. The best overall accuracy
of 83.2% was obtained with Kappa value of 0.7345.

Below is a detailed overview of the aforementioned
classification tasks. For CT-1, we had an overall accuracy
of 73.4% and Kappa Value of 0.5584, the confusion matrix
for which is Table 11(c). Individual accuracies for different
classes, namely wake, N1, N2, N3, and REM, are 82.6%,
9.9%, 90%, 27.9% and 52.2%, respectively. In CT-2, an
overall accuracy of 77% and Kappa value of 0.6275 is
achieved with wake, N1, N2, N3 and REM having 83.7%,
16.4%, 91%, 34.3% and 67.3% respectively, the confusion
matrix of which is shown in Table 11(d). CT-3 yielded
an overall accuracy of 78.5% and Kappa value of 0.6499
with individual accuracies for wake, N1, N2, N3 and REM
as 85,8%, 17.4%, 92%, 36% and 35.9% respectively the
confusion matrix for which is Table 11(h). For CT-4, we had
an overall accuracy of 78.4% and a Kappa Value of 0.6524
the confusion matrix for which is Table 11(b). Individual
accuracies for different classes namely wake, N1, N2, N3
and REM are 89.2%, 12.4%, 90.7%, 56.5% and 56.5%
respectively. In CT-5, an overall accuracy of 81.1% and
Kappa value of 0.7017 is achieved with the wake, N1, N2,
N3, and REM, having 90.1%, 18.2%, 91.1%, 64.3% and
67.5%, respectively, confusion matrix of which is shown

Table 8 Performance of sleep stage classification achieved using EBT
classifier and 10-fold Cross Validation

CT Accuracy Cohens Kappa

CT-1 73.4% 0.5584

CT-2 77.0% 0.6275

CT-3 78.5% 0.6499

CT-4 78.4% 0.6524

CT-5 81.1% 0.7017

CT-6 83.2% 0.7345

CT-7 74.0% 0.4164

CT-8 77.5% 0.6363

CT-9 79.2% 0.5151

CT-10 75.6% 0.6524

CT-11 79.7% 0.6743

CT-12 81.5% 0.7020
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Table 11 Confusion matrix obtained corresponding to data subsets using EBT classifier with 10-fold CV

Predicted class

True class Wake N1 N2 N3 REM

(a) Confusion matrix for CT-1

Wake 82.6% 2.5% 10.4% <1% 4.3%
N1 19.2% 9.9% 48.5% <1% 22.2%
N2 2.9% 1.2% 90.0% 1.8% 4.1%
N3 <1% <1% 71.0% 27.9% <1%
REM 8.3% 4.0% 35.1% <1% 52.2%
Accuracy= 73.4% & κ = 0.5584
Sensitivity=75.8% & Specificity = 93.4%

(b) Confusion matrix for CT-4
Wake 89.2% 2.0% 6.6% <1% 2.1%
N1 26.3% 12.4% 41.7% <1% 19.5%
N2 3.0% <1% 90.7% 2.1% 3.2%
N3 <1% <1% 42.8% 56.5% <1%
REM 6.5% 3.3% 33.7% <1% 56.5%
Accuracy = 78.4% & κ = 0.6524
Sensitivity=79.0% & Specificity = 94.6%

(c) Confusion matrix for CT-7
Wake 83.0% 2.0% 11.0% <1% 4.0%
N1 21.0% 9.0% 49.0% <1% 21.0%
N2 3.0% <1% 90% 2.0% 4.0%
N3 <1% <1% 62.0% 37.0% <1%
REM 9.0% 4.0% 37.0% <1% 50.0%
Accuracy= 74.0% & κ = 0.4164
Sensitivity=76.2% & Specificity = 93.5%

(d) Confusion matrix for CT-2
Wake 83.7% 3.4% 9.1% <1% 3.5%
N1 20.9% 16.4% 35.3% <1% 27.1%
N2 2.8% 1.4% 91% 2.0% 3.1%
N3 <1% <1% 64.2% 34.4% <1%
REM 6.9% 6.4% 18.8% <1% 67.3%
Accuracy = 77.0% & κ = 0.6275
Sensitivity=78.1% & Specificity = 94.3%

(e) Confusion matrix for CT5
Wake 90.1% 2.5% 5.5% <1% 1.9%

N1 28.8% 18.2% 29.6% <1% 23.3%

N2 2.8% 1.1% 91.1% 2.1% 2.9%

N3 <1% <1% 34.9% 64.3% <1%

REM 6.3% 5.1% 21.1% <1% 67.5%

Accuracy = 81.1% & κ = 0.7017

Sensitivity=80.9% & Specificity = 95.3%

(f) Confusion matrix for CT8

Wake 85.0% 3.0% 8.0% <1% 3.0%
N1 23.0% 15.0% 35.0% <1% 26.0%
N2 3.0% <1% 91% 2.0% 3.0%
N3 <1% <1% 55.0% 44.0% <1%
REM 8.0% 6.0% 22.0% <1% 64.0%
Accuracy = 77.5% & κ = 0.6363
Sensitivity=78.5% & Specificity = 94.3%
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Table 11 (continued)

Predicted class

True class Wake N1 N2 N3 REM

(g) Confusion matrix for CT-6

Wake 91.5% 2.5% 4.5% <1% 1.5%

N1 25.5% 20.8% 33.1% <1% 20.5%

N2 2.4% <1% 92.7% 1.7% 2.1%

N3 <1% <1% 34.2% 65.0% <1%

REM 5.4% 3.7% 17.3% <1% 73.6%

Accuracy = 83.2% & κ = 0.7345

Sensitivity=82.9% & Specificity = 95.8%

(h) Confusion matrix for CT-3

Wake 84.8% 3.1% 8.2% <1% 3.6%

N1 19.4% 17.5% 38.3% <1% 24.7%

N2 2.4% 1.4% 92% 1.8% 2.5%

N3 <1% <1% 62.9% 36.0% <1%

REM 7.1% 5.1% 17.0% <1% 35.9%

Accuracy = 78.5% & κ = 0.6499

Sensitivity=79.4% & Specificity = 94.6%

(i) Confusion matrix for CT-9

Wake 86.0% 3.0% 8.0% <1% 3.0%

N1 22.0% 17.0% 37.0% <1% 23.0%

N2 3.0% <1% 92% 2.0% 2.0%

N3 <1% <1% 54.0% 45.0% <1%

REM 8.0% 5.0% 19.0% <1% 69.0%

Accuracy = 79.2% κ = 0.5151

Sensitivity=80.0% & Specificity = 94.8%

(j) Confusion matrix for CT-10

Wake 86.7% 2.6% 6.7% 0.0% 4.0%

N1 18.4% 11.8% 46.1% 0.0% 23.7%

N2 2.3% 1.3% 91% 1.8% 4.1%

N3 0.5% 0.0% 62.7% 36.7% 0.1%

REM 8.4% 4.6% 31.4% 0.0% 55.5%

Accuracy = 75.6% & κ = 0.6524

Sensitivity=76.9% & Specificity = 93.8%

(k) Confusion matrix for CT-11

Wake 87.9% 3.4% 5.9% 0.0% 2.8%

N1 20.2% 19.1% 32.1% 0.0% 28.6%

N2 2.1% 1.4% 92% 1.9% 2.8%

N3 0.6% 0.0% 55.1% 44.2% 0.0%

REM 6.9% 7.2% 14.6% 0.0% 71.3%

Accuracy = 79.7% & κ = 0.6743

Sensitivity=80.3% & Specificity = 95%
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Table 11 (continued)

Predicted class

True class Wake N1 N2 N3 REM

(l) Confusion matrix for CT-12

Wake 89.2% 3.2% 4.9% 0.0% 2.8%

N1 18.5% 21.8% 34.2% 0.0% 25.4%

N2 1.7% 1.5% 93% 1.6% 2.2%

N3 0.4% 0.0% 52.1% 47.4% 0.0%

REM 6.9% 5.8% 12.4% 0.0% 74.9%

Accuracy = 81.5% & κ = 0.7020

Sensitivity=81.3% & Specificity = 95.3%

in Table 11(e). CT-6 yielded an overall accuracy of 83.2%
and Kappa value of 0.7345 with individual accuracies for
the wake, N1, N2, N3, and REM, as 91.5%, 20.8%, 92.7%,
65% and 73.6%, respectively the confusion matrix for which
is given in Table 11(g). For CT-7, we had an overall
accuracy of 74% and Kappa value of 0.4164 the confusion
matrix for which is Table 11(c). Individual accuracies for
different classes namely wake, N1, N2, N3 and REM are
83%, 9%, 90%, 37% and 50% respectively. In CT-8 an
overall accuracy of 77.5% and Kappa value of 0.6363 is
achieved with wake, N1, N2, N3 and REM having 85.0%,
15.0%, 91%, 44.0% and 64.0% respectively, confusion
matrix of which is shown in Table 11(f). CT-9 yielded
an overall accuracy of 79.2% and Kappa value of 0.5151
with individual accuracies for wake, N1, N2, N3 and REM
as 86.0%, 17.0%, 92%, 45% and 69% respectively the
confusion matrix for which is given in Table 11(i).

From analysing the results of the above classification task
CT1-CT9, it seems that C3-M2 gives better classification
accuracy than O1-M2. We can observe that CT-2, CT-
5, and CT-8 (CT with C3-M2 channels) provide better
accuracy than CT1, CT4 and CT7 (CT with O1-M2
channel). For each WSC dataset, the results get better after
combining both the channels. By comparing accuracies
of CT-1,2,3 (CT from WSC dataset 1) and CT-4,5,6 (CT
fromWSC dataset 2), we can conclude that WSC dataset 2
provides better accuracy than WSC dataset 1.

Due to the inherent difference in the sampling frequency
of the dataset available, we experimented by upsampling the
WSC dataset 1 from 100 Hz to 200 Hz and then performing
classification task to check whether it would improve the
accuracy. The description of these classification task is
given in Table 5. The accuracies obtained by these different
classification tasks using EBT classifier are presented in
Table 8. After upsampling the WSC dataset 1, it showed
an improvement in both individual and overall accuracies.
CT-10 showed an overall accuracy of 75.6% and Kappa
value of 0.6524, with individual accuracies of wake, N1,

N2, N3, and REM as 86.7%, 11.8%, 91%, 36.7%, and
55.5% respectively the confusion matrix of which is given
in Table 11(j). In CT-11, an overall accuracy of 79.7%,
and Kappa value of 0.6743 is achieved with wake, N1,
N2, N3, and REM have 87.9%, 19.1%, 92%, 44.2%, and
71.3%, respectively, confusion matrix of which is shown in
Table 11(k). CT-12 yielded an overall accuracy of 81.5%
and Kappa value of 0.7020 with individual accuracies for
wake, N1, N2, N3 and REM as 89.2%, 21.8%, 93%, 47.4%,
and 74.9%, respectively. The confusion matrix for which is
given in Table 11(l).

5 Discussion

Our proposed method is the first study on sleep scoring
developed using 2431 subjects belonging to the entire
WSC sleep database. We employed two unipolar EEG
channels (O1-M2 or/and C3-M2 channels). The proposed
model is developed using a large number of 21,65,205
EEG epochs of 30s duration. The model is trained and
tested using optimal wavelet-based, highly discriminating
HP features. To ensure the robustness of the model, it is
tested with 12 diverse data subsets (refer to Tables 4 and
5). To ensure all EEG signals have the same sampling
frequency, the channels with an original sampling frequency
of 100 Hz was upsampled to 200 Hz. The proposed
model has yielded the best classification accuracy of
83.2% and kappa value of 0.7345. The high kappa value
indicates the good discriminating ability of the proposed
model.

The results obtained indicate that HP extracted from the
C3-M2 channel presents better classification performance
than the O1-M2 channels. Also, the model presents
better classification performance for WSC dataset 2 than
WSC dataset 1. The best overall result was achieved for
CT-6 channel, with an accuracy of 83.2% and κ value of
0.7340. It is observed that the best individual accuracy is
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obtained for N2 followed by wake, REM, N3, then N1. This
trend can be observed in all classification tasks(CT-1 to CT-
12). The lesser percentage of epochs of the N1 and N3 stage
in the total epoch (Table 3) might contributes to this trend.
The CT-10,11,12 (with upsampling) showed better accuracy
and κ values than CT-1,2,3 (without upsampling). Thus, the
up-sampling has been proved to enhance accuracy. The κ

value gives a better insight into the robustness of the model
in addition to the accuracy while using the unbalanced
datasets. Therefore, we have also used κ value to evaluate
our model, and our model yielded a high κ value of 0.74.
We used a combination of optimal bi-orthogonal filter bank
and HP for our datasets, which yielded better accuracies and
Kappa values than other wavelet decomposition and feature
extraction methods [56, 73]. As compared to the state-of-
the-art methods [74–76], it may be noticed that our proposed
method gave better accuracy for the N2 stage. Sharma
et al. [15] did a six-class SSC using the sleep-EDF database
(80 subjects). They used six sub-bands using optimal
wavelet filter bank, norm features, and EBT classifier to
get a best model with accuracy 85.3%(unbalanced ) and
92.8% (unbalanced) and κ of 0.786 and 0.915. However,
their model reported the best accuracy of 89% for the
S2 class. Phan et al. [41] proposed a 5 class SSC using
a joint classification-and-prediction framework based on
convolutional neural networks (CNNs) using sleep EDF and
MASS datasets. They obtained an individual accuracy of
88% (sleep EDF ) and 86.9% (MASS). In the proposed
work, the best accuracy of 92.7% is obtained for the N2
stage, as shown in Table 11. Sharma et al. [77] did SSC
using sleep-EDF database with 76 subjects and reported the
best accuracy of 98.3% and achieved only 17.3% accuracy
for the N1 class, while our model obtained an accuracy of
21.1% for N1 stage detection. Thus, the proposed model
also performed well in detecting the N1 class.

To assess the robustness of the proposed method, the
model was tested with other databases along with the
WSC database. We evaluated the model with the following
publicly available data, namely CAP [36, 37], Sleep
EDF [31, 32], ISRUC [35], MIT-BIH [37] and sleep
apnea database from SVUH [46]. We observed that our
model is either better or more competitive with other
mentioned models when we tested with these five databases.
While employing the same number of subjects and EEG
derivations, from the SLEEP-EDF, CAP, ISRUC, SVUH,
and MIT-BIH databases, we achieved an accuracy of 90.6%,
83.6%, 77.4%77.4%, 75.4%, and 73.6%, respectively. From
Table 12, it is clear that our method attained an accuracy of
83.6% for the CAP database, which is the highest among
all other studies mentioned for the CAP database. For the
Sleep-EDF database, our model achieved an accuracy of
90.6%, which is almost equal to the highest accuracy of
90.8% achieved by Yildirim et al. [28]. Similarly, for the

ISURC database, the proposed model got an accuracy of
77.4%, which is the second highest among the other studies
mentioned in the Table 12. Besides, for the MIT-BIH data,
our model’s accuracy is almost close to the highest accuracy
obtained by Tripathy et al. [78]. For the SVUH database, our
model surpassed all other methods mentioned in the table.
We attained an accuracy of 83.6% with the WSC database,
which is the first work to the best of our knowledge.
The comparison result indicates that our model not only
performed well on the WSC database but its performance
is also encouraging with all five popularly used public
databases, indicating that the model is robust and accurate.
It also indicates the generalizability of the model for any
unseen new database.

The advantages of the proposed method are as follows:

• A two-stage technique is used to design a new class of
linear phase WFB, wherein the analysis lowpass filter
is a half-band filter. The LS criterion has been used in
both the stages of the design stages, which resulted in
a simple optimization problem involving a set of linear
equations.

• This is the first study to incorporate the entire WSC-
dataset for SSG.

• We have extracted and used 21,65,205 epochs of 30
seconds duration, which is the largest dataset to be used
in studies.

• We have used a new class of optimal bi-orthogonal
wavelet filters to decompose the signals into sub-bands.

• HP is used for feature extraction, which is a good
discriminator for EEG signals.

• The proposed method achieved good accuracy and κ

value utilizing only two unipolar EEG channels.
• Developed model is robust and generalizable as it

performed well using on all six publicaly available
databases.

The limitation of the study are as follows:

• The datasets used are not balanced with respect to the
number of epochs in each class, making it challenging
for unbiased classification.

• As the datasets are unbalanced and has the least
number of data for N1 sleep stage, it has the least
accuracy. However, the performance accuracy of the N1
sleep stage is better than other reported state-of-the-art
techniques.

The COVID-19 pandemic has paved the way for the
Internet of things (IoT) in healthcare to obtain accurate diag-
nosis. The rise in demand for remote healthcare and the
progress in cloud computing, machine learning, and biomed-
ical sensors has made personal healthcare possible. Our
proposed model can be used as an algorithm for cloud-based
servers to detect sleep stages accurately and, the workflow

18694 M. Sharma et al.
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Fig. 5 Flow chart of an IoT-based automated sleep stage classification system

is shown in Fig. 5. First, the EEG signals can be collected
from the subject using the smart wearable hardware. This
data can be uploaded and processed at a local server, con-
nected to a server hosted on the cloud. This processed data
can be forwarded to medical professionals for examination,
who will provide the medical assistance if needed.

6 Conclusion

The proposed study aims to implement an automatic SSG
method using a novel class of stop-band energy localized
biorthogonal filter bank and supervised machine learning
algorithms. We have used a very large dataset comprising
of 2431 PSG files and 21,65,205 epochs of 30 seconds
duration each. With the help of a filter bank and five-level
wavelet decomposition, six subbands are created from each
EEG epoch. After the wavelet decomposition, three HP
are computed from each subband, resulting in 18 features.
These features are then fed to supervised machine learning
algorithms to classify the sleep stages. The classification
is done using a ten-fold cross-validation strategy. Only two
unipolar EEG signals (O1 M2 and C3 M2) are considered
to carry out this study compared to PSG-based system,
which makes our approach convenient for patients, and a
portable device can be developed with it. The database
employed in our study is very large and diverse involving
many channels and several subdatasets. We have obtained
the best accuracy of 83.2% and κ value of 0.7345 using
an ensemble bagged tress (EBT) classifier with our 12
considered data subsets. We also observed that our system

is either better or competitive with existing state-of-art
systems when we tested with CAP, sleep-EDF, ISRUC,
MIT-BIH, and St. Vincent’s University databases.

The choice of computationally less intensive features,
optimal filter bank, and only two EEG channels make our
developed model suitable for real-time application. Hence
it can be implemented in a portable EEG device for sleep
monitoring while sleeping comfortably in our homes. In the
future, we plan to carry out sleep disorder identification
automatically using the same WSC database.
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