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Abstract
The classification of time series is essential in many real-world applications like healthcare. The class of a time series is
usually labeled at the final time, but more and more time-sensitive applications require classifying time series continuously.
For example, the outcome of a critical patient is only determined at the end, but he should be diagnosed at all times for
timely treatment. For this demand, we propose a new concept, Continuous Classification of Time Series (CCTS). Different
from the existing single-shot classification, the key of CCTS is to model multiple distributions simultaneously due to the
dynamic evolution of time series. But the deep learning model will encounter intertwined problems of catastrophic forgetting
and over-fitting when learning multi-distribution. In this work, we found that the well-designed distribution division and
replay strategies in the model training process can help to solve the problems. We propose a novel Adaptive model training
strategy for CCTS (ACCTS). Its adaptability represents two aspects: (1) Adaptive multi-distribution extraction policy. Instead
of the fixed rules and the prior knowledge, ACCTS extracts data distributions adaptive to the time series evolution and the
model change; (2) Adaptive importance-based replay policy. Instead of reviewing all old distributions, ACCTS only replays
important samples adaptive to their contribution to the model. Experiments on four real-world datasets show that our method
outperforms all baselines.

Keywords Continuous classification of time series · Model training strategy · Medical applications

1 Introduction

The classification of time series has attracted increasing
attention in many practical fields [1]. The class of a time
series is usually labeled at the final time. For example,
patients’ outcomes will come at the end. Most deep
learning (DL) models are good at single-shot classification,
classifying data at a fixed time after learning time series
within a fixed period [2, 3]. Because DL methods assume
that the observed data is independent and identically
distributed (i.i.d) and subsequences in the same period
maintain one distribution [4].

However, in the real world, more and more time-sensitive
applications need to classify time series continuously before
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the final labeled time [3]. For example, in the intensive care
unit (ICU), diagnosis and prognosis are needed at any time
to provide more opportunities for doctors to rescue lives
[5]. Each hour of delay has been associated with roughly
a 4-8% increase in sepsis mortality [6]. But patient labels,
e.g. mortality or morbidity, are only available at the onset
time but unknown in the early stages. In response to the
current demand, we propose a new concept – Continuous
Classification of Time Series (CCTS), to classify time series
at every time point before the labeled time. For example,
using vital signs like blood pressure to diagnose patients
continuously as shown in Fig. 1.

The main requirement of CCTS is to model multi-
distributed data. Most real-world time series develop
dynamically, leading to the evolved data distribution,
and finally producing the multi-distribution form. For
example, in Fig. 2, the data distribution of blood pressure
of 2,000 sepsis patients varies among early, middle,
and late time stages during hospitalization, bringing a
triple-distribution. Because these three distributions have
the same sepsis label, the model needs to learn them
simultaneously to achieve continuous classification: When
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Fig. 1 A Medical Case of Continuous Classification of Time Series
(CCTS): Continuous diagnosis and prognosis, where the vital signs is
modeled to classify patients’ health status continuously. For sepsis, the
rapid drop of blood pressure (a major symptom of sepsis shock, the
red dashed box) always occurs just before the shock, but its too late.
The continuous mode (red stars) can achieve earlier and more accurate

results than the single-shot mode (blue dot). If the model simply learns
the full-length time series, it can only give the single-shot result at the
onset time. If it is expected to diagnose continuously, it needs to learn
data from different advanced stages, where the blood pressure has a
triple-distribution at tm−1, tm, tm+1

the data distribution changes, the model performance cannot
decrease. However, limited by the premise of i.i.d data, if a
model learns a new distribution, it will negatively affect its
performance on old ones. That is the catastrophic forgetting
problem [7].

Some studies, including our previous work, have
proposed some solutions to this problem [8–10]. However,
they are based on the known multiple data distributions,
yet the distribution division in CCTS is not clear. In the
context of CCTS, a time series is not one sample but
can be divided into multiple samples. Different division
rules will produce different distributions and also affect the
final model performance. Less distributions may worsen
the catastrophic forgetting problem and omit important
features. More distributions may cause the over-fitting
problem and have low training efficiency. For example, if
the model learns distributions in each time point, it will

Fig. 2 Multi-distribution in Time Series dataset. The statistics of blood
pressure of 2,000 sepsis represent three distributions [14]

encounter intertwined problems of catastrophic forgetting
and over-fitting: A time series usually has a large number of
time points. The blood pressure of a critical patient could be
sampled hundreds of times. If the model frequently learns
hundreds of new distributions, it will inevitably forget old
ones. Meanwhile, as the development of time series needs
a process, the data distributions in adjacent time are always
similar. Over-learning of similar distributions will cause
strict function and poor generalization [11].

The optimal multi-distribution is hard to obtain. Unlike
images, the time series is more abstract and its character-
istics are not explicit [12]. Although some methods can
describe time series like Shaplets [13], they still need prior
knowledge. Most importantly, the artificial rule needs to be
determined before training the model and remains the same
over time. But because the time series has been evolving
dynamically, a fixed rule is likely to be outdated.

In this work, instead of the static division rule, we design
an Adaptive model training strategy for CCTS (ACCTS). It
has two adaptive policies:
• Adaptive multi-distribution extraction policy. It

explores the policy space according to the reward based
on distribution difference and classification accuracy,
and finally extracts data distributions adaptive to the
time series evaluation and the model change;

• Adaptive importance-based replay policy. It leans
the impact of each sample on the model, applying
partial replay to balance the problems of catastrophic
forgetting and over-fitting. The important samples
in each distribution are determined adaptive to their
dynamic importance parameters.
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Experimental results on real-world datasets show that
ACCTS is more accurate than all baselines in CCTS task.

2 Related work

We summarize the classification tasks for time series
data into two categories: single-shot classification and
continuous classification. (See Appendix A for more related
work and concepts.)

2.1 Single-shot classification

Definition 1 (Single-shot Classification of Time Series,
SCTS) A time series X = {x1, ...xT } is labeled with a class
C ∈ C at the final time T . SCTS classifies X at a fixed time
t with a single minimum loss L(f (X1:t ), C). If t = T , the
task is CTS; If t < T , the task is ECTS.

Single-shot classification methods classify at a fixed
time. The classical Classification of Time Series (CTS)
gives results based on the full-length data [2]. But in time-
sensitive applications, Early Classification of Time Series
(ECTS) is more critical, making classification at an early
time [3]. For example, early diagnosis helps for sepsis
outcomes [15].

Many methods have been proposed and have good results
in CTS and ECTS [16–22]. Because DL methods assume
that the observed data is i.i.d and subsequences in the
same period maintain one distribution. However, in the real
world, more and more time-sensitive applications need to
classify time series continuously before the final labeled
time. As shown in Fig. 3, SCTS can only give the single-
shot result: once the classification is complete, the action
will not continue (Table 1).

Fig. 3 Continuous Classification. CCTS is continuous mode (star)
with multi-distribution (square) rater than single-shot mode (circle)

Table 1 Notations and the corresponding definitions

Notation Definition Notations Definition

X time series dataset f model

D distribution set μ, Q actor-critic nets

M task set S, s state

X, x time series sample A, a action

C, c class label R, r reward

T , t time stamp θ, W, b model parameters

B data buffer α, ε, λ hyper-parameter

L loss function g gradient

2.2 Continuous classification

Definition 2 (Continuous Classification of Time Series,
CCTS) A time series X = {x1, ...xT } is labeled with a class
C ∈ C at the final time T . CCTS classifies X at every t with
the additive loss

∑T
t=1L(f (X1:t ), C).

Continuous classification methods classify at every time
point before the labeled time. In fact, CCTS is a combination
of multiple SCTS tasks. As we analyzed in Section 1, the
premise of realizing continuous classification is to model
multi-distribution. We summarize two strategy categories.

2.2.1 Multi-model for multi-distribution

The first strategy applies multiple models to model multiple
distributions, like SR [23] and ECEC [24]. They divide data
distribution according to time stages and design a classifier
for each distribution. But they only consider the data
division, ignoring the strategic training method. Besides, the
operation of classifier selection in a multi-model framework
will result in additional losses.

2.2.2 Single-model for multi-distribution

The second strategy uses a single model to learn multiple
distributions and solves the problem of catastrophic
forgetting in this process. They are usually based on a
Continual Learning (CL) framework, which enables the
model to learn new tasks over time without forgetting the
old tasks. For example, replay-based methods re-train the
model by old data to consolidate memory [14, 25–27];
Regularization-based methods restrain parameter update of
neural networks to limit forgetting [28–31]; Model-based
methods change network structure or apply multiple models
to response to different tasks [32, 33]. But most methods
have the problems of storage limitation, distribution drifts,
and model overfitting. In CL, the definition of old and new
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tasks is clear and the division of distribution is fixed. But
in CCTS, the distributions are not determined and need to
be defined. Besides, two sub-disciplines, Online Learning
(OL) [34] and Anomaly Detection (AD) [35], also study the
mode of continuous learning or continuous classification.
But they mainly maintain one data distribution. When they
are directly applied in CCTS, they perform poorly at early
time points.

In most methods, either all samples are assumed to be
in the same distribution, or the multi-distribution is defined
in advance, or the distribution division is based on the full-
length time series data [36, 37]. But CCTS task need to
divide time series dynamically during their evolution as a
fixed rule is likely to be outdated.

3 Continuous classification of time series

As shown in Fig. 3, CCTS aims to give classification results
at each time point of the time series. Based on Definition 2,
in CCTS, the model need to learn multiple distributions.
Without the loss of generality, we use the univariate time
series to present this task. Multivariate time series can be
described by changing xt to xi

t . i is the i-th dimension.

Definition 3 (CCTS with Multi-distribution) A dataset X
contains many time series data. Each time series X =
{x1, ...xT } is labeled with a class C ∈ C at the final time
T . As time series varies among time, it has a subsequence
series with N different distributions D = {D1, ...,DN },
each Dn has subsequence X1:tn . CCTS learns every Dn

and introduces a task sequence M = {M1, ...,MN } to
minimize the additive risk

∑N
n=1 EMn[L(f n(Dn; θ), C)]

with model f and parameter θ . f n is the model f after

being trained for Mn. When the model is trained for Mn,
its performance on all observed data cannot degrade:

minL(f n,Mn)

subject to
1

n

n∑

i=1

L(f n(X1:t i ; θn), C)

≤ 1

n − 1

n−1∑

i=1

L(f n−1(X1:t i ; θn−1), C) (1)

4 Adaptivemodel training strategy

To achieve the CCTS task defined in Definition 3, we first
divide the time series dataset X based on the distribution set
D and create the task set M, then learn new and old tasks,
avoiding catastrophic forgetting and over-fitting.

In this work, we propose an adaptive model training
strategy ACCTS as shown in Fig. 4. When a model is trained
by time series from the initial to the final time, ACCTS gives
two decisions:

• Whether the current time series segment forms a new
distribution? If yes, train the model by the current time
series; Otherwise, do not train and continue to get new
data points;

• Which old samples need to be replayed and learned
again? If the previous decision is yes, train the model
with the obtained old samples again after training it by
the current time series.

4.1 Adaptivemulti-distribution extraction

The first decision is got by the adaptive multi-distribution
extraction polity. It is an agent that decides whether to

Fig. 4 Adaptive model training process for continuous classification of time series
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extract the current time series sequence to train the model.
It solves a 3-triple partially-observable Markov decision
process {S,A,R} [38], where the observation arrive from
a state s at each time, an action a is sampled using a
learned policy, and a reward r is observed according to
the selected action’s quality. The objective is to optimize
long-term rewards.

State S. It is represented by the characteristics of the
current data and the adaptability of the old model to the
current data. It is intuitive: First, the model needs to be
trained by the dataset with different features from the
previous data for the comprehensive modeling; Second,
the model must be trained again when it performs poorly
on the current data for overall accuracy. At the current
time t , we use the Long Short-Term Memory (LSTM)
network as the base model to learn the hidden characteristics
of a time series X1:t , generating low-dimensional vector
representation ht . We also propose the Model Gradient
(MG) gt to evaluate the adaptability of the model to the
current time series. The model gradient can help for the
interpretation of the DL model by explaining the response
of the neural network to input data [39]. Large gradient
fluctuation reflects the low adaptability of the model to the
input data. Thus, the state st of the current time series is:

st = concatenate(LSTM(xt ),MG(X1:t )) (2)

LSTM(xt ) = ht = ot · η(ct )

ct = ft · ct−1 + it · η(Wc[ht−1, xt ] + bc)

ot = σ(Wo[ht−1, xt ] + bo)

ft = σ(Wf [ht−1, xt ] + bf ) (3)

it = σ(Wi[ht−1, xt ] + bi)

MG(X1:t ) = gt = ∂

∂θf n
L(f n(X1:t , θf ), C) (4)

Action A At the current time t , the action at dictates the
decisions of ACCTS agent: If at = 0, continue to accept
the value point of time series and let LSTM move forward
one time step; If at = 1, extract the current time series X1:t
as a new distribution to be learned. For the action selection,
we use ε-greedy selection to avoid abundant exploitation.
at is replaced with a random action with the probability ε

of exponentially decreasing from 1 to 0 during the training
process.

at =
{

at , with probability 1 − ε

random, with probability ε
, at ∈ {0, 1} (5)

RewardR The agent observes the return which can qualify
the parameters of the current policy. The goal of CCTS
is the high accurate classification by solving the problems

Algorithm 1 Adaptive multi-distribution extraction policy.

of catastrophic forgetting and over-fitting as we analysed
in Section 1. Thus, we pursue the higher accuracy of
the current classifier on all potential data distributions
to control the catastrophic forgetting, and we limit the
number of extracted distributions by the time span between
distributions to control the over-fitting. Thus, at the current
time t , after applying the action at , the reward rt is consisted
of two components. The first term is for the high accuracy
of the current model f n on all data, the second term is for
less divisions by using the time length between the current
time tn and the last data extraction time tn−1.

rt = − α

T

T∑

t=1

L(f n, X1:t ) + (1 − α)

T
(|tn − tn−1|) (6)

When using the transition probability P(st+1|st , at ), the
total reward of the trajectory is the is sum of the reward
in each time. Thus, the objective is to maximize the total
reward R = ∑T

t=1 rt . The policy gradient method [40]
learns the policy πθ(st , at ) = P(at |st ) for the larger return.
The objective is J (θ) = E[r(s, a)πθ (s, a)]. For ACCTS,
we apply Actor-Critic [41] structure with two components
of the main net and the target net. The main net of Actor
μ use the state s to generate the action a; The main net of
CriticQ judges the action a through reward r by Q-function
[42]. The target nets of Actor and Critic μ′,Q′ put the target
Q value stable for a period of time, making the algorithm
performance more stable.

OActor
(
θμ

) = Est∈S

[
Q

(
st , μ

(
st |θμ

) |θQ
)]

OCritic(θQ) = Est∈S[(rt + γQ′(st+1, μ
′(st+1|θμ′)|θQ′)

−Q(st , a|θQ))2] (7)
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4.2 Adaptive importance-based replay

The replay mechanism can help to alleviate the catastrophic
forgetting [43]. However, the operation of repeated replay
easily causes the over-fitting problem, especially for time
series with small differences between two adjacent times. In
CL, many methods only replay the representative data, such
as the class means [27] and the class prototype [44], each
representative is fixed to its distribution. But in CCTS, we
still need to consider whether all the representatives need to
be learned again and whether the representative will change
over time.

Thus, we focus on the adaptive method to explore a wider
space, where the replayed data is dynamic and determined
according to the current state. We introduce an importance-
based replay method. In each round, it only re-trained the
model with some important samples to the model. The
importance of each sample is learned from the objective of
an additive loss function.

We incorporate the importance parameter βi of a time
series Xi in the replay buffer Bn as a coefficient of its loss
Ln,i . The overall loss at the current time tn is the sum of
each sample’s loss:

Ln = 1

|Bn|
|Bn|∑

i=1

(β2
n,iLn,i + λ(βn,i − 1)2)

Bn = {X1:tn ,X̃i |βn−1,i < ε}
(8)

β is learned by the gradient descent βn,i ← βn,i − ∂Ln

∂βn,i
.

Thus, if a sample Xi is hard to classify, its loss L∗,i will
be larger. In order to minimize the loss, its β∗,i will be
smaller. Based on this, in each learning phrase, the buffer
Bn contains the current time series X1:tn and the important
old time series X̃, who are the first few difficult learning
samples (βn−1,i < ε) in the last buffer Bn−1. Meanwhile,
as β is the confidence of loss, if β = 0, the loss is
hard to optimize. Thus, inspired by [14], we introduce a
regularization term (β −1)2 and initialize β = 1 to penalize
it when rapidly decaying toward 0. As β is re-obtained after
each model training process, the important samples X̃ are
changed adaptively and the buffer B is updated iteratively.

4.3 Overall model training process

The adaptive multi-distribution extraction policy, which is
achieved by the Actor net μ, is trained before the classifier
training process, as shown in Algorithm 1. First, LSTM
calculates the current sate st (Line 2) and gives the action
at (Line 3). Then, the reward rt is obtained by the long-
term accuracy to update the net (Line 6), where Actor and
Critic are updated alternately. The main Critic net is updated
by Q value, calculated from both two Critic. Main Actor is
updated by the back-propagation gradient of the main Critic.

Algorithm2 The model training process under the strategy of ACCTS.

Target Actor and Critic are learned by the soft update (Line
7).

The adaptive importance-based replay policy is trained
along with the classifier training process, as shown in
Algorithm 2. First, in each time step, the Actor of ACCTS
determines if a new distribution appears (Line 4,5). If yes,
train the classifier from f n to f n−1 by datasets in the buffer
Bn (Line 7,8), and get the important samples according to
β to form a new buffer Bn+1 (Line 9); Else, continue to get
new values in next time point t + 1. At the final time, we
can get the well-trained classifier f N .

Note that the two processes of the adaptive multi-
distribution extraction and the adaptive importance-based
replay are relevant rather than independent. The extraction
policy is based on the feature of the buffer data, and the
replay policy selects the important samples based on the
extracted data. Both of them are data-based, which helps
to adaptive combination. That’s why we design the replay-
based policy rather than the regularization-based policy
after the distribution extraction.

5 Experiments

5.1 Experimental setup

Datasets For each time series in the four datasets, every
time point is tagged with a class label, which is the same as
its outcome label, such as ‘mortality’, ‘sepsis’, ‘earthquake’
and ‘rain’.

• COVID-19 dataset [45] has 6,877 blood samples
of 485 COVID-19 patients from Tongji Hospital,
Wuhan, China. It is the multivariate time series of 74
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Table 2 Classification accuracy (AUC-ROC↑) of baselines at 10 time points for 4 real-world datasets

Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

COVID-19 LSTM .605±.04 .701±.03 .793±.02 .833±.01 .844±.01 .888±.01 .918±.03 .925±.01 .939±.00 .944±.01
SR .636±.01 .730±.02 .810±.01 .867±.01 .901±.01 .900±.01 .935±.01 .946±.00 .952±.01 .962±.00
ECEC .639±.01 .732±.02 .829±.01 .870±.01 .901±.02 .904±.01 .937±.00 .948±.01 .952±.00 .963±.01
EWC .703±.02 .769±.01 .870±.01 .888±.02 .915±.01 .923±.01 .935±.00 .940±.01 .950±.01 .954±.00

GEM .699±.02 .779±.01 .871±.01 .885±.02 .914±.01 .924±.01 .936±.00 .939±.01 .949±.01 .953±.00

CLEAR .710±.01 .785±.01 .870±.01 .879±.01 .916±.02 .926±.01 .933±.01 .941±.00 .948±.00 .952±.00

CLOPS .709±.01 .775±.01 .869±.01 .900±.01 .918±.02 .925±.01 .935±.01 .940±.00 .947±.00 .954±.00
ACCTS .712±.02 .790±.02 .872±.01 .901±.02 .919±.01 .927±.00 .955±.00 .960±.01 .963±.00 .967±.00

SEPSIS LSTM .576±.06 .629±.03 .735±.06 .736±.06 .745±.05 .748±.04 .773±.03 .795±.02 .813±.02 .827±.03
SR .626±.03 .659±.01 .768±.01 .791±.02 .803±.01 .827±.03 .835±.01 .845±.01 .859±.02 .866±.02
ECEC .623±.02 .669±.01 .761±.01 .793±.01 .811±.01 .815±.01 .827±.01 .849±.01 .859±.01 .863±.01
EWC .671±.02 .733±.02 .799±.01 .827±.03 .832±.02 .838±.02 .842±.03 .848±.01 .850±.01 .854±.01
GEM .670±.02 .730±.02 .802±.01 .826±.03 .834±.02 .836±.02 .841±.03 .849±.01 .851±.01 .853±.01
CLEAR .680±.02 .732±.02 .801±.01 .825±.03 .833±.02 .839±.02 .842±.03 .847±.01 .850±.01 .848±.01
CLOPS .684±.02 .733±.02 .802±.01 .824±.03 .830±.02 .838±.02 .842±.03 .850±.01 .853±.01 .857±.01
ACCTS .690±.03 .734±.03 .812±.02 .828±.03 .835±.02 .842±.03 .852±.02 .857±.01 .866±.01 .872±.01

UCR-EQ LSTM .695±.04 .711±.03 .803±.02 .843±.01 .854±.01 .874±.01 .913±.03 .909±.01 .919±.00 .924±.01
SR .700±.01 .736±.01 .830±.01 .863±.01 .871±.02 .888±.01 .924±.01 .928±.10 .936±.10 .941±.10
ECEC .703±.01 .738±.01 .828±.01 .865±.01 .873±.02 .890±.01 .923±.01 .929±.10 .936±.00 .940±.00
EWC .724±.01 .768±.01 .848±.01 .874±.01 .883±.02 .895±.01 .910±.01 .923±.10 .930±.00 .933±.00
GEM .723±.01 .767±.01 .850±.01 .876±.01 .890±.02 .900±.01 .920±.01 .929±.00 .935±.00 .934±.00
CLEAR .729±.01 .770±.01 .852±.01 .880±.01 .899±.02 .904±.01 .918±.01 .923±.00 .928±.00 .932±.00
CLOPS .728±.01 .773±.01 .855±.01 .878±.01 .896±.02 .902±.01 .915±.01 .917±.00 .921±.00 .925±.00
ACCTS .730±.02 .774±.02 .856±.01 .882±.02 .900±.01 .906±.00 .928±.00 .933±.01 .940±.00 .946±.00

USHCN LSTM .682±.01 .700±.02 .721±.01 .745±.02 .784±.02 .820±.01 .837±.02 .852±.01 .869±.02 .891±.00
SR .702±.01 .730±.02 .745±.01 .761±.02 .809±.02 .836±.01 .886±.02 .902±.01 .921±.02 .933±.00
ECEC .707±.01 .736±.02 .748±.01 .760±.02 .806±.02 .837±.01 .887±.02 .906±.01 .920±.02 .931±.00
EWC .727±.01 .736±.02 .768±.01 .798±.02 .805±.02 .834±.01 .867±.02 .896±.01 .906±.02 .926±.00
GEM .720±.01 .728±.02 .772±.01 .781±.02 .801±.02 .838±.01 .868±.02 .899±.01 .910±.02 .928±.00
CLEAR .728±.01 .738±.02 .773±.01 .784±.02 .802±.02 .837±.01 .867±.02 .879±.01 .899±.02 .921±.00
CLOPS .728±.01 .740±.02 .769±.01 .781±.02 .800±.02 .835±.01 .861±.02 .877±.01 .895±.01 .919±.01
ACCTS .730±.01 .742±.01 .775±.01 .791±.02 .810±.01 .841±.01 .898±.02 .910±.01 .928±.01 .939±.01

The bold font indicates the most accurate result

laboratory test features. Mortality prediction helps for
the personalized treatment and resource allocation [46].

• SEPSIS dataset [47] has 30,336 patients’ records,
including 2,359 diagnosed sepsis. It is the multivariate

Fig. 5 Sepsis Diagnosis Based on Different Distribution Divisions. The values are the sigmoid values in binary classification task. The greater the
difference between the values of the two classes, the more helpful for model classification
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Table 3 Continual learning performance (Left: BWT↑, Right: FWT↑ ) of baselines

EWC GEM CLEAR CLOPS ACCTS EWC GEM CLEAR CLOPS ACCTS

UCR-EQ +0.039 +0.041 +0.053 +0.052 +0.058 UCR-EQ +0.321 +0.329 +0.312 +0.301 +0.345
USHCN +0.058 +0.054 +0.063 +0.074 +0.084 USHCN +0.312 +0.328 +0.335 +0.301 +0.342
COVID-19 +0.011 +0.012 +0.009 +0.014 +0.020 COVID-19 +0.426 +0.421 +0.427 +0.439 +0.455
SEPSIS +0.019 +0.017 +0.030 +0.032 +0.035 SEPSIS +0.295 +0.265 +0.401 +0.397 +0.410

The bold font indicates the best continual learning performance

time series of 40 related patient features. Early diagnose
of sepsis is critical to improve the outcome of ICU
patients [48].

• UCR-EQ dataset [49] has 471 earthquake records from
UCR time series database archive. It is the univariate
time series of seismic feature value. Natural disaster
early warning, like earthquake warning, helps to reduce
casualties and property losses [50].

• USHCN dataset [51] has the daily meteorological data
of 48 states in U.S. from 1887 to 2014. It is the
multivariate time series of 5 weather features. Rainfall
warning is not only the demand of daily life, but also
can help prevent natural disasters [52].

Baselines LSTM is the base model. The baselines are
mainly composed of two categories as we introduced in
Section 2. SR and ECEC are multi-model structures; EWC,
GEM, CLEAR, CLOP have CL strategies.

• LSTM [17, 53]. It contains a single classification model
LSTM. For one time series, the classification model is
trained by all subsequences from time 1 to time t , where
t = 2, ..., T .

• SR [23]. It has multiple basic classification models. All
models are trained by the full-length time series. The
final classification is the fusion result. It also has a stop
rule of classification stop time.

• ECEC [24]. It has a set of basic classification models.
Each model is trained by time series in different time
stages. When classifying, the data selects the classifier
based on its time stages.

• EWC [28]. It is a regularization-based strategy in
continual learning field. The strategy trains a model

to remember the old tasks by constraining important
parameters to stay close to their old values.

• GEM [29]. It is a regularization-based strategy in
continual learning field. The strategy trains a model to
remember the old tasks by finding the new gradients
which are at acute angles to the old gradients.

• CLEAR [25]. It is a replay-based strategy in continual
learning field. The strategy uses the reservoir sampling
to limit the number of stored samples to a fixed budget
assuming an i.i.d. data stream.

• CLOPS [14]. It is a replay-based strategy in continual
learning field. The strategy trains a base model by
replaying old tasks with importance-guided buffer
storage and uncertainty-based buffer acquisition.

Evaluation metrics Results are got by 5-fold cross val-
idation, expressed as the mean and standard deviation
mean±std. The accuracy is evaluated by Area Under Curve
of Receiver Operating Characteristic (AUC-ROC). The per-
formance of continuous mode is evaluated by Backward
Transfer (BWT) and Forward Transfer (FWT), the influence
that learning a current has on the old/future. R ∈ R

|M|×|M|
is an accuracy matrix, Ri,j is the accuracy on Mj after
learningMi . b is the accuracy with random initialization.

BWT = 1

|M| − 1

|M|−1∑

i=1

R|M|,i − Ri,i (9)

FWT = 1

|M| − 1

|M|∑

i=2

Ri−1,i − bi,i (10)

Table 4 Classification accuracy of baselines with non-uniform training sets and validation sets of COVID-19 dataset

Subset LSTM SR ECEC EWC GEM CLEAR CLOPS ACCTS

Male .955±.01 .968±.01 .969±.01 .965±.01 .965±.00 .978±.00 .978±.01 .971±.01

Female .924±.01 .945±.00 .947±.01 .939±.01 .938±.00 .919±.00 ↓ .921±.00 ↓ .947±.00

Age 30- .954±.01 .965±.01 .967±.01 .967±.01 .964±.00 .977±.00 .979±.01 .972±.01

Age 30+ .923±.01 .941±.00 .943±.01 .931±.00 ↓ .923±.00 ↓ .902±.00 ↓ .914±.00 ↓ .945±.00

Test .950±.01 .964±.01 .968±.01 .966±.01 .962±.00 .979±.00 .978±.01 .970±.00

Validation .944±.01 .962±.00 .963±.01 .954±.00 .953±.00 .952±.00 ↓ .954±.00 ↓ .967±.00
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Fig. 6 Ablation study of two policies of ACCTS with the case study of COVID-19

5.2 Results and analysis

We test the baselines from the classification accuracy
and performance of solving problems of catastrophic
forgetting and over-fitting problems, analyze our ACCTS
from the ablation study and coefficient test, and show the
representation of time series in continuous classification.

Before discussing the method performance, we show the
basic scenario of CCTS – multi-distribution. As shown in
Fig. 2, the data in different time stages (20%-, 50%-, 100%-
length) have distinct statistical characteristics and finally
form multiple distributions. The fundamental goal of the
following experiment is to model them.

5.2.1 Continuous classification

ACCTS has the best performance on continuous classifica-
tion. As shown in Table 2, it can classify time series more
accurately than all baselines at every time. The average
accuracy is about 2% higher. Specifically, ACCTS is sig-
nificantly better than baselines in Bonferroni-Dunn tests:
Rank(baselines) = 4.5 > 1.80+1(k = 7, n = 4, m = 5). k,
n, m are the number of methods, datasets, cross-validation

fold, CD = qα

√
k(k+1)
6(nm)

, if the average rank of baselines
higher CD + 1, the result is significantly improved.

The accurate continuous classification is important
for time-sensitive applications. Take continuous sepsis
diagnosis and prognosis in ICU as an example, compared
with the best baseline, our method improves the accuracy

by 1.32% on average, 2.19% in the early 50% time
stage when the key features are unobvious. Each hour of
delayed treatment increases sepsis mortality by 4-8% [48].
With the same accuracy, we can predict 0.951 hours in
advance.

The adaptive division strategy is better than the static
division strategy. As shown in Fig. 5, the distance between
the sigmoid values of the two prediction classes is relatively
large. It demonstrates the necessity of the combination of
data division and model generation. Using the horizontal
distributions based on clustering, the effect difference
among models is relatively small. Using the longitudinal
distributions, the model effect becomes better with the
development of the time stage.

5.2.2 Catastrophic forgetting and over-fitting

ACCTS is the best when solving these two problems with
the highest BWT and FWT as shown in Table 3. Not like the
strategies of EWC, GEM, CLEAR, and CLOPS, where they
train and review time series at all time points, ACCTS trains
and reviews time series at adaptively selected time points.
The results in Table 3 show the benefits of the adaptive
strategy: It has the lowest negative influence that learning
the new tasks has on the old tasks and has the highest
positive influence that learning the former data distributions
has on the task. Meanwhile, ACCTS can avoid model
overfitting and guarantee certain model generalizations. In
Table 4, for most baselines, the accuracy on the validation

Fig. 7 The important samples in four sepsis distribution buffers (2,3,4,5 in Fig. 8)
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Fig. 8 Extracted six distributions in SEPSIS dataset

set is much lower than that on the training set. Mark ↓means
the accuracy is greatly reduced over 5%.

5.2.3 Ablation study

Both adaptive multi-distribution extraction policy and adap-
tive importance-based replay policy are necessary as shown
in Fig. 6. The adaptive multi-distribution extraction per-
forms best in overall data and early distribution. It can avoid
the catastrophic forgetting of the method that trains the
model at every time step; The adaptive importance-based
replay also has the best performance, it can avoid the overfit-
ting of all relays. Besides, the accuracy of importance-based
replay is higher than regularization, which demonstrates a
good fit between the two policies of ACCTS (Figs. 7 and 8).

ACCTS has two definable coefficients α and ε, which
belong to two policies separately. Larger α review more
distribution to learn. Larger ε causes more samples to
review. As shown in Fig. 9, the practice is to set them in the
direct ratio: Within a reasonable range, more distributions
need more review.

Fig. 9 Classification accuracy with setting different α, ε

5.2.4 Multi-distribution and important samples

The case study of sepsis dataset in Fig. 8 shows that
ACCTS only extracts six distributions and the difference
among distributions is relatively large. The extraction is
concentrated in 85%-length late stage, which may be
because the patient’s vital signs change significantly near
the outcome time.

The important samples include not only the data hard to
learn but also the representative data as shown in Fig. 7. It
might be because that, the representative data is similar to
the most common data, resulting in a greater additive loss,
therefore leading to smaller coefficients in (8).

5.2.5 Case study

Figure 10(a) shows that the noise ratio is positively
correlated with the gradient fluctuation, and the fluctuation
is negatively correlated with classification accuracy. Thus,
the dynamic change of gradient can reflect the adaptability
of the model to the training data. Figure 10(b) and (d)
shows that ACCTS can divide the original distribution into
multiple distributions with less intersection. For example,
in the COVID-19 dataset of Fig. 10(d), ACCTS adaptively
divides original data into 4 subsets with a smaller cross-
section. Figure 10(b) shows that the distribution differences
between early non-sepsis and later sepsis, and between
early sepsis and later non-sepsis, are larger than the original
difference. Meanwhile, the data revolution is different in
different distributions. Distributions in Fig. 10(c) focus on
the rise, fall, up-turn, and down-turn of systolic blood
pressure, respectively.

6 Conclusion

In this paper, we propose a new concept of Continuous
Classification of Time Series (CCTS) to meet real needs.
It has two major difficulties of catastrophic forgetting and
over-fitting. In CCTS, the multi-distribution of time series
is not clearly defined, and the distribution division directly
affects the above two difficulties. Thus, we design an
adaptive model training strategy named ACCTS. It contains
a multi-distribution extraction policy adaptive to the time
series evaluation and the model change, and an importance-
based replay policy adaptive to the data features and final
accuracy. We test the methods on four real-world datasets
and analyze them from perspectives of accuracy, continuous
learning, ablation study, parameter setting, and case study.
The future work will deeply explore the relations between
different data distributions, study the safety requirements of
medical scenarios and other applications.
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Fig. 10 Cases of Model Change and Data Distribution Change dur-
ing Model Training Process by ACCTS. (a) shows the changes in
classification accuracy, and model stability with different batch sizes
during continuous training; (b) shows time and value characteristics
in different distributions in the sepsis dataset. For example, in the late
distribution, the blood pressure statistic of sepsis is lower. (c) shows

the changes in the representation of different characteristics (rise, fall,
up-turn, and down-turn) of time series during model training. For
example, there is a large change between the early and late represen-
tation of the fall in blood pressure. (d) shows the degree to which
the model distinguishes categories in different distributions. The value
here are the same as those in Fig. 5

Appendix A: Related work and concepts

Time series is one of the most common data forms,
the popularity of time series classification has attracted
increasing attention in many practical fields, such as
healthcare and industry. In the real world, many applications
require classification at every time. For example, in the
Intensive Care Unit (ICU), critical patients’ vital signs
develop dynamically, the status perception and disease
diagnosis are needed at any time. Timely diagnosis provides
more opportunities to rescue lives. In response to the current
demand, we propose a new task – Continuous Classification
of Time Series (CCTS). It aims to classify as accurately as
possible at every time in time series.

Currently, some sub-disciplines also study the mode of
continuous learning or continuous classification. But their
setting does not match our needs and their methods can’t
address our issues. As shown in Fig. 11, Online Learning
(OL) [34] models the incoming data steam continuously

to solve an overall optimization problem with the partially
observed data. It focuses more on issues in data steam,
rather than the dynamics of time series. OL cannot meet the
Requirement 1, 2, 4; Continual Learning (CL) [8] enables
the model to learn new tasks over time without forgetting the
old tasks. In its setting, the model learns a new task at every
moment. The old task and new task are clear so that the
multi-distribution is fixed. While the dynamic time series
has data correlation over time, which easily further causes
the overfitting problem. CL cannot meet the Requirement
2 and partial Requirement 1; Anomaly Detection (AD)
[35] identifies data that does not conform to the expected
pattern. It mainly maintains one data distribution and gives
an alarm when an exception occurs. AD cannot meet
Requirement 1 and partial Requirement 2. Because the
existing research can not meet the current demand, we
propose a new task CCTS. The existing work can be
summarized into two categories: Single-shot Classification,
Continuous Classification.
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Fig. 11 Continuous Classification of Time Series (CCTS) differences and similarities between CCTS and other concepts
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A.1: Single-shot classification

Classifying at a fixed time. A time series X = {x1, ...xT }
is labeled with classes C. Single-shot classification aims
to classify X at a time t, t ≤ T with the minimum loss
L(f (X1:t ), C).

The foundation is the Classification of Time Series
(CTS), making classification based on the full-length data
[2]. But in time-sensitive applications, Early Classification
of Time Series (ECTS), classifying at an early time, is more
critical [3]. For example, early diagnosis helps for sepsis
outcomes [15]. Nowadays, Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs) have
shown good performances for CTS and ECTS by modeling
long-term dependencies [17], addressing data irregularities
[19], learning frequency features [22], etc.

Definition 4 (Classification of Time Series (CTS)) A
dataset of time series D = {(Xn, Cn)}Nn=1 has N samples.
Each time series Xn is labeled with a class Cn, CTS
classifies time series using the full-length data by model
f : f (X) → C

Definition 5 (Early Classification of Time Series (ECTS))
A dataset of time seriesD = {(Xn, Cn)}Nn=1 has N samples.
Each time series Xn = Xt

T
t=1 is labeled with a class Cn.

ECTS classifies time series in an advanced time t by model
f : f ({x1, x2, ..., xt }) → C, where t < T .

The existing (early) classification of time series is
the single-shot classification, where the classification is
performed only once at the final or an early time.
However, many real-world applications require continuous
classification. For example, intensive care patients should
be detected and diagnosed at all times to facilitate timely
life-saving. The above methods only classify once and
just lean a single data distribution. They have good
performances on i.i.d data at a fixed time, like early 6
hours sepsis diagnosis [21], but fail for multi-distribution.
In fact, continuous classification is composed of multiple
single-shot classifications as shown in Fig. 11.

A.2: Continuous classification

Classifying at every time. A time series is X = {x1, ...xT }.
At time t , x1:t is labeled with class ct . Continuous
Classification classifies x1:t at every time t = 1, ..., T with
the minimum loss

∑T
t=1 L(f (x1:t ), ct ).

Most methods use multi-model to learn multi-
distribution, like SR [23] and ECEC [24]. They divide data

by time stages and design different classifiers for differ-
ent distributions. But the operation of data division and
classifier selection will cause additional losses.

In fact, CCTS is composed of multiple ECTS and the
continuous classification is composed of multiple single-
shot classification.

Definition 6 (Continuous Classification of Time Series
(CCTS)) A dataset of time series D = {(Xn, Cn)}Nn=1 has
N samples. Each time series Xn = Xt

T
t=1 is labeled with

a class Cn. CCTS classifies time series in every time t by
model f : f ({x1, x2, ..., xt }) → C, where t = 1, ..., T .

Currently, some sub-disciplines also study the mode of
continuous learning or continuous classification. But their
setting does not match our needs and their methods can’t
address our issues. As shown in Fig. 11, Online Learning
(OL) [34] models the incoming data steam continuously
to solve an overall optimization problem with the partially
observed data. It focuses more on issues in data steam,
rather than the dynamics of time series. Thus, OL cannot
meet the Requirement 1, 2, 3; Continual Learning (CL) [8]
enables the model to learn new tasks over time without
forgetting the old tasks. In its setting, the model learns
a new task at every moment. The old task and new task
are clear so that the multi-distribution is fixed. While the
dynamic time series has data correlation over time, which
easily further causes the overfitting problem. Thus, CL
cannot meet the Requirement 2 and partial Requirement
1; Anomaly Detection (AD) [35] identifies data that does
not conform to the expected pattern. It mainly maintains
one data distribution and gives an alarm when an exception
occurs. Thus, AD cannot meet Requirement 1 and partial
Requirement 2. Because the existing research can not meet
the current demand, we propose a new concept CCTS.

Definition 7 (Online Learning (OL)) A OL issue has a
sequence of dataset X = {X1, X2, ..., XN } for one task
T . Each dataset Xt has a distribution Dt . CL learns a
new Dt at every time t . The goal is to find the optimal
solution of T after N iterations by minimize the regret
R := ∑N

t=1(f
t (Xt ) − min f t (Xt )).

Definition 8 (Continual Learning (CL)) A CL issue T =
{T 1, T 2, ..., T N } has a sequence of N tasks. Each task
T n = (Xn, Cn) is represented by the training sample Xn

with classes Cn. CL learns a new task at every moment.
The goal is to control the statistical risk of all seen tasks∑N

n=1 E(Xn,Cn)[L(fn((X
n; θ), Cn)] with loss L, network

function fn and parameters θ .
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Appendix B: Using different DLmodels
as backbone networks for ACCTS

In ACCTS, the State S and the classifier are based
on LSTM as we are dealing with time series with
unequal lengths. Meanwhile, RNN-based models have the
embedded state representation, which can be more easily
used to reinforcement learning strategies, as shown in (2).

CNN-based models and Transformer-based models can
also model time series data. But they prefer to deal with
sequence with equal length. And there is no explicit hidden
state of data.

But in order to verify the effectiveness of the dynamic data
division strategy for CCTS, we have tested ACCTS by using
LSTM, CNN, and Transformer as Backbone Networks.

B.1: Backbone networks

st = concatenate(NN(xt ),MG(X1:t )) (11)

• LSTM: NN(xt ) = LSTM(xt ); Classifier net f =
LSTM with parameter θf .

LSTM(xt ) = ht = ot · η(ct )

ct = ft · ct−1 + it · η(Wc[ht−1, xt ] + bc)

ot = σ(Wo[ht−1, xt ] + bo)

ft = σ(Wf [ht−1, xt ] + bf )

it = σ(Wi[ht−1, xt ] + bi) (12)

• CNN: NN(xt ) = CNN(x1:t ) (feature in the last fully-
connected layer); Classifier net f = CNN with
parameter θf .

CNN(x1:t ) = f c(ht )

ht = (K ∗ x1:t )×n (13)

• Transformer: NN(xt ) = Transformer(x1:t ) (feature in
the output layer); Classifier net f = Transformer with
parameter θf .

Transformer(x1:t ) = f c(ht )

ht = Self-Attention(x1:t ) (14)

B.2: Datasets and baselines

We use 4 real-world datasets. For each time series in the four
datasets, every time point is tagged with a class label, which
is the same as its outcome label. The 10 time points are the
window sizes for CNN and Transformer.

• UCR Earthquake Prediction [49] UCR-EQ.
• USHCN Climate Prediction [51] USHCN.
• COVID-19 Mortality Prediction [45] COVID-19.
• Physionet 2019 Sepsis Prediction [47] SEPSIS.

The baselines are mainly composed of two categories as
we introduced in Section 2. SR has multi-model structure;
GEM and CLOP have CL strategies.

• SR [23]. It has multiple basic classification models. All
models are trained by the full-length time series. The
final classification is the fusion result.

• GEM [29]. The strategy trains a model to remember the
old tasks by finding the new gradients which are at acute
angles to the old gradients.

• CLOPS [14]. The strategy trains a base model by
replaying old tasks with importance-guided buffer
storage and uncertainty-based buffer acquisition.

B.3: Results of continuous classification

ACCTS has the best performance on classification accuracy.
As shown in Table 2, it can classify time series more
accurately than all baselines at every time. The average
accuracy is about 2% higher. Specifically, ACCTS is
significantly better than baselines in Bonferroni-Dunn tests:
Rank(baselines) = 4.5 > 1.80+1(k = 7, n = 4, m = 5). k,
n, m are the number of methods, datasets, cross-validation

fold, CD = qα

√
k(k+1)
6(nm)

, if the average rank of baselines
higher CD + 1, the result is significantly improved. The
accurate continuous classification is important for time-
sensitive applications. Take continuous sepsis diagnosis and
prognosis in ICU as an example, compared with the best
baseline, our method improves the accuracy by 1.32% on
average, 2.19% in the early 50% time stage when the key
features are unobvious. Each hour of delayed treatment
increases sepsis mortality by 4-8% [48]. With the same
accuracy, we can predict 0.951 hours in advance.

In fact, our method is actually a strategy that can be used
on different basic models. We apply the method to different
basic models. The dynamic data division strategy can
improve the performance of RNN-based models (LSTM,
GRU), CNN-based model, and Transformer-based model
in CCTS task as shown in Table 5. ACCTS1, ACCTS1∗,
ACCTS2, ACCTS3 have more accurate results than LSTM,
GRU, CNN, Transformer at every time points (Fig. 12).

We are dealing with time series with unequal lengths,
thus using the RNN-based model. Meanwhile, RNN-based
models have the embedded state representation, which can
be more easily used to reinforcement learning strategies,
as shown in (2) and 3. Therefore, we can also use the
GRU model. On our datasets, LSTM and GRU perform
similarly, and LSTM performs relatively well as shown in
Table 5. Meanwhile, CNN-based models and Transformer-
based models can also model time series data. But they
prefer to deal with the sequence with equal length. And
there is no explicit hidden state of data. And when we use
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Table 5 Classification Accuracy (AUC-ROC↑) of Baselines on 4
Real-world Datasets. Trans: Transformer; ACCTS1 means that LSTM
is the backbone network; ACCTS1∗ means that GRU is the backbone

network; ACCTS2 means that CNN is the backbone network; ACCTS3

means that Transformer is the backbone network. * -n means The n-th
last time point

* -9 -8 -7 -6 -5 -4 -3 -2 -1

UCR-EQ SR .736±.01 .830±.01 .863±.01 .871±.02 .888±.01 .924±.01 .928±.10 .936±.10 .941±.10

GEM .767±.01 .850±.01 .876±.01 .890±.02 .900±.01 .920±.01 .929±.00 .935±.00 .934±.00

CLOPS .773±.01 .855±.01 .878±.01 .896±.02 .902±.01 .915±.01 .917±.00 .921±.00 .925±.00

LSTM .711±.03 .803±.02 .843±.01 .854±.01 .874±.01 .913±.03 .909±.01 .919±.00 .924±.01

ACCTS1 .774±.02 .856±.01 .882±.02 .900±.01 .906±.00 .928±.00 .933±.01 .940±.00 .946±.00

GRU .713±.01 .807±.04 .845±.02 .856±.02 .873±.02 .910±.02 .909±.02 .916±.01 .923±.01

ACCTS1∗ .775±.02 .857±.02 .879±.03 .902±.02 .906±.01 .926±.02 .930±.03 .941±.03 .944±.02

CNN .708±.01 .797±.04 .840±.02 .846±.04 .870±.03 .902±.01 .905±.00 .912±.02 .921±.01

ACCTS2 .770±.02 .843±.05 .868±.04 .894±.03 .899±.02 .918±.03 .926±.04 .938±.03 .942±.02

Trans .709±.02 .794±.05 .842±.03 .843±.05 .873±.03 .910±.03 .9150±.04 .915±.02 .922±.02

ACCTS3 .770±.02 .843±.05 .860±.04 .8984±.05 .903±.05 .920±.03 .928±.04 .938±.05 .942±.03

USHCN SR .730±.02 .745±.01 .761±.02 .809±.02 .836±.01 .886±.02 .902±.01 .921±.02 .933±.00

GEM .728±.02 .772±.01 .781±.02 .801±.02 .838±.01 .868±.02 .899±.01 .910±.02 .928±.00

CLOPS .740±.02 .769±.01 .781±.02 .800±.02 .835±.01 .861±.02 .877±.01 .895±.01 .919±.01

LSTM .700±.02 .721±.01 .745±.02 .784±.02 .820±.01 .837±.02 .852±.01 .869±.02 .891±.00

ACCTS1 .742±.01 .775±.01 .791±.02 .810±.01 .841±.01 .898±.02 .910±.01 .928±.01 .939±.01

GRU .701±.02 .724±.01 .744±.01 .785±.03 .821±.02 .836±.01 .850±.02 .867±.02 .892±.00

ACCTS1∗ .745±.03 .774±.03 .795±.04 .813±.03 .840±.01 .899±.02 .905±.02 .923±.02 .934±.01

CNN .690±.03 .709±.03 .735±.03 .774±.003 .818±.02 .835±.01 .850±.02 .868±.02 .889±.02

ACCTS2 .740±.03 .764±.03 .793±.03 .810±.04 .838±.02 .895±.03 .902±.03 .920±.02 .932±.01

Trans .692±.03 .719±.03 .736±.02 .777±.004 .820±.02 .837±.01 .848±.02 .865±.02 .888±.02

ACCTS3 .741±.03 .766±.05 .794±.03 .815±.04 .841±.03 .896±.03 .900±.04 .922±.01 .935±.01

COVID-19 SR .730±.02 .810±.01 .867±.01 .901±.01 .900±.01 .935±.01 .946±.00 .952±.01 .962±.00

GEM .779±.01 .871±.01 .885±.02 .914±.01 .924±.01 .936±.00 .939±.01 .949±.01 .953±.00

CLOPS .775±.01 .869±.01 .900±.01 .918±.02 .925±.01 .935±.01 .940±.00 .947±.00 .954±.00

LSTM .701±.03 .793±.02 .833±.01 .844±.01 .888±.01 .918±.03 .925±.01 .939±.00 .944±.01

ACCTS1 .790±.02 .872±.01 .901±.02 .919±.01 .927±.00 .955±.00 .960±.01 .963±.00 .967±.00

GRU .700±.03 .794±.02 .834±.01 .845±.02 .885±.02 .915±.02 .922±.02 .935±.01 .942±.02

ACCTS1∗ .791±.02 .875±.01 .900±.02 .915±.01 .924±.02 .953±.01 .959±.01 .961±.01 .965±.01

CNN .690±.05 .791±.05 .830±.04 .838±.04 .882±.03 .912±.04 .920±.01 .932±.04 .939±.04

ACCTS2 .788±.04 .870±.04 .895±.05 .912±.02 .919±.04 .949±.05 .956±.03 .957±.04 .964±.03

Trans .693±.05 .793±.05 .831±.04 .837±.04 .885±.04 .914±.04 .921±.02 .936±.05 .941±.04

ACCTS3 .791±.04 .872±.03 .896±.05 .915±.02 .921±.05 .945±.05 .957±.03 .956±.05 .964±.04

SEPSIS SR .659±.01 .768±.01 .791±.02 .803±.01 .827±.03 .835±.01 .845±.01 .859±.02 .866±.02

GEM .730±.02 .802±.01 .826±.03 .834±.02 .836±.02 .841±.03 .849±.01 .851±.01 .853±.01

CLOPS .733±.02 .802±.01 .824±.03 .830±.02 .838±.02 .842±.03 .850±.01 .853±.01 .857±.01

LSTM .629±.03 .735±.06 .736±.06 .745±.05 .748±.04 .773±.03 .795±.02 .813±.02 .827±.03

ACCTS1 .734±.03 .812±.02 .828±.03 .835±.02 .842±.03 .852±.02 .857±.01 .866±.01 .872±.01

GRU .631±.03 .736±.05 .737±.05 .747±.04 .751±.03 .772±.04 .793±.01 .814±.02 .826±.03

ACCTS1∗ .735±.04 .814±.03 .829±.04 .834±.05 .840±.04 .851±.05 .855±.04 .864±.04 .870±.04

CNN .625±.04 .734±.04 .730±.04 .743±.03 .745±.06 .770±.03 .792±.02 .812±.02 .825±.04

ACCTS2 .724±.03 .810±.03 .825±.04 .832±.04 .839±.02 .850±.03 .854±.04 .863±.05 .869±.02

Trans .626±.06 .736±.05 .733±.05 .742±.05 .749±.05 .772±.04 .793±.03 .815±.06 .829±.05

ACCTS3 .726±.03 .812±.04 .829±.06 .835±.06 .842±.04 .853±.04 .855±.04 .865±.05 .871±.03
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Fig. 12 Classification accuracy of SOTA ECTS, CL, and CCTS
methods

CNN and Transformer, the time window has to be set in
advance. We set 10 time points in experiments.
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