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Abstract

Fine-grained classification and counting of bone marrow erythroid cells
are vital for evaluating the health status and formulating therapeutic
schedules for leukemia or hematopathy. Due to the subtle visual dif-
ferences between different types of erythroid cells, it is challenging to
apply existing image-based deep learning models for fine-grained ery-
throid cell classification. Moreover, there is no large open-source datasets
on erythroid cells to support the model training. In this paper, we
introduce BMEC (Bone Morrow Erythroid Cells), the first large fine-
grained image dataset of erythroid cells, to facilitate more deep learning
research on erythroid cells. BMEC contains 5,666 images of individual
erythroid cells, each of which is extracted from the bone marrow ery-
throid cell smears and professionally annotated to one of the four types
of erythroid cells. To distinguish the erythroid cells, one key indicator
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is the cell shape which is closely related to the cell growth and mat-
uration. Therefore, we design a novel shape-aware image classification
network for fine-grained erythroid cell classification. The shape feature
is extracted from the shape mask image and aggregated to the raw
image feature with a shape attention module. With the shape-attended
image feature, our network achieved superior classification performance
(81.12% top-1 accuracy) on the BMEC dataset comparing to the baseline
methods. Ablation studies also demonstrate the effectiveness of incor-
porating the shape information for the fine-grained cell classification.
To further verify the generalizability of our method, we tested our net-
work on two additional public white blood cells (WBC) datasets and the
results show our shape-aware method can generally outperform recent
state-of-the-art works on classifying the WBC. The code and BMEC
dataset can be found on https://github.com/wangye8899/BMEC.

Keywords: Bone Marrow Erythroid Cell, Fine-Grained Cell Classification,
Shape Attention, Feature Fusion

1 Introduction

The erythrocytes or red blood cells are one of the most critical cells in the body.
There are four types of erythroid cells (Figure 1) based on their growth and
maturation. In a healthy body, they maintain a relatively balanced state. How-
ever, in many blood disorders such as anemia, the number of these erythroid
cells will change and become unbalanced. Therefore, the fine-grained classifi-
cation and counting of different types of erythroid cells are vital in diagnosing
and preventing the related diseases [1].

One typical way for cell classification and counting is to manually observe
the morphological or shape differences of the cells through the microscope.
Such process relies heavily on the hematologists’ experience and skills, and it is
easy to make mistakes and introduce subjectivity to the results. Furthermore,
it may take several years to train a competent hematologist to distinguish
the specific type of erythroid cells. In recent years, several image processing
and machine learning techniques for classifying and counting erythroid cells
have been proposed. Most existing methods [2–4] mainly follow the traditional
machine learning pipeline, including data prep-processing, feature extraction,
feature selection, and classification steps. Since these methods rely on man-
ually designed features, the generalizability of the classification model may
be limited. In addition, the morphological and shape differences are not fully
and deeply exploited in the model. Even though satisfied results have been
achieved for classifying white blood cells or certain abnormal types of ery-
throid cells whose shapes are visibly distinctive, traditional methods may not
perform well for fine-grained classification of erythroid cells with only subtle
shape differences.

https://github.com/wangye8899/BMEC
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On the other hand, deep learning techniques have shown superior perfor-
mance than traditional machine learning methods in computer vision tasks
such as image classification [5], object detection [6] and segmentation [7].
Deep neural networks can automatically extract deep image features which are
more robust and more generalizable than hand-crafted features. However, most
pre-trained network models [5, 8–11] cannot directly learn the subtle shape
differences which are crucial for fine-grained classification of erythroid cells. To
enable fine-grained erythroid cell classification, a more customized and shape-
aware network needs to be designed and trained on erythroid cell images with
finer-level category annotation. Unfortunately, unlike the leukocytes or white
blood cells (WBC), for which many open-source datasets are available (e.g.,
LISC [12], BCCD [13] and Raabin-WBC [14]), there is no existing open-source
fine-grained datasets to support the deep learning on erythroid cells.

In this paper, we introduce BMEC (Bone Morrow Erythroid Cells), a large
fine-grained image dataset of erythroid cells, to facilitate the study for ery-
throid cells in real clinical scenarios. BMEC dataset contains 5,666 images of
individual erythroid cells. Each image contains one erythroid cell extracted
from the bone marrow erythroid cell smears and is annotated to one of the
four types of erythroid cells by the hematologists (Figure 1). To classify the
erythroid cells into fine-grained categories, we propose a novel shape-aware
image classification model which explicitly encode the shape information into
the network (Figure 2). Specifically, we first extract the cell shape mask image
from the input erythroid cell image. Then, the shape mask feature and the
input image feature are extracted using the existing backbone image feature
extraction models. A shape attention module is further employed to compute
a shape-attended image feature, which is aggregated to the shape feature and
the raw image feature to form a fused feature for final classification.

We conducted extensive quantitative evaluations of different backbone
models for our shape-aware network on BMEC and our final model with
Swin-Transformer [5] and VGG19 [8] achieved 81.12% top-1 accuracy which is
consistently superior than other backbone model combinations. We also per-
formed ablation studies to verify the effectiveness of explicitly using shape
information for fine-grained erythroid cell classification. Furthermore, we
tested our shape-aware classification network on two public leukocytes or WBC
datasets and the results show our method can outperform recent state-of-
the-art work on classifying the WBC. In summary, our contributions are as
follows:

• We introduce BMEC, the first large dataset of erythroid cell images with
fine-grained category annotation, to support more deep learning research on
erythroid cells. This dataset contains 5,666 professionally annotated images
of four types of erythroid cells, while there are only subtle shape differences
between these fine-grained types, making our dataset more chanllenging than
existing WBC datasets.
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Table 1 Comparison of related WBC and erythroid cell datasets with our BMEC.

Dataset Quantity Cell Type Classes Label Microscope

LISC [12] 250 WBC 5 one expert Axioskope40
BCCD [13] 349 WBC 5 one expert Regular light micro
Raabin-WBC[14] 17,965 WBC 5 two experts Olympus Cx18
CBC [15] 360 Erythroid cells 3 two experts ECLIPSE 50i micro
erythrocytesIDB [16] 629 Erythroid cells 3 one expert Leika micro
BMEC (ours) 5,666 Erythroid cells 4 three experts Olympus BX43

• We design a novel shape-aware network which employs a shape attention
module to compute a shape-attended image feature and uses the shape-
aggregated feature to improve the fine-grained classification accuracy of
erythroid cells. To our best knowledge, we are the first to explicitly incor-
porate the shape information to the deep learning framework for this
task.

• We perform extensive evaluations of our network with different backbone
models and conduct ablation studies to verify the effectiveness of shape
information. The results on BMEC and two other WBC datasets show the
superiority of the proposed shape-aware network and models in classifying
the blood cell images.

2 Related Work

In this section, we first discuss several datasets on blood cells, including both
leukocytes and erythrocytes, with the emphasis on the data characteristics
and how they are collected; see Table 1. We then provide a brief review of the
traditional and deep learning techniques related to blood cell classification and
counting.

2.1 Blood Cell Datasets

WBC datasets. There are many available white blood cell image datasets for
investigating the WBC classification and counting tasks [12–14, 17–19]. Here,
we only describe three representative WBC datasets and highlight their dif-
ference with our BMEC; see Table 1. The LISC [12] is an early WBC dataset
that includes the hematological images taken from peripheral blood of healthy
subjects. The smears were stained by through the Gismo-right technique and a
Sony Model No.SSCDC50AP camera was used to capture the observation of a
Axioskope 40 microscope at 100X magnification. Then, 250 WBC images were
extracted and labelled by one blood expert into five fine-grained categories.
Similarly, BCCD [13] contains 349 WBC images that have been taken from
peripheral blood and annotated by one expert. The smears were also stained
by the Gismo-right technique and the observations of a regular light micro-
scope at 100X were captured using a CCD color camera. Each WBC image
extracted from the smear image was annotated by one expert into one of five
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categories. Raabin-WBC [14] is a recent, large and public dataset of white
blood cell images extracted from the normal peripheral blood samples. The
peripheral blood smears were stained by the Giemsa technique and the images
were taken using a Samsung Galaxy S5 camera to capture the observation of
an Olympus CX18 microscope at 100X magnification. In total, 17,965 WBCs
images are cropped from the smear images and labelled into five categories
by two blood experts. Comparing to the white blood cells, different types of
erythroid cells look more similar and the shape difference between the types is
subtle. Therefore, it is more challenging for fine-grained erythroid cell classi-
fication, e.g., over 99% accuracy can be achieved on Raabin-WBC while only
around 80% accuracy can be obtained on our BMEC. Due to the difficulty on
distinguishing the erythroid cell types, we asked three hematologists to jointly
label the BMEC images in a more rigorous manner.

Erythroid cell datasets. Compared to the WBC datasets, there are only
a few open-source datasets containing the erythrocytes, while the data quality,
quantity and variety are limited comparing to our BMEC. As shown in Table 1,
CBC [15] is a hybrid dataset which contains three types of blood cells: red blood
cells, white blood cells, and platelets. The images in CBC were taken using a
Nikon V1 camera to capture the observation of an ECLIPSE 50i microscope
at 100X magnification, and then annotated by two experts. It focuses more
on investigating the differences between the three types of blood cells rather
than classifying red blood cells into fine-grained types. In addition, CBC only
has 360 images which are difficult for training the deep neural networks. One
most related dataset on erythroid cell classificaiton is the erythrocytesIDB
[16] which contains 629 images of individual erythroid cells extracted from
196 full filed peripheral blood images. A Kodak EasyShare V803 camera was
used to capture the observation of a Leika microscope at 100X magnification.
The erythrocytesIDB images are annotated by one expert into three categories
based on the cell shape: circular, elongated and other shape. Comparing to
BMEC, the shape differences for erythroid cells in erythrocytesIDB are more
significant since they focus on the study in cell deformation caused by certain
blood diseases. Hence, it’s much easier to achieve high accuracy (98% in [16])
on erythrocytesIDB. In contrast, our BMEC provides a much larger number
of images with minor shape differences, so that it can be used to train a more
generalizable deep learning model for fine-grained erythroid cell classificaiton.

2.2 Cell Classification Techniques

Along with the release of more open-source blood cell datasets, automatic
cell classification and counting techniques have been proposed, including the
traditional image processing and machine learning based methods, as well as
the deep learning based frameworks.

Traditional methods. Generally, cell classification using traditional
image processing and machine learning techniques involves image segmen-
tation, feature extraction, classification, and counting steps. For example,
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Alomari et al. [2] employed the Circular Hough Transform (CHT) in an iter-
ative circle detection framework to segment, classify and count WBCs and
RBCs. Such hough transform based shape detection methods are usually time-
consuming and their detection and classification accuracy may be significantly
reduced when the shape of the blood cells becomes more complex. Meanwhile,
machine learning based methods aim to classify the blood cells based on some
features (e.g., shape and color) extracted from the cell images. Lippeveld et
al. [3] applied the traditional machine learning techniques such as random for-
est [20] and gradient boosting classifier [21] to classify and count the stain-free
WBCs images based on the size, location, texture, and signal strength feature.
Tavakoli et al. [22] proposed a new segmentation and feature extraction algo-
rithm which computes three shape features and four novel color features for
classifying WBC images. Although above traditional methods have achieved
appealing results for WBC or RBC classification on certain datasets such as
Raabin-WBC and LISC, they heavily rely on hand-crafted features which are
hardly generalizable to more challenging tasks, e.g., fine-grained classification
on our BMEC.

Deep learning based cell classification. Deep learning can automat-
ically extract features by learning from a large amount of data to compute
tasks such as classification [23, 24] and detection [25, 26]. To apply deep learn-
ing models for the cell classification, one way is to use models pre-trained
on general large image datasets for feature extraction and perform particu-
lar traditional feature selection and classification methods on the smaller-scale
WBC or RBC dataset. In [27], features extracted from pre-trained AlexNet
[28], GoogLeNet [29] and ResNet50 [9] models are filtered using the Maximal
Information Coefficient and Ridge feature selection methods, and quadratic
discriminant analysis was used as a classifier on a dataset of WBCs. Sahlol et
al. [30] employed a statistically enhanced Salp Swarm Algorithm[31] to filter
the features extracted from WBC images using the VGG [8] model pre-trained
on ImageNet and performed the classification using a traditional decision tree.

The other way to apply deep learning for cell classification is using the
transfer learning technique which starts from a pre-trained CNN model and
performs model fine-tuning on a specific WBC or RBC dataset. For example,
Alzubaidi et al. [32] first trained a CNN model on a combination of three
WBC datasets and then employed transfer learning to classify RBC images in
erythrocytesIDB [16]. Pasupa et al. [33] exploited pre-trained ResNet [9] and
DenseNet [10] and performed fine-tuning on their RBC images. In addition,
they have handled the class imbalance problem by incorporating the focal loss
[34] . Comparing to traditional machine learning techniques, deep learning
based classification methods can achieve superior performance without manual
feature design. However, it is difficult to either train a traditional classifier
or perform transfer learning for the fine-grained classification task, especially
when there is no sufficient finely annotated training data. We propose a novel
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Fig. 1 Full-field erythroid cell image and four different types of erythroid cells in BMEC
cropped by manually annotated ROI: proerythroblast (Pro), basophilic erythroblast (Bas),
polychromatophilic erythroblast (Pol), and Orthochromic erythroblast (Ort).

shape-aware transfer learning framework that utilizes different types of pre-
trained backbone models and fine-tunes the network on our large-scale BMEC
for fine-grained erythroid cell classification.

Shape-aware cell classification. The cell’s morphological or shape char-
acteristics such as the circularity, convexity and size have been investigated
in traditional methods [2, 3, 22] for cell classification. For deep learning based
methods, given only the original cell images, the networks can automatically
learn some shape features [35] which are generally more robust than the hand-
crafted ones. However, the implicit learning of deep shape features requires
a large amount of training data. Even when transfer learning is used, it may
be still difficult for the network to learn the fine-grained shape variations. To
explicitly incorporate the shape information in the network, Tavakoli et al. [36]
passed two binary shape images along with the RGB images of WBCs to a
customized CNN with five channels (three for RGB and two for shape masks)
and showed the generalizability of the model can be improved when the shape
masks are used. Similarly, we also explicitly integrate the shape information
into the network. Instead of using the nucleus and ROC (Representative Of
the Convex hull = convex hull - nucleus) images as in [36], we choose con-
vex hull as our shape mask image since we find the contour is more suitable
to represent the shape of erythroid cells. Moreover, we design a novel shape
attention module which computes a shape-attended image feature, to improve
the learning of fine-grained shape-aware image features.

3 BMEC Dataset

Our BMEC dataset was built based on the data acquired at the Second Hos-
pital of Jilin University, Changchun, China. It contains 5,666 erythroid cell
images which are annotated into four fine-grained types by three hematolo-
gists. The shape differences between the types are subtle, which makes the
classification on BMEC more challenging than existing WBC datasets or RBC
datasets with abnormal erythroid cells.
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Table 2 The characteristics of different erythroid cells
summarized in [37].

Cells Percent1 Diameter Shape

Pro 0.5%-4% 15um-20um elliptical, protrusions
Bas 1%-5% 10um-18um round, protrusions
Pol 12%-20% 8um-15um round, rough edges
Ort 6%-12% 7um-10um round, smooth edges

1The Percent column indicates the percentage of the cor-
responding cell type in all types of bone marrow cells,
including both WBC and erythroid.

Table 3 The statistics of the BMEC dataset in terms of distributions of different cells.

Dataset Quantity Percent Pro1 Bas1 Pol1 Ort1

Training Set. 3,865 68.2% 146(2.6%) 428(7.6%) 1,702(30.0%) 1,589(28.0%)
Validation Set 655 11.6% 28(0.5%) 69(1.2%) 312(5.5%) 246(4.4%)
Test Set 1,146 20.2% 48(0.8%) 115(2.0%) 526(9.3%) 457(8.1%)
Total 5,666 100% 222(3.9%) 612(10.8%) 2,540(44.8%) 2,292(40.5%)

1proerythroblast cells (Pro), basophilic erythroblast cells (Bas), polychromatophilic ery-
throblast cells (Pol), orthochromic erythrobla cells (Ort).

Smears Imaging and Cell Extraction. The original data contains 239
sets of bone marrow erythroid cell smears collected from 128 patients using the
BEION V4.90 system between 2019 and 2021. To meet the requirements of clin-
ical evaluation and diagnosis, each smear contains more than 200 blood cells.
In the collection process, the hematologist first stained all smears using the
Richter stain method. Then, the observation of an Olympus BX43 microscope
at 100X magnification was captured into images of 2592 × 1944 resolution.

To extract individual erythroid cells from the smear images, two experi-
enced hematologists worked together to select a ROI (region of interest) for
each cell and crop the selections into cell images (Figure 1). When extracting
the cells, the hematologists mainly follow two principles: 1) not introduce too
much background and noise; 2) preserve the whole cell shape to the maximum
extent. When one hematologist completed the cropping, the other hematolo-
gist examined the results to ensure the quality of the extracted images, e.g.,
no other cells rather except the central erythroid cell appear in the image. In
the end, 5,666 erythroid cell images are extracted from the blood smears. Each
cell image is resized to 224×224 resolution.

Data Annotation. Based on the growth and maturation, the erythroid
cells are annotated into four types (Figure 1 right): proerythroblast (Pro),
basophilic erythroblast (Bas), polychromatophilic erythroblast (Pol), and
orthochromic erythrobla (Ort). Note that we only focus on the erythroid cells
which have normal shapes and do not consider the abnormal erythroid cells
with elongated shapes such as in erythrocytesIDB [16]. For reference, in Table
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2, we show the characteristics (e.g., percentage, size and shape) summarized
in [37], for the four types of erythroid cells.

As the shape differences of the collected erythroid cells are indeed very sub-
tle, to reduce the subjectiveness in annotation, we invited three hematologists
and designed a rigorous annotation process to obtain more consistent labels.
First, two hematologists independently annotated all the cell images without
any interference. The annotation results of the two hematologists were com-
pared and the cell images with different assigned labels were re-annotated by
the two hematologists for the second pass. If the re-annotation results were
still different, the third hematologist would provide another annotation on
these images, and the final cell category would be determined by voting the
annotations from the three hematologists.

Statistics. As shown in Table 3, we divide the BMEC dataset into a train-
ing set, a validation set and a test set with an approximate ratio of 7:1:2. It
can be observed that for each set, the percentage of the four cell types follows
the relative cell distribution mentioned in Table 2, e.g., the number of Pol is
about four times of Bas.

In the following, we summarize the key characteristics that discriminate
our BMEC dataset from other blood cell datasets:

• The first fine-grained erythroid cell dataset. BMEC dataset is the first
dataset that contains four fine-grained types of normal erythroid cells: Pro,
Bas, Pol, and Ort. It is more challenging than existing WBC or erythroid
cell datasets since the shape differences between the types are subtle.

• Largest number of erythroid cells. As shown in Table 1, BMEC is
currently the largest dataset for erythroid cells, which is expected to enable
more deep learning research on erythroid cells.

• Professional and rigorous annotation. The images in the BMEC dataset
were professionally annotated by three hematologists following a rigorous
labeling process, which reduces the subjectiveness and ensures the quality
of the annotation.

• Free public access. We make the BMEC dataset freely available for all
communities, with the hope that it can inspire more follow-ups research on
erythroid cells.

4 Method

4.1 Overview

Our pipeline consists of four modules as shown in Figure 2: a cell shape
extraction module, a dual-branch network, a shape attention module and a
cell classification network. The shape extraction module transforms the RGB
erythroid cell image into the binary shape mask. The RGB image and shape
mask are separately passed to the dual-branch network to generate the raw
and shape features. The shape attention module calculates the shape atten-
tion weights and generates a shape-attended image feature from the raw image
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Fig. 2 The overview of our approach. The novel shape attention module calculates a shape-
attended image feature using the raw and shape features (⊗ represents the broadcasted
element-wise matrix multiplication operation). The fused shape-aware feature is used for the
final fine-grained classification.

Algorithm 1 The cell segmentation pipeline following [22]

1: Input RGB erythroid cell image
2: Convert the input RGB image to CMYK color space
3: Calculate KM = (K component)− (M component)
4: Convert the RGB input image to HLS color space and calculate MS =

Min(M component, S component)
5: Calculate V = MS −KM
6: Exploit Otsu’s thresholding algorithm [38] to segment the cell and obtain

the cell nucleus N
7: Calculate the convex hull of the cell to acquire the shape mask S based on

N
8: Calculate the cell cytoplasm C = S −N
9: Output the convex hull S, nucleus N , cytoplasm C as the binary

segmentation masks

feature. Then, the raw image feature, shape-attended image feature and the
shape feature are aggregated to a fused shape-aware feature, which is passed
to the lightweight classification network for prediction.

4.2 Cell Shape Extraction

From Figure 1 and Table 2, it can be observed the shape information is crucial
to distinguish different fine-grained types of erythroid cells, especially when
the appearances of the cells are similar. Therefore, we explicitly extract the cell
shape information as a binary shape mask and treat it as a prior knowledge
(or inductive bias) for the classification model. We employ the cell image seg-
mentation method proposed in [22] to extract the shape mask for each BMEC
cell image. The main steps of cell shape extraction are shown in Algorithm 1,
while Figure 3 shows the corresponding intermediate and segmentation results.
Three types of binary mask images are obtained: the convex hull, nucleus and
cytoplasm. Figure 4 shows the image segmentation results of different types of
erythroid cells.
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Fig. 3 The results obtained by applying different steps of Algorithm 1.

Fig. 4 This figure shows the RGB images and other segmentation results (Nucleus mask,
Shape mask, and Cytoplasm mask) of four types of erythroid cells.

Unlike [36] which utilized the nucleus and ROC (convex hull - nucleus)
images as the shape images, we choose the convex hull image as our shape
image. The main reason is [36] mainly focuses on the WBCs whose nucleuses
are in apparently different shapes. However, for erythroid cells, their nucleuses
are more intact and look quite similar comparing to WBCs (see Figure 4).
Also, the cytoplasm (i.e., the ROC in [36]) images of the erythroid cells are
noisy and not suitable to represent the cell shapes. In contrast, convex hull
contains the key shape characteristics and it is more robust to noise comparing
to the nucleus. We pass the binary image of convex hull to our network and
also compute the shape attention to enhance the original image feature.

4.3 Dual-Branch Network

To explicitly integrate the shape information into the deep learning framework,
we design a dual-branch network which encodes the RGB image and the binary
shape mask (convex hull image) in two separate branches.

As shown in Figure 2, the top branch network takes the RGB image as input
and extracts the raw feature using Swin-Transformer [5], the state-of-the-art
backbone model for image feature extraction. Although the RGB image branch
can learn the pixel intensity variations between different cells, it does not focus
on the cell’s shape or structure characteristics. Therefore, we introduce a sep-
arate bottom branch network which employs a VGG19 [9] model to explicitly
compute the shape feature from the binary shape mask image obtained from
the cell shape extraction module. The raw image feature and the shape fea-
ture from two branches are integrated in the shape attention module (Section
4.4) and fused in the later stage. In Section 5.4, we show the shape branch
is an effective complement to the RGB branch for fine-grained cell classifica-
tion. In addition, our dual-branch network is a general design such that the
backbone models in each branch can be replaced by other deep image feature
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extraction models. In current our experiments, we find using the combination
of Swin-Transformer and VGG19 for the two branches can achieve the best
performance (Table 4 and 5).

4.4 Shape Attention

To further integrate the shape information to the extracted image feature, we
propose a novel shape attention module which takes the raw image feature and
shape feature as input and outputs a shape-attended image feature (see Figure
2 middle). First, the shape attention weights are computed from the binary
shape mask image following the similar attention mechanism used in SENet
[39]. Then, the raw image feature is multiplied by the shape attention weights
to get the shape-attended feature. The mathematical formulation is as follows:

FR = Swin− Transformer(XR), (1)

FS = V GG19(XS), (2)

WSA = Sigmoid(W2(ReLU(W1(FS)))), (3)

FSA = WSA ⊗ FR. (4)

Here, XR ∈ R224×224×3 and XS ∈ R224×224×1 are the input RGB image and
binary shape mask, respectively; FR and FS are the corresponding features
extracted using Swin-Transformer [5] and VGG19 [8]. As shown in Equation 3
and Figure 2, the shape attention weights WSA are calculated by passing FS

through two fully connected layers (W1 and W2) which are followed by a ReLU
and a Sigmoid layer, respectively. Finally, the shape-attended feature FSA

is obtained by performing element-wise multiplication of the shape attention
weights WSA and the raw image feature FR. In summary, the shape attention
module is a lightweight network that can efficiently computes the correlation
among the shape feature and enhances the raw image feature with self-learned
cell shape information. Moreover, the shape attention module can be combined
with any backbone models to integrate the shape information to the image
feature.

4.5 Cell Classification Network

The last module of our pipeline is a conventional classification network which
consists of two sets of fully connected, ReLu and Dropout layers (Figure 2
right). The raw image feature FR, shape feature FS and shape-attended image
feature FSA are concatenated to form an fused cell feature FC = {FR, FSA, FS}
for final classification. With the shape feature and shape attention explic-
itly considered, the shape-aware network can achieve superior performance
comparing to only using the RGB feature for the fine-grained erythroid cell
classification (see Table 8).
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5 Experiments

In this section, we first provide the implementation details of our method.
Then, we qualitatively evaluate the performance of different backbones in our
dual-branch network and show the combination of Swin-Transformer (for RGB
image) and VGG19 (for shape mask) can work best on our fine-grained BMEC
dataset. To further verify the effectiveness and generalizability of our shape-
aware network, we compare the results on two WBC datasets and show our
method can consistently achieve the best accuracy on different datasets. In the
end, we perform an ablation study to show the contribution of the shape atten-
tion module for improving the classification accuracy. The code and BMEC
dataset can be found on https://github.com/wangye8899/BMEC.

5.1 Implementation Details

The network architecture in Figure 2 is implemented with the Timm [40]
and PyTorch [41]. Both branch networks (Swin-Transformer, VGG19) are ini-
tialized with ImageNet pre-trained weights. Furthermore, the shape attention
module and cell classification network are initialized with Kaiming initializa-
tion [42]. We adopt the SGD optimizer with a momentum of 0.9, weight decay
of 2e-5 and a cosine lr schedule with the warm-up strategy [43]. We set the
warm-up learning rate to 1e-4, the maximum lr to 1e-3, and the minimum lr
to 1e-4. Four data augmentation techniques are used: random crop, random
horizontal flip with probability of 0.5, random vertical flip with probability of
0.5, and color jitter with factor of 0.4. The network is trained for 300 epochs
with batch size of 32 on a cloud-based server with a 4.90GHz CPU and three
NVIDIA RTX 3090 24G GPUs and the total training takes 3 hours. During
inference, the computation time is instantaneous which is similar to other deep
learning based classification methods.

5.2 Classification Results on BMEC

Our dual-branch network allows flexible choices of different backbone models
for the cell classification. To quantitatively evaluate the performance of differ-
ent backbones for the two branches, we conducted classification experiments
with various classic and SOTA image feature extraction models on our BMEC
dataset and compared the results in Table 4 and 5. Since the RGB image in
the top branch contains more color variations than the binary shape mask in
the bottom branch, it is expected that a more complex backbone model is
needed for the top branch, while a relative simple model may be sufficient for
the bottom branch. Therefore, in Table 4, we fixed the bottom branch with a
VGG19 which is a classic CNN based model and tested different backbones for
the top branch. It is shown the SOTA Swin-Transformer model can produce
the best accuracy and F1 score comparing to other models such as ResNet [9],
DenseNet [10] or ResNest [11] for extracting features from the RGB images.
Similarly, we fixed the top branch network as Swin-Transformer and evalu-
ated different models for the bottom branch. The results in Table 5 shows the

https://github.com/wangye8899/BMEC
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Table 4 Comparison of different top branch backbone networks for classification on
BMEC. The bottom branch network is fixed as VGG19.

Top Bottom Inputs Acc Pre Rec F1

ResNet18 [9]

VGG19 [8]

RGB+Shape 79.51% 74.27% 73.53% 72.42%
ResNet50 [9] RGB+Shape 79.58% 74.33% 73.67% 72.51%
DenseNet121 [10] RGB+Shape 79.65% 73.42% 73.15% 72.20%
ResNest [11] RGB+Shape 80.12% 76.47% 74.64% 73.04%
Swin-T [5]1 RGB+Shape 81.12% 76.28% 75.73% 74.00%

1Swin-Transformer (Swin-T)

Table 5 Comparison of different bottom branch backbone networks for classification on
BMEC. The top branch network is fixed as Swin-Transformer.

Top Bottom Inputs Acc Pre Rec F1

Swin-T [5]1

ResNet18 [9] RGB+Shape 80.62% 78.68% 74.93% 73.23%
ResNet50 [9] RGB+Shape 80.45% 75.44% 76.21% 72.68%
Swin-T [5]1 RGB+Shape 80.36% 77.45% 75.81% 73.33%
VGG19 [8] RGB+Shape 81.12% 76.28% 75.73% 74.00%

1Swin-Transformer (Swin-T)

VGG19 model is most suitable for the bottom branch, while one possible rea-
son is that other models may underfit or overfit the binary shape mask images.
Based on above experiments, we finally choose Swin-Transformer and VGG19
for the top and bottom branches, and our final model achieved 81.12% accu-
racy on BMEC. Note that the backbones can always be easily evaluated and
replaced when newer and more powerful image models are proposed.

5.3 Classification Results on WBCs Datasets

To further demonstrate the effectiveness of our shape-aware network, we con-
ducted classification experiments on two other public WBCs datasets, LISC
[12] and Raabin-WBC [14]. We retrained our model using their training data
and compared the testing results with the reported numbers in [12] and [14].
As shown in Table 6 and 7, we achieved the best classification accuracy on
both datasets, showing the generalizability of our method. In addition, the
high accuracy (over 98.5%) on both WBC datasets indicates the classification
of WBCs is relatively easier than the erythroid cells since the shape differences
of WBCs are more prominent. We hope our BMEC dataset can inspire and
facilitate more research on fine-grained classification and other learning tasks
for erythroid cells.

5.4 Ablation Study on Shape information

To verify the effectiveness of the shape information, we performed an ablation
study which compared our full dual-branch network with the RGB-only single
branch network (see Table 8). Specifically, we disabled the bottom branch and
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Table 6 Comparison of different methods for classification on LISC dataset [12]. Due to
the data imbalance problem in LISC, other methods directly discarded the cell categories
with a low number of images. In contrast, we trained and tested using all categories and
still obtained the best accuracy.

Study Method Category Number Accuracy

Rezatofighi et al. (2011) [12] SVM 5 96.00%
Jung et al. (2019) [44] CNN 5 97.00%
Baydilli et al. (2020) [45] Capsule Networks 5 96.86%
Harshanand et al. (2020) [46] CNN 5 97.64%
Tavakoli et al. (2021) [22] Segmentation 5 92.21%
Muhammad et al. (2021) [47] Feature Selection and ELM 4 96.60%
Ours DB and SA1 6 98.51%

1Dual Branch and Shape Attention (DB and SA)

Table 7 Comparison of different methods for classification on Raabin-WBC dataset [14].

Study Method Category Number Accuracy

Kouzeh et al. (2021) [14] VGG16 6 98.09%
Kouzeh et al. (2021) [14] MnasNet1 6 98.59%
Kouzeh et al. (2021) [14] DenseNet121 6 98.87%
Kouzeh et al. (2021) [14] ShuffleNet-V2 6 99.03%
Tavakoli et al. (2021) [22] Segmentation 6 94.65%
Ours DB and SA1 6 99.17%

1Dual Branch and Shape Attention (DB and SA)

Table 8 Ablation study on the shape information using our BMEC dataset.

Top Bottom Inputs Acc Pre Rec F1

ResNet18 [9]
— RGB 78.79% 71.91% 73.09% 71.77%

VGG19 [8] RGB+Shape 79.51% 74.27% 73.54% 72.42%

ResNet50 [9]
— RGB 79.31% 72.16% 73.18% 71.85%

VGG19 [8] RGB+Shape 79.58% 74.33% 73.67% 72.51%

DenseNet121 [10]
— RGB 79.30% 71.45% 72.23% 70.91%

VGG19 [8] RGB+Shape 79.65% 73.42% 73.15% 72.20%

ResNest [11]
— RGB 80.09% 74.49% 73.95% 72.87%

VGG19 [8] RGB+Shape 80.12% 76.47% 74.64% 73.04%

Swin-T [5]1
— RGB 80.62% 75.81% 74.79% 72.85%

VGG19 [8] RGB+Shape 81.12% 76.28% 75.73% 74.00%

1Swin-Transformer (Swin-T)

only used the raw image feature for classification. In this case, the network
becomes a conventional RGB image based classification model. When two
branches are enabled, both the shape feature extracted from the binary shape
mask and shape-attended image feature computed from the shape attention
module are fused to the raw image feature for classification. For the single
branch network, different backbone models are tested on the BMEC RGB
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images. For our dual-branch network, the VGG19 is used in each configuration
so that we can compare the performance improvement for each case. From the
results in Table 8, the dual-branch network can always outperform the single-
branch, confirming the effectiveness of the shape information for improving
the fine-grained cell classification.

6 Conclusion, Limitation and Future Work

We introduce BMEC, the first and largest professionally annotated image
dataset for fine-grained classification of erythroid cells. The BMEC is public
available for all communities and we hope it can encourage more deep learn-
ing research on erythroid cells. We propose a novel shape-aware network which
explicitly utilizes the shape information to improve the classification accuracy
in a dual-branch deep learning framework. We conduct extensive evaluations of
different backbones and perform experiments on BMEC and two other WBC
datasets. The results show the superiority and generalizability of our shape-
aware dual-branch network. Ablation studies also verify the effectiveness of
the shape information for the fine-grained cell classification.

Although our method has achieved superior performance on cell classifi-
cation, it still has some limitations which can inspire more future work. Our
current cell shape extraction still involves several image processing steps which
may be affected by the image noise and staining quality. It will be interest-
ing to automatically learn the cell shape segmentation in the network and
then apply the learned shape mask in our dual-branch network. Meanwhile,
our classification works on the cropped cell images which are prepared in the
BMEC dataset. Developing a cell detection and classification network which
can directly work on the full-field cell images is also a promising future work.
Due to the privacy issue, we cannot release the full-field cell images used in
our BMEC, but it is still possible to train a cell classification network using
the cropped BMEC cell images.
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