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Abstract

Criminals have become increasingly experienced in using cryptocurrencies, such as Bitcoin, for money laundering. The use of
cryptocurrencies can hide criminal identities and transfer hundreds of millions of dollars of dirty funds through their criminal digital
wallets. However, this is considered a paradox because cryptocurrencies are goldmines for open-source intelligence, giving law
enforcement agencies more power when conducting forensic analyses. This paper proposed Inspection-L, a graph neural network
(GNN) framework based on a self-supervised Deep Graph Infomax (DGI) and Graph Isomorphism Network (GIN), with supervised
learning algorithms, namely Random Forest (RF), to detect illicit transactions for anti-money laundering (AML). To the best of our
knowledge, our proposal is the first to apply self-supervised GNNs to the problem of AML in Bitcoin. The proposed method was
evaluated on the Elliptic dataset and shows that our approach outperforms the state-of-the-art in terms of key classification metrics,
which demonstrates the potential of self-supervised GNN in the detection of illicit cryptocurrency transactions.
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1. Introduction

The advent of the first cryptocurrency—Bitcoin [1]—has

revolutionized the conventional financial ecosystem, as it en-
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ables low-cost, near-anonymous, peer-to-peer cash transfers within

and across various borders. Due to its pseudonymity, many cy-
bercriminals, terrorists, and hackers have started to use cryp-
tocurrency for illegal transactions. For example, the WannaCry
ransomware attack used Bitcoin [2] as the payment method due
to its non-traceability. The criminals received nearly 3.4 million
(46.4 BTC) within four days of the WannaCry attack [2l]. There-
fore, effective detection of illicit transactions in Bitcoin transac-
tion graphs is essential for preventing illegal transactions. Para-
doxically, cryptocurrencies are goldmines for open-source in-
telligence, as transaction network data are publicly available,
enabling law enforcement agencies to conduct a forensic anal-
ysis of the transaction’s linkages and flows. However, the prob-
lem is challenging for law enforcement agencies, owing to its
volume [7_1 the untraceable p2p cross-border nature of Bitcoin
transactions, and the use of technologies such as mixers and
tumblers.

Graph representation learning has shown great potential for
detecting money laundering activities using cryptocurrencies.
GNNss are tailored to applications with graph-structured data,
such as the social sciences, chemistry, and telecommunications,
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and can leverage the inherent structure of the graph data by
building relational inductive biases into the deep learning ar-
chitecture. This provides the ability to learn, reason, and gen-
eralize from the graph data, inspired by the concept of message
propagation [3].

The Bitcoin transaction flow data can naturally be repre-
sented in graph format. A graph is constructed from the raw
Bitcoin data and labeled such that the nodes represent trans-
actions and the edges represent the flow of Bitcoin currency
(BTC) from one transaction to the next in the adjacency matrix.
Both the topological information and the information contained
in the node features are crucial for detecting illicit transactions.

This paper proposes Inspection-L, a Graph Neural Network
(GNN) framework based on an enhanced self-supervised Deep
Graph Infomax (DGI) [4] and supervised Random Forest (RF)-
based classifier to detect illicit transactions for AML.

Specifically, we investigate the Elliptic dataset [], a realis-
tic, partially labeled Bitcoin temporal graph-based transaction
dataset consisting of real entities belonging to licit (e.g., wal-
let, miners), illicit entities (e.g., scams, terrorist organizations,
ransomware), and unknown transaction categories. The pro-
posed Inspection-L framework aims to detect illegal transac-
tions based on graph representation learning in a self-supervised
manner. Current graph machine learning approaches, such as
[S]], generally apply supervised graph neural network approaches
to the detection of illicit transactions. However, supervised
learning requires manual labeling. In the AML scenario, build-
ing an effective model that utilizes unknown label data is re-
quired, since human’s labeling Bitcoin data could be costly and
ineffective. It also only performs well when the labels are enough.
Thus, exploiting unlabeled data to improve performance is crit-
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ical for AML. On the other hand, self-supervised graph neural
network algorithms [6][7] allow for the unknown label data to
be exploited, which can improve the quality of representation
for the downstream tasks such as fraud transaction detection in
Bitcoin. Furthermore, in supervised learning, GNN is limited
to capturing K-hop neighbor information; for example, once the
hops of the neighbor are larger than k, the supervised learning
GNN fails to capture that node information.

In this paper, we applied DGI self-supervised learning to
capture the global graph information, as this is not limited to
capturing the K-layer neighborhood information, where every
node can access the entire graph’s structural pattern and node
information using random shuffle node features. The DGI dis-
criminator tries to determine wherever the node feature is shuf-
fled or not. Thus, every node can access global parts of the
node’s properties, rather than K-layer neighborhood informa-
tion.

We demonstrate how the self-supervised DGI algorithm can
be integrated with standard machine learning classification al-
gorithms, i.e., Random Forest, to build an efficient anti-money-
laundering detection system. We show that our Inspection-L
method outperforms the state-of-the-art in terms of F1 score.

In summary, the key contributions of this paper are:

o Different from most existing works, which typically use
supervised graph representation learning to generate node
embeddings for illegal transaction detection, we use a
self-supervised learning approach to learn the node em-
beddings without using any labels.

e The proposed Inspection-L is based on a self-supervised
DGI combined with the Random Forest (RF) supervised
machine learning algorithms, to capture topological in-
formation and node features in the transaction graph to
detect illegal transactions. To the best of our knowledge,
our proposal is the first to utilize self-supervised GNNs
to generate node embeddings for AML in Bitcoin.

e The comprehensive evaluation of the proposed frame-
work using the Elliptic benchmark datasets demonstrates
superior performance compared to other, supervised ma-
chine learning approaches.

2. RELATED WORKS

Mark et al. [5] created and published the Elliptic dataset, a
temporal graph-based Bitcoin transaction dataset consisting of
over 200K Bitcoin node transactions, 234K payment edges, and
49 transaction graphs with distinct time steps. Each of the trans-
action nodes was labeled as a "licit”, "illicit”, or "unknown” en-
tity. They evaluated the Elliptic dataset using various machine
learning methods, including Logistic Regression (LR), Random
Forest (RF), Multilayer Perceptrons (MLP) [8]], Graph Convo-
lutional Networks (GCNs) [9] and EvolveGCN [10]. They re-
trieved a recall score in the illicit category of 0.67 using RF and
0.51 using GCNs.

Yining et al. [[L1] collected the Bitcoin transaction graph
data between July 2014 and May 2017 by running a Bitcoin
client and used an external trusted source, “Wallet Explorer”,
a website that tracks Bitcoin wallets, to label the data. They
first highlighted the differences between money laundering and
regular transactions using network centrality such as PageR-
ank, clustering coefficient [12], then used a node2vec-based
[L3] classifier to classify money laundering transactions. The
research also indicated that statistical information, such as in-
degree/out-degree, number of weakly connected components,
and sum/mean/standard deviation of the output values, could
distinguish money laundering transactions from legal transac-
tions. However, this approach only considers graph topologi-
cal patterns, without considering node features. Vassallo et al.
[[14]] focused on the detection of illicit cryptocurrency activities
(e.g., scams, terrorism financing, and Ponzi schemes). Their
proposed detection framework is based on Adaptive Stacked
eXtreme Gradient Boosting (ASXGB), an enhanced variation
of eXtreme Gradient Boosting (XGBoost). ASXGB was eval-
uated using the Elliptic dataset, and the results demonstrate its
superiority at both the account and transaction levels.

Chaehyeon et al. [L5] applied supervised machine learn-
ing algorithms to classify illicit nodes in the Bitcoin network.
They used two supervised machine learning models, namely,
Random Forest (RF) and Artificial Neural Network (ANN) [8]]
to detect illegal transactions. First, they collected the legal and
illegal Bitcoin data from the forum sites ”Wallet Explorer” and
”Blockchain Explorer”. Next, they performed feature extrac-
tion based on the characteristics of Bitcoin transactions, such
as transaction fees and transaction size. The extracted features
were labeled legal or illegal for supervised training. The re-
sults indicated that relatively high F1 scores could be achieved;
specifically, ANN and RF achieved 0.89 and 0.98 F1 scores, re-
spectively. In [16] proposed using GCNs intertwined with lin-
ear layers to classify illicit nodes of the Elliptic dataset [5]. An
overall classification accuracy and recall of 97.40% and 0.67,
respectively, can be achieved to detect illicit transactions. In
[[L7], the authors used an autoencoder with graph embedding
to detect mixing and demixing services for Bitcoin cryptocur-
rency. They first applied graph node embedding to generate the
node representation; then, a K-means algorithm was applied to
cluster the node embeddings to detect mixing and demixing ser-
vices. The proposed model was evaluated based on real-world
Bitcoin datasets to evaluate the model’s effectiveness, and the
results demonstrate that the proposed model can effectively per-
form demix/mixing service anomaly detection.

Lorenz et al. [18] proposed active learning techniques by
using a minimum number of labels to achieve a high rate of
detection of illicit transactions on the Elliptic dataset. In [19],
the authors applied unsupervised learning to detect suspicious
nodes in the Bitcoin transaction graph. They used various kinds
of unsupervised machine learning algorithms, such as K-means
and Gaussian Mixture models, to cluster normal and illicit nodes.
However, since the Bitcoin transaction dataset they used lacked
ground-truth labels, they simply used the internal index to val-
idate the clustering algorithm, without confirming that those
nodes are actually malicious transactions. Monamo et al. [20]



applied trimmed-Kmeans to detect fraud in the Bitcoin net-
work. They used various graph centrality measures (i.e. in
degree, out-degree of the Bitcoin transactions) and currency
features (i.e. the total amount sent), which were then used for
Bitcoin transaction clustering. However, similar to [19]], due
to the unavailability of ground-truth labels, they used cluster-
ing performance metrics such as “within the sum of squares”,
without being able to validate the true nature of the Bitcoin
transaction anomalies. Shucheng et al. [21] proposed SIEGE, a
self-supervised graph learning approach for Ethereum phishing
scam detection, using two pretext tasks to generate node em-
beddings without using labels and an incremental paradigm to
capture data distribution changes for over half a year. However,
a significant limitation of this approach is that is does not con-
sider the Bitcoin context and is limited to detecting Ethereum

phishing scams. Additionally, their simple application of GCNs[9]
in the pretext task phase is much less effective than the Weisfeiler—

Lehman (1-WL) test[22].

In contrast with related studies, our approach can detect not
only phishing scams but also other illicit transactions, such as
terrorist organizations, ransomware and Ponzi schemes, by uti-
lizing the Elliptic dataset [5]].

3. BACKGROUND

Encoder G

Figure 1: Overview of Deep Graph Infomax

The main innovation of our proposed model is its use of
DGI [4] with our proposed GIN encoder to learn node embed-
dings in a self-supervised manner. Then, the node embeddings
can be treated as enhanced features and be combined with the
raw features for standard supervised RF machine learning algo-
rithms to classify illicit transaction. This has a clear advantage
over simple features, as inputs to overall graph-structured pat-
terns are available for the downstream classifier.

Consequently, the current graph-based approaches [3]] [[L6]
try to apply a supervised GCN-based approach to capture the
overall graph-structured patterns. However, the main limitation
is that GCN can only capture the neighborhood information of

limited K layers, not the global view graph and node informa-
tion, due to the threat of overfitting. While some models, such
as FDGATTI [23]], are capable of a larger K, these are still lim-
ited by their layer structure and finite k. On the other hand, our
Inspection-L approach allows for every node to obtain access
to the structural patterns of the entire graph, which can capture
more global neighborhood information. The proposed method
considers that the message-passing functions of [15]] [[16] are not
powerful enough, as they lack injective functions. Therefore,
we proposed a GIN encoder to make the message propagation
function more robust.

3.1. Graph Neural Networks

GNNss is a deep learning approach for graph-based data and
a recent and highly promising area of machine learning [23].
The key feature of GNNss is their ability to combine a topologi-
cal graph structure with features. For each node in a graph, this
means aggregating neighboring node features to leverage a new
representation of the current node that considers the neighbor-
ing information. The output of this process is known as em-
beddings. Final node embeddings are low- or n-dimensional
vector representations that capture topological and node prop-
erties. Embeddings can be learned in a supervised or unsuper-
vised manner and used for downstream tasks such as node clas-
sification, clustering, and link prediction [23]]. The k-th layer of
a typical GCN is:

WP = o (W-MEAN{h{™0, vue Ny uwl}). (1)

where h(vk) is the feature vector of node v at the k-th itera-
tion/layer, hf,o) = X,, and N(v) is the set of neighbor nodes of
v. W is the weight matrix that will be learned for the down-
stream tasks. o is an activation function, typically ReLU, for
computing node representations.

3.2. Graph Isomorphism Network

Graph Isomorphism Network (GIN) is theoretically a max-
imally powerful GNN proposed by Xu et al. [24]. The main
difference between GIN and other GNNss is the message aggre-
gation function, which is shown below:

O = MLP® | (1+€®)- a0+ 37 plD )
ueN()

GCNes is less effective than the Weisfeiler—Lehman (1-WL)
[22]] test due to the single-layer aggregation function, which is
same as the hash function of a 1-WL algorithm. According to
[24]], a single, non-linear layer is insufficient for graph learning.
Thus, GCN message passing functions are not necessarily in-
jective. Therefore, GIN [24] was proposed to make the passing
function injective, as shown in Equation[2} where £® is a scalar
parameter, and MLP stands for multilayer perceptron. P e R4
is the embedding of node v; at the k-th layer, hio) = x, is the
original input node features, and N (v;) is the set of neighboring
nodes of node v;. We can stack k layers to obtain the final node
representation nb.



3.3. Deep Graph Infomax

Deep Graph Infomax (DGI) [4] is a self-supervised graph
representation learning approach that relies on maximizing the
mutual information between patch representations and the global
graph summary. The patch representations summarize subgraphs,
allowing for the preservation of similarities at the patch level.
A trained encoder in DGI can be reused to generate node em-
beddings for downstream tasks, such as node clustering.

Most of the previous works on self-supervised represen-
tation learning approaches rely on the random walk strategy
[25][26], which is extremely computationally expensive because
the number of walks depends on the number of nodes on the
graph, making it unscalable for large graphs. Moreover, the
choice of hyperparameters (length of the walk, number of walks)
can significantly impact the model performance. Overall, DGI
does not require supervision or random walk techniques. In-
stead, it guides the model to learn node connections by simulta-
neously leveraging local and global information in a graph [4].

Figure (1| shows the overall operation of DGI. G is a true
graph with the true nodes, the true edges that connect them, and
real node features associated with each node. H is a corrupted
graph where the nodes and edges have been changed using a
corruption function. [4] suggests that the corruption function
can randomly shuffle each node feature and maintain the same
edges as the true graph G.

The DGI training procedure consists of four components:

e A corruption procedure C that changes the real input graph
G into a corrupted graph H = (C(G)). This can be achieved
by randomly shifting the node features among the nodes
in areal graph G or by adding and removing an edge from
the real graph G.

e An encoder E that computes the node embeddings of a
corrupted graph and a real graph. This can be achieved
using various graph representation methods, such as Graph
Convolutional Networks (GCNs) [9], Graph Attention Net-

works (GATs) [27] or Graph Transformer Networks (GTNs)

[28]].

e The node embedding vectors for each node in the real
graph are summarized into a single embed vector of the
entire graph s (global graph summary) by using a read-
out function R to compute the whole graph embeddings.

e A discriminator D, which is a logistic non-linear sigmoid
function, compares a real node embedding vector h; and
a corrupted node embedding 4; against the whole real
graph embedding s, and provides a score between 0 and
1, as shown in Equation[3] This binary cross-entropy loss
objective function [4] can be applied to discriminate be-
tween the embedding of the real node and the corrupted
node to train the encoder E.
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4. PROPOSED METHOD

To construct Bitcoin transaction graphs from the dataset,
we used 49 different Bitcoin transaction graphs (TGs) [15] using
time steps so that the nodes can be represented as node trans-
actions and the edges can be represented as flows of Bitcoin
transactions. This is a very natural way to represent Bitcoin
transactions.

The pseudocode and overall procedure of our proposed al-
gorithm are shown in Algorithm [T]and Figure. 2] The proposed
framework consists of two-stage: DGI training for node em-
bedding extraction to perform feature augmentation, supervised
machine learning classification.

4.1. DGI Training

To train the proposed model, the input includes the transac-
tion graphs G with node features (i.e., all 166 features, which
is a combination of local and macro features, which we denote
AF, or only the 94 local features), and the specified number
of training epochs K to extract true node embeddings and cor-
rupted node embeddings. Before this, we need to define the cor-
ruption function C to generate the corrupted transaction graphs
C(G) for our GIN encoder to extract the corrupted node embed-
dings. In this paper, we randomly shuffled all the node features
among the nodes in real transaction graphs G to generate the
corrupted transaction graphs for each real graphs by shuffling
the feature matrix in rows X by using Bernoulli distribution.
Overall, instead of adding or removing edges from the adja-
cency matrix such that Ag # Ay, we use corruption function C,
which shuffle the node features such that X; # Xp, and retain
the adjacency matrix, i.e., (A = Ag). Note that the corruption
function only changes the node features, and not the structure;
therefore, N¢ = Ng. In case of the DGI implementation, we
now have N = M.

For each batch of graph data G in the training epoch, in
Algorithm [I] from Line 3 to 4, we use our proposed GIN en-
coder to extract true node and corrupted node embeddings. Our
proposed GIN encoder is shown in Figure [2] with two layers
of MLP, which consists of 128 hidden units, ReLU activation
function and Batch normalization (as shown in Algorithm
[29]].

The design of the MLPs is motivated by the fundamental
goal of a GNN-based model. Ideally, various types of different
graph patterns should be distinguishable via the graph encoder,
which means that different graph structures should be mapped
to different locations in the embedding space. This requires the
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Figure 2: Proposed Method
Algorithm 1: Pseudocode for Our Proposed Algorithm
input : Set of training graphs G* = {G(V, A, X)};
Number of training epochs K;
Corruption function C;
All 166 Features (AF);
First 94 Local Features (LF);
output: Optimized GIN encoder g, Optimized RF #_R
1 Initialize the parameters 6 and w for the encoder g and the discriminator D;
2 foreach batch G € G* do
3 for epoch « 1to K do
4 hi = 8(G,6)
5 hi = g(C(G),6)
S _ 1 (L)
6 s—(r(; by )
7 D (h;, 5) = o (h] ws)
8 D(h;, E) = o-(il-iTWE)
’ Lper = W(Zﬁl Ecx [tog D (A 5)] + 2L, Bz [log (1 - D (7 f))])
10 | 0, w «— Adam (Lpgr)
11 Select labeled node embedding /; from /; = g(G, 8) and corresponding labels y for G € training set;
12 h-R « RF((W|{AF or LF}),y)
13 return i_R, g
ability to solve the graph isomorphism problem, where non- Algorithm 2: Batch Normalizing Transform
isomorphic graphs should be mapped to different representa- [29]
tions. input : Values of x over a mini-batch: B = {x|_}
We applied a full neighbor sampling technique and used Parameters can be learned: v, 3
two-hop neighbor samples for the GIN encoder with Batch nor- output: {y, =BN,; (x;)}
malization, as DGI benefits from employing wider rather than L pp e Lym oy
X
deeper models [4]. ) 02— gl Zl<»11 (x; — up)?
. . . m =
For the read-out function R, we applied the mean operation 3 T Sihs
. . . 2
on all node embeddings in the real graph G and then applied VIBTe
4 yi &« yXi +=BNyg(x)

a sigmoid activation function to compute the whole graph em-

beddings s:

) 1S 0 non-linear function to discriminate node embedding vector 7;
§=0 o Z h; 4) against the real whole graph embedding s to calculate the score
i=1

) ) ) ) of (1;,’5) being positive or negative:
In Algorithm([T] from line 7 to 8, as shown in Equation[5|and
Equation [6] for the discriminator D, we used a logistic sigmoid D(h,5) =0 (thwf)

&)



D (hi,5) = o (] ws) (6)

We then used a binary cross-entropy loss objective function
(based on Equation [3] modified so that N = M) to perform gra-
dient descent, as shown in Algorithm [l} line 10. To perform
gradient descent, we maximized the score if the node embed-
ding is a true node embedding ﬁ,- and minimized the score if it
is a corrupted node embedding h; compared to the global graph
summary generated by the read-out function R (Equationfd). As
a result, we maximized the mutual information between patch
representations and the whole real graph summary based on the
binary cross-entropy loss function (BCE), as shown in Equa-
tion 3| to perform gradient descent. After the training process,
the trained encoder can be used to generate new graph embed-
dings for downstream purposes; in this case, the detection of
illegal transactions.

In our experiments, we used all 34 different Bitcoin trans-
action graphs to train the DGI with the GIN encoder in a self-
supervised manner. For each training graph, we trained 300
epochs using an Adam optimizer with a learning rate of 0.0001,
as shown in Algorithm [T} line 10.

4.2. Supervised Machine Learning Classification

After the DGI training, we reused the encoder to generate
node embeddings, as shown in Algorithm[T} line 11—12 to train
and test the RF classifier with 100 estimators. In our experi-
ments, we performed 70:30 splitting, 34 different Bitcoin trans-
action graphs for training and the remaining 15 bitcoin transac-
tion graphs for testing. All 34 training graphs were fed to DGI
to train the GIN encoder in a self-supervised manner. Once the
training phase was completed, we used a trained GIN encoder
to extract all the node embeddings (all 34 graph node embed-
dings) in the training graphs. As the datasets consist of two la-
bels, binary classification and unknown labels, we dropped un-
known label data in the RF training and testing phases and only
used label data for performance. We used all training graph
node embeddings to train the RF in a supervised manner. For
testing, we extracted the last 15 test graph node embeddings us-
ing the trained GIN and fed the node embeddings to the trained
RF for illegal transaction detection.

We experimented with the following three combinations of
features and embeddings:

1. DNE : Node Embeddings only: After the DGI training,
we reused the encoder to generate node embeddings for
training and testing the RF classifier, as mentioned above.

2. LF + DNE : Node Embeddings with LF features: Sim-
ilar to scenario 1, we also combined local features (i.e,
first 94 raw features) with the node embeddings gener-
ated by the trained encode for training and testing the RF
classifier, as mentioned above.

3. AF + DNE : Node Embeddings with AF Features:
Similar to scenario 1, we also combined all raw features
(AF features) with the node embeddings generated by the
trained encoder for training and testing the RF classifier,
as mentioned above.

Table 1: Implementation environment specification

Unit Description

Processor 2.3 GHz 2-core Inter Xeon(R) Processor
RAM 12GB

GPU Tesla P100 GPU 16GB

Operating System  Linux

Packages Sckit-learn, Numpy, Pandas,

PyTorch Geometric, and Matplotlib

4.3. Implementation Environments

Experiments were carried out using a 2.3GHz 2-core In-
tel(R) Xeon(R) processor with 12 GB memory and Tesla P100
GPU on a Linux operating system. The proposed approach was
developed using the Python programming language with sev-
eral statistical and visualization packages, such as Sckit-learn,
Numpy, Pandas, PyTorch Geometric, and Matplotlib. Table [I]
summarizes the system configuration.

5. Experiments and Results

5.1. Dataset

In this paper, we adopted the Elliptic dataset [5], which is
the world’s largest labeled dataset of bitcoin transactions. The
Elliptic dataset [5] consists of 203,769 node as transactions and
234,355 directed transaction payment flows (i.e., transaction
inputs, transaction outputs). The datasets also consists of 49
different timestep graphs, which are uniformly spaced with a
two-week interval, as illustrated in 3] Each connected trans-
action component consists of a time step that appears on the
blockchain in less than three hours. Our G represents one such
transaction graph for the 49.

In the Elliptic dataset [S], 21% of the node entities are la-
beled as licit, and only 2% are labeled as illicit. The remaining
node entities are unlabeled but have node features. These node
entities consist of 166 features (AF features), among which the
first 94 features contain local information (LF features) of the
transactions, including the time step, transaction fees, and the
number of inputs or outputs. The remaining 72 features are
aggregated features. These features can be obtained by aggre-
gating transaction information from one-hop backward/forward
graph nodes, such as the standard deviation, minimum, maxi-
mum, and correlation coefficients of the neighbor transactions
for the same information data. More importantly, all features
were obtained using only publicly available information.

5.2. Performance Metric

To evaluate the performance of the proposed methods, the
standard metrics listed in Table[2]were used, where TP, TN, F P
and F N represent the number of True Positives, True Negatives,
False Positives and False Negatives, respectively.

In Table 2] true positive (TP) denotes the total number of
true positives, true negative (TN) indicates the total number of
false positives, false positive (FP) denotes the total number of
false negatives and false negative (TN) shows the total number
of true negatives. The proposed method was evaluated using
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Table 2: Evaluation metrics used in this study

Metric Definition
Detection Rate (Recall) L
Precision %,
F1-Score Recalbxlrecision
AUC-Score I d it

Precision, Recall, F1-score and Area under the receiver operat-
ing characteristics (ROC) curve. All the above metrics can be
obtained using the confusion matrix (CM).

Accuracy indicates that the model is well learned in case of
a balanced test dataset; however, for imbalanced scenarios, as
in this case, only considering accuracy measures may lead to
misleading conclusion,s since it is strongly biased in favor of
the licit majority class. Thus, for this case, recall and F1-score
metrics provide a more reasonable explanation of the model’s
performance.

Recall (also known as Detection Rate) is the total number of

true positives divided by the total number of true positives and
false negatives. If the recall rate is very low, this means that the
classifier cannot detect illicit transactions.

Precision measures the quality of the correct predictions.
This is the number of true positives divided by the number of
true positives and false positives. If the false positive is very
high, it will cause low precision. Our goal is to maximize the
precision as much as possible.

F1-score is the trade-off between precision and recall. Math-
ematically, it is the harmonic mean of precision and recall.

The area under the curve (AUC) computes the trade-off be-
tween sensitivity and specificity, plotted based on the trade-off
between the true positive rate on the y-axis and the false posi-
tive rate on the x-axis. Our goal is to maximize the AUC score
as much as possible, making is closer to 1.0.

5.3. Experimental Results

Table[3|shows the corresponding results of our Inspection-L
compared to the state-of-the-art in terms of the key metrics. As
can be observed from the table, regarding to illicit F1-Score,
Inspection-L. (LF+DNE and AF+DNE) outperforms the best
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Figure 5: Confusion Matrix

Table 3: Results of binary classification by Inspection-L compared to the state-
of-the-art. AF refers to all raw features, LF refers to the local raw features, i.e.,
the first 94 raw features, GNE refers to the node embeddings generated by GCN
in [S] using labels and DNE refers to the node embeddings computed by DGI
without using labels.

Tllicit

Method Precision Recall F1 AUC
Logistic Regr®F [5] 0.404 0.593  0.481 -
Logistic Regr AF + GNE [5] 0.537 0.528 0.533 -
Logistic Regr 1 [5] 0.348 0.668  0.457 -
Logistic Regr f + GNE 5] 0.518 0.571 0.543 -
RandomForest AF 5] 0.956 0.670  0.788 -
RandomForest AF * ONE 5] 0.971 0.675 0.796 -
RandomForest AF [14] 0.897 0.721 0.800 | -
RandomForest AF + SNE [[14] 0.958 0.715 0819 | -
XGB AF [14] 0.921 0.732 0815 -
XGB AF +ONE [[77] 0.986 0.692 0.813 -
RandomForest ¥ [5] 0.803 0.611 0.694 -
RandomForest 1F + ONE [5] 0.878 0.668 0.759 -
MLP AF 5] 0.694 0.617  0.653 -
MLP AF + GNE 5] 0.780 0.617 0.689 | -
MLP ' [3] 0.637 0.662 0.649 | -
MLP LF + GNE 5] 0.681 0.578  0.625 -
GCN [5] 0.812 0.512  0.628 -
GCN [16] 0.899 0.678 0.773 -
Skip-GCN [3] 0.812 0.623  0.705 -
EvolveGCN [5] 0.850 0.624  0.720 -
Inspection-L PNE (RF) 0.593 0.032  0.061 | 0.735
Inspection-L LF + PNE (RF) 0.906 0.712  0.797 | 0.895
Inspection-L AF + PNE (RF) 0.972 0.721 0.828 | 0.916

reported classifiers. In the best-performing variant, AF+DNE,
we concatenated the node embeddings generated from DGI with
all original raw features (AF). The experiment achieved an F1
score and Recall of 0.828 and 0.721, respectively. Using all fea-
tures (AF) with node embeddings (DNE) as input for classifica-
tion, the ML model’s performance significantly increased, with
an AUC of 0.916, compared to 0.735 when only the node em-
beddings were used for classification. The experiments demon-
strate that graph information (node embeddings) is useful to en-
hance the transaction representations (embeddings).

In the second experiment LF+DNE, we concatenated the
node embeddings generated from DGI with the local features
(LF), which can achieve an F1-score and Recall of 0.712 and
0.797, respectively. Both the results were superior to the state-
of-the-art algorithms.

These results demonstrate the ability of our self-supervised
GIN-based approach to generate an enhanced feature set to im-
prove anti-money-laundering detection performance. Further-
more, the results show that the accuracy of the model improves
with the enhanced feature set, which contains summary infor-
mation. Note that the summary information in the AF fea-
ture set consists of 1-hop forward and 1-hop backward neigh-
borhood summaries for each node. Unfortunately, the Elliptic
dataset does not provide detailed information regarding the fea-
ture descriptions, possibly due to confidentially reasons, which
limits our ability to provide a deeper discussion.

Figure [d shows the F1 measure of the three different model
variants across various testing timesteps. Interestingly, none of
the three variants can detect new illicit transactions with high
precision after dark market shutdown, which occurs at time step
43 [5]. Thus, we note that developing robust methods to de-
tect illicit transactions without their being affected by emerging
events is a major challenge that future works need to address.

Figure [5] shows the confusion matrix of the three different
scenarios. Although the classifier trained with embedding fea-
tures cannot accurately detect illicit transactions, it rarely clas-
sifies licit transactions as illicit. Therefore, the false alarm rate
is very low, as shown in Figure The RF classifier trained
using both raw features and embedding features, shown in Fig-
ure [5a5bl has the advantage of achieving a high detection rate
and a low false alarm rate. As a result, the experimental results
demonstrate that DNE node embeddings can be used for feature
augmentation to improve overall detection performance.

5.4. Broader applications of AML

The blockchain operates as a decentralized bank for bitcoin
cryptocurrency [31]]. All bitcoin transactions are permanently
recorded on the blockchain, which is a visible and verifiable
public ledger [32]. Bitcoin addresses are not registered to in-
dividuals, in contrast to bank accounts [2]]. Thus, due to this
pseudo-anonymity [[1 1], bitcoin and other crypto-currencies are
increasingly used for ransomware [2l], ponzi schemes [11]] and
illicit material trade on the dark web [23]]

While bitcoin transactions are difficult to track, they are not
completely anonymous [2]. Users can be traced by their IP ad-
dresses and transaction flows [32]]. An analysis of the bitcoin
graph can reveal suspicious behavior patterns characteristic of



money laundering [2]. To break the tell-tale transnational link
between bitcoin transactions and illegal activity, bitcoin mix-
ing services provide a new, untainted bitcoin address from their
reserves and the pay-outs are spread out over time [2]. Bit-
coin Fog is a service that hides transaction origins by bundling
multiple inputs into a smaller number of larger outputs [[L1]].
However, the additional obscuring activities themselves could
add characteristic signatures into transaction flows. Thus, it
is still possible to detect patterns in the underlying transac-
tion flow to facilitate AML detection [L1, 5]. Unfortunately,
next-generation cryptocurrencies such as Monero, Dash, and
Z-Cash, with built-in anonymity features, make tracking and
detection challenging [2]. As a result, there is a constant need
for improved AML detection methodologies.

6. Conclusions and Future Work

This paper presents a novel approach for the detection of
illicit Bitcoin transactions based on self-supervised GNNs. We
first used the DGI to generate the node embedding with raw fea-
tures to train the Random Forest for detection. Our experimen-
tal evaluation indicates that our approach performs exception-
ally well and outperforms the state-of-the-art ML-based/Graph-
based classifier overall. The evaluation results of our initial
classifier demonstrate the potential of using a self-supervised
GNN-based approach for illegal transaction detection in cryp-
tocurrencies. We hope to inspire others to work on the impor-
tant challenge of using graph machine learning to perform fi-
nancial forensics through this research, which is lacking in the
current research. In the future, we plan to integrate this with un-
supervised anomaly detection algorithms to detect illegal trans-
actions in an unsupervised manner.
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