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Abstract 

This paper proposes a combined approach of deep deterministic policy gradient (DDPG) and graph attention network 

(GAT) to the geometry optimization of latticed shells with surface shapes defined by a Bézier control net. The 

optimization problem is formulated to minimize the strain energy of the latticed structures with heights of the Bézier 

control points as design variables. The information of the latticed shells, including nodal configurations, element 

properties and internal forces, and the Bézier control net, consisting of control points and control net, are represented 

as graphs using node feature matrices, adjacency matrices, and weighted adjacency matrices. A specifically designed 

DDPG agent utilizes GAT and matrix manipulations to observe the state of the structure through the graphs, and 

decides which and how Bézier control points to move. The agent is trained to excel in the task through a reward signal 

computed from changes in the strain energy in each optimization step. As shown in numerical examples, the trained 

agent can effectively optimize structures of different sizes, control nets, configurations, and initial geometries from 

those used during the training. The performance of the trained agent is competitive compared to particle swarm 

optimization and simulated annealing despite using a lower computational cost.  

 

Article highlights 

- A method using a reinforcement learning agent is proposed to optimize the geometry of latticed structures. 

- The agent is designed to observe the structure and Bézier control net and modify the Bézier control net. 

- The method yields good results using fewer computations when compared to other conventional methods. 

 

Keywords: Bézier surface, Deep deterministic policy gradient, Geometry optimization, Graph attention network, 

Reinforcement learning 
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1. Introduction 

Structural optimization is a branch of optimization that aims to find the best design variables that minimize/maximize 

the objective function, which is related to structural cost and/or performance under design constraints [1]. For discrete 

structures, such as trusses and frames, structural optimization can be classified as geometry and topology optimizations 

where nodal locations and nodal connectivity, respectively, are design variables [2]. Structural optimization is 

important for the initial design process of latticed shells, which cover a large space with a number of truss and frame 

elements, because their structural performances are closely related to their shape and topology [3]. An optimization 

problem of latticed shells is generally formulated to maximize the stiffness against static loads within a given structural 

volume, and the compliance or the strain energy is often selected as the objective function to be minimized. Examples 

of such formulations can be found in Refs. [4−6]. 

 Availability of the method for geometry optimization of latticed shells depends on whether the design variables 

are continuous or discrete. If the nodal locations are continuous variables, the optimization problem is classified as a 

nonlinear programming problem that can be solved using a gradient-based approach together with shape sensitivity 

analysis [7−10]. If the nodal locations are selected from a list of pre-defined discrete values, the optimization problem 

is considered an integer programming or combinatorial problem, where gradient information is not available, and the 
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solutions can be obtained using heuristic methods such as genetic algorithm (GA) and simulated annealing (SA) 

[11−13]. 

 Parametric surfaces are effective for representing the structural nodal height to obtain a smooth shape of latticed 

shells. The surfaces are utilized to reduce the number of design variables in the optimization problem [14] and analyze 

the shell structures [15]. The type of parametric surface that has most attracted researchers is the Bézier surface which 

defines the shape with a tensor product of the Bernstein polynomials [16] and their control points. Pioneering research 

on shape optimization of shells using Bézier surface can be found in Ref. [17] and is further refined in later years 

[18−20].  

 In the past decade, machine learning (ML) approaches have been extensively studied for application to engineering 

problems. With the advent of computational models such as neural network (NN) [21-23], a number of applications 

of ML can be found in engineering fields [24-26]. Particularly, ML for optimization of spatial structures has attracted 

many researchers [27]. Mirra and Pugnele [28] used variational autoencoder (VAE) [29] for designing spatial 

structures. Samaniego et al. [30] proposed an ML method to approximate the mechanical response of plate and shell 

structures. Zheng et al. [31] and Fuhrimann et al. [32] used ML models to explore design spaces of spatial structures. 

Xie et al. [33] proposed a Bayesian Network to assess the deviation between constructed shapes and designed shapes 

of the 3D printed lattice structures. 

Reinforcement learning (RL) is a type of ML where a model or agent learns to decide its interactions with an 

environment. The agent improves its policy which dictates how it makes decisions according to the given reward 

signal determined by how the environment changes. Deep deterministic policy gradient (DDPG) [34] is a type of RL 

algorithm that can handle multiple actions at the same time. When applied to optimization problems, DDPG could 

reduce the number of optimization steps, and accordingly, save the computational cost. Kupwiwat and Yamamoto 

[35] demonstrated the applicability of DDPG to geometry optimization of latticed shell structures using NNs as agents. 

However, their method of having an agent observe and do action by moving through nodes of the entire structure still 

requires large numbers of optimization steps for large latticed shells. 

Hayashi and Ohsaki [36] proposed a method for the binary topology optimization problem of planar trusses using 

RL with a graph representation of the structure. Their implementation allows the agent to observe the entire truss 

through transmitted graph signals of structural nodes and elements and modify any truss element in the structure. In 

later years, Zhu et al. [37] applied this method to the stochastic generation of truss topology. Kupwiwat et al. [38] 

presented a combined approach of DDPG and graph representation for optimizing topologies of grid shells that can 

be applied to large structures and obtain competitive results compared to GA. It is worth noting that the graph 

representation is utilized only for the structural domain in all research mentioned above. 

NN architectures that are designed for processing graph data are called graph neural network (GNN). Recently, 

GNNs have gained attention in the research field of ML because various data, such as protein structure, texts, images, 

and social network data, can be expressed in the form of graphs. To effectively process graph data, some variances of 

GNNs have been proposed such as message passing NN [39] and graph convolutional network (GCN) [40]. Graph 

attention network (GAT) [41] is also a type of GNNs that utilizes an attention mechanism used in the transformer 

architecture [42], which can indicate importance of the adjacent nodes in the graph. GAT is applicable in various 

domains including node classification [43], link prediction [44], and graph classification [45]. 

This paper proposes a geometry optimization method for latticed shell structures using DDPG and GAT together 

with a Bézier surface for minimizing the strain energy. The proposed RL agent is trained to observe the structure 

through graph representations of both latticed structure and Bézier control net, and adjust the heights of Bézier control 

points from a flat configuration. The remainder of this paper is structured as follows. Section 2 formulates the 

geometry optimization problem. In Section 3, RL and DDPG are briefly explained. GAT and the definitions of vectors 

and matrices in the proposed GAT-DDPG method are introduced in Section 4. Section 5 presents operational details 

of GAT-DDPG to integrate the latticed structure and its Bézier control net, and train the agent for solving the 

optimization problem. In Section 6, numerical examples are presented, where the results and computational cost of 

the proposed method are compared with those by particle swarm optimization (PSO) and SA. The robustness of the 

agent, when applied to latticed shells with different sizes, boundary conditions, and optimization settings, is also 

investigated in this section. 

The main contributions of this paper are combining GAT and DDPG for optimizing the geometry of latticed 

shells and combining topological data from Bézier and structural domains to be observed by the RL agent. The 

proposed method is applicable to the geometry optimization to minimize the strain energy of latticed shells with 

various numbers of grids. The design variable is the heights of Bézier control points which can be either discrete or 

continuous values. The numbers of grids in the Bézier control net and the structure can be separately specified and 

fix-supports can be arbitrarily positioned at the rims of the structures. The method generally yields competitive results 

while requiring lower computational costs than other methods. 
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2. Optimization problems of latticed shells  

2.1 Objective function 

Consider a problem of minimizing the strain energy of a latticed shell stiffened by diagonal braces subjected to static 

loads where the boundary conditions are predetermined for each structural node. Three-dimensional beam elements 

with 12 degrees of freedom (DoFs) and three-dimensional truss elements with 6 DoFs are used to represent the lattice 

frame and brace, respectively. In this paper, structural stiffness matrix analysis is utilized to compute the total strain 

energy where the stiffness matrices of the frame element and the brace element in the local coordinate system are 

denoted as 𝐤f ∈ ℝ12×12 and 𝐤e ∈ ℝ6×6, respectively. Modified into the global coordinate system, these matrices are 

congregated as the global stiffness matrix 𝐊 ∈ ℝ𝑛D×𝑛D , where 𝑛D denotes the total number of DoFs, after specifying 

the boundary conditions, of the structure. Let 𝐩 ∈ ℝ𝑛D  be the nodal load vector in the global coordinate system 

obtained from aggregating point loads and weights applied on every node and element, respectively. The nodal 

displacement vector 𝐝 ∈ ℝ𝑛D is computed by solving the stiffness equation as follows: 

𝐊𝐝 = 𝐩                                                              (1) 

The transpose of a vector or a matrix is denoted by the superscript T. The total strain energy 𝐸 is derived from 

𝐸 =
1

2
𝐝T𝐊𝐝                                                          (2) 

2.2 Bézier surface 

Geometry of the latticed shell as shown in Fig. 1 can be defined using a Bézier control net and Bernstein basis 

functions. The Bernstein basis function of order 𝑛 is given as 

𝐵𝑖
𝑛(𝑡) = (

𝑛
𝑖

) 𝑡𝑖(1 − 𝑡)𝑛−𝑖 , (𝑖 = 0,1, … , 𝑛)                               (3a)  

where (
𝑛
𝑖

) = {
𝑛!

𝑖!(𝑛−𝑖)!
for 0 ≤ 𝑖 ≤ 𝑛

0 for 𝑖 < 0 or 𝑖 > 𝑛
                              (3b) 

where 𝑡 ∈ [0,1] is the parameter, and 00 = 0! = 1. 

The tensor product Bézier surface is formulated as the product of the Bernstein basis functions 𝐵𝑖
𝑐𝑛 (𝑢) and 𝐵𝑗

𝑐𝑚(𝑣) 

with respect to the parameters 𝑢, 𝑣 ∈ [0,1]: 

𝐁b
𝑐𝑛 ,𝑐𝑚(𝑢, 𝑣) = ∑ ∑ 𝐑𝑖,𝑗

𝑐𝑚

𝑗=0

𝐵𝑖
𝑐𝑛(𝑢)𝐵𝑗

𝑐𝑚(𝑣)

𝑐𝑛

𝑖=0

                                    (4) 

where 𝐑𝑖,𝑗(𝑖 = 1, . . , 𝑐𝑛; 𝑗 = 1, . . , 𝑐𝑚) are the coordinates of control points, i.e., the coordinates of the vertices in the 

control net, and 𝑐𝑛 and 𝑐𝑚 are the orders of basis functions in 𝑢 and 𝑣 directions, respectively.  

Consider a latticed shell with a size of 𝑎 × 𝑏 located in the region bounded by 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏 on the 

𝑥𝑦-plane as shown in Fig. 1A. The horizontal coordinates of 𝐑𝑖,𝑗 are assigned at a uniform spacing to construct a 

(𝑐𝑛 − 1 ) × (𝑐𝑚 − 1 )-grid control net as shown in Fig. 1B. Thus, by further assigning 𝑢 and 𝑣 values of the nodes at 

the uniformly spaced grid points on the (𝑢, 𝑣) parameter plane in the range [0,1] × [0,1], the structural nodes are 

uniformly spaced in the 𝑎 × 𝑏 region on the 𝑥𝑦-plane, as shown in Fig. 1C. The nodal location vector of the ith node 

corresponding to the parameters (𝑢𝑖 , 𝑣𝑖) is computed as 𝐁b
𝑐𝑛 ,𝑐𝑚(𝑢𝑖 , 𝑣𝑖) in Eq. (4) as shown in Fig. 1D. 

 

Fig. 1 Bézier surface of the latticed shell defined by Bézier control net. 
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By fixing the (𝑥, 𝑦) coordinates (1st and 2nd components of 𝐑𝑖,𝑗) of the control points, the 𝑧-coordinates (3rd 

components of 𝐑𝑖,𝑗) of Bézier control net determines the nodal heights of the latticed shell which consists of frame 

elements with 12 DoFs in the main axes (i.e., 𝑥 and 𝑦 axes in Fig.1) of the grid and truss elements with 6 DoFs for 

bracing (i.e., diagonal elements in the grid). The numbers of grids in the Bézier control net and that of the latticed 

structure are independent of each other and can be determined separately based on the preferences of designers and/or 

engineers. The examples of the proposed method with a different discretization of the Bézier control nets and structural 

grids are shown in Section 6.3.1. 

2.3 Geometry optimization problem 

Geometry of a latticed shell with 𝑛 nodes and 𝑛b control points shall be optimized by changing the heights of Bézier 

control points. Let 𝐳 = (𝑧1, 𝑧2, … , 𝑧𝑛free  ) and 𝐳b = (𝑧1
b, 𝑧2

b, … , 𝑧
𝑛b

free 
b ) denote the vector of nodal heights and the 

vector of movable heights of Bézier control points, while the heights of supports are fixed. When the values of 

parameters (𝑢, 𝑣) are assigned to each node, the vector of nodal heights is computed from the heights of control points 

as 𝐳(𝐳b). Note that 𝐳 is derived from 𝐳b and this paper considers only 𝐳b as the design variable of the optimization 

problem. Let 𝑧max, 𝑧min, 𝑧min
b , and 𝑧max

b  denote the upper bound of nodal height, the lower bound of nodal height, the 

predetermined upper bound value of the heights of Bézier control points, and the predetermined lower bound value of 

the heights of Bézier control points, respectively. The global stiffness matrix of the structure and global deformation 

are regarded as functions of 𝐳b  as 𝐊(𝐳b) and 𝐝(𝐳b), respectively. Then, the geometry optimization problem to 

maximize the stiffness of the structure, or to minimize the total strain energy, is as follows: 

minimize     𝐸(𝐳b) =
1

2
𝐝(𝐳b)T𝐊(𝐳b)𝐝(𝐳b)                                   (5a) 

subject to     𝑧min ≤ 𝑧𝑖(𝐳b) ≤ 𝑧max   (𝑖 = 1, 2, … , 𝑛free )           (5b) 

𝑧min
b ≤ 𝑧𝑗

b ≤ 𝑧max
b    (𝑗 = 1, 2, … , 𝑛b

free )                  (5c) 

 

3. Reinforcement learning and deep deterministic policy gradient 

This research proposes a method to train an RL agent for geometry optimization of latticed shells. RL consists of a 

policy function to determine how the agent makes actions, a reward signal to quantitatively evaluate the consequence 

of the actions, and a value function to predict the accumulated reward signal, respectively [46]. The environment refers 

to the system that the RL agent is taught in. Markov decision process (MDP) is used to model the interaction between 

an agent and its environment [47,48]. 

Fig. 2 illustrates the MDP used in this research. In a discrete step 𝑡, the agent observes a state  S𝑡 as graphs 

representing the structure and the Bézier control net (Fig. 2A), and takes an action A𝑡 to adjust the Bézier control 

points (Fig. 2B). The Bézier control net is changed by actions of the agent and the structural geometry is changed 

accordingly (Fig. 2C). The agent receives a reward R𝑡+1 which is computed from the strain energy of the current 

geometry and the geometry at the previous step. The agent observes the next state S𝑡+1. Note that the RL agent keeps 

interacting with the environment until the termination criterion is satisfied. This paper uses a predefined number of 

optimization steps as a termination criterion.  

 
Fig. 2 Proposed MDP for geometry optimization of latticed shells with Bézier surface 

DDPG is a type of RL algorithm, characterized by ability of the agent to do multiple actions in an MDP which 

can reduce the number of optimization steps and computational analyses in structural optimization. The DDPG agent 

utilizes a policy function 𝛑θ1
(actor network) and a value function Qθ2

 (critic network) parametrized by trainable 
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parameters θ1 and θ2, respectively. The objective of the policy function is to obtain high reward by determining the 

probability P(A𝑡
𝑖 |S𝑡) of taking an action 𝑖 in a state S𝑡 

𝛑θ1
(S𝑡) =  P(A𝑡

𝑖 |S𝑡)                                                         (6a) 

Qθ2
(S𝑡 , 𝛑θ1

(S𝑡)) =  ∑ γ𝑣−1R𝑡+𝑣

∞

𝑣=1
                                                (6b) 

where γ ∈ [0,1) is a discount factor for future rewards to balance the importance of instant and future rewards; instant 

and future rewards are regarded as equally important when γ is close to 1, and future rewards are neglected as γ 

becomes smaller. 

The agent interacts with the environment during the training phase to gather training data {S𝑡 , A𝑡 , R𝑡+1, S𝑡+1} and 

store them in a replay buffer. These training data is necessary for training both policy and value functions to improve 

behavior of the agent, in order to obtain high reward, and increase the accuracy of accumulated reward prediction, 

respectively. However, simultaneously collecting training data and training functions makes learning unstable because 

the learning could become diverged [34]. A tau updating technique was developed by Haarnoja et al. [49] that trains 

𝛑′θ′1
 and Q′θ′2

 as surrogate policy function and value function, respectively, in place of 𝛑θ1
 and Qθ2

. Trainable 

parameters of these surrogate functions are updated into those of online policy and value functions (i.e., 𝛑θ1
and Qθ2

) 

that collect training data. The trainable parameters are updated at a constant interval utilizing a small amount of 

updating weight determined by 𝜏 (𝜏 ≪ 1) to stabilize the learning. 

In the following DDPG algorithm, ℒ(𝑦, �̂�) signifies a loss function between the correct value 𝑦 and a predicted 

value �̂�, and the details of the DDPG algorithm are explained. 

 

DDPG algorithm: 

1. Sample nbatch data {S𝑡 , A𝑡 , R𝑡+1, S𝑡+1}  from the replay buffer and turn them into training dataset 

{𝐒𝑡 , 𝐀𝑡 , 𝐑𝑡+1, 𝐒𝑡+1}. 

2. Make the following parameter updates:  

       𝛑′θ′1
(𝐒𝑡) =  �̂�𝑡  

       𝛑θ1
(𝐒𝑡+1) =  �̂�𝑡+1  

       Q′θ′2
(𝐒𝑡 , 𝐀𝑡) =  �̂�𝑡  

       Qθ2
(𝐒𝑡+1, �̂�𝑡+1) =  𝐐𝑡+1  

       ∇Q′θ′2
= ∇θ′2

Q′θ′2
(𝐒𝑡 , 𝐀𝑡)∇�̂�𝑡

 ℒ(𝐑𝑡+1 + 𝐐𝑡+1, �̂�𝑡)  

       ∇J′θ′1
= −𝔼 [∇θ′1

𝛑′θ′1
(𝐒𝑡)∇�̂�𝑡

Q′θ′2
(𝐒𝑡 , �̂�𝑡)|�̂�𝑡=𝛑′θ′1

(𝐒𝑡)]  

       By utilizing ∇Q′θ′2
, update 𝛉′2 in Q′θ′2

 

       By utilizing ∇J′θ′1
, update 𝛉′1 in 𝛑′θ′1

 

       Upon reaching the tau update interval: 

            𝛉1 = (1 − 𝜏)𝛉1 + 𝜏𝛉′1   

            𝛉2 = (1 − 𝜏)𝛉2 + 𝜏𝛉′2  

 

Among a number of optimization algorithms for surrogate functions such as stochastic gradient descent (SGD) 

[50,51] and Adam [52], Adam is utilized for the parameter updating of  𝛉′1 and 𝛉′2. By directly introducing Ornstein-

Uhlenbeck noise [53] into the output value of the policy function, the exploration of the agent is triggered. 

 

4. Graph attention network 

This paper builds the agent using GAT which can process graph representations so that the agent can compute actions 

from states represented as graphs. The operations of GAT are briefly explained in this section. A graph consisting of 

𝑛 nodes with 𝑔 features per node is represented as a node feature matrix  𝐍 ∈ ℝ𝑛×𝑔, an adjacency matrix 𝐌 ∈ ℝ𝑛×𝑛, 

and a weighted adjacency matrix 𝐏 ∈ ℝ𝑛×𝑛, indicating features of each node, nodal connections, and weights of nodal 

connections, respectively. Updated node signal 𝐍′ ∈ ℝ𝑛×ℎ can be computed from the aggregation of the features of 

nodes and their adjacent nodes where ℎ denotes the dimension of embedding space.  

GAT utilizes a parameterized weight 𝐰 and attention weight (i.e., attention coefficient) 𝛂 to indicate importance 

of node features and neighbor nodes connected to the interested node, respectively. GAT computes embedded node 

signal 𝐍′ by taking the node feature matrix 𝐍 and the adjacency matrix 𝐌 as inputs as follows:  

𝐍′ = σ(𝛂𝐌𝐍𝐰)                                                               (7) 
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where σ(∙) is a non-linear activation function. A GAT computing unit can be considered as a layer, and layers can be 

stacked to construct a computation model. When stacked, the next layer can take the embedded node signal 𝐍′ of the 
previous layer as one of the inputs. 

Attention coefficient of a node 𝑖 that has 𝒩𝑖 adjacent nodes and its neighbor node 𝑗 ∈ 𝒩𝑖  can be computed as 

follows: 

𝛼𝑖𝑗 =
exp (LeakyReLU(𝐚T[𝐰ℎ𝑖 ∥ 𝐰ℎ𝑗]))

∑ exp(LeakyReLU(𝐚T[𝐰ℎ𝑖 ∥ 𝐰ℎ𝑘]))𝑘∈𝒩𝑖

                                 (8) 

where 𝐚 is the trainable attention weight. ℎ𝑖  is the nodal features or embedding feature of node 𝑖. exp (𝑥), ∥, and 

LeakyReLU denote the exponential function of 𝑥, the concatenation operation which horizontally joins one or more 

matrices to make a new matrix, and the rectified linear activation function [54,55], respectively. The subscript 𝑖𝑗 

indicates (𝑖, 𝑗) component of a matrix. 

 

5. DDPG and GAT for optimization of latticed shells 

In this section, a geometry optimization method for latticed shells using DDPG and GAT is explained. In Section 5.1, 

the state of the structure, including configurations of nodes and elements as well as internal forces, is explained. 

Information of the Bézier control net, including control points and configuration of the control net represented by 

graphs, is also explained. Section 5.2 explains how the GAT-DDPG agent computes output from the state. Section 5.3 

explains how the output of the agent is interpreted to modify the structure. Section 5.4 describes how the reward is 

computed after the structure is modified. 

5.1 State  

Graphs are used for describing data of the structure, such as nodal coordinates and internal forces, at each optimization 

phase, comparable to the step in the MDP formulation. In the node feature matrix 𝐍 ∈ ℝ𝑛×5 of this study, each node 

has five features, and the 𝑖th row 𝒏𝑖 of is written as 

         𝒏𝑖 = {
1

𝐷𝑥
(𝑥𝑖 − min

𝑝∈{1,…,𝑛}
𝑥𝑝)

1

𝐷𝑦
(𝑦𝑖 − min

𝑝∈{1,…,𝑛}
𝑦𝑝) 𝑧𝑖 𝑧max⁄ 𝑘free

𝑖 𝑘fix
𝑖 } 

         𝐷𝑥 = max
𝑝∈{1,…,𝑛}

𝑥𝑝 − min
𝑝∈{1,…,𝑛}

𝑥𝑝,  𝐷𝑦 = max
𝑝∈{1,…,𝑛}

𝑦𝑝 − min
𝑝∈{1,…,𝑛}

𝑦𝑝  

where 𝑥𝑖 ,  𝑦𝑖 , and 𝑧𝑖  are the coordinates of node 𝑖 , 𝑘free
𝑖  and 𝑘fix

𝑖  are specified based on the boundary condition; 

(𝑘free
𝑖 , 𝑘fix

𝑖 ) = (0, 1) if there is a fixed support at node 𝑖, and (𝑘free
𝑖 , 𝑘fix

𝑖 ) = (1, 0) otherwise.  

Similar to Kupwiwat et al. [38], structural elements and their internal forces are represented using adjacency 

matrices and weighted adjacency matrices, respectively. In the adjacency matrix of the frame element 𝐌1, each entry 

is 𝑚1𝑖𝑗 = 𝑚1𝑗𝑖 = 𝑘frame
𝑒 , where 𝑘frame

𝑒  denotes the presence and absence of a 12-DoF frame 𝑒 linking nodes 𝑖 to 𝑗 by 

𝑘frame
𝑒 = 1 and 0, respectively. In the adjacency matrix of the truss 𝐌2, each entry is 𝑚2𝑖𝑗 = 𝑚2𝑗𝑖 = 𝑘truss

𝑒 , where 

𝑘truss
𝑒  indicates the presence and absence of a 6-DoFs truss 𝑒  connecting nodes 𝑖  and 𝑗  by 𝑘truss

𝑒  = 1  and 0 , 

respectively. The adjacency matrix of both frame and truss 𝐌3 is obtained by 𝐌3 = 𝐌1 + 𝐌2. 

Weighted adjacency matrices are utilized to express the internal forces showing the effectiveness of structural 

elements. The weighted adjacency matrix of the frame element 𝐏1  is determined based on the proportion of the 

bending moment to the axial force, which is a useful indicator to minimize the strain energy for this type of structure. 

The entry 𝑝1𝑖𝑗 in 𝐏1 corresponding to internal forces of the frame 𝑒 which links nodes 𝑖 and 𝑗 is defined as 

𝑝1𝑖𝑗 =
𝑘frame

𝑒 𝑏′𝑒𝑖

(𝑎′𝑒+1)
                                                             (9a) 

𝑏′𝑒𝑖 =
(|𝑏𝑒𝑖|−𝑏f

min)

(𝑏f
max−𝑏f

min)
                                                      (9b) 

𝑎′𝑒 =
(|𝑎𝑒|−𝑎f

min)

(𝑎f
max−𝑎f

min)
                                                       (9c) 

in which 𝑏𝑒𝑖 and 𝑎𝑒 are the bending moment on the section at node 𝑖 around the horizontal axis and the axial force of 

frame 𝑒, respectively. 𝑏f
min

 and 𝑏f
max

 are the minimum and maximum absolute values of bending moments at frames 

ends, respectively. 𝑎f
min and 𝑎f

max are the minimum and maximum absolute values of axial forces of frames.  

Given a truss 𝑒 that links nodes 𝑖 and 𝑗, the entry 𝑝2𝑖𝑗 in 𝐏2 is defined as 

𝑝2𝑖𝑗
= 𝑘truss

𝑒 𝑎′𝑒                                                                (10a) 

𝑎′𝑒 =
(|𝑎𝑒|−𝑎q

min)

(𝑎q
max−𝑎q

min)
                                                       (10b) 



 7 

where 𝑎𝑒, 𝑎q
min, and 𝑎q

max are the axial forces in the truss, the minimum absolute values, and the maximum absolute 

values of axial forces of the trusses, respectively. 

Additional to the structural nodes and elements, the attributes of Bézier control points are incorporated into the 

graph of the Bézier control net. The control net feature matrix and the control net adjacency matrix are represented by 

𝐍b ∈ ℝ𝑛b×5 and 𝐌b ∈ ℝ𝑛b×𝑛b , respectively, as 

𝒏b𝑖 = {𝑥𝑖
b max

𝑝∈{1,…,𝑛b}
𝑥𝑝

b⁄ 𝑦𝑖
b max

𝑝∈{1,…,𝑛b}
𝑦𝑝

b⁄ 𝑧𝑖
b 𝑧max

b⁄ 𝑘bfree
𝑖 𝑘bfix

𝑖
} 

where 𝑥𝑖
b ,  𝑦𝑖

b , and  𝑧𝑖
b are the coordinates of control point 𝑖 . 𝑘bfree

𝑖
 and 𝑘bfix

𝑖
 are determined depending on the 

boundary condition of the structural nodes related to the control point; (𝑘bfree
𝑖 , 𝑘bfix

𝑖 ) = (0, 1) if control point 𝑖 is 

fixed, and (𝑘bfree
𝑖 , 𝑘bfix

𝑖 ) = (1, 0) if control point 𝑖 can be moved. In the Bézier control net adjacency matrix 𝐌b, the 

presence and absence of a grid connecting control points 𝑖  and 𝑗 is represented as 𝑚b𝑖𝑗 = 𝑚b𝑗𝑖 = 𝑘Bézier
𝑒 , where 

𝑘Bézier
𝑒  indicates the presence and absence of a grid 𝑒  that connects control point 𝑖  and 𝑗  by 𝑘Bézier

𝑒 = 1 and 0, 

respectively. Note that all values in these matrices of graph representations are in the range of [0,1], which mitigates 

the risk of numerical instability during the training of GAT models. 

5.2 GAT-DDPG agent 

This research constructs a DDPG agent from GAT. However, the original GAT method cannot handle different types 

of graphs like the latticed structural graph and the Bézier control net graph. This section modifies the GAT-DDPG 

agent so that it can be used for solving structural optimization consisting of multiple graphs with different numbers of 

nodes as inputs.  

Policy and value functions of the agent are made up of several GAT layers. The state information presented in 

Section 5.1 is used as input by the policy function to produce the output for changing Bézier control points. Rectified 

linear unit (ReLU) activation function, which is partially linear and effective for gradient-based optimization, such as 

SGD or Adam, transforms the output of each GAT layer. Having the representation as ReLU(∙) = max (0,∙), it is 

utilized in every output of GAT layer besides the last layer of the policy function. The last GAT layer of the policy 

function utilizes the Sigmoid activation function, denoted as Sigmoid(∙) = 1/(1 + e−(∙)), to compute probability-

based output for predicting the probability of doing an action A𝑡
𝑖  in a state S𝑡. GAT layers with ReLU and Sigmoid 

activation functions are represented in Eqs. (11a) and (11b), respectively. 

μ(𝐍′, 𝐌′) = ReLU(𝐌′𝐍′𝐰μ)                                                  (11a) 

σ(𝐍′, 𝐌′) = Sigmoid(𝐌′𝐍′𝐰σ)                                             (11b) 

where 𝐍′ indicates a node feature matrix or a prior GAT layer output. 𝐌′ indicates an adjacency matrix or weighted 

adjacency matrix used in the layer.  

Embedded node signals of the graph representations of the latticed structure and the Bézier control points are 

obtained using different GAT layers. Since the output of the policy function should have the number of rows equal to 

the number of Bézier control points 𝑛b, the embedded node signal of structural nodes is firstly modified using the 

global sum pooling operation (GSP) [56] which sums up all entries in each column in the matrix. A vector obtained 

from GSP is then reshaped into a matrix with 𝑛b rows by the stack operation. The GSP operation and stack operation 

that transforms a matrix 𝐕 ∈ ℝ𝑛×𝑔 into a vector 𝐚 ∈ ℝ1×𝑔  and further into a matrix 𝐀 ∈ ℝ𝑛b×𝑔 , respectively, are 

represented in Eqs. (12) and (13). 

GSP(𝐕) = [∑ v𝑖,1

𝑛

𝑖=1

⋯ ∑ v𝑖,𝑔

𝑛

𝑖=1

] ∈ ℝ1×𝑔 = 𝐚                             (12) 

Stack𝑛b(𝐚) = [

𝐚
⋮
𝐚

]}𝑛b times = 𝐀                                                      (13) 

Utilizing these two operations, the output of the GAT layer with 𝑛 rows will be transformed using GSP into a 

vector and then modified into a matrix with 𝑛b rows, which allows policy and value functions to process and combine 

signals from both structural graph and Bézier control net graph. 

Value function takes the output of policy function and graph representations of latticed structure and Bézier 

control points as inputs for computing a scalar Q-value ∈ ℝ1×1. In this function, embedded node signals of the output 

of the policy function and the graph representations of structure and control points are also obtained using different 

GAT layers. GSP operation modifies these embedded node signals into 3 vectors, and they are concatenated into one 

vector. The joined vector becomes an input for an NN. The NN denoted as fNN(∙) for computing the Q-value is 

represented as follows: 

fNN(𝐇) = 𝓦3(ReLU(𝓦2(ReLU(𝓦1𝐇T + 𝓑1)) + 𝓑2)) + 𝓑3              (14) 
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where 𝐇, 𝓦𝑖∈{1,2,3}, and 𝓑∈{1,2,3} denote the input vector of NN, adjustable internal weight matrix, and adjustable 

internal bias vector, respectively. 

The computations for the policy and value functions are displayed in Table 1. On the left column, the policy 

function separately processes inputs from state data of frames and trusses, and merges them in step 1. The output 

matrix from step 1 is manipulated using GSP and stack operations to create a matrix that has the number of rows equal 

to 𝑛b, and then processed by a GAT layer in step 2. Inputs from the Bézier control net are processed in step 3. Lastly, 

step 4 computes the probability of adjusting each Bézier control point by aggregating the outputs from steps 2 and 3.  

On the right column of the table, the value function also separately processes inputs from state data of frames and 

trusses, merges them, and transforms the merged matrix into a vector using the GSP operation in step 1. In step 2, a 

computation similar to those in the policy function is performed, except that the final result is transformed into a vector. 

In step 3, the output 𝛑 of the policy function is processed and converted into a vector, also using the GSP. The outputs 

from steps 1-3 are converted into a single vector by a concatenation operation in step 4. The vector is finally used in 

step 5 for computing the Q-value by the NN.  

 

Table 1 Computations of the policy and value functions  

policy function value function 

inputs: 𝐌1, 𝐌2, 𝐌3, 𝐏1, 𝐏2, 𝐍, 𝐌b, 𝐍b inputs: 𝐌1, 𝐌2, 𝐌3, 𝐏1, 𝐏2, 𝐍, 𝐌b, 𝐍b, 𝛑 

computation: computation: 

step 1:      𝐍1.1 = μ(μ(𝐍, 𝐏1), 𝐌1) step 1:    𝐍1.1 = μ(μ(𝐍, 𝐏1), 𝐌1) 

  𝐍1.2 = μ(μ(𝐍, 𝐏2), 𝐌2)   𝐍1.2 = μ(μ(𝐍, 𝐏2), 𝐌2) 

  𝐍1.3 = μ(𝐍1.1 + 𝐍1.2, 𝐌3)   𝐍1 = GSP(μ(𝐍1.1 + 𝐍1.2, 𝐌3)) 

step 2:  𝐍1.4 = Stack𝑛b(GSP(𝐍1.3)) step 2:    𝐍2.1 = μ(μ(𝐍, 𝐏1), 𝐌1) 

  𝐍1 = μ(𝐍1.4, 𝐌b)   𝐍2.2 = μ(μ(𝐍, 𝐏2), 𝐌2) 

step 3:      𝐍2 = μ(μ(𝐍b, 𝐌b), 𝐌b)   𝐍2.3 = μ(𝐍2.1 + 𝐍2.2, 𝐌3) 

step 4:      𝛑 = σ(𝐍1 + 𝐍2, 𝐌b)   𝐍2.4 = Stack𝑛b(GSP(𝐍2.3)) 

    𝐍2.5 = μ(μ(𝐍b, 𝐌b), 𝐌b) 

    𝐍2 = GSP(𝐍2.4 + 𝐍2.5) 

  step 3:    𝐍3 = GSP(μ(μ(𝛑, 𝐌b), 𝐌b)) 

  step 4:    𝐍4 = [𝐍1 ∥ 𝐍2 ∥ 𝐍3] 
  step 5:    Q = fNN(𝐍4) 

output: 𝛑 ∈ ℝ𝑛b×3 output: Q ∈ ℝ1×1 

 

5.3 Action 

This section explains how the output of the policy function 𝛑 is interpreted to modify the Bézier control points. 𝛑 has 

𝑛b rows and three columns which respectively represent each Bézier control point to be adjusted and how it should 

be adjusted, including moving the control point upward, moving it downward, or keeping it at the same height. The 

adjustment of a Bézier control point 𝑖, i.e., the action, at step 𝑡 is interpreted as follows: 

A𝑡
𝑖 = {

𝑧𝑖
b = 𝑧𝑖

b + ∆𝑧b if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,1

𝑧𝑖
b = 𝑧𝑖

b − ∆𝑧b if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,2

𝑧𝑖
b = 𝑧𝑖

b if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,3

                    (15) 

At each step, all the control points are subjected to their associated actions.  

5.4 Reward 

In RL, an agent is trained using a reward signal, given to the agent after it executes action A𝑡 in a state S𝑡. Rewards 

need to be formulated so that the agent takes actions that lead to preferable states. Let 𝐸0 and 𝐸𝑡 denote the initial 

strain energy and the strain energy at step 𝑡 of the structure, respectively. Considering that small strain energy is 

preferred in this study, reward signal R𝑡+1 is computed from the variation of the strain energy as 

R𝑡+1 = (𝐸𝑡 − 𝐸𝑡+1) 𝐸0⁄                                                   (16) 

 

6. Numerical examples 

6.1 General settings for experiments and structural model 

The agent is trained to optimize the structure during the training phase, which measures the abilities of an agent to 

improve (i.e., obtain a greater reward) and stabilize its performance. After the training, the performance of the agent 
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is evaluated in the test phase using larger structures. Algorithms of the proposed method in both phases are shown in 

Fig. 3.  

 
Fig. 3 The algorithms; (A) Training phase, (B) Test phase 

In this paper, the structures to be optimized are the latticed shells with a 1.0 m by 1.0 m grid. The 12-DoF frame 

element has a hollow cylindrical section with an external diameter of 34 mm and a thickness of 2.3 mm with a mass 

of 1.8 kg/m. The 6-DoF truss element has a solid circular section with a diameter of 12 mm and a mass of 0.9 kg/m. 

The Young’s modulus of both elements is 200 kN/mm2. A vertical point load of 1 kN is applied to each node in the 

structure.   

The program is developed using Python 3.6 environment. The computation is done on a PC with a CPU of Intel 

Core i5-6600 (3.3 GHz, four cores) and a GPU of AMD Radeon R9 M395 2 GB. Fig. 3 shows the flowcharts of 

algorithms for the training and test phases. The optimization or a game ends when the number of steps reaches the 

predetermined maximum step. The positions of Bézier control points and data of the structural configurations 

including nodal coordinates, connections, properties of the elements, and loads are saved as an output of the program. 

Note again that the agent minimizes the strain energy of the structure under these specific load and predetermined 

boundary constraint conditions. However, different numbers of structural nodes, elements, Bézier control points, and 

various boundary constraint conditions can be assigned in each optimization. 

6.2 Training phase 

In each training game, a 44-grid latticed shell structural model is initialized randomly, chosen from structural models 

1-6 as shown in Fig. 4 where the bracing direction in each grid is also randomly initialized. Every node in the structure 

is initialized on a plane with a height of 0 and the heights of supports are fixed. 

 
Fig. 4 Structural models 1−6 for the training phase with  𝑐𝑛 = 𝑐𝑚 = 4 for the Bernstein basis functions; (A) Model 

1, (B) Model 2, (C) Model 3, (D) Model 4, (E) Model 5, (F) Model 6, (G) Bézier control net 
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Each game has a maximum number of steps of 20. The heights of Bézier control points are adjusted at each step 

according to the actions of the agent with ∆𝑧b = 0.1 m. 𝑧min, 𝑧max, 𝑧min
b , and 𝑧max

b  are 0, 1 m, 0, and 2 m, respectively. 

Replay buffer with the mini-batch size of 32 is utilized for training surrogate functions. Trainable parameters of 

surrogate policy and value functions were adjusted utilizing Adam optimizer with the learning rates of 10-6 and 10-5, 

respectively. In the value function where the mean square error is used as the loss function, each layer in the NN in 

Eq. (14) has 200 cells. Each GAT layer in both policy and value function has the dimension of embedding space of 

200. Every 100 steps, trainable parameters of surrogate functions are updated to online functions with 𝜏 = 0.05. 

The agent has been taught to play 1000 games. In Fig. 5, the vertical and horizontal axes represent the accumulated 

reward obtained in the game, and the game number, respectively. From Fig. 5, the agent improves to achieve the 

higher reward; the cumulative reward has increased with a fluctuation period during the first 400 games of training 

and has increased, then maintained to relatively high values afterward. Since the structural models are changed every 

training game, the history of maintaining high rewards implies that the trained agent is capable of optimizing the 

geometry of structures with different structural models and different bracing directions. 

 
Fig. 5 Variation of moving average of reward during the training 

6.3 Test phase 

The trained agent is applied to structures that have not been used in the training phase to verify its applicability for 

geometry optimization problems in this phase. In this paper, three experiments in Section 6.3.1, 6.3.2, and 6.3.3 are 

conducted, respectively, to verify the ability of the agent compared to other methods, the usefulness of the proposed 

method for geometry optimization, and the robustness of the agent when the type of design variables is changed. In 

this phase, only an action that improves the value of the objective function is accepted at each step. 

6.3.1 Verifying ability of the agent for geometry optimization compared to PSO and SA 

In this experiment, the ability of the agent to optimize the geometry of latticed shells using Bézier surface is 

verified. Structural models used in this experiment are fully braced 66-grid latticed shells with structural models 1-

6 and three cases of 𝑐𝑛 and 𝑐𝑚 of Bernstein basis functions as shown in Fig. 6. Fully braced 1010-grid latticed shells 

with structural models 1-2 and one case of 𝑐𝑛 and 𝑐𝑚 are also considered as shown in Fig. 7. The number of steps for 

the optimization is 500 for 66-grid and 1000 for 1010-grid shells. 𝑧min and 𝑧min
b  are 0 for every structure. 𝑧max and 

𝑧max
b  are 1 m and 2 m, respectively, for 66-grid shells, and are 2 m and 4 m, respectively, for 1010-grid shells. The 

increment ∆𝑧b is 0.1 m for all cases.  

  
Fig. 6 66-grid latticed shells (fully braced) with (𝑐𝑛, 𝑐𝑚) = (4,4), (5,5), and (6,6); (A) Model 1, (B) Model 2, (C) 

Model 3, (D) Model 4, (E) Model 5, (F) Model 6, (G) Bézier control nets 
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Fig. 7 1010-grid latticed shells (fully braced) with (𝑐𝑛, 𝑐𝑚) = (4,4);  

(A) Model 1, (B) Model 2, (C) Bézier control net 

Results obtained from GAT-DDPG, optimizing each structural model ten times, are compared to those obtained 

from PSO and SA. PSO is an optimization algorithm that iteratively improves the positions of candidate particles 

called the swarm in the search space. The position of a particle, which is the heights of Bézier control points, is 

improved by computing the velocity at the current particle position, the best-known position of the particle, and the 

best particle position among the swarm. The objective function, which is the total strain energy, is then evaluated at 

the particle position. 

Numbers of populations and generations of PSO are set based on the number of structural analyses or the 

computational cost of GAT-DDPG to benchmark the performance of the agent. In the following examples, the number 

of particles in PSO is 20. PSO algorithm is terminated after 10 and 20 steps of optimization for 66-grid and 1010-

grid structures, respectively. This paper utilized the PSO algorithm from distributed evolutionary algorithms in python 

(DEAP) [57] which implements the original PSO algorithm proposed by Poli et al. [58]. Optimal solutions are found 

for five schemes of weight coefficients for the best-known position of the particle and the best particle position among 

the swarm (𝜙1, 𝜙2) = (0.5,0.5), (0.4,0.6), (0.6,0.4), (0.2,0.8), and (0.8,0.2), respectively.  

SA is a method of stochastic hill climbing where a candidate solution is modified randomly and the modified 

solution is accepted to replace the current solution with a probability that decreases with each iteration, controlled by 

the temperature parameter. This paper utilized the SA algorithm called dual annealing from the python library named 

SciPy [59]. SA is terminated at the specified maximum number of iterations that is also set so that its computational 

cost is equivalent to that of GAT-DDPG. In this example, the maximum numbers of iterations are 1000 and 2000 for 

66-grid and 1010-grid structures, respectively. 

The computational costs of GAT-DDPG in this phase (10 times), PSO (5 schemes) with 5 trials using different 

random seeds, and SA with 5 trials using different random seeds for each grid size are shown in Table 2. Note that the 

number of structural analyses of GAT-DDPG in the training phase is 20000.  

 

Table 2 Total computational cost of each method 

grid size GAT-DDPG (10 tests) PSO (5 schemes, 5 trials) SA (5 trials) 

66 5000 5000 5000 

1010 10000 10000 10000 

 

The best results of GAT-DDPG are compared to those of PSO and SA among different random seeds in Table 3 

which indicates that results from the GAT-DDPG agent are competitive compared to those from PSO and SA. 

Therefore, the quality of the solutions of the GAT-DDPG agent has been verified. Note that the GAT-DDPG agent 

can obtain good results even though the structural grid size and Bézier grid size differ from those in the training phase. 

 

Table 3 Strain energy (N⋅m) of the best results obtained from GAT-DDPG , PSO, and SA 

structural model grid size (𝑐𝑛, 𝑐𝑚) GAT-DDPG (N⋅m) PSO (N⋅m) SA (N⋅m) 

1 
66 

(4,4) 3.41 3.43 3.40 

(5,5) 2.77 2.94 2.87 

(6,6) 2.73 3.03 2.77 

1010 (4,4) 21.92 22.08 21.92 

2 66 

(4,4) 65.21 80.96 70.88 

(5,5) 60.14 135.38 53.49 

(6,6) 75.79 97.33 54.20 
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1010 (4,4) 424.97 1017.94 437.22 

3 66 

(4,4) 7.30 7.82 7.28 

(5,5) 6.73 6.89 6.95 

(6,6) 7.07 9.65 7.59 

4 66 

(4,4) 259.41 492.97 274.85 

(5,5) 280.22 715.01 281.22 

(6,6) 372.72 732.34 278.29 

5 66 

(4,4) 195.15 206.85 200.07 

(5,5) 196.86 271.62 192.23 

(6,6) 182.71 260.00 194.73 

6  66 

(4,4) 9.32 14.14 10.62 

(5,5) 9.47 11.39 10.78 

(6,6) 10.91 16.02 12.23 

 

Figs. 8-9 show the best results, including the final geometry and the variation of strain energy at each step, of 

GAT-DDPG using (𝑐𝑛, 𝑐𝑚) = (4,4) for 1010-grid shells with structural model 1 and 2, respectively. Even though 

structural configuration differs from those used in the training phase, the trained agent can minimize the strain energy 

by adjusting structural geometry through Bézier control points and obtain reasonable geometries. Hence, the agent 

can be trained using small structural models and deployed into larger ones. Note that, in this experiment, the strain 

energy reduction in the early steps is large because the initial geometry is flat while the strain energy reduction is 

small in the later steps of optimization as shown in (E) of Figs. 8 and 9. 

 
Fig. 8 1010-grid shell: Structural model 1 

 
Fig. 9 1010-grid shell: Structural model 2 
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6.3.2 Verifying the usefulness of the agent for geometry optimization  

This experiment aims to verify the usefulness of the agent for the geometry optimization of latticed shells. The trained 

agent is applied to a 2020-grid latticed shell using the structural model 1 with one case of Bernstein basis functions 

as shown in Fig. 10. The number of steps, 𝑧min , 𝑧max , 𝑧min
b , 𝑧max

b , and ∆𝑧b are 400, 0, 4 m, 0, 8 m, and 0.1 m, 

respectively.  

 
Fig. 10 2020-grid latticed shell (fully braced) with (𝑐𝑛 , 𝑐𝑚) = (6,6); (A) Structural model 1, (B) Bézier control net 

Results of GAT-DDPG obtained from 10 tests are compared with those of PSO and SA utilizing similar 

parameters, schemes, and trials as in Section 6.3.1. In this experiment, the number of particles in PSO is 20 and the 

algorithm is terminated after 40 steps of optimization. The maximum number of SA iterations is 4000. Note that the 

total numbers of structural analysis of the proposed method, PSO, and SA are 4000, 20000, and 20000, respectively. 

Computational costs of PSO and SA are larger than that of GAT-DDPG , which verifies the usefulness of the agent 

for geometry optimization using small computational cost. 

Table 4 shows the comparison between the best result of GAT-DDPG and the best results obtained by PSO and 

SA among different random seeds. The GAT-DDPG agent can obtain a better result than PSO and SA while utilizing 

small computational cost. Therefore, the proposed method can be effective when there are many structural models of 

latticed shells to be optimized; e.g., in the preliminary design process. The final geometry of the best result obtained 

by GAT-DDPG is shown in Fig.11.  

 

Table 4 Strain energy (N⋅m) of the best results obtained from GAT-DDPG , PSO, and SA 

 structural model grid size (𝑐𝑛, 𝑐𝑚) GAT-DDPG (N⋅m) PSO (N⋅m) SA (N⋅m) 

1 2020 (6,6) 284.94 294.49 291.94 

 

 
Fig. 11 2020-grid shell: Structural model 1 
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6.3.3 Verifying ability of the agent when the type of design variables and initial geometry are changed 

In this section, the applicability of the trained agent for solving geometry optimization of fully braced structures that 

have initial irregular geometries using different types of design variables is presented. Structural models in this 

experiment are 1010-grid latticed shells with structural models 1 and 2 and 𝑐𝑛 = 𝑐𝑚 = 4 for the Bernstein basis 

functions, similar to Fig. 7, but the heights of Bézier control points are randomly initialized in the range [0,2] m.  

The number of steps, 𝑧min, 𝑧max, 𝑧min
b , and 𝑧max

b  are 200 steps, 0, 2 m, 0, and 4 m respectively. In this experiment, 

the action is modified so that the agent at step 𝑡 adjusts the Bézier control point 𝑖 using the value directly obtained 

from the output of the policy function as follows: 

A𝑡
𝑖 = {

𝑧𝑖
b = 𝑧𝑖

b + (𝛑𝑖,1 × ∆𝑧b) (if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,1)

𝑧𝑖
b = 𝑧𝑖

b − (𝛑𝑖,2 × ∆𝑧b) (if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,2)

𝑧𝑖
b = 𝑧𝑖

b (if max(𝛑𝑖,1, 𝛑𝑖,2, 𝛑𝑖,3) = 𝛑𝑖,3)

                    (17) 

where ∆𝑧b is 0.1 m. Note that the design variables in this Section are continuous whereas those of Section 6.2, 

Section 6.3.1 and Section 6.3.2 are discrete.  

Ten trials of each structural model optimized by the agent are made to obtain the minimum (min.), mean, and 

standard deviation (std.) of the strain energy for each structural model shown in Table 5. In structural model 1, the 

best result has strain energy similar to those of Section 6.3.1 while in structural model 2, the best result has strain 

energy larger than those of Section 6.3.1 by around 10%. However, it should be noted that the computational cost of 

this section is 50% of those in Section 6.3.1. 

 

Table 5 Results from initial irregular geometries 

structural model grid size (𝑐𝑛, 𝑐𝑚) min. (N⋅m) mean (N⋅m) std. (N⋅m) 

1 1010 (4,4) 21.90 21.92 0.02 

2 1010 (4,4)  468.23 621.06 70.19 

 

Figs. 12 and 13 show the initial geometry, the final geometry, and the history of strain energy from best results 

of 1010-grid latticed shells with structural models 1 and 2, respectively. The agent can obtain reasonably optimized 

geometries despite using different initial geometries and types of design variables.  

 
Fig. 12 1010-grid latticed shell with initial irregular geometry: Structural model 1 
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Fig. 13 1010-grid latticed shell with initial irregular geometry: Structural model 2 

 

7. Conclusion 

In this paper, a combined method has been proposed for geometry optimization of latticed shells to minimize the strain 

energy utilizing DDPG and GAT. The proposed DDPG agent with a GAT framework allows the agent to process the 

whole structural configuration and response together with the Bézier control net using graph manipulations inside the 

GAT architecture. The structure is formulated as graphs where node feature matrices, adjacency matrices, and 

weighted adjacency matrices are utilized to represent structural configuration, internal forces, and Bézier control net 

configuration. The agent is trained for the geometry optimization task by adjusting Bézier control points in an MDP 

environment where the agent collects its training data. During the training phase, the value function updates its internal 

trainable parameters to minimize the prediction loss of obtained reward while the policy function updates its trainable 

parameters to do actions that maximize the reward defined using the strain energy of the structure.  

Numerical examples show that, even though the structural size, Bézier grid size, and bracing orientations change 

from those in the training phase, the trained agent can optimize structural geometry to reduce the strain energy and 

obtain competitive results with PSO and SA but requires less computational cost. Therefore, the proposed method can 

become useful when the optimization problem should be solved many times; e.g., in the preliminary design process 

of a latticed shell. The proposed method is also versatile for optimizing structures when the type of design variables 

and initial geometries differ from the training phase.  

It should be noted that the agent requires a considerable computational cost during the training phase. However, 

once the agent is trained, it can be deployed into other compatible computational tools and used for larger structures 

without retraining. Therefore, the efficiency of the proposed method depends relatively on the number of problems it 

is applied to after the training. 

The proposed method is expected to be a component for solving more complex problems such as simultaneous 

geometry optimization and topology optimization, also called layout optimization which are our future research 

interests.  

 

Data statement 

Experiment data from this study are accessible to corresponding authors upon request. 
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