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Abstract

Explainability plays an increasingly important role in ma-
chine learning. Furthermore, humans view the world through
a causal lens and thus prefer causal explanations over asso-
ciational ones. Therefore, in this paper, we develop a causal
explanation mechanism that quantifies the causal importance
of states on actions and such importance over time. We also
demonstrate the advantages of our mechanism over state-of-
the-art associational methods in terms of RL policy expla-
nation through a series of simulation studies, including crop
irrigation, Blackjack, collision avoidance, and lunar lander.

1 Introduction
Reinforcement learning (RL) is increasingly being consid-
ered in domains with significant social and safety implica-
tions such as healthcare, transportation, and finance. This
growing societal-scale impact has raised a set of concerns,
including trust, bias, and explainability. For example, can
we explain how an RL agent arrives at a certain decision?
When a policy performs well, can we explain why? These
concerns mainly arise from two factors. First, many popu-
lar RL algorithms, particularly deep RL, utilize neural net-
works, which are essentially black boxes with their inner
workings being opaque not only to lay persons but also to
data scientists. Second, RL is a trial-and-error learning algo-
rithm in which an agent tries to find a policy that minimizes a
long-term reward by repeatedly interacting with its environ-
ment. Temporal information such as relationships between
states at different time instances plays a key role in RL and
subsequently adds another layer of complexity compared to
supervised learning.

The field of explainable RL (XRL), a sub-field of explain-
able AI (XAI), aims to partially address these concerns by
providing explanations as to why an RL agent arrives at a
particular conclusion or action. While still in its infancy,
XRL has made good progress over the past few years, partic-
ularly by taking advantage of existing XAI methods (Puiutta
and Veith 2020; Heuillet, Couthouis, and Dı́az-Rodrı́guez
2021; Wells and Bednarz 2021). For instance, inspired by
the saliency map method (Simonyan, Vedaldi, and Zisser-
man 2014) in supervised learning which explains image
classifiers by highlighting “important” pixels in terms of
classifying images, some XRL methods attempt to explain
the decisions made by an RL agent by generating maps that

highlight “important” state features (Iyer et al. 2018; Grey-
danus et al. 2018; Mott et al. 2019). However, there exist at
least two major limitations in state-of-the-art XRL methods.
First, the majority of them take an associational perspective.
For instance, the aforementioned studies quantify the “im-
portance” of a feature by calculating the correlation between
the state feature and an action. Since it is well known that
“correlation doesn’t imply causation” (Pearl 2009), it is pos-
sible that features with a high correlation may not necessar-
ily be the real “cause” of the action, resulting in a mislead-
ing explanation that can lead to user skepticism and possibly
even rejection of the RL system. Second, temporal informa-
tion is not generally considered. Temporal effects, such as
the interaction between states and actions over time, which
as mentioned previously is essential in RL, are not taken into
account.

Figure 1: Causal graph of the crop irrigation problem. En-
dogenous and exogenous states are denoted by dashed and
solid rectangles, respectively, while actions are denoted by
circles. More details about causal graphs can be found in the
Preliminaries section.

In this paper, we propose a causal XRL mechanism.
Specifically, we explain an RL policy by incorporating a
causal model that we have about the relationship between
states and actions. To best illustrate the key features of our
XRL mechanism, we use a concrete crop irrigation prob-
lem as an example, as shown in Fig. 1 (more details can be
found in the Evaluation section). In this problem, an RL
policy π controls the amount of irrigation water (It) based
on the following endogenous (observed) state variables: hu-
midity (Ht), crop weight (Ct), and radiation (Dt). Its goal
is to maximize the crop yield during harvest. Crop growth
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is also affected by some other features, including the ob-
served precipitation (Pt) and other exogenous (unobserved)
variables Ut. To explain why policy π arrives at a particular
action It at the current state, our XRL method quantifies the
causal importance of each state feature, such as Ht, in the
context of this action It via counterfactual reasoning (Byrne
2019; Miller 2019), i.e., by calculating how the action would
have changed if the feature had been different.

Our proposed XRL mechanism addresses the aforemen-
tioned limitations as follows. First, our method can gener-
ate inherently causal explanations. To be more specific, in
essence, importance measures used in associational meth-
ods can only capture direct effects while our causal impor-
tance measures capture total causal effects. For example, for
the state feature Ht, our method can account for two causal
chains: the direct effect chain Ht → It and the indirect ef-
fect chain Ht → Ct → It, while associational methods only
consider the former. Second, our method can quantify the
temporal effect between actions and states, such as the ef-
fect of today’s humidity Ht on tomorrow’s irrigation It+1. In
contrast, associational methods, such as saliency map (Grey-
danus et al. 2018), cannot measure how previous state fea-
tures can affect the current action because their models only
formulate the relationship between state and action in one
time step and ignore temporal relations. To the best of our
knowledge, our XRL mechanism is the first work that ex-
plains RL policies by causally explaining their actions based
on causal state and temporal importance. It has been studied
that humans are more receptive to a contrastive explanation,
i.e., humans answer a “Why X?” question through the an-
swer to the often only implied-counterfactual “Why not Y
instead?” (Hilton 2007; Miller 2019). Because our causal ex-
planations are based on contrastive samples, users may find
our explanations more intuitive.

2 Related Work
Explainable RL (XRL) Based on how an XRL algo-
rithm generates its explanation, we can categorize existing
XRL methods into state-based, reward-based, and global
surrogate explanations (Puiutta and Veith 2020; Heuillet,
Couthouis, and Dı́az-Rodrı́guez 2021; Wells and Bednarz
2021). State-based methods explain an action by highlight-
ing state features that are important in terms of generat-
ing the action (Greydanus et al. 2018; Puri et al. 2019).
Reward-based methods generally apply reward decomposi-
tion and identify the sub-rewards that contribute the most
to decision making (Juozapaitis et al. 2019). Global surro-
gate methods generally approximate the original RL policy
with a simpler and transparent (also called intrinsically ex-
plainable) surrogate model, such as decision trees, and then
generate explanations with the surrogate model (Verma et al.
2018). In the context of state-based methods, there are gen-
erally two ways to quantify feature importance: (i) gradient-
based methods, such as simple gradient (Simonyan, Vedaldi,
and Zisserman 2013) and integrated gradients (Sundarara-
jan, Taly, and Yan 2017), and (ii) sensitivity-based meth-
ods, such as LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017). Our work belongs to the
category of state-based methods. However, instead of us-

ing associations to calculate importance, a method generally
used in existing state-based methods, our method adopts a
causal perspective. The benefits of such a causal approach
have been discussed in the Introduction section.

Causal Explanation Causality has already been utilized
in XAI, mainly in supervised learning settings. Most ex-
isting studies quantify feature importance by either using
Granger causality (Schwab and Karlen 2019) and average or
individual causal effect metric (Chattopadhyay et al. 2019)
or by applying random valued interventions (Datta, Sen, and
Zick 2016). Two recent studies (Madumal et al. 2020) and
(Olson et al. 2021) are both focused on causal explanations
in an RL setting. Compared with (Madumal et al. 2020), the
main difference is that we provide a different type of expla-
nation. Our method involves finding an importance vector
that quantifies the impact of each state feature, while (Mad-
umal et al. 2020) provides a causal chain starting from the
action. We also demonstrate the ability of our approach to
provide temporal importance explanations that can capture
the impact of a state feature or action on the future state
or action. This aspect has been discussed in the crop irriga-
tion experiment in Section 6.1. Additionally, we construct
structural causal models(SCM) differently. While the action
is modeled as an edge in the SCM in the paper (Madumal
et al. 2020), our method formulates the action as a vertex
in the SCM model, allowing us to quantify the state feature
impact on action. As for (Olson et al. 2021), our approach is
unique in that it can calculate the temporal importance of a
state, which is not achievable by their method. Furthermore,
we have provided a value-based importance definition of Q-
value that differs from their method. Another significant dif-
ference between our approach and (Olson et al. 2021) is the
underlying assumption. Our method takes into account intra-
state relations, which are ignored in Olson’s work. Neglect-
ing intra-state causality is more likely to result in an invalid
state after the intervention, leading to inaccurate estimates
of importance. Therefore, our approach considers the causal
relationships between state features to provide a more accu-
rate and comprehensive explanation of the problem.

3 Preliminaries
We introduce the notations used throughout the paper. We
use capital letters such as X to denote a random variable
and small letters such as x for its value. Bold letters such as
X denote a vector of random variables and superscripts such
as X(i) denote its i-th element. Calligraphic letters such as
X denote sets. For a given natural number n, [n] denotes the
set {1, 2, · · · , n}.

Causal Graph and Skeleton Causal graphs are proba-
bilistic graphical models that define data-generating pro-
cesses (Pearl 2009). Each vertex of the graph represents a
variable. Given a set of variables V = {Vi, i ∈ [n]}, a di-
rected edge from a variable Vj to Vi denotes that Vi responds
to changes in Vj when all other variables are held constant.
Variables connected to Vi through directed edges are defined
as the parents of Vi, or “direct causes of Vi,” and the set
of all such variables is denoted by Pai. The skeleton of a



causal graph is defined as the topology of the graph. The
skeleton can be obtained using background knowledge or
learned using causal discovery algorithms, such as the clas-
sical constraint-based PC algorithm (Spirtes et al. 2000) and
those based on linear non-Gaussian models (Shimizu et al.
2006). In this work, we assume the skeleton is given.

SCM In a causal graph, we can define the value of each
variable Vi as a function of its parents and exogenous vari-
ables. Formally, we have the following definition of SCM:
let V = {Vi, i ∈ [n]} be a set of endogenous(observed)
variables and U = {Ui, i ∈ [n]} be a set of exoge-
nous(unobserved) variables. A SCM (Pearl 2009) is defined
as a set of structural equations in the form of

Vi = fi(Pai, Ui),Pai ⊂ V, Ui ⊂ U , i ∈ [n], (1)

where function fi represents a causal mechanism that deter-
mines the value of Vi using its parents and the exogenous
variables.

Intervention and Do-operation SCM can be used for
causal interventions, denoted by the do(·) operator. do(Vi =
v) means setting the value of Vi to a constant v regardless
of its structural equation in the SCM, i.e., ignoring the edges
into the vertex Vi. Note that the do-operation differs from
the conditioning operation in statistics. Conditioning on a
variable implies information about its parent variables due
to correlation.

Counterfactual Reasoning Counterfactual reasoning al-
lows us to answer “what if” questions. For example, assume
that the state is Xt = x and the action is At = a. We are
interested in knowing what would have happened if the state
had been at a different value x′. This implies a counterfac-
tual question (Pearl 2009). The counterfactual outcome of
At can be represented as At,Xt=x′ |Xt = x,At = a. Given
an SCM, we can perform counterfactual reasoning based on
intervention through the following two steps:
1. Recover the value of exogenous variable U as u through

the structural function f and the values Xt = x, At = a;
2. Calculate the counterfactual outcome as At|do(Xt =

x′), U = u. More specifically, in SCM, we set up the
value of Xt to x′. Then we substitute all exogenous vari-
able values to the right side of the functions and get the
counterfactual outcome At.

MDP and RL An infinite-horizon Markov Decision Pro-
cess (MDP) is a tuple (S,A, P,R) , where S ∈ Rm and
A ∈ R are finite sets of states and actions, P (s, a, s′) is the
probability of transitioning from state s to state s′ after tak-
ing action a, and R(s, a) is the reward for taking a in s. An
RL policy π returns an action to take at state s, and its asso-
ciated Q-function, Qπ(s, a), provides the expected infinite-
horizon γ-discounted cumulative reward for taking action a
at state s and following π thereafter.

4 Problem Formulation
Our focus is on policy explainability, and we assume that the
policy π and its associated Q-function, Qπ(s, a), are given.
Note that the policy may or may not be optimal. We require

a dataset containing trajectories of the agent interacting with
the MDP using the policy π. A single trajectory consists of a
sequence of (s, a, r, s′) tuples. Additionally, We assume that
the skeleton of the causal graph, such as the one shown in
Fig. 1 for the crop irrigation problem, is known. We do not
assume that the SCM, more specifically its structural func-
tions, is given. We assume the additive noise for the SCM
but not its linearity (discussed in Eq. (2) in Section 5.1). The
goal is to answer the question “why does the policy π se-
lect the current action a at the current state s?” We provide
causal explanations for this question from two perspectives:
state importance and temporal importance.

Importance vector for state The first aspect of our ex-
planation is to use the important state feature to provide an
explanation. Specifically, we seek to construct an impor-
tance vector for the state, where each dimension measures
the impact of the corresponding state feature on the action.
For instance, in the crop irrigation problem, we can answer
the question “why does the RL agent irrigate more water to-
day?” by stating that “the impact of humidity, crop weight,
and radiation on the current irrigation decision is quantified
as [0.8, 0.1, 0.1] respectively. Formally, we have the follow-
ing definition of the importance vector for state explanation.
Given state st and policy π, the importance of each feature
of st for the current action at is quantified as wt. The expla-
nation is that the features in state st have causal importance
wt on policy π to select action at at state st.

Temporal importance of action/state The second aspect
of our explanation considers the temporal aspect of RL.
Here, we measure how the actions and states in the past
impact the current action. We can generalize the impor-
tance vector above to past states and actions. Formally, given
state st, policy π and the history trajectory of the agent
Ht := {(sτ , aτ ), τ ≤ t}, we define the effect of a past action
aτ on the current action at as waτ

t . Similarly, for a past state
sτ , we define the temporal importance vector wτ

t , in which
each dimension measures the impact of the corresponding
state feature at time step τ on current action at. Then we use
waτ

t and wτ
t to quantify the impact of past states and action.

5 Explanation
5.1 Importance Vector for State
Our mechanism implements the following two steps to ob-
tain the importance vector wt.

1. Train SCM structural functions between the states and
actions using the data of historical trajectories of the RL
agent;

2. Compute the important vector by intervening in the
SCM.

First, we notice that there are three types of causal re-
lations between the states and actions: intra-state, policy-
defined, and transition-defined relations. As shown in Fig. 2,
the green directed edges represent the intra-state relations,
which are defined by the underlying causal mechanism. The
orange edges describe the policy and represent how the
state variables affect the action. The third type of relation



Figure 2: Example causal graph between the state and ac-
tion. S(i)

t is the i-th dimension of the interested state S at
time t. Each vertex also has a corresponding exogenous vari-
able, which has no parent and its only child is the associated
endogenous variable. Per causality conventions, the exoge-
nous variables are omitted in the graph.

shown as blue edges is the causal relationship between the
states across different times. They represent the dynamics
of the environment and depend on the transition probability
P (st, at, st+1) in the MDP.

We assume that the intra-state and transition-defined
causal relations are captured by the causal graph skeleton.
For the policy-defined relations, we assume a general case
where all state features are the causal parents of the action.
In the causal graph, each edge defines a causal relation, and
the vertex defines a variable V with a causal structural func-
tion f . Then we only need to learn the causal structural func-
tions between the vertices. To achieve this, we can learn each
vertex’s function separately. For a vertex Vi and its parents
Pai, based on Eq. (1), we make an additive noise assump-
tion to simplify the problem and formulate the function map-
ping between Vi and Pai as

Vi = fi(Pai) + Ui, (2)

where Ui is an exogenous variable. We note that the additive
noise assumption is widely used in the causal discovery lit-
erature (Hoyer et al. 2008; Peters et al. 2014). We then use
supervised learning to learn the function mapping among the
vertices. Specifically, fa for action at is defined as

At = fa(S
(1)
t , · · · ,S(m)

t , Ua),

where m is the dimension of the state, and Ua is the exoge-
nous variable for the actions.

For the state variables, we denote all exogenous variables
as a vector US := [U1, · · · , Um] and learn the structural
functions. Intuitively, the exogenous variables Ua and US

represent not only random noise but also hidden features or
the stochasticity of the policy for the intra-state and policy-
defined causal relations. For transition-defined relations, the
exogenous variables can be regarded as the stochasticity in
the environment.

5.2 Action-based Importance
Given a state st and an action at, the importance vector wt

is calculated by applying intervention on the learned SCM.

Based on the additive noise assumption, we recover the val-
ues of the exogenous variables Us and Ua according to the
value of at, st and the learned causal structural functions.
Then we define wt using the intervention operation (coun-
terfactual reasoning). Specifically, we define the importance
vector wt = [w

(1)
t , · · · ,w(m)

t ] as

w
(i)
t =

∣∣∣(At,S
(i)
t =s

(i)
t +δ

∣∣∣St = st, At = at

)
− at

∣∣∣
δ

, (3)

where | · | is a vector norm (e.g., absolute-value norm) and δ
is a small perturbation value chosen according to the prob-
lem setting. The term A

t,S
(i)
t =s

(i)
t +δ

|St = st, At = at rep-

resents the counterfactual outcome of At if we set S(i)
t =

s
(i)
t + δ. In our case, the value of the exogenous variables

can be recovered using the additive noise assumption, so the
value of A

t,S
(i)
t =s

(i)
t +δ

|St = st, At = at can be determined.

We interpret the result as that the features with a larger w(i)
t

have a more significant causal impact on the agent’s action
at. Note that in the simulation, we average the importance
from both positive and negative δ and return the average as
the final score. The perturbation amount δ is a hyperparame-
ter and should be selected according to each problem setting.

5.3 Q-value-based Importance
While action-based importance can capture the causal im-
pact of states on the change of the action, it may not cap-
ture the more subtle causal importance when the selected
action does not change, especially when the action space is
discrete. Specifically, A

t,S
(i)
t =s

(i)
t +δ

|St = st, At = at may
not change after a perturbation of δ, which will result in a
w

(i)
t = 0. However, this is different from when there are no

causal paths from feature S
(i)
t to the action At, also result-

ing in a w
(i)
t = 0. Therefore, we also define Q-value-based

importance as follows:

Qw
(i)
t =

|Qperturb
π −Qπ(st, at)|

δ
, (4)

where Qperturb
π = Qπ(St,S

(i)
t =s

(i)
t +δ

, A
t,S

(i)
t =s

(i)
t +δ

|St =

st, At = at). In detail, we use counterfactual reasoning to
compute the counterfactual outcome of At and St after set-
ting S

(i)
t = s

(i)
t + δ and then substituting them into Qπ to

evaluate the corresponding Q-value. Similar to the action-
based importance, we account for both positive and nega-
tive importance in practice. See the Blackjack Section 6.3 in
evaluation for a comparison between Eq. (3) and Eq. (4) on
an example with a discrete action space.

In most RL algorithms, Q-value critically impacts which
actions to choose. Therefore, we consider Q-valued-based
importance as explanations on the action through the Q-
value. However, we note that the Q-value-based importance
method sometimes cannot reflect which features the policy
really depends on. Some features may contribute largely to
the Q-value of all state-action pairs ({Q(st, at), at ∈ A},
but not to the decision making process - the action with



the largest Q-value (argmaxat∈A Q(st, at)). In such cases,
these features may have an equal impact on the Q-value re-
gardless of the action. For example, in the crop irrigation
problem, crop pests have an impact on the crop yield (Q-
value) but don’t impact the amount of irrigation water (the
action). Some related simulations are shown in Appendix C.
In summary, we suggest using the action-based importance
method by default and the Q-value-based method as a sup-
plement.

5.4 Temporal Importance and Cascading SCM
Temporal importance allows us to quantify the impact of
past states and actions on the current action. In RL, esti-
mating of temporal effect is important because policies are
generally non-myopic, and actions should affect all future
states and actions. To measure the importance beyond the
previous step, we define an extended causal model that in-
cludes state features and actions in the previous time step,
as shown in Fig. 1. In this model, the vertices in the graph
are {Sτ , Aτ}Tτ=1. For simplicity, we assume the system is
stationary, so the causal relations are stationary and do not
change over time. Therefore, the structural functions are the
same as those defined in Fig. 2, i.e., the mechanism of an
edge (S

(i)
τ ,S

(j)
τ+1) will be the same as the edge (S

(i)
t ,S

(j)
t+1).

The extended causal model can be regarded as a cascade of
multiple copies of the same module, where each module is
similar to that in Fig. 2. We can estimate the effect of per-
turbing any features or actions at any step through interven-
tion, and the effect will propagate through the modules to
the final time step. We illustrate the temporal importance in
the Blackjack experiment in Section 6.3.

5.5 Comparison with Associational Methods
In Eq. (3), we define importance by applying intervention.
If we change the do action to the conditioning operation,
we have the following definition, which is the same as the
association-based saliency map method:

salw
(i)
t =

|At|St=[s
(1)
t , · · ·, s(i)t +δ, · · ·, s(m)

t ]− at

∣∣∣
δ

(5)

Associational models cannot perform individual-level
counterfactual reasoning and hence cannot infer the coun-
terfactual outcome after changing the value of one feature of
the current state. As pointed out by (Pearl 2009), counter-
factual reasoning can infer the specific property of the con-
sidered individual that is related to the exogenous variables,
and then derives what would have happened if the agent had
been in an alternative state. In our method, we use counter-
factual reasoning to recover the environment at the current
state and estimate how the action responds to the change in
one of the state features. So our causal importance can cap-
ture more insights compared to the associational methods.

In Fig. 3, we use a one-step MDP toy example to demon-
strate the difference. Omitting the time step subscript in
the notation, we assume the policy is defined on the state
space S = [S(1),S(2),S(3)]. An observed variable Vp is
a causal parent of S(3) but is not defined in the state

space. We define the ground truth of the state and policy as
Eq. (6), where c1, c2, c3, c12, cp are constant parameters and
Ua, U1, U2, U3, Up are exogenous variables. We use a linear
SCM to show the difference between the two methods. We
do not assume the SCM to have linear dependencies.



S(1) =U1

S(2) =c12S
(1)+U2

S(3) =cpVp+U3

A =c1S
(1)+c2(S

(2))2+c3S
(3)+Ua

Vp =Up

(6)

Figure 3: Example of a one-step MDP

We assume that both the associational method saliency
map and our causal method can learn the ground truth func-
tions. Given a state s, the importance vectors using the two
methods are compared in Table 1. We notice that, for s(1),
our method can capture the effect of s(1) through two causal
chains S(1) → A and S(1) → S(2) → A, while the saliency
map method captures only S(1) → A. Our causal method
considers the fact that a change in S(1) will result in a
change of S(2) and thus additionally influence the action A.
The non-direct paths are also meaningful in explanation and
should be considered in measuring the importance of S(1).
However, they are ignored in the saliency map method. The
causal importance vector for s(1) also considers the effect
of u2, which is recovered through counterfactual reasoning.
This makes the causal-based importance specific to the cur-
rent state. Additionally, our method can calculate the effect
of Vp on the action A, which can not be achieved by the
associational method saliency map.

Table 1: Importance vector on the environment in Fig. 3 us-
ing our method and the saliency map method.

Our method Saliency map
s(1) c1 + c2c12(c12(2s

(1) + δ) + 2u2) c1
s(2) c2(2s

(2) + δ) c2(2s
(2) + δ)

s(3) c3 c3
vp cpc3 N/A

We also note that for features s(2) and s(3), the two meth-
ods obtain the same result. In cases where a state feature is
(1) not a causal parent of other features, (2) the policy is
deterministic, and (3) there are no exogenous variables, our
method is equivalent to the saliency-style approach. How-
ever, these conditions may not be common in RL. In gen-
eral, there are causal relations among state features, such as
the chess positions in the game of chess, the state features
[position, velocity, acceleration] in a self-driving problem,
and the state features [radiation, temperature, humidity] in a
greenhouse control problem.



6 Evaluation
We test our causal explanation framework in three toy envi-
ronments: crop irrigation (Section 6.1), collision avoidance
(Section 6.2), and Blackjack (Section 6.3). We also conduct
experiments on Lunar Lander, which is a more sophisticated
RL environment (Appendix A.4). For each experiment, the
system dynamics, policy, training details, and perturbation
values used can be found in Appendix A.

6.1 Crop Irrigation Problem
We show the results of our explanation algorithm for the
crop irrigation problem. We assume a simplified environ-
ment dynamic based on agriculture models (Williams et al.
1989). The growth of the plant at each step is determined
by the state features humidity (Ht), crop weight (Ct), and
radiation (Dt). The policy controls the amount of water to
irrigate each day. Intuitively, it irrigates more when the crop
weight is high, and less when the crop weight is low. Details
about the environment dynamics and policy are described in
Appendix A.1. We use Fig. 1 as the causal skeleton and ap-
ply a neural network to learn the structural equations. Fig. 4
shows the importance vector of the state for a given envi-
ronment [Pt = 0.07, Ht = 0.12, Ct = 0.44, Dt = 0.70]
and its corresponding action It = 0.67. First, we notice
that our method can estimate the importance of the feature
precipitation(Pt), which is not defined in the state space of
the policy. Second, in estimating the causal importance of
Ht, our method can estimate the effect of Ht → Ct → It,
which results in higher importance compared to the saliency
map method. Since an intervention on Ht can induce a
change in Ct, causing the action to change more drastically.
This effect cannot be measured without a causal model. The
same applies to the feature Dt. The full trajectory and the
importance vector at each time step can be found in Fig. 10
in Appendix A.1.

The causality-based action influence model (Madumal
et al. 2020) can find a causal chain It → Ct →
CropYield and provide the explanation as “the agent
takes current action to increase Ct at this step, which aims
to increase the eventual crop yield.” This explanation only
provides the information that Ct is an important factor in
the decision-making for the current action but can’t quan-
tify it. Moreover, this explanation can’t provide information
for other state features, such as Ht and Dt which are also
measured in our importance vector.

6.2 Collision Avoidance Problem
We use a collision avoidance problem to further illustrate
that our causal method can find a more meaningful impor-
tance vector than saliency map, i.e., which state feature is
more impactful to decision-making.

Fig. 5a shows the state definition for this problem. A car
with zero initial velocity travels from the start point to an
endpoint over a distance of Xgoal. The system is controlled
in a discrete-time-slot manner and we assume acceleration
of the car is constant within each time step. The state St in-
cludes the distance from the start Xt, the distance to the end
Dt, and the velocity Vt of the car, i.e., St := [Vt, Xt, Dt],

Figure 4: The importance vector for the crop irrigation prob-
lem.

where Vt ≤ vmax and vmax is the maximum speed of the
car. The action At is the car’s acceleration, which is bounded
|At| ≤ emax. We assume the acceleration of the car is con-
stant within each time step. More detailed settings are de-
scribed in the simulation section in the supplementary ma-
terials. The objective is to find a policy π to minimize the
traveling time under the condition that the final velocity is
zero at the endpoint (collision avoidance).

An RL agent learns the following optimal control pol-
icy for this avoidance problem, which is also known as the
bang-bang control (optimal under certain technical condi-
tions) (Bryson 1975):

At =

{
emax if Dt ≤ v2max/(2emax)

−emax otherwise
(7)

Intuitively, this policy accelerates as much as possible until
reaching the critical point defined above. Then it will decel-
erate until reaching the goal.

a The state definition

b The causal graph of states and actions

Figure 5: The collision avoidance problem and its
corresponding SCM skeleton.



We use Fig. 5b as the SCM skeleton and use linear regres-
sion to learn the structural equations as the entire dynamics
are linear. The detail about the system dynamics is described
in the appendix.

a A trajectory of using bang-bang control on the collision
avoidance problem.

b The result importance from our algorithm on the trajectory in
Fig. 6a.

Figure 6: Trajectory and importance on the collision
avoidance problem

Fig. 6a shows a trajectory under the policy bang-bang
control and Fig. 6b shows its corresponding causal impor-
tance results. The importance of Vt, At−1, Dt−1, Vt−1 are
zero throughout the time history, and those of Xt, Dt, Xt−1

have peak importance of [0.502, 0.502, 0.502] , respectively,
between time step 303-322, during which the car changes
the direction of acceleration to avoid hitting the obstacle.
The importance curves of Xt, Dt, and Xt−1 have the same
shape, but that of Xt−1 is off by one time step, correspond-
ing to their time step subscript. If we were to use the asso-
ciational saliency method (Greydanus et al. 2018) Xt would
have a constant zero importance since the action is solely
determined by the feature Dt. In comparison, our method
can find non-zero importance through the edge Xt → Dt.
It is reasonable that Xt causally affects At, because, in the
physical world, the path length Xt is the cause of the mea-
surement of the distance to the end Dt. Although in Eq. (7)
the action At is only decided by Dt, the source cause of the
change in Dt is Xt. We can only obtain such information
through a causal model, not an associational one.

6.3 Blackjack

We test our explanation mechanism on a simplified game of
Blackjack. The state is defined as [hand, ace, dealer],
where hand represents the sum of current cards in hand,
ace represents if the player has a usable ace (an ace that
can either be a 1 or an 11), and dealer, is the value of
the dealer’s shown card. There are two possible actions: to
draw a new card or to stick and end the game. We use
an on-policy Monte-Carlo control (Sutton and Barto 2018)
agent to test our mechanism. Since the problem dynamic is
non-linear, we use a neural network to learn each structural
equation. Fig. 7 shows the skeleton of the SCM. More details
about the rules of the game are explained in Appendix A.2.
Note that in Blackjack, the exogenous variable Ui of some
features can be interpreted as the stochasticity or the “luck”
during the input trajectory. e.g., Uhand,t corresponds to the
value of the card drawn at step t if the previous action is
draw.

Figure 7: The skeleton of the Blackjack SCM.

Using Q-values as Metric The solid bars in Fig. 8 on
the next page show the result of Q-value-based importance
based on Eq. (4). We interpret the result as follows: (1)
The importance of all features are highest at step 1. This
is because state 1 is closest to the decision boundary of
the policy, and thus applying a perturbation at this step is
easier to change the Q-value distribution; (2) The impor-
tance of dealer and dealer prev are the same through-
out the trajectory. This is due to the fact that dealer
and dealer prev are always the same. Thus, applying a
perturbation on dealer prev will have the same effect
as applying a perturbation on dealer assuming changing
dealer prev won’t incur a change in the previous ac-
tion; (3) A similar phenomenon can be observed between
hand and hand prev. Increasing the hand at step t − 1
by one will have the same outcome as drawing a card with
one higher value at t. The occasional difference comes from
the change in hand prev causing a prev to change; (4)
The importance of ace is highest at steps 2 and 5. In both
of these two states, changing if the player has an ace or not
while keeping other features the same will change the best
action and a larger difference in the Q-values, which causes
the importance to be higher.



Figure 8: A trajectory of a blackjack game and the result from running our mechanism using either the Q-values or the action
as the metric. In each sub-graph, the top figure shows the state, and the usable ace is highlighted in red if present. The bottom
figure shows the importance of each feature. The solid bars are the Q-value-based importance and the hatched bars are the
action-based importance. Note that at step 1, the importance for the previous hand, previous dealer, previous ace, and previous
action are not applicable since there is no previous state for the first state.

Using Action as Metric The hatched bars in Fig. 8 show
the result of action-based importance based on Eq. (3). The
importance is more “bursty”, and features, such as hand,
have an importance of zero in the majority of the steps since
a perturbation of size one could not trigger a change in the
action. However, intuitively, hand is crucial to the agent’s
decision-making. Therefore, in this case, we note that the Q-
value-based method produces a more reasonable explanation
in this example.

Multi-Step Temporal Importance We cascade the causal
graph of blackjack in Fig. 7 to estimate the impact of the past
states and actions on the current action, and the full SCM is
shown in Fig. 12 in Appendix A.2. Fig. 9 shows the results of
Q-value-based importance. The importance of A4 on itself is
omitted since it will always be one regardless of any other
part of the graph. We interpret the results as follows: (1) The
importance of handτ and dealerτ is flat over time. As
discussed above, perturbing these two features at any given
step will mostly change the last state in the same way, result-
ing in constant importance; (2) The importance of the action
aτ increases as τ gets closer to the last step t = 4. An action
taken far in the past should generally have a smaller impact
on the current action, which corresponds to the increasing
importance for aτ in our explanation.

6.4 Additional Evaluation
We also evaluate our scheme in a more complex RL en-
vironment, Lunar Lander, in Appendix A.4. Lunar Lander

is a simulation testing environment developed by OpenAI
Gym (Brockman et al. 2016). The simulation shows that our
scheme can explain some specific phases(state) of the space-
ship in the landing process.

Figure 9: The Q-value-based temporal importance on A4 for
all state features and actions at past time steps in the Black-
jack experiment.

7 Discussions
Our causal importance explanation mechanism is a post-hoc
explanation method that uses data collected by an already
learned policy. We focus on providing local explanations
based on a particular state and action. Counterfactual rea-
soning is required to recover the exogenous variables and



estimate the effect on the given state and action. In this case,
the intervention operation is not enough to achieve this goal,
as it can only evaluate the average results (population) over
the exogenous variables, which is not a local explanation for
the given state.

Intra-state Relations One crucial characteristic of our
method is that we consider intra-state relations when com-
puting the importance, which is essential in accurately quan-
tifying the impact of a state feature on the action. Although
the MDP defines that a state feature at a certain time step
cannot affect another state feature at the same step, it is es-
sential to consider causal relationships within state features
when measuring their impact if we use causal intervention or
associational perturbation. Since these types of methods re-
quire modifying the value of a specific state feature, it should
subsequently affect the value of other state features based
on real-world causality. For instance, in the collision avoid-
ance problem (Section 6.2), the distance to the end (Dt) will
change in response to the distance from the start (Xt), and
in the crop irrigation problem (Section 6.1), the crop weight
(Ct) will vary based on the humidity level (Ht). Ignoring the
intra-state causality can lead to an invalid state after the in-
tervention, resulting in inaccurate importance estimates for
the given state feature. Hence, we formulate the intra-state
relations in the SCM to provide more accurate and compre-
hensive explanations of the problem.

Additive Noise Assumption With the additive noise as-
sumption in Eq. (2), the exogenous variable (noise) can be
fully recovered and used for counterfactual reasoning. We
note that the full recovery noise assumption can be relaxed
for our mechanism. In the case where the exogenous vari-
ables have multiple values (not deterministic), we can gen-
eralize our definition of importance vector in Eq. (3) by re-
placing the first term with the expectation over different val-
ues of exogenous variables using probabilistic counterfac-
tual reasoning (Glymour, Pearl, and Jewell 2016). Further-
more, the additive noise assumption is not mandatory. We
can use bidirectional conditional GAN (Jaiswal et al. 2018)
to model the structure function and use its noise to conduct
counterfactual reasoning and obtain the importance vector.

Known SCM Skeleton Assumption Our approach is
based on the assumption that the SCM skeleton is known,
which can be obtained either through background knowl-
edge of the problem or learned using causal discovery al-
gorithms. Causal discovery aims to identify causal relations
by analyzing the statistical properties of purely observa-
tional data. There are several causal discovery algorithms
available, including the classical constraint-based PC algo-
rithm (Spirtes et al. 2000), algorithms based on linear non-
Gaussian models (Shimizu et al. 2006), and algorithms that
use the additive noise assumption (Hoyer et al. 2008; Peters
et al. 2014). These algorithms can be used to learn the SCM
skeleton from observational data, which can then be used in
our method to quantify the impact of state features and ac-
tions on the outcome. There are also existing toolboxes such
as (Kalainathan and Goudet 2019) and (Zhang et al. 2021)
that can be easily applied directly to data to identify the SCM

structure.

Perturbation In addition to the method we employed in
the simulation, which averages the importance derived from
both positive and negative δ, maximizing them is also a vi-
able option.To compute the causal importance vector de-
fined in Eq. (3), we need to choose a perturbation value
δ. As shown in Table 1, the importance may depend on δ.
Therefore, it is not meaningful to compare importance vec-
tors calculated with different δ. This is a common issue of
perturbation-based algorithms, including the saliency map
method. In our case, δ should be as small as possible but
still be computationally feasible. More detailed sensitivity
analysis and normalization on the perturbation value δ can
be found in Appendix B.

Limitations Our study has limitations when the state
space has high dimensions, for example, in visual RL, where
state features are represented as images. Image data is inher-
ently high-dimensional, with multiple features that can in-
teract in complex ways. The SCMs we used may struggle to
fully capture the complexity of these interactions, especially
when a large number of variables are involved. To address
this issue, we suggest utilizing the algorithm of causal dis-
covery in images (Lopez-Paz et al. 2017) and representation
learning (Yang et al. 2021). Further work is needed to ex-
plore this direction.

Another question that might be raised is what will hap-
pen if the trained SCM is not perfect. An imperfect SCM
will cause the counterfactual reasoning result to be biased,
and thus affecting the final importance. One potential solu-
tion is quantifying the uncertainty of the explanation. If the
explainer can output its confidence on top of the importance
score, users can identify potential out-of-distribution sam-
ples where our explanation framework might fail. To achieve
this, we need to separate aleatoric uncertainty (which comes
from the inherent variability in the environment) and epis-
temic uncertainty (which represents the imperfection of the
model) (Gawlikowski et al. 2021). Our use of SCM may help
us to differentiate the two, and this is one of the directions
we are currently exploring.

8 Conclusion
In this paper, we have developed a causal explanation mech-
anism that quantifies the causal importance of states on ac-
tions and their temporal importance. Our quantitative and
qualitative comparisons show that our explanation can cap-
ture important factors that affect actions and their temporal
importance. This is the first step towards causally explain-
ing RL policies. In future work, it will be necessary to ex-
plore different mechanisms to quantify causal importance,
relax existing assumptions, build benchmarks, develop hu-
man evaluations, and use the explanation to improve evalu-
ation and RL policy training.
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A Additional Experiments and Details
In this section, we provide additional details regarding the crop irrigation problem, the collision avoidance problem, and the
Blackjack experiments. Furthermore, we describe our results on an additional testing environment, Lunar Lander.

All experiments were conducted on a machine with 8 NVIDIA RTX A5000 GPU, an dual AMD EPYC 7662 CPU, and 256
GB RAM.

A.1 Crop Irrigation

This section contains details of the crop irrigation experiment.

System dynamics

Precipitation = U(0, 1)

SolarRadiation = U(0, 1)

Humidity = 0.3 · Humidityprev + 0.7 · Precipitation

CropWeight = CropWeightprev

+ 0.07 ·
(
1− (0.4 · Humidity + 0.6 · Irrigation − Radiation2)2

)
+ 0.03 · U(0, 1)

The change in CropWeight at each step is determined by humidity, irrigation and radiation, and maximum growth is achieved
when 0.4 · Humidity + 0.6 · Irrigation = Radiation2. An additional exogenous variable is also included in the change of
CropWeight. This can be regarded as some unobserved confounders that affect the growth that are not included in the system
dynamics, such as CO2Concentration or the temperature.

Policy
Irrigation = (Radiation2 − 0.4 · Humidity) · (1.6 · CropWeight + 0.2)/0.6

The policy we used is a suboptimal policy that multiplies an additional coefficient 1.6 ·CropWeight+0.2 on the optimal policy.
This will cause the irrigation value to be less than optimal when CropWeight is less than 0.5, and more than optimal and vice
versa.

Training We use a neural network to learn the causal functions in the SCM. The network has three fully-connected layers,
each with a hidden size of four. We use Adam with a learning rate of 3× 10−5 as the optimizer. The training dataset consists of
1000 trajectories (10000 samples) and the network is trained for 50 epochs.

Perturbation The perturbation value δ used in the intervention is 0.1 w.r.t. the range of each value.

a A trajectory of the crop irrigation problem b Saliency map method result c Causal-based importance result

Figure 10: Importance vector for state in crop irrigation problem

A.2 Blackjack

This section contains details and additional figures for the blackjack simulation.



System dynamics This simulation is done in the blackjack environment in OpenAI Gym (Brockman et al. 2016). The goal
is to draw cards such that the sum is close to 21 but never exceeds it. Jack, queen and king have a value of 10, and an ace can
be either a 1 or an 11, and an ace is called “usable” when it can be used at an 11 without exceeding 21. We assume the deck is
infinite, or equivalently each card is drawn with replacement.

In each game, the dealer starts with a shown card and a face-down card, while the player starts with two shown cards. The
game ends if the player’s hand exceeds 21, at which the player loses, or if the player chooses to stick, the dealer will reveal the
face-down card and draw cards until his sum is 17 or higher. The player wins if the player’s sum is closer to 21 or the dealer
goes bust.

Policy We trained the agent using on-policy Monte-Carlo control. Fig. 11 shows the policy and the decision boundary.

Figure 11: The policy we use for the blackjack game. The blue line shows the decision boundary.

SCM structure We assume the blackjack game has a causal structure as shown in Fig. 7. Additionally, Fig. 12 shows the
5-step cascading SCM we used to test the temporal importance.

Figure 12: The skeleton of the cascading SCM for a 5-step blackjack game.

Training We use a neural network to learn the causal functions in the SCM. The network has three fully-connected layers
and each layer has a hidden size of four. We use Adam with a learning rate of 3 × 10−5 as the optimizer. The training dataset
consists of 50000 trajectories (∼76000 samples) and the network is trained for 50 epochs.

Perturbation Since blackjack has a discrete state space, for numerical features “hand” and “dealer”, we use a perturbation
value δ = 1. For the boolean feature “ace”, we flip its value as the perturbation.

A.3 Collision Avoidance Problem
We use the collision avoidance problem to further illustrate that our causal method can find a more meaningful importance
vector than saliency map, i.e., which state feature is more impactful to decision-making.



System dynamics The state St includes the distance from the start Xt, the distance to the end Dt, and the velocity Vt of the
car, i.e., St := [Vt, Xt, Dt], where Vt ≤ vmax and vmax is the maximum speed of the car. The action At is the car’s acceleration,
which is bounded |At| ≤ emax. The state transition is defined as follows:

Vt+1 := Vt +At∆t

Xt+1 := Xt + Vt∆t+
1

2
At∆t2

Dt+1 := Xgoal −Xt+1

The objective of the RL problem is to find a policy π to minimize the traveling time under the condition that the final velocity
is zero at the endpoint (collision avoidance).

Policy An RL agent learns the following optimal control policy also known as the bang-bang control (optimal under certain
technical conditions) defined as Eq. (7)

SCM structure We use Fig. 5b as the SCM skeleton and use linear regression to learn the structural equations as the entire
dynamics are linear.

Perturbation The perturbation value δ used in the intervention is 0.1 after normalization.

A.4 Lunar Lander
System dynamics Lunar lander problem is a simulation testing environment developed by OpenAI Gym (Brockman et al.
2016). The goal is to control a rocket to land on the pad at the center of the surface while conserving fuel. The state space is an
8-dimensional vector containing the horizontal and vertical coordinates, the horizontal and vertical speed, the angle, the angular
speed, and if the left/right leg has contacted or not.

The four possible actions are to fire one of its three engines: the main, the left, or the right engine, or to do nothing.
The landing pad location is always at (0, 0). The rocket always starts upright at the same height and position but has a random

initial acceleration. The shape of the ground is also randomly generated, but the area around the landing pad is guaranteed to
be flat.

Policy We train our RL policy using DQN (Van Hasselt, Guez, and Silver 2016).

Figure 13: The causal structure of lunar lander that includes previous state and actions. There should also be edges from each
feature to the action at its time step, e.g. edges from x pos prev to a prev, or from x pos to a. These edges are not shown
in this graph for simplicity.

SCM structure We use the Fig. 13 as the skeleton of SCM. The structural functions are learned with linear regression using
100 trajectories (∼25000 samples).



a The lunar lander instance. b Causal importance vector the for the
current-step features on the trajectory in
Fig. 14a.

c Causal importance vector the for the
previous-step features on the trajectory in
Fig. 14a.

Figure 14: A lunar lander trajectory instance we used to evaluate our algorithm and the corresponding causal importance vector.
The “freefall phase” is roughly between steps 0-70, “adjusting phase” is between steps 70-170, and “touchdown phase” is from
about step 170 to the end.

Evaluation Fig. 14 shows a trajectory of the agent interacting with the lunar lander environment and the corresponding causal
importance using our mechanism. We notice that our mechanism discovers three importance peaks, and we explain this as the
agent’s decision-making during the landing process consisting of three phases: a “free fall phase”, in which the agent mainly
falls straight and slightly adjusts its angle to negate the initial momentum; an “adjusting phase”, in which the agent mostly
fires the main engine to reduce the Y-velocity; and a “touchdown phase”, during which the lander is touching the ground and
the agent is performing final adjustments to stabilize its angle and speed. Fig. 15a, 15b and 15c show our causal importance
vector during each of the three phases. We notice that during the “free fall phase”, features such as angle, angular velocity and
x-velocity are more important since the agent needs to rotate to negate the initial x-velocity. However, as the rocket approaches
the ground during the “adjusting phase”, we find an increase in importance for y-velocity since a high vertical velocity is more
dangerous to control when the rocket is closer to the ground. In the last “touchdown phase”, a large x-position and x-velocity
importance can be observed as a change in those features is highly likely to cause the lander to fail to land inside the designated
landing zone. Since the lander is already touching the ground, it will take much more effort for the agent to adjust compared to
when the lander is still high in the air.

a Importance vector during the “free fall
phase” (step 48).

b Importance vector during the “adjusting
phase” (step 129).

c Importance vector during the
“touchdown phase” (step 216).

Figure 15: The importance vector on lunar lander calculated using our method and a comparison with the saliency map
method. The solid bars in the first three figures representing the importance of the current-step features and the shaded bars are

for the previous-step features.

The results are similar to those of saliency-based algorithms (Greydanus et al. 2018), and Fig. 16 shows the difference in im-
portance vector between our algorithm and saliency-based algorithm. Note that differences only occur for the positions and the
angle. This is because other features don’t have any additional causal paths to the action besides the direct connection. There-
fore, the intervention operation is equivalent to the conditioning operation for these features. The features position and angle
have an additional causal path through the legs, which causes the difference. Notably, our method captures higher importance



for angle, which we interpret as that the landing angle is crucial and is actively managed by the agent.

Figure 16: Difference between our method and the saliency map method for current-step features.

We are also able to compute the importance of the features in the previous steps, and Fig. 14c and the shaded bars in Fig. 15
represent such importance vectors. The previous-step importances are rather similar to those of the current-step features since
the size of the time step is comparatively small. However, our algorithm captures that during the “adjusting phase”, the previous-
step importance for the angle is in general higher than the current-step importance, as changing the previous angle may have a
cascading effect on the trajectory and is especially important to the agent when it is actively adjusting the angle.

B Sensitivity Analysis

This section performs a sensitivity analysis on how the perturbation amount affects the result of our explanation.
For action-based importance, too small of a perturbation may not yield a meaningful result. This is due to the fact that,

depending on the environment and the policy, a too small perturbation may fail to trigger a noticeable change in the action,
resulting in a zero importance. This differs from the zero importance case where the policy disregards the feature when making
decisions. In our experiments, we use 0.01 with respect to the range of the features for continuous features and the smallest unit
for discrete features.

In general, using different perturbation amounts δ on the same state in the same SCM may result in different importance
vectors, and vectors calculated using different δ cannot be meaningfully compared. However, if we desire the importance of
using different δ to be more on the same level, we suggest finding the highest importance across all features and all time steps
and normalizing all results by said number. Section B.2 contains an example comparing the importance score with and without
the aforementioned normalization.

Figure 17: The importance vector of S(1) from both our method and the saliency map method with respect to the perturbation
amount.



B.1 One-step MDP

As we demonstrated in the example of one-step MDP in Fig. 3 and Table 1, our importance vector will sometimes be affected
by the perturbation amount. For this experiment, we use Fig. 3 as the skeleton and the following settings. The constants are

c1 = 1, c2 = −2, c3 = 3, c12 = 2, cp = −1

We use unit Gaussian distributions as the exogenous variables and the values are

u1 = 0.50, u2 = −0.14, u3 = 0.65, up = 1.52, ua = −0.23

The state value and the corresponding action are then

s(1) = 0.50, s(2) = 0.86, s(3) = −0.88, vp = 1.52, a = 3.83

The result of running our method and the saliency map method on the feature S(1) is shown in Fig. 17. Same as in Table 1.
Our algorithm is linear w.r.t. δ while the saliency map result is constant. The increased importance comes from the causal link
S(1)→S(2)→A, which also introduces the linear relationship.

B.2 Collision Avoidance

Fig. 18 shows the importance vector of Xt in the collision avoidance problem and different color lines correspond to different
perturbation amounts. Note that similar to the result shown in Fig. 6b, the importance of Dt is the same as Xt, and Xt−1 is the
same but off by one time step. Other features have negligible importance.

There are two effects of using different perturbation amounts: 1) The number of steps with non-zero importance is increasing
as δ increases since a larger δ will cause states further away from the decision boundary to cross the boundary after the
perturbation; 2) The value of peak importance is lower. Since we use the action-based importance and the action is essentially
binary, the difference in importance solely comes from the normalization we applied on δ (the denominator in Eq. (3). If this is
undesirable, one way to combat this is to normalize the result using the highest importance across all features and time steps.
The normalized result is shown in Fig. 18b, in which the peak value will be one regardless of δ.

a Importance vector of Xt b Normalized importance vector of Xt

Figure 18: Sensitivity analysis on the collision avoidance problem.

B.3 Lunar Lander

Fig. 19 shows the sensitivity analysis on lunar lander and the different color lines correspond to different perturbation amounts.
Binary features including left and right leg are not included. The general trend of the result is the same while the value and the
exact shape of the curve vary slightly when different δ is used and our result is robust w.r.t. δ.



a Importance vector of x-position b Importance vector of y-position c Importance vector of angle

d Importance vector of x-velocity e Importance vector of y-velocity f Importance vector of angular velocity

Figure 19: Sensitivity analysis on the lunar lander environment.

B.4 Blackjack
Fig. 20 shows the sensitivity analysis for blackjack, with different color lines representing different perturbation amounts. The
binary feature ace is not included. In blackjack, since the smallest legal perturbation amount is one and the range of the value
is at most 21, increasing δ has a much larger effect on the result. However, we can observe that the general shape of the curves
is similar, indicating the robustness of our method.

a Importance vector of hand b Importance vector of dealer

Figure 20: Sensitivity analysis on the Blackjack environment.

C Action-based Importance versus Q-value-based Importance
This section discusses the comparison between the action-based importance method and the Q-value-based importance method.
It demonstrates that the Q-value-based method sometimes fails to reflect the features in the state that the policy relies on.

Consider a one-step MDP with the SCM shown in Fig. 21, where the state S = [S1, S2], Si ∈ [−1, 1], i = 1, 2, and the
action a ∈ [−1, 1]. The reward is defined as R(S, a) = 100× S2 + a× S1. Under this setting, the optimal policy is:

A =

{
−1 S1 < 0

1 otherwise



Intuitively, the policy selects the minimum value in the action space when S1 is negative , and the maximum value otherwise.
The action-based importance method correctly identifies S1 as more important, as the policy only depends on S1. However,

the Q-value-based method produces a different result. In a one-step MDP, the Q-function is the same as the reward function. As
the coefficient in the Q(reward) function is larger for S2, the Q-value-based method finds S2 more important, which is different
from the features that the policy relies on.

Figure 21: The skeleton of SCM of the one step MDP.
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