
https://doi.org/10.1007/s10489-023-04682-6

MSD-NAS: multi-scale dense neural architecture search for real-time
pedestrian lane detection

Sui Paul Ang1 · Son Lam Phung1 · Soan T. M. Duong2 · Abdesselam Bouzerdoum1,3

Accepted: 2 May 2023
© The Author(s) 2023

Abstract
Accurate detection of pedestrian lanes is a crucial criterion for vision-impaired people to navigate freely and safely. The
current deep learning methods have achieved reasonable accuracy at this task. However, they lack practicality for real-time
pedestrian lane detection due to non-optimal accuracy, speed, and model size trade-off. Hence, an optimized deep neural
network (DNN) for pedestrian lane detection is required. Designing a DNN from scratch is a laborious task that requires
significant experience and time. This paper proposes a novel neural architecture search (NAS) algorithm, named MSD-NAS,
to automate this laborious task. The proposed method designs an optimized deep network with multi-scale input branches,
allowing the derived network to utilize local and global contexts for predictions. The search is also performed in a large and
generic space that includesmany existing hand-designed network architectures as candidates. To further boost performance,we
propose a Short-term Visual Memory mechanism to improve information facilitation within the derived networks. Evaluated
on the PLVP3 dataset of 10,000 images, the DNN designed by MSD-NAS achieves state-of-the-art accuracy (0.9781) and
mIoU (0.9542), while being 20.16 times faster and 2.56 times smaller than the current best deep learning model.

Keywords Pedestrian lane detection · Real-time video processing · Neural architecture search · Assistive navigation ·
Deep learning · Semantic segmentation

1 Introduction

Visual impairment is a disease that can affect the quality of
life significantly. In 2015, around 36 million people globally
suffered from blindness. This figure is estimated to reach
115 million by the year 2050 [1]. For vision-impaired peo-
ple, accurately detecting the pedestrian lane is an essential
criterion to navigate freely and safely. Currently, this task is
performed using manual aids that are prone to errors, such as
white canes and guide dogs [16]. Hence, there is a need for
automatic pedestrian lane detection methods that are robust,
accurate, and fast.

B Sui Paul Ang
academic@paul-ang.com

1 School of Electrical, Computer and Telecommunications
Engineering, University of Wollongong, Wollongong,
Australia

2 Computer Science Department, Le Quy Don Technical
University, Hanoi, Vietnam

3 College of Science and Engineering, Hamad Bin Khalifa
University, Ar-Rayyan, Qatar

The early methods for automatic pedestrian lane detection
use traditional image processing techniques. These methods
are generally unsuitable for real-time systems because they
are slow and ineffective. Several methods relied on white
markers surrounding the pedestrian lanes, e.g., [20, 40]. This
approach is ineffective because most pedestrian lanes are
unmarked, and have arbitrary shapes and surfaces. Some
methods relied on manually-extracted features or vanishing
point estimation, e.g., [15, 30, 34]. These approaches are not
robust because they are sensitive to scene variations.

Themore recent automatic pedestrian lanedetectionmeth-
ods use deep learning (DL) techniques, where the pedestrian
lane detection task is cast as a two-class semantic seg-
mentation problem (0: background, 1: pedestrian lane). A
recent survey of pedestrian lane detection methods demon-
strates that the DL-based segmentation methods can detect
pedestrian lanes accurately [21]. However, they still lack
practicality due to non-optimal accuracy, speed, and model
size trade-off. Based on the survey, the most accurate DL
method is a large DNN, named Multiscale HRNet [27, 38],
and the fastest DL method is a DNN automatically designed
by a neural architecture search method, called Fast-NAS [4].

123

/ Published online: 11 August 2023

Applied Intelligence (2023) 53:25787–25801

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04682-6&domain=pdf

The Multiscale HRNet is accurate (mean intersection over
union of 0.9568), but it has a slowprocessing time (2.6 frames
per second). In contrast, theDNNderived by Fast-NAS is fast
(142.86 frames per second), but it is slightly inaccurate (mean
intersection over union of 0.9229). Hence, a suitable DNN
for real-time pedestrian lane detection is still needed.

Designing a suitable DNN manually for pedestrian lane
detection is challenging. There are many design considera-
tions, including the number of layers, the connection between
layers, and the operation at every layer. A poorly designed
networkwill lead to lowperformance.Additionally, theDNN
has to be accurate, fast, and compact for practicality. To
this end, NAS is a promising approach because it can find a
suitable network automatically based on some criteria, thus
reducing architecture engineering effort significantly.

This paper proposes a new NAS algorithm, named Multi-
scaleDenseNAS (MSD-NAS), that can automatically design
a fast, accurate, and compact DNN for the pedestrian lane
detection task. The search space of MSD-NAS is a large
and dense search space that also contains many existing
hand-crafted DNNs as candidates. Additionally, the network
designed by MSD-NAS supports multi-scale inputs, allow-
ing it to utilize both local and global contexts for predictions.
To further improve the detection performance, we introduce
a novel Short-term Visual Memory mechanism to improve
information facilitation in the derived network.

The contributions of this paper can be highlighted as fol-
lows:

1. We propose a new neural architecture search algorithm,
called MSD-NAS, to automatically find the optimum
DNN with multi-scale input branches for pedestrian lane
segmentation. The capability of MSD-NAS is demon-
strated via extensive analysis and experiments.

2. We introduce a novel NAS search space that is generic
and large. The search space is represented as a General-
ized Segmentation Network (GSN). GSN has multi-scale
input branches, allowing the search algorithm to select
the best input scale. In fact, many state-of-the-art hand-
crafted DNNs for image segmentation are special cases
of the GSN.

3. We propose a new Short-term Visual Memory (STVM)
mechanism for the derived network of MSD-NAS. It
helps information-sharing within the derived network.
Our experiments show that the STVM mechanism fur-
ther improves the segmentation accuracy.

The remainder of this paper is organized as follows.
Section 2 reviews the related work, Section 3 describes
the proposed neural architecture search method, Section 4
presents the experimental results and analysis, and Section 5
concludes our work.

2 Related work

This section first reviews the existing unmarked lane detec-
tion algorithms (Section 2.1). To justify our NAS search
space, we also discuss the state-of-the-art DL-based image
segmentation methods (Section 2.2).

2.1 Unmarked lane detection

Several methods have been proposed for detecting unmarked
lanes. In general, there are threemain approaches: traditional-
based lane segmentation, lane-border detection, and deep
learning-based segmentation. Traditional-based lane seg-
mentation involves using color models that have been pre-
trained to classify each pixel as either the lane class or
the background class [31, 35, 37]. The methods used for
this approach vary based on the color space and classifier
employed. For instance, Tan et al. [37] used color histograms
in the RGB space, while Sotelo et al. [35] classified pix-
els using the hue-saturation-intensity space. Ramstrom and
Christensen [31] used feature maps from both RGB and
YUV color spaces to build Gaussian mixture models for
classification. As these methods are trained offline, they have
limitations when dealing with variations in lane surface, such
as changes in color, texture, and shape.

To overcome the limitations of the previous methods,
some methods directly model the lane pixels by selecting
sample regions from the input image [3, 26, 29]. These
methods vary in the way they choose the sample regions.
For example, Miksik et al. [26] initialized the sample lane
region as a trapezoid centered at the bottom of the image and
then refined the region using the vanishing point. In contrast,
Alvarez and Lopez [3] randomly selected small areas at the
bottom of the input image, assuming that these areas are the
road surface. However, these methods are sensitive to the
sample regions’ quality and may require domain expertise.

Lane-border detection identifies the lane boundaries by
utilizing the vanishing point [19, 32] or templates of the lane
boundaries [12]. Kong et al. [19] detected the lane borders by
examining the edges pointing to the vanishing point, while
Crisman and Thorpe [12] identified the lane boundaries from
the edges of homogeneous color regions by matching the
lane templates. These lane-border detection methods can be
sensitive to background edges and the accuracy of vanish-
ing point estimation. To tackle this issue, Chang et al. [6]
combined the lane-border detection from the vanishing point
and the lane segmentation by the color model approaches.
Anothermethod, proposed by Phung et al. [30], used the van-
ishingpoint to construct the sample lane region.Thefinal lane
region was determined by using a color model trained from
the sample lane region, and the matching scores between
the edges of the homogeneous color regions and the lane
templates. Both the traditional-based lane segmentation and

123

25788 Ang et al.

lane-border detection approaches rely solely on image pro-
cessing techniques, which are slow and not robust.

Deep learning-based segmentation detects the pedestrian
lane from a scene by performing pixel-wise classification,
i.e., semantic segmentation, using a deep neural network.
Nguyen et al. [28] combined a Gaussian process classifier
with a DNN. Thanh et al. [39] proposed a Gabor DNN,
which uses variational Bayesian inference for semantic seg-
mentation of pedestrian lanes. Both approaches perform
uncertainty estimation to improve the reliability of the
segmentation results, however, this comes at the cost of addi-
tional processing time. An alternative method proposed by
Ang et al. [4] used neural architecture search to find a faster
DNN for pedestrian lane segmentation. Still, the search space
does not cover the most advanced segmentation networks,
which will be discussed in the next section.

2.2 Deep learning-based semantic segmentation

The key difference among the different DL-based segmen-
tation methods is the network architectural design. Many
attributes of the existing architectures overlap, hence we
group them based on their key novelty.

Fully convolutional network. Most of the current deep
learning methods for image segmentation adopt a fully con-
volutional network (FCN) because of its efficiency [2, 36].
With a single forward-pass, FCN can generate the output seg-
mentation map of the same size as the input image. The idea
of using an FCN for image segmentation is first introduced
by Long et al. [25]. They converted a standard convolutional
neural network (CNN) into an FCN by replacing all fully-
connected layers with convolutional layers.

Encoder-decoder framework. The recent FCN mod-
els follow a more systematic structure: the encoder-decoder
framework. The encoder extracts salient features from the
input images, and the decoder generates the output segmenta-
tion maps from the extracted features. For the encoder, many
authors adopted a top-performing convolutional neural net-
work [7, 22]. For the decoder, some authors designed their
own decoder network [11], while other authors used a mir-
rored design of their encoder network [5].

Skip-connection. In the encoder-decoder framework,
the feature maps transform from high-resolution to low-
resolution (encoding stage), and then from low-resolution
to high-resolution again (decoding stage). Hence, the fine-
grained information may be lost while encoding and fail
to be recovered while decoding. To overcome this problem,
Ronneberger et al. [33] used skip-connections to transfer the
high-resolution featuremaps from the encoder to the decoder.
Additionally, Long et al. [25] found that combining the fea-
ture maps of the earlier layers and the penultimate layer via
skip-connections can improve segmentation performance.

Multi-scale processing. Both local and global contex-
tual information is useful for accurate segmentation outputs.
This can be exploited by processing feature maps at different
scales. Lin et al. [23] proposed the feature pyramid network
(FPN) for object detection and later extended it to image
segmentation. Since different depths in the decoder process
feature maps of different scales, FPN exploits this pyramidal
characteristic by making predictions at every depth. Zhao
et al. [43] developed the Pyramid Scene Parsing Network
(PSPNet), which contains a pyramid pooling module that
uses pooling operations of different sizes to downsample the
input feature map into different scales. Wang et al. [41] pro-
posed HRNet, which has multiple resolution streams that
exchange feature maps in parallel.

Dilated convolution. Dilated convolution (also known as
atrous convolution) manipulates the receptive field by using
a sparse kernel. For example, a 3 × 3 convolution with a
dilation rate of 2 can be visualized as a 5 × 5 convolution
kernel with every second row and column emptied. Hence,
the receptive field can be increased without incurring addi-
tional parameters.

A popular DL-based segmentation model that uses dilated
convolution is the DeepLab family, namely DeepLabv1 [8],
DeepLabv2 [9], DeepLabv3 [10], and DeepLabv3+ [11].
DeepLabv1 replaces the last few convolutional layers in an
FCN with atrous convolutional layers to maintain higher
resolution feature maps. Subsequently, DeepLabv2 intro-
duces the atrous spatial pyramid pooling (ASPP) module.
The ASPP module uses several atrous convolutional layers
with different dilation rates in parallel, effectively processing
the feature maps at multiple scales. DeepLabv3 comprises
modules with atrous convolution that are placed in a cascade
pattern. The latest version, DeepLabv3+, adopts the encoder-
decoder framework.

As discussed above, there are many network architectures
with different attributes, eachwith its own strengths. Inspired
by these studies, we incorporate these design elements into
our NAS search space. The network candidates in our search
space are fully convolutional, have access to high-resolution
feature maps, can utilize multi-contextual information, and
can perform dilated convolution.

3 Methodology

We introduce a new neural architecture search algorithm
to design the best DNN for pedestrian lane segmentation.
The proposed method, named MSD-NAS, can design a net-
work architecture with multiple input branches. Therefore,
the derived network can utilizemulti-scale information effec-
tively. MSD-NAS finds the optimum architecture from a
dense search space, called the Generalized Segmentation
Network.Additionally,we propose a novel Short-termVisual

123

25789MSD-NAS: multi-scale dense neural architecture search...

Memory mechanism to better facilitate information sharing
within the derived network.

This section is organized as follows. Section 3.1 intro-
duces the Generalized Segmentation Network. Section 3.2
describes the architectural parameters of the GSN. Section
3.3 explains the algorithm to optimize the GSN, and Sec-
tion 3.4 shows the procedure to derive the optimum network
from the optimized GSN. Lastly, Section 3.5 presents the
Short-term Visual Memory mechanism.

3.1 Generalized segmentation network

The Generalized Segmentation Network is a large DNN that
is represented by a group of nodes and edges. Each node
performs an operation (e.g., a 3 × 3 convolution operation
or an identity operation), and each edge represents the infor-
mation flow between two nodes. The nodes are organized
into a two-dimensional grid, where the horizontal axis rep-
resents the processing layer, and the vertical axis represents
the scale, see Fig. 1.

The GSN has an input layer, an output layer, and L pro-
cessing layers. Processing is done at multiple image scales:
0, 1, . . . , S. At image scale s, the input layer downsamples
the input image by a factor of 2s , before passing it to the
processing nodes in Layer 1. Each processing node at Scales
1 to (S-1) will produce feature maps of three different scales,
while, the nodes at Scales 0 and S will produce feature maps
of two different scales. Let H × W be the size of the input
image. At scale s, each node produces feature maps with a
spatial size of H

2s−1 × W
2s−1 ,

H
2s × W

2s , and
H

2s+1 × W
2s+1 . For the

receiving node at scale z, the channel size of the feature maps
is C × 2z , where C is a user-defined hyperparameter.

A processing node (l, s) at layer l and scale s can receive
feature maps from nodes at layer (l − 1) and three adjacent
scales (s − 1, s, s + 1). This is in sharp contrast with many
existing networks,where each node receives inputs fromonly
one adjacent scale (except for the ad-hoc skip connections).
At the output layer, a convolution along the third dimension
of the feature map (i.e., 1 × 1 convolution) is performed to
predict a segmentation map of size H

2s × W
2s pixels for scale

s. To generate the final output, we convert the segmentation

Fig. 1 The proposed Generalized Segmentation Network for image
segmentation

map at a selected scale to the same size as the input image
via bilinear interpolation.

The proposed GSN has a generalized architecture in that
not all processing nodes and edges are activated, and typically
only a few nodes in the input layer and the output layer are
necessary. Fig. 2 shows that many high-performing DNN
architectures for image segmentation can be considered as
special cases of the GSN.

3.2 Architectural parameters of the GSN

GSNcanbe considered a parentmodel containing all possible
candidate operations and paths. From the GSN, our goal is
to find the optimum child network. To achieve this, we use
the differentiable architecture search (DARTS) [24], which
is explained next.

We incorporate three types of architectural parameters into
the GSN that control the relative importance of i) the input
image at each scale, ii) the operations at each node, and iii)
the paths to nodes in the next layer. First, the GSN has S

Fig. 2 Many hand-engineered state-of-the-art deep networks for image
segmentation are special cases of the proposed GSN (best viewed in
color). Green node: filtering operation. Purple node: identity operation

123

25790 Ang et al.

input nodes, one for each image scale. The input node (0, s)
at scale s will downsample the original input image size by
a factor of 1

2s before sending it to the next layer. Each input
node (0, s) is associated with an architectural parameter γs
that determines the importance of the input at scale s. Hence,
the input to node (1, s) is defined as

I1,s = γs fs(X), (1)

where X is the input image, and fs is the downsampling oper-
ation by a factor of 1

2s . The parameters γ = {γ0, γ1, . . . , γS}
are normalized with softmax function to represent the impor-
tance probabilities.

Second, each node now computes a mixed operation,
which is aweighted sumofmultiple single operations.Let Il,s
be the input of node (l, s). Here, Il,s is the sum of all the fea-
ture maps received from the connected nodes in the previous
layer. Let O = {O1, O2, . . .} be the candidate operations.
At node (l, s), the intermediate feature map is computed as

Fl,s =
|O|∑

j

α
j
l,s O

j (Il,s). (2)

Here, the architectural parameters αl,s = {α1
l,s, . . . , α

|O|
l,s }

denote the importance of each operation. The parametersαl,s

are also normalized with softmax function to represent the
importance probabilities.

Third, each node at Scales 1 to (S-1) will produce three
feature maps of various scales. At node (l, s), the output
feature maps are defined as

yl,s = βl,s Fl,s,

y+
l,s = β+

l,s f +(Fl,s),

y−
l,s = β−

l,s f −(Fl,s),

(3)

where f + and f − are the functions that upsample and down-
sample the feature map’s size by 2, respectively. Note that
the nodes at Scale 0 will not produce y+

l,s and the nodes at

Scale S will not produce y−
l,s . Here, the architectural param-

eters βl,s = {βl,s, β+
l,s, β−

l,s} denote the importance of each
path. The parameters βl,s are also normalized with softmax
function to represent the importance probabilities.

The architectural parameters γ ,α, β can be optimized
using gradient descent since they are in a continuous space.
However, the memory overhead for computing all the mixed
operations is large as each node nowconsists of |O| candidate
operations. To overcome this problem, we only compute the
mixed operation using k input channels of the input feature
map Il,s , thereby reducing the memory overhead by k times.
This method is known as the partially-connected DARTS

[42]. Inspired by partially-connectedDARTS,wemodify Eq.
(2) to

Fl,s =
|O|∑

j

α
j
l,s O

j (Bl,s × Il,s) + (1 − Bl,s) Il,s, (4)

where Bl,s is the sampled channel mask.

3.3 Optimizing the GSN

The final network is determined by the architectural param-
eters γ ,α, and β. During the training phase of the GSN, the
architectural parameters γ ,α, β and network weights w are
optimized alternately using gradient descent. The optimiza-
tion procedure is described as follows.

The training set is split into two equal subsets,A andB. For
each training epoch, first, the network weightsw are updated
with the training loss LA, which is computed on the train-
ing subset A. Then, the architectural parameters γ ,α,β are
updated with the training loss LB, which is computed on the
training subset B. The architectural parameters and network
weights are optimized alternately and repeatedly until con-
vergence. Note that the networkweightsw are pre-trained for
n epochs before begin optimizing the architectural parame-
ters γ ,α,β to avoid local optima.

3.4 Deriving the final DNN from the optimized GSN

MSD-NAS can derive K unique networks (K ≤ S), where
each network processes the input image at a different scale.
After the architectural parameters are optimized, we derive
the networks as follows. We sort the γ = {γ0, γ1, . . . , γS}
in descending order. The input node with the largest γ deter-
mines the first selected node in Layer 1. At the first selected
node, the output path with the largest β and the operation
with the largest α are selected. We repeat this process for
every active node until Layer L . For prediction, only the out-
put node connected to the last active node is used. We repeat
the above steps using the input node with the next largest
γ until K unique networks are obtained, see Figs. 3a-c for
some illustrations.

After the K unique networks are derived, we combine
them into one final deep neural network with multiple input
branches, with each branch handling the input image at a
different scale. The networks will share the nodes if they
have common segments, see Fig. 3d for an illustration. If the
combined network has more than one output node, we only
use the output node that predicts at the smallest scale (closest
to the original image resolution). Note that we will train the
final network from scratch using the full training set.

123

25791MSD-NAS: multi-scale dense neural architecture search...

Fig. 3 An illustration of the network derivation procedure when K = 3

3.5 Short-term visual memorymechanism

Several studies have shown that the skip-connection scheme
has many benefits [14, 25, 33]. For segmentation neu-
ral networks, skip-connections can improve performance
by transferring the high-resolution feature maps from the
shallow to deep layers [25]. For very large networks, skip-
connections can reduce the effects of vanishing gradients [14,
33].

There are three main challenges in using the skip-
connection schemewithMSD-NAS.First, the skip-connection
scheme is not efficient for MSD-NAS. The network derived
by MSD-NAS can consist of multiple input branches; these
input branches are processed sequentially, i.e., not in paral-
lel. Hence, we need to store the intermediate feature maps
if the skip-connections are between different input branches.
Moreover, the processing timewill be delayed if a node relies
on the feature map from another input branch.

Second, in segmentation networks, skip-connections are
primarily used to transfer high-resolution feature maps to
aid the upsampling operations. Therefore, other types of
nodes can not share information intra-branch and inter-
branch. Third, in the skip-connection scheme, feature maps
are unweighted, i.e., all pixels are treated as equally impor-
tant. It is beneficial to let the network learn the importance
of each pixel to the overall segmentation performance.

To overcome these problems, we propose the Short-term
Visual Memory (STVM) mechanism for the nodes. The

phrase short-term arises from the fact that the memory only
contains information about the current input image. Note that
we only apply the STVMmechanism on the derived network,
i.e., after completing the search phase. Next, we describe the
STVM mechanism in detail.

In the derived network, there are at most S STVM mod-
ules. The nodes at scale s share the same STVM module
ms . Each STVMmodule ms has the same dimensions as the
output feature map of a node at scale s. Note that a feature
map is a 3-D matrix, where each channel is the 2-D output
of a convolution filter. Hence, the STVM module ms can
be represented as [m1

s ,m
2
s , . . .]. Each node interacts with its

STVM module through input and update gates. The input
gate determines what information to use from the STVM
module, and the update gate inserts new information into the
STVM module.

Here, we describe the input gate in detail. At node (l, s),
we perform a channel-wise 2-D convolution on the STVM
module ms to obtain the matrix al,s = [a1l,s, a2l,s, . . .]. Each
element a j

l,s is computed as

a j
l,s = I j

l,s ∗ m j
s , (5)

where∗ is the convolutionoperator, andI j
l,s is a 2-D learnable

weight. The input gate of node (l, s) is then defined as

i l,s = σ(al,s), (6)

123

25792 Ang et al.

where σ denotes the sigmoid activation function. Now, the
input gate i l,s represents the weight of every pixel in the
STVM module ms . The input to node (l, s) is then given as

Il,s = Il,s + ms × i l,s . (7)

Next, we describe the update gate in detail. Let F l,s =
[F1

l,s,F2
l,s, . . .] be the output of node (l, s). We perform a

channel-wise 2-Dconvolutionon theoutputFl,s to obtain the

matrix bl,s = [b1l,s, b2l,s, . . .]. The element b j
l,s is computed

as

b j
l,s = U j

l,s ∗ F j
l,s, (8)

whereU j
l,s is a 2-D learnable weight. The update gate of node

(l, s) is then defined as

ul,s = σ(bl,s). (9)

Now, the update gate ul,s represents the weight of every pixel
in the outputFl,s. We update the STVMmodule as follows:

ms = ul,s × F l,s + (1 − ul,s) × ms . (10)

The interaction between a node and its STVM module is
illustrated in Fig. 4.

4 Experiments and analysis

In this section, we present the experiments and analysis of
MSD-NAS. Section 4.1 describes the pedestrian lane dataset.
Section 4.2 presents the experimental steps, and Section 4.3
describes the search configurations. Section 4.4 analyzes
the proposed MSD-NAS method, and Section 4.5 compares
MSD-NAS with other hand-crafted deep learning models on
the pedestrian lane segmentation task.

4.1 Pedestrian lane dataset

In this paper, we conducted the experiments using the Pedes-
trian LaneDetection andVanishing Point EstimationVersion
3.0 (PLVP3) dataset [30]. The PLVP3 dataset comprises
10,000 color images with their corresponding ground-truth
annotations. The ground-truth masks were manually anno-
tated, where every pixel is labeled as pedestrian-lane (1) or
background (0) classes.

The images in PLVP3 were acquired from real indoor and
outdoor scenes in various weather conditions and at different
times of the day. The pedestrian paths in these images are
diverse in shapes, colors, and textures. The cameras used to
acquire these images are also different, resulting in images
with varying widths and heights (ranging from 1224 to 1632
pixels). The overall statistics of this dataset are given in Table
1. Several images and their ground-truth masks from the
PLVP3 dataset are shown in Fig. 5. The PLVP3 dataset can
be downloaded from http://documents.uow.edu.au/~phung/
plvp3.html.

4.2 Experimental steps

The pedestrian lane detection methods were evaluated using
accuracy, mean intersection over union, and frames per sec-
ond metrics. Accuracy is the percentage of image pixels that
are correctly classified.Mean intersection over union (mIoU)
is the average IoU score over each class. IoU is defined as
the area of the intersection divided by the area of the union
between the predicted output and the ground-truth mask:
IoU = Area of intersection

Area of union . Frames per second (FPS) is the
number of predictions that a given method can produce in
a second. The FPS was measured using a system that has a
2.4 GHz Intel Xero Gold 5115 CPU and a 12 GB NVIDIA
GeForce GTX Titan Xp GPU.

The experiments were conducted using 5-fold cross-
validation. ThePLVP3datasetwas divided intofivepartitions
of equal sizes. For each fold, one partition was used as the
test set, and the remaining partitions were used as the train-

Fig. 4 The interaction between
a node (l, s) and its STVM
module ms

123

25793MSD-NAS: multi-scale dense neural architecture search...

http://documents.uow.edu.au/~phung/plvp3.html
http://documents.uow.edu.au/~phung/plvp3.html

Table 1 Statistics of the PLVP3 dataset

Condition Description Number of images

Surfaces Brick (outdoor) 2,917

Concrete (outdoor) 4,860

Pavement (outdoor) 1,164

Indoor 734

Other (mixed indoor/outdoor) 325

Lighting Normal 7,845

Shadows and extreme 2,155

ing set. This process was repeated five times for different
choices of the test set. Note that each training set was further
divided into 90% images for training and 10% images for
validation. The images were resized to 320 × 320 pixels for
the experiments.

4.3 Search settings

The search was conducted using a GSN with 14 layers (L =
14) and 6 scales (S = 6). We ran the search algorithm for 30
epochs. For each node, the candidate operationsO consisted
of:

1. Identity.
2. 3 × 3 convolution (conv3).
3. 3 × 3 convolution ×2 (conv3t2).
4. 3 × 3 convolution with a dilation of 2 (conv3d2).
5. 5 × 5 convolution (conv5).
6. 3 × 3 depthwise separable convolution (dconv3).
7. 3 × 3 depthwise separable convolution ×2 (dconv3t2).
8. 5 × 5 depthwise separable convolution (dconv5).
9. 3 × 3 convolution with residual connection (res3).

10. 3 × 3 convolution ×2 with residual connection (res3t2).

The downsampling function f − was implemented as a
conv3 operation with a stride of 2. The upsampling function
f + was implemented as a bilinear upsampling operationwith
a scale of 2, followed by a conv3 operation. The downsam-
pling function fs was implemented as a conv3 operation with
a stride of 2s . Every convolution operation was followed by
a batch normalization operation and a ReLU activation func-
tion.

The search phase of the proposed NAS method was con-
ducted using two optimizers. The Adam optimizer was used
to update the architectural parameters γ ,α,β with the fol-
lowing settings: learning rate of 0.0003, weight decay of
0.0005, and exponential decay ratesβ1 of 0.9 andβ2 of 0.999.
The SGD optimizer with momentum was used to update the
network weights w with the following settings: learning rate
of 0.01, momentum of 0.9, and weight decay rate of 0.0005.

The optimization of the architectural parameters γ ,α,β

only begun after the network weights w were trained for 20
epochs (n = 20). With these configurations, the search run-
ning on a 12GB NVIDIA GTX Titan Xp GPU took roughly
20 hours using a GSN with a base channel size of 8 (C = 8),
and roughly 37 hours using a GSN with a base channel size
of 16 (C = 16).

4.4 Ablation study

In this section, we performed an ablation study to:

– determine the optimum number of search epochs,
– find the best number of layers and scales for the GSN,
– analyze the effects of using different numbers of input
branches K ,

– determine the effectiveness of the STVM mechanism,
and

– compare the different values of base channel size C.

Fig. 5 Several examples from the PLVP3 dataset

123

25794 Ang et al.

Fig. 6 The test mIoU of the networks found by searching for different
numbers of epochs

This ablation studywas conducted using fold-1 of the dataset.
Optimum number of search epochs. We ran the search

five times, and each time with a different number of search
epochs: i) 10 epochs; ii) 20 epochs; iii) 30 epochs; iv) 40
epochs; and v) 50 epochs. The higher the number of epochs,
the longer the search will take. The derived network from
each search was trained from scratch, and then the mIoU
score was computed for the test set. Fig. 6 shows the results
of this comparison. The network found by searching for 50
epochs achieved the lowest mIoU. We believe this is due to
overfitting. The network found by searching for 30 epochs
achieved the highest mIoU; the search time was also the
average among all other configurations. Hence, we chose
to search for 30 epochs in this paper.

Optimumnumber of layers and scales for theGSN.We
performed a 3 × 3 grid search with the following choices:
12, 14, and 16 layers; and 4, 5, and 6 scales. Fig. 7 presents
the results of the grid search. For the number of scales, the
mIoU increased as the number of scales increased, except for

Fig. 7 Results of the grid search for finding the optimum number of
GSN layers and scales. Value inside the box: test mIoU

Table 2 The effects of using different numbers of input branches

No. input branches mIoU FPS Trainable params. (M)

One branch (K = 1) 0.9423 142.86 5.754

Three branches (K = 3) 0.9533 76.92 8.690

Six branches (K = 6) 0.9534 58.82 10.998

configurations with 16 layers. For the number of layers, the
mIoU increased as the number of layers increased. However,
it stopped improving after 14 layers, except on configurations
with 4 scales. For the smallest GSN (12 layers and 4 scales),
the derived network obtained the lowestmIoU.Among all the
tested combinations, the network derived from the GSNwith
14 layers and 6 scales achieved the highest mIoU. Therefore,
we adopted 14 layers and 6 scales for the GSN in this paper.

Effects of using different numbers of input branches
K . We tested three configurations on the same derived net-
work: i) one input branch (K = 1); ii) three input branches
(K = 3); and iii) six input branches (K = 6). Table 2
shows the results of this experiment. For all configurations,
the network’s mIoU, inference time, and trainable param-
eters increased as the number of input branches increased.
The network with six input branches obtained the highest
mIoU (0.9534), whereas the network with one input branch
had the lowest mIoU (0.9423). We adopted the configura-
tion with six input branches (K = 6) because it achieved the
best performance, while still being able to support real-time
performance.

Effectiveness of the STVM mechanism. We tested two
settings on the same derived network: i) with STVM; and ii)
without STVM. Table 3 presents the results of this study.
The derived network with STVM (mIoU of 0.9534) out-
performed the network without STVM (mIoU of 0.9462).
This improvement of 0.0072 in mIoU by including STVM
is significant because as seen in Table 5, the top and bot-
tom of the 13 evaluated methods (≤ 27M parameters) differ
only 0.0004 in mIoU. However, the network with STVM had
more parameters than the network without STVM (10.998M
versus 10.922M). This slight increment of parameters is
expected because the STVM mechanism requires additional
computations in every node, i.e., the input and output gates.

Fig. 8 illustrates the STVM module at scales 1, 3, and 5.
For simplicity, we only visualize the channel with the high-
est activation. The figure shows that the STVM mechanism

Table 3 The effects of using the STVM mechanism in the derived
network

Setting mIoU Trainable parameters (M)

With STVM 0.9534 10.998

Without STVM 0.9462 10.922

123

25795MSD-NAS: multi-scale dense neural architecture search...

Fig. 8 A visualization of STVM at various scales (1, 3, and 5). At each scale, we only show the STVM’s channel with the highest activation. This
figure is best viewed in color

stores different salient information about the input image at
different scales. At scale 1, high activation values were con-
centrated on the grass regions. At scale 3, high activation
values included the sky too. At scale 5, the memory became
very coarse to be understood. These results and illustrations
justify the use of the STVM mechanism in the derived net-
work.

Effects of using different values of base channel size C.
We searched on three different GSNs, each with a different
base channel size: i) C = 4; ii) C = 8; and C = 16. Table 4
presents the results of this comparison. The network derived
with C = 16 (mIoU of 0.9545) had the highest mIoU; it
also had the most trainable parameters (29.961M).While the
network derived with C = 4 (mIoU of 0.9503) had the lowest
mIoU, it also had the least trainable parameters (1.880M).
Hence, selecting the value of C is a trade-off between mIoU
and model size. A smaller value of C will reduce the model
size and mIoU, and vice versa. In this paper, we used both
C = 8 and C = 16 configurations as they yield networks of
different sizes.

Table 4 The comparison between the different values of base channel
size C
Base channel C mIoU Trainable parameters (M)

4 0.9503 1.880

8 0.9534 10.998

16 0.9545 29.961

4.5 Comparison with the existing pedestrian lane
detectionmethods

In this section, we compared MSD-NAS with 22 exist-
ing pedestrian lane detection methods using 5-fold cross-
validation, which included 2 traditional methods, 1 NAS
method, and 19 hand-designed models. The evaluated mod-
els were grouped into two sizes: i) methods with ≤ 27M
trainable parameters, and ii) methods with > 27M trainable
parameters.

For a robust evaluation, we ran the proposed search
algorithm on every fold. This resulted in five unique deep
networks designed byMSD-NAS.We then trained these net-
works from scratch and tested their performances on their
respective test sets. The performance of the MSD-NAS is
defined as the test results averaged from these five networks.
To search for two network sizes that fit the two groups, we
set the C = 8 for a smaller network and C = 16 for a larger
network.

Table 5 presents the results of this analysis. In the group
with ≤ 27M trainable parameters, MSD-NAS (C = 8)
achieved the highest accuracy (0.9769) and mIoU (0.9517).
Compared with the fastest method, PSPNet (ResNet-34),
MSD-NAS (C = 8) was 4.25 times slower (58.82 versus
250.00). However, MSD-NAS (C = 8) had 2.61 times fewer
trainable parameters (8.228M versus 21.443M).

Compared with the smallest model, BGN, MSD-NAS
(C = 8) was 27.43 times larger (8.228M versus 0.300M).
However, MSD-NAS (C = 8) outperformed BGN signif-
icantly in terms of accuracy (0.9769 versus 0.9734) and
mIoU (0.9517 versus 0.9492). Compared with the current

123

25796 Ang et al.

Table 5 The mean performance of different lane segmentation methods over five folds. The best metrics in each group of methods were given in
bold

Network size Method Accuracy↑ mIoU↑ FPS↑ Trainable params. (M)↓
> 27M trainable parameters Multiscale HRNet-OCR [27, 38] 0.9792 0.9568 2.61 72.100

PSPNet (ResNet-101) [43] 0.9776 0.9540 30.30 68.059

DeepLabV3+ (ResNet-101) [11] 0.9772∗ 0.9523∗ 47.62 59.339

Bayesian DeepLabv3+ [13] 0.9737∗ 0.9486∗ 37.88 54.750

DeepLabV3+ (Xception) [11] 0.9764∗ 0.9508∗ 41.67 54.700

DeepLabV3 (ResNet-50) [10] 0.9780 0.9539 41.67 39.634

Hybrid DL-GP [28] 0.9640∗ 0.9262∗ 1.01 29.469

Bayesian SegNet [17] 0.9681∗ 0.9344∗ 16.13 29.443

SegNet [5] 0.9645∗ 0.9258∗ 14.49 29.443

Our MSD-NAS (C = 16) 0.9781 0.9542 52.63 28.175

≤ 27M trainable parameters Traditional combined method [30] 0.8964∗ 0.7569∗ 0.76 –

Traditional border-based method [19] 0.7923∗ 0.6312∗ 0.01 –

U-Net (ResNet-34) [33] 0.9754∗ 0.9488∗ 142.86 24.437

FPN (ResNet-34) [18] 0.9758∗ 0.9497∗ 142.86 23.156

DeepLabV3+ (ResNet-34) [11] 0.9765 0.9509 125.00 22.438

LinkNet (ResNet-34) [7] 0.9760∗ 0.9499∗ 142.86 21.772

PAN (ResNet-34) [22] 0.9767 0.9513 125.00 21.476

PSPNet (ResNet-34) [43] 0.9768 0.9512 250.00 21.443

FCN (VGG-16) [25] 0.9720∗ 0.9488∗ 27.78 14.720

HRNetv2-W32 [41] 0.9744∗ 0.9467∗ 40.74 9.980

UNet++ [44] 0.9757∗ 0.9495∗ 16.42 9.200

Our MSD-NAS (C = 8) 0.9769 0.9517 58.82 8.228

Fast-NAS [4] 0.9700∗ 0.9229∗ 142.87 4.716

BGN [39] 0.9734∗ 0.9492∗ 68.03 0.300

We also computed two-tailed tests between MSD-NAS and other methods in its group. The results are sorted based on the trainable parameters in
descending order
*We reject the null hypothesis H0 : mMSD-NAS = mother at a confidence level of 99.99%
That is, there is a significant difference compared to MSD-NAS

state-of-the-art NAS method for pedestrian lane detection,
Fast-NAS, MSD-NAS (C = 8) had significantly better
accuracy (0.9769 versus 0.9700) and mIoU (0.9517 versus

0.9229).However,MSD-NAS (C = 8)was 2.43 times slower
(58.82 versus 142.87) and 1.74 times larger (8.228M versus
4.716M).

Fig. 9 The MSD-NAS (C = 16)
derived from fold-1 of the
dataset. The input and output
nodes are omitted for
conciseness. White circle: node.
Blue text: operation. Solid black
line: data flow between nodes

123

25797MSD-NAS: multi-scale dense neural architecture search...

In the group with > 27M trainable parameters, MSD-
NAS (C = 16) outperformed everymethod exceptMultiscale
HRNet-OCR in terms of accuracy (0.9781), mIoU (0.9542),
FPS (52.63), and model size (28.175). See Fig. 9 for the
network architecture of MSD-NAS (C = 16). Compared
to the Multiscale HRNet-OCR, MSD-NAS (C = 16) had
slightly lower accuracy (0.9781 versus 0.9792) and mIoU
(9.9542 versus 0.9568). However, the difference was statis-
tically insignificant. In terms of processing speed and model
size, MSD-NAS (C = 16) was 20.16 times faster (52.63 ver-
sus 2.61) and 2.56 times smaller (28.175M versus 72.100M)
than Multiscale HRNet-OCR.

Compared to the second fastest method in the group,
DeepLabV3+ (ResNet-101), MSD-NAS (C = 16) was 0.90
times faster (52.63 versus 47.62) and 2.11 times smaller
(28.175M versus 59.339M). Furthermore, MSD-NAS (C =
16) had a statistically significant performance advantage
in terms of accuracy (0.9781 versus 0.9772) and mIoU
(0.9542 versus 0.9523). Compared to the second smallest
method, SegNet,MSD-NAS (C = 16)was 1.05 times smaller
(28.175M versus 29.443M) and 3.63 times faster (52.63
versus 14.49). Additionally, MSD-NAS (C = 16) had sig-
nificantly better accuracy (0.9781 versus 0.9645) and mIoU
(0.9542 versus 0.9258).

Fig. 10 shows some visual results of MSD-NAS (C =
16) and PSPNet (ResNet-101). We selected representative
results that consist of different environments (indoor versus
outdoor), lighting conditions (bright versus dark), and lane
shapes (straight versus curve). Across these samples, we can
see that the segmentation outputs of MSD-NAS were more
precise than PSPNet (ResNet-101).

Several conclusions can be drawn from the results. First,
MSD-NAS can automatically design DNNs that outperform
the hand-designed network architectures in terms of accu-
racy, mIoU, speed, and model size. The MSD-NAS (58.82
FPS for C = 8 and 52.63 FPS for C = 16) also can support
real-time pedestrian lane detection as most video cameras
capture at 30 to 50 FPS.

Second, a DNN can achieve high efficiency by customiz-
ing the architecture according to the task. For example,
MSD-NAS (C = 8) outperformed U-Net (ResNet-34)
despite having 2.97 times fewer parameters (8.228M ver-
sus 24.437M), and MSD-NAS (C = 16) outperformed
Multiscale HRNet-OCR despite having 2.56 times fewer
parameters (28.175M versus 72.100M).

Third, the type of encoder used will affect the seg-
mentation performance of the same architectural design.
For example, PSPNet (ResNet101) outperformed PSPNet
(ResNet34), and DeepLabV3+ (ResNet101) outperformed
DeepLabV3+ (Xception). Hence, for every new problem, we
need to consider different encoders for the same architectural
design too.

Fig. 10 Thevisual results ofMSD-NAS (C = 16) andPSPNet (ResNet-
101) on the test images (best viewed in color). The notable differences
are marked with red arrows. Column 1: input image; Column 2: MSD-
NAS (C = 16); Column 3: PSPNet (ResNet-101)

5 Conclusion

This paper introduces a new neural architecture search
algorithm, called MSD-NAS, for pedestrian lane detection.
MSD-NAScan automatically design an optimizedDNNwith
multi-scale input branches, allowing the derived network to
utilize global and local contextual information for predic-
tions. The search space of MSD-NAS is the GSN, which

123

25798 Ang et al.

is a large and dense space that also contains many exist-
ing hand-designed deep models as candidates. Hence, the
search space of MSD-NAS is sufficiently large and generic.
Additionally, we propose a novel Short-term Visual Mem-
ory mechanism to improve information facilitation among
the nodes in the derived DNN. Our experiments demon-
strate that MSD-NAS can automatically find compact and
fast DNNs that outperform 22 existingmethods in some or all
performancemetrics (accuracy, mIoU, processing speed, and
model size). Notably, the DNN found byMSD-NAS is 20.16
times faster and 2.56 times smaller than the existing best deep
learning model, Multiscale HRNet-OCR, while having a sta-
tistical insignificance difference in accuracy and mIoU. This
paper demonstrates a concrete step toward a practical system
for the assistive navigation of blind people.

AlthoughMSD-NAS can achieve high performance in the
pedestrian lane detection task, several research directions can
be further explored in futurework.Thefirst researchdirection
is optimizing the search time of MSD-NAS. Currently, the
searchprocess ofMSD-NAS is split into twophases: optimiz-
ing the GSN and the derived network. The optimized GSN
weights are discarded, and the derived network is trained
from scratch. Future work can explore re-using the GSN
weights or combining the two phases. The second research
direction is incorporating more search criteria into the loss
functions. At present, MSD-NAS only focuses on obtaining
the best accuracy. MSD-NAS may find more efficient DNNs
by directly considering the latency or model size in the loss
function.

Acknowledgements This research work is supported by the Discovery
Project DP190100607 “AssistiveMicro-navigation for Vision Impaired
People” from the Australian Research Council. The first author is also
supported by a PhD scholarship from the University of Wollongong.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ackland P, Resnikoff S, Bourne R (2018) World blindness and
visual impairment: despite many successes, the problem is grow-
ing. Community Eye Heal. 30(100):71–73

2. Ali R, Chuah JH, Talip MSA, Mokhtar N, Shoaib MA (2021)
Automatic pixel-level crack segmentation in images using fully
convolutional neural network based on residual blocks and pixel
local weights. Eng Appl Artif Intell 104:104391

3. Alvarez JM, Lopez AM (2011) Road detection based on illuminant
invariance. IEEE Trans Intell Transp Syst 12(1):184–193

4. Ang SP, Phung SL, Bouzerdoum A, Nguyen TNA, Duong STM,
Schira MM: Real-time pedestrian lane detection for assistive nav-
igation using neural architecture search. In: Proc Int Conf Pattern
Recognit, pp 1–8 (2020)

5. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

6. Chang CK, Siagian C, Itti L: Mobile robot monocular vision nav-
igation based on road region and boundary estimation. In: Proc
IEEE/RSJ Int Conf Intell Robot Syst, pp 1043–1050 (2012)

7. Chaurasia A, Culurciello E: LinkNet: Exploiting encoder repre-
sentations for efficient semantic segmentation. In: Proc IEEE Vis
Commun Image Process, pp 1–5 (2017)

8. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL:
Semantic image segmentation with deep convolutional nets and
fully connected CRFs. In: Proc Int Conf Learn Represent, pp 1–14
(2015)

9. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018)
DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Trans
Pattern Anal Mach Intell 40(4):834–848

10. Chen LC, Papandreou G, Schroff F, Adam H: Rethinking atrous
convolution for semantic image segmentation. In: Proc European
Conf Computer Vision, pp 1–14 (2017)

11. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H: Encoder-
decoder with atrous separable convolution for semantic image
segmentation. In: Proc Eur Conf Comput Vis, pp 1–18 (2018)

12. Crisman JD, Thorpe CE: UNSCARF - A color vision system for
the detection of unstructured roads. In: Proc IEEE Int Conf Robot
Autom, pp 2496–2501 (1991)

13. Gustafsson FK, Danelljan M, Schon TB: Evaluating scalable
Bayesian deep learning methods for robust computer vision. In:
Proc IEEE/CVF Conf Computer Vision and Pattern Recogni-
tion Workshops, pp 1289–1298 (2020). https://doi.org/10.1109/
CVPRW50498.2020.00167

14. He K, Zhang X, Ren S, Sun J: Deep residual learning for image
recognition. In: Proc Conf Comput Vis Pattern Recognit, pp 770–
778 (2016)

15. Ivanchenko V, Coughlan J, Shen H: Detecting and locating cross-
walks using a camera phone. In: Proc IEEE Comput Soc Conf
Comput Vis Pattern Recognit Work, pp 1–8 (2008)

16. Jackson AJ, Wolffsohn JS (2007) Low Vision Manual. Elsevier
17. Kendall A, Badrinarayanan V, Cipolla R: Bayesian SegNet: Model

uncertainty in deep convolutional encoder-decoder architectures
for scene understanding. In: Proc Br Mach Vis Conf, pp 1–11
(2017)

18. Kirillov A, Girshick R, He K, Dollar P: Panoptic feature pyra-
mid networks. In: Proc Conf Comput Vis Pattern Recognit,
pp 6399–6408 (2019)

19. Kong H, Audibert JY, Ponce J (2010) General road detection from
a single image. IEEE Trans Image Process 19(8):2211–2220

20. Le MC, Phung SL, Bouzerdoum A: Pedestrian lane detection for
assistive navigation of blind people. In: Proc Int Conf Pattern
Recognit, pp 2594–2597 (2012)

21. LeiY, PhungSL,BouzerdoumA,LeThanhH,LuuK (2022) Pedes-
trian lane detection for assistive navigation of vision-impaired
people: Survey and experimental evaluation. IEEE Access 10:
101071–101089

22. LiH,Xiong P,An J,WangL: Pyramid attention network for seman-
tic segmentation. In: Proc Br Mach Vis Conf, pp 1–13 (2018)

123

25799MSD-NAS: multi-scale dense neural architecture search...

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CVPRW50498.2020.00167
https://doi.org/10.1109/CVPRW50498.2020.00167

23. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S: Fea-
ture pyramid networks for object detection. In: Proc Conf Comput
Vis Pattern Recognit, pp 2117–2125 (2017)

24. Liu H, Simonyan K, Yang Y: DARTS: Differentiable architecture
search. In: Proc Int Conf Learn Represent, pp 1–13 (2019)

25. Long J, Shelhamer E, Darrell T: Fully convolutional networks for
semantic segmentation. In: Proc Conf Comput Vis Pattern Recog-
nit, pp 3431–3440 (2015)

26. Miksik O, Petyovsky P, Zalud L, Jura P: Robust detection of shady
and highlighted roads for monocular camera based navigation of
UGV. In: Proc IEEE Int Conf Robot Autom, pp 64–71 (2011)

27. Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopou-
los D (2022) Image segmentation using deep learning: a survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence
44(7):3523–3542

28. Nguyen TNA, Phung SL, Bouzerdoum A (2020) Hybrid deep
learning-gaussian process network for pedestrian lane detection
in unstructured scenes. IEEE Trans Neural Networks Learn Syst
31(12):5324–5338

29. Oh C, Son J, Sohn K: Illumination robust road detection using
geometric information. In: Proc IEEE Conf Intell Transp Syst, pp
1566–1571 (2012)

30. PhungSL, LeMC,BouzerdoumA (2016) Pedestrian lane detection
in unstructured scenes for assistive navigation. Comput Vis Image
Underst 149:186–196

31. Ramstrom O, Christensen H: A method for following
unmarked roads. In: Proc IEEE Symp Intell Veh, pp 650–655
(2005)

32. Rasmussen C: Texture-based vanishing point voting for road shape
estimation. In: Proc Br Mach Vis Conf, pp 470–477 (2004)

33. Ronneberger O, Fischer P, Brox T: U-Net: Convolutional networks
for biomedical image segmentation. In: Proc. Int Conf Med Image
Comput Comput Assist Interv, pp 234–241 (2015)

34. Se S, BradyM (2003) Road feature detection and estimation.Mach
Vis Appl 14(3):157–165

35. Sotelo MA, Rodriguez FJ, Magdalena L, Bergasa LM, Boquete
L (2004) A color vision-based lane tracking system for
autonomous driving on unmarked roads. Auton Robots 16(1):
95–116

36. Sultana F, Sufian A, Dutta P (2020) Evolution of image seg-
mentation using deep convolutional neural network: A survey.
Knowledge-Based Syst 201–202:1–25

37. TanC,HongT, Chang T, ShneierMichael: Colormodel-based real-
time learning for road following. In: Proc IEEE Conf Intell Transp
Syst, pp 939–944 (2006)

38. Tao A, Sapra K, Catanzaro B: Hierarchical multi-scale attention
for semantic segmentation. ArXiv e-prints pp 1–11 (2020)

39. Le Thanh H, Phung SL, Bouzerdoum A (2022) Bayesian gabor
network with uncertainty estimation for pedestrian lane detection
in assistive navigation. IEEE Transactions on Circuits and Systems
for Video Technology 32(8):5331–5345

40. Uddin MS, Shioyama T: Bipolarity and projective invariant-based
zebra-crossing detection for the visually impaired. In: Proc IEEE
Comput Soc Conf Comput Vis Pattern Recognit Work, pp 22–30
(2005)

41. Wang J, SunK,ChengT, JiangB,DengC,ZhaoY,LiuD,MuY,Tan
M, Wang X, Liu W, Xiao B: Deep high-resolution representation

learning for visual recognition. IEEE Trans Pattern Anal Mach
Intell pp 1–16 (2019)

42. Xu Y, Xie L, Zhang X, Chen X, Qi Gj, Tian Q, Xiong H:
PC-DARTS: Partial channel connections for memory-efficient
architecture search. In: Proc Int Conf Learn Represent, pp 1–13
(2020)

43. ZhaoH, Shi J, Qi X,WangX, Jia J: Pyramid scene parsing network.
In: Proc Conf Comput Vis Pattern Recognit, pp 2881–2890 (2017)

44. Zhou Z, SiddiqueeMMR, Tajbakhsh N, Liang J: Unet++: A nested
U-Net architecture for medical image segmentation. In: Deep
Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support, pp 3–11 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Sui Paul Ang received the B.
CompSc. in software engineering
(2017), M.Phil. in computer engi-
neering (2018), and Ph.D. in com-
puter engineering (2023) from the
University of Wollongong, Aus-
tralia. His research interests include
neural architecture search, deep
learning, medical imaging, pattern
recognition, and computer vision.

Son Lam Phung (Senior Mem-
ber, IEEE) received the B.Eng.
(Hons.) and Ph.D. degrees in com-
puter engineering from Edith
Cowan University, Australia, in
1999 and 2003, respectively. Dr
Phung is currently a Professor at
the University of Wollongong. He
was also a Visiting Senior Research
Scientist at VinAI in 2020-2021.
He has published over 136 papers
in journals and international con-
ferences. His research interests
include image and signal process-
ing, neural networks, pattern recog-

nition, and machine learning. Dr Phung has served as the Chief Inves-
tigator for over 18 research projects funded by government agencies
(research, defense, intelligence, foreign affairs, and trade) and indus-
try. He was awarded the University Medal in 2000. He is currently
serving as an Associate Editor for IEEE Access and a Section Editor
for Sensors.

123

25800 Ang et al.

Soan T. M. Duong received her
B.Eng degree in information tech-
nology from Le Quy Don Techni-
cal University, Vietnam, in 2010;
her M.Eng degree in computer
science from Dongguk University,
South Korea, in 2014; and her
Ph.D. degree in computer engi-
neering from the University of
Wollongong, Australia, in 2020.
She was awarded the Examiners’
Commendation for Outstanding
Thesis in 2020. Her research inter-
ests include image processing,
medical image registration, med-

ical image processing, machine learning, and neural architecture
search.

Abdesselam Bouzerdoum (M’89
- SM’03) received the M.Sc. and
Ph.D. degrees in electrical engi-
neering from the University of
Washington, Seattle, USA. He has
extensive experience in teaching,
research, and academic leadership.
He is currently serving as Asso-
ciate Provost for Academic Affairs
at Hamad Bin Khalifa University
(HBKU), Doha, Qatar. Most
recently, he served as Head of the
ICT Division, College of Science
and Engineering, HBKU. In 2004,
he was appointed Professor and

Head of School of Electrical, Computer and Telecommunications
Engineering at the University of Wollongong (UOW), Wollongong,
Australia, where he also served as Associate Dean (Research) from
2007 to 2013. In 2015, he was promoted to Senior Professor of com-
puter engineering at UOW. From 2009 to 2011, he was a member
of the Australian Research Council College of Experts and served as
Deputy Chair of the EMI panel. He was a Distinguished Visiting Pro-
fessor at several international institutions in France, USA, Germany,
China, and New Zealand.

Dr. Bouzerdoum is the recipient of the Eureka Prize for Outstand-
ing Science in Support of Defence or National Security (2011), the
Chester Sall Award of IEEE Trans. Consumer Electronics (2005), and
a Distinguished Researcher Award (Chercheur de Haut Niveau) from
the French Ministry (2001). He served as Associate Editor for 5 Inter-
national journals, including IEEE Transactions on Image Processing.
His main research interests include signal and image processing, radar
imaging, vision, machine learning, and pattern recognition.

123

25801MSD-NAS: multi-scale dense neural architecture search...

	MSD-NAS: multi-scale dense neural architecture search for real-time pedestrian lane detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Unmarked lane detection
	2.2 Deep learning-based semantic segmentation

	3 Methodology
	3.1 Generalized segmentation network
	3.2 Architectural parameters of the GSN
	3.3 Optimizing the GSN
	3.4 Deriving the final DNN from the optimized GSN
	3.5 Short-term visual memory mechanism

	4 Experiments and analysis
	4.1 Pedestrian lane dataset
	4.2 Experimental steps
	4.3 Search settings
	4.4 Ablation study
	4.5 Comparison with the existing pedestrian lane detection methods

	5 Conclusion
	Acknowledgements
	References

