Applied Intelligence (2023) 53:27323-27343
https://doi.org/10.1007/510489-023-04812-0

®

Check for
updates

AdaDeepStream: streaming adaptation to concept evolution in deep
neural networks

Lorraine Chambers'@® - Mohamed Medhat Gaber' - Hossein Ghomeshi?

Accepted: 18 June 2023 / Published online: 7 September 2023
© The Author(s) 2023

Abstract

Typically, Deep Neural Networks (DNNs) are not responsive to changing data. Novel classes will be incorrectly labelled as
a class on which the network was previously trained to recognise. Ideally, a DNN would be able to detect changing data and
adapt rapidly with minimal true-labelled samples and without catastrophically forgetting previous classes. In the Online Class
Incremental (OCI) field, research focuses on remembering all previously known classes. However, real-world systems are
dynamic, and it is not essential to recall all classes forever. The Concept Evolution field studies the emergence of novel classes
within a data stream. This paper aims to bring together these fields by analysing OCI Convolutional Neural Network (CNN)
adaptation systems in a concept evolution setting by applying novel classes in patterns. Our system, termed AdaDeepStream,
offers a dynamic concept evolution detection and CNN adaptation system using minimal true-labelled samples. We apply
activations from within the CNN to fast streaming machine learning techniques. We compare two activation reduction
techniques. We conduct a comprehensive experimental study and compare our novel adaptation method with four other
state-of-the-art CNN adaptation methods. Our entire system is also compared to two other novel class detection and CNN
adaptation methods. The results of the experiments are analysed based on accuracy, speed of inference and speed of adaptation.
On accuracy, AdaDeepStream outperforms the next best adaptation method by 27% and the next best combined novel class
detection/CNN adaptation method by 24%. On speed, AdaDeepStream is among the fastest to process instances and adapt.

Keywords Deep neural netowrks - Concept evolution - Streaming machine learning - Novel class detection - Deep neural
network adaptation

1 Introduction

DNNs are widely used and have achieved state-of-the-art
performance in static data classification tasks [1, 2]. How-
ever, data evolves in real-world scenarios and standard DNNs

Mohamed Medhat Gaber and Hossein Ghomeshi are both contributed
equally to this work.

B< Lorraine Chambers
lorraine.chambers @mail.bcu.ac.uk

Mohamed Medhat Gaber
mohamed.gaber @bcu.ac.uk

Hossein Ghomeshi
hosseinghomeshi @shipamax.com

School of Computing and Digital Technology,
Birmingham City University, 15 Bartholomew Row,
Birmingham BS5 5JU, Birmingham, United Kingdom

2 Shipamax Ltd., 241 Southwark Bridge Rd,
London SE1 6FP, United Kingdom

are not responsive to changing data. DNNs only recognize
classes they are trained on. Therefore, novel classes are
attributed to known labels from the training data. This will
result in incorrectly classified instances. Non-responsiveness
to changing data could be dangerous in safety-critical appli-
cations such as autonomous vehicles [3] and medical sensor
analysis [4]. For instance, deep neural networks have been
used widely to develop autonomous vehicles and various
safety incidents have been reported in the media such as
Google’s self driving car hitting a bus [5] and a Tesla driver’s
fatal crash [6]. Detection and adaptation of novel classes in
these circumstances is essential. In this paper we focus on the
key challenge of detecting novel classes emerging in stream-
ing images and CNN adaptation to this.

In dynamically changing and non-stationary environ-
ments, data drift can manifest when out of distribution
instances occur. When novel classes appear in a datastream
in accumulated instances, this data drift is called concept
evolution [7]. When there is a distribution change within the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04812-0&domain=pdf
http://orcid.org/0000-0002-6840-8470

27324

L. Chambers et al.

existing classes only and no new classes arise, this data drift
is called concept drift [8]. This paper focuses on concept
evolution only.

Detecting and adapting to concept evolution in CNNs can
be problematic. In the streaming environment there is no prior
knowledge of the novel classes to assist in the initial training
process [9]. Image data is high dimensional which makes it
harder to detect concept evolution than for lower dimensional
datasets [10]. In CNN adaptation, high data dimensional-
ity contributes to the adaptation latency being large [11].
DNN adaptation can cause catastrophic forgetting (where
originally known classes are forgotten in the presence of
new classes) [12]. DNNs require balanced classes for train-
ing which are not available in streaming scenarios. DNNs
require a larger amount of data for training as compared to
other types of machine learning models. To achieve online
CNN adaptation, solutions often require prior selection of
specialised DNN architectures, loss functions or knowledge
distillation [13—16]. This means that novel class detection
and adaptation cannot be retrospectively applied without re-
training the CNN. This is particularly an issue in CNNs
that take a long time to train. The requirement of online
adaptation may not always be realised at the time of orig-
inal implementation of the CNN system. If such a system
is not in place, metrics would need to be manually moni-
tored, data would need to be collected, labelled and another
model statically trained before being updated on the sys-
tem, which may not be achievable when the system is online.
Therefore, easily implementable solutions to upgrade exist-
ing trained CNNs are required. At the very least, an image
recognition system should be able to detect and adapt to novel
classes in a datastream. For an image recognition system
involving a DNN, the two fields of Concept Evolution and
OCI are involved. OCl is a subset of the Online Continuous
Learning (OCL) field concerning novel classes only. OCI
typically trains a newly initialised DNN in an incremental
manner, applying all instances of one class at a time [12].
Research in this field focuses on accumulating and preserv-
ing knowledge without forgetting any previous data [12],
True-labelled samples of the classes are often used, which
results in artificially high performance. In a real-world sce-
nario, even partially labelling a data stream using humans
can be expensive [17] and impractical due to the need for
domain experts and manual labelling. This is in contrast to
the Concept Evolution field where focus is upon the chang-
ing data, taking into account only some previous data and
using minimal true-labelled samples. The Concept Evolu-

Fig.1 Patterns of concept

tion and OCI fields require bringing together as they offer
complimentary views. We apply concept evolution patterns
of abrupt, gradual, incremental and reoccurring as shown in
Fig. 1.

Existing approaches for CNN adaptation to concept evo-
lution are limited as the focus has been on lower dimensional
data. To handle high dimensional data, the data is transformed
into a different representation to improve the separation of
the classes [10, 18-20]. Clustering is commonly used in
novel class detection [10, 20-25]. It is an implicit method
of drift detection. The drift is monitored over a number of
instances before drift is declared. This is in contrast to explicit
drift detection where the change is detected and immedi-
ately reported. Implicit methods of drift detection result in
a delay of concept evolution detection. In data stream clas-
sification, there are approaches for novel class detection in
images where DNNs are used in the detection process [20,
26-28]. However, not where a CNN is adapted to the novel
classes. This means that CNN adaptation has not been stud-
ied in depth in the concept evolution field. On the contrary,
the OCI field has a large number of CNN adaptation tech-
niques [14-16, 29, 30]. However, they have not been applied
to the more dynamic concept evolution setting. Only one
paper [21] started to address this by unifying OCL with
concept drift and concept evolution adaptation [21]; how-
ever, data drift patterns were not applied. Our own previous
work uses the activations from within a DNN with stream-
ing clustering, but had limitations with memory [31] and
are placed in static setting [32]. Thus, a new solution is
required that addresses concept evolution detection and CNN
adaptation to images with the following attributes: (1) Trans-
formation of the image data into a different representation.
(2) Explicit concept evolution detection. (3) A solution that
can be applied to existing CNNs with no need to re-train the
CNN. (4) Analysis with respect to concept evolution patterns.

Our system (AdaDeepStream) aims to provide a wrap-
per whereby pre-trained standard CNNs can be enabled to
explicitly detect and adapt to concept evolution in images.
The concept evolution detection and CNN adaptation is
facilitated by the use of activations from within the deep
neural network, applied to streaming machine learning mod-
els. Our system detects change in an unsupervised manner
by comparing the predictions of the CNN with predictions
from a streaming classifier using the internal activations of
the CNN. Only instances that are detected at the begin-
ning of the change are true-labelled to minimise human
interaction. The aim is to adapt a CNN within seconds.

. ; . 900000 ® 00 oo caeo
evolution applied over time. / - N\ ) \
Figure adapted from
pryrres eoee® eee0 ¢ © 0000 o000
sudden/abrupt incremental gradual reoccuring concepts

@ Springer



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27325

This research focuses on image classification via the widely
used VGG16 Convolutional Neural Network [33]. Datasets
CIFAR-10, CIFAR-100 [34] and Fashion-MNIST [35] are
used. Concept evolution patterns are produced by withhold-
ing classes from the dataset during training, then applying
unseen instances of known and withheld classes during test-
ing. We analyse unseen instances by utilising activations
from the hidden layers within the deep neural network. We
reduce the activations using two methods (1) an extension of
our Jensen-Shannon Divergence (JS-Divergence) as used in
[32], altered to also calculate JS-Divergence between each
layer and the final layer. This is referred to as JSDL for the
remainder of this paper. (2) a modified Content-Based Image
Retrieval (CBIR) method [36], referred to as DS-CBIR for the
remainder of this paper. We apply the activations to a Hoeffd-
ing Adaptive Tree [37] streaming classifier. The difference
between the Hoeffding adaptive classifier and the CNN is
used to detect concept evolution via DDM (Drift Detection
Method) [38]. Once concept evolution is detected, the CNN is
adapted via our method, termed DSAdapt. We substitute our
DNN adaptation method with four leading methods from the
OClfield: iCARL (Incremental Classifier and Representation
Learning) [14], LwF (Learning without Forgetting) [15], ER
(Experience Replay) [29, 30] and MIR (Maximally Interfered
Retrieval) [16] augmented with RV (Review Trick) [39]. We
perform an extensive empirical study, comparing these and
our DSAdapt method based on accuracy, speed of inference,
and speed of adaptation. Our entire system, AdaDeepStream,
is an offline training and online inference method. Its effec-
tiveness is shown in comparison to RSB (Reactive Subspace
Buffer) [21] and CPE (CNN based Prototype Ensemble) [10]
also through accuracy, speed of inference and speed of
adaptation.

The CBIR technique [36] is not ours but is modified to
remove the threshold and further reduce the activations by
splitting them into equal sections and averaging each sec-
tion. To the best of our knowledge, applying CBIR to concept
evolution detection is unique. JSDL uses the JS-divergence
statistical difference measure in a novel way between layers
of a deep neural network. To the best of our knowledge,
apart from our own previous work in [31, 32]; using the
reduced activations for concept evolution detection is unique.
Our CNN adaptation (DS-Adapt) is novel. Reduced activa-
tions provide a buffer of training and true-labelled instances,
assisting in addressing class imbalance and catastrophic for-
getting. To the best of our knowledge, using activations with
streaming machine learning models for CNN adaptation is
novel. A summary of the contributions of this paper is as
follows:

1. Heuristics for activation reduction of deep neural net-
works via DS-CBIR and JSDL to apply to concept
evolution detection.

2. Concept evolution detection using neural network acti-
vations and streaming machine learning models.

3. CNN adaptation involving neural network activations and
streaming machine learning models.

4. Analysis of OCI CNN adaptation techniques in a concept
evolution setting.

This paper is organised as follows: In Section 2 we dis-
cuss the related work. In Section 3, we present a description
of the system that includes formalisation and implementation
details of the AdaDeepStream components and methodology.
In the experimental study in Section 4 we specify the experi-
mental setup. In Section 5, we evaluate AdaDeepStream with
four other CNN adaptation methods and two combined novel
class detection and CNN adaptation solution. Section 6 sum-
marises our findings with a conclusion and suggestions for
future work.

2 Related work

In this section, the work related to concept evolution, drift
detection and DNN adaptation in the concept evolution and
OCI fields are discussed.

2.1 Concept evolution

Concept evolution is usually detected via distance measures
based on instances’ locations from the decision boundaries.
OLINDDA [40] and MINAS [41] are based on clustering.
ECSMiner [42] and Echo-D [43] are based on ensembles
of classifiers with hyper-spheres. The aforementioned meth-
ods have to wait for a number of novel classes defined by
a threshold before a novel class is declared. Distance-based
methods are difficult to get to work on high dimensional
data such as image data and suffer the curse of dimension-
ality [44]. A method to counteract this is to project the data
into a different representation. To detect novel classes, meth-
ods such as temperature scaling [18], perturbations or input
pre-processing [19] and learning a latent feature embedding
space [10, 20] are employed to separate the classes and make
the novel class detection more feasible. In this paper, instead
of using the image data directly, the activation data from the
hidden layers of the deep neural network is extracted and used
to train a streaming classifier, offering a reduced alternative
representation of the image data. The predictions of the CNN
and the streaming classifier are presented to a drift detector
and monitored for change in order to detect novel classes.
Therefore, the following section contains related work con-
cerned with drift detection.

@ Springer



27326

L. Chambers et al.

2.2 Drift detection

Drift detection algorithms can be categorised into (1) sequen-
tial, (2) adaptive windowing and (3) statistical [45-47].
Sequential based methods analyse whether the drift has
occurred and sequentially and predict the drift based on
the accuracy evaluation. Examples are Cumulative Sum
(CUSUM) [48] and, Geometric Moving Average (GMA)
[49]. CUSUM calculates the difference of observed values
from the mean and raises an alarm when it is significantly
different. GMA uses a forgetting factor to weight the lat-
est data and a threshold is used to tune the false alarm
rate. However, these algorithms require tuning of the param-
eter values, resulting in a trade-off between false alarms
and detecting true drifts. Windowing methods use fixed or
dynamic windows that summarize information; that infor-
mation is then used to make a comparison between the
previously summarized windows and the current window
to detect drift. Examples of adaptive windowing methods
are Adaptive Windowing (ADWIN) [50] and Kosmolgorov
Simirnov Windows (KSWIN ) [51]. ADWIN uses sliding
windows of variable size and if two windows are found that
have distinctly different averages, then the data distribution is
deemed to have changed. KSWIN is based on the Kosmolgo-
rov statistical test and has no assumption of the underlying
data distribution. Another adaptive windowing methods is
HDDM [52] which is based on Hoeffding bounds and mon-
itors the data distribution of different time windows using
probability inequalities instead of the probability distribu-
tion function. It compares the moving averages to detect
the drifts and uses a forgetting scheme to find the weight
of moving averages in the data stream. However, it needs to
explore with different weighting schemes for application to
real-world problems [47]. Statistical methods are based on
parameters like mean and standard deviation to predict drift.
Examples are DDM [38] and EDDM [53]. DDM is based
on the PAC learning model [38]. It assumes the binomial
distribution and uses the standard deviation to detect drift
and works well on abrupt drift. EDDM improves upon DDM
by increasing the detection of gradual drift whilst maintain-
ing a good abrupt drift detection rate by using a distance
error rate instead of the classifiers error rate. The statistical
methods are generally faster than the sequential or adaptive
windowing methods, and although DDM is one of the older
algorithms, it is one of the most accurate and fastest [54].

2.3 Concept evolution and DNN adaptation

Adaptation of DNNs in the concept evolution field is rel-
atively new, as the focus has tended to be on traditional
machine learning models, because DNNs typically require
a large amount of training data and their adaptation latency
is large [11]. The main challenges faced in adapting DNNs

@ Springer

are (1) which parts of the network should be static and which
parts plastic [55], (2) sample shortage, and (3) the time to
train the DNN [56]. Existing concept evolution and DNN
adaptation methods can be divided into two categories (1)
model parameter updating and (2) model structure updat-
ing [11]. The update of the model parameters preserves the
structure of the network and alters parameters such as the
weights of the network to adapt to concept evolution. All
of the parameters in the network are affected, thus it can be
slow to adapt [57]. Partial parameter updating is targeted to
specific areas of the DNN, leading to faster adaptation and
less catastrophic forgetting. The parts of the network that are
updated can vary. In [58] the layer is found where a drift
first occurs and subsequent layers only are updated for drift
adaptation. Model structure updating involves adjusting the
network width or depth, often leading to complex models
which increases training time. An example of this is [13]
in which small networks are added to the existing structure
to accommodate the new classes. There are methods that
use deep learning methods to detect concept evolution [20,
26, 27], but few that detect concept evolution and adapt a
pre-existing CNN. In [21] an experience replay method is
used, where experience replay means that previously seen
instances are stored for later use. A reactive subspace buffer
tracks novel class occurrences such that the buffers remem-
ber valid information and forget outdated information and
split buffers based on novel class detection.

2.4 Online class incremental

In OCI, the aim is to accumulate and preserve knowledge
without forgetting any previous data [12]. This is known
as catastrophic forgetting, where the network cannot per-
form well on previously seen data after updating with new
data[59]. Methods in the OCI field are based on: (1) Reg-
ularization, (2) Memory and (3) Parameter Isolation. Most
methods are based on Memory. Methods that excel in perfor-
mance in the OCI setting are iCARL, LwF, MIR and ER [12].
LwFisregularization based and all others are memory-based.
LwF uses knowledge distillation [18] to preserve knowledge
from past tasks and uses a teacher/student model. However,
the teacher/student model means it has reliance on related-
ness between the old and the new data and may not perform
well if the distributions of the old and new data are differ-
ent [15]. iCARL (Incremental Classifier and Representation
Learning) creates a training set by mixing all of the sam-
ples in the memory buffer and the current unseen samples,
adjusts the loss function to address class imbalance between
old and new classes and uses a nearest-class-mean (NCM)
classifier instead of a Softmax classifier. iCARL has the best
performance with a small memory buffer on small datasets.
ER simply trains the model with the unseen data batch and
memory mini-batches, has an efficient training time and has



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27327

outperformed other approaches [29]. MIR (Maximally Inter-
fered Retrieval) selects memory samples according to the
loss increases given the estimated parameter update based on
the incoming unseen window and updates the DNN on this
sample plus the original unseen window. It performs well on
large scale datasets with a large memory buffer [12]. There
are also a number of "tricks" that can be applied that can
enhance existing adaptation methods. These address class
imbalance due to the strong bias towards the novel classes.
Examples of the strongest ones are Review Trick (RV) [39],
which uses an additional tuning step with a small learning rate
and a memory buffer and NCM [60], which replaces the fully
connected layer and the Softmax layer with a Nearest Class
Mean classifier. However, inference time increases with the
growth of the memory size whereas for RV, the training time
increases with the growth of the memory size but it is more
memory-efficient than NCM [12].

2.5 Novel class detection and adaptation in high
dimensional data

In summary, to the best of our knowledge, there is only
one system that detects novel classes and directly adapts
the classifying CNN (RSB [21]). Other systems have DNNs

involved in the detection of novel classes (CPE [10],
CSIM [20]). There are a larger number of other meth-
ods that adapt to high dimensional novel classes that do
not involve a DNN (EMC [22], SAND [23], SENNE [24],
KNNENS [25], ECSMiner [42], SEND [61], SENCFor-
est [62], SACCOS [63], SENC-Mas [64]). Table 1 shows
a summary of approaches for novel class detection and adap-
tation in high dimensional data. From this, it can be seen
that most solutions for adapting to novel classes in high
dimensional data use clustering. However, this is implicit
drift detection. Therefore, the drift detection requires a num-
ber of instances before the novel class is declared, resulting
in a delayed adaptation response. Our system differs from
these as it does not use clustering in the drift detection, but
a tree and an explicit change detection method. Our method
adapts the image classifying DNN. There is a lack of other
methods focusing upon this. Therefore, we investigated OCI
DNN adaptation methods. These are summarised in Table
2. Some of these methods require re-training of the DNN
on the initial training data as they use specialised architec-
tures, loss functions or knowledge distillation. Similarly to
the most successful adaptation methods, we use a memory-
based approach, but use activations to assist in the adaptation.
The concept for this paper is that the AdaDeepStream sys-

Table 1 Summary of

approaches for novel class Approach

Method

detection and adaptation in

) . . 8 Clustering. Adapting DNN.
streaming high dimensional data

Clustering. Uses DNN in detection.

Clustering. No DNN.

Clustering Ensemble. No DNN.

Clustering Ensemble. No DNN.

Clustering Tree/Forest. No DNN.
Clustering Tree/Forest, No DNN.

Tree/Forest. No DNN.

Clustering Graph. No DNN.
Matrix Sketching. No DNN.

Tree. Adapting DNN.

RSB: Centroid clustering. Reactive subspace buffer tracks drift.
DNN adaptation is Memory-based. Stores diverse samples.

CPE: Changes representation of images into clustering proto-
types to improve cohesion and separation. Uses a CNN in the
novel class detection.

CSIM: CNN used to form feature embedding to learn high level
features of images and transformed into a space with improved
cohesion and separation using metric learning, then novel class
detection is performed.

EMC: Evolving micro-clusters with local density novel class
detector.

SAND: Clustering K-NN ensemble and detects outliers having
strong cohesion among themselves.

SENNE: Nearest Neighbour ensembles. Calculates geometric
distance between classes.

Echo-D: Ensemble of clustering classifiers.

KNNENS: k-nearest neighbor-based hypersphere ensemble.
ECSMiner: Decision Tree and Feature space partitioning.
SEND: Clustering random trees.

SENCForest: Completely random trees with an unsupervised
anomaly detector.

SACCOS: Mutual graph clustering.

SENC-MasS: Class Matrix Sketching to model the data as a low-
dimension approximation.

AdaDeepStream (Ours): Hoeffding tree using activations and
DNN prediction applied to explicit drift detector. DNN adap-
tation is memory-based involving DNN activations.

@ Springer



27328

L. Chambers et al.

Table2 Summary of

A h
approaches for OCI DNN pproac

Method

adaptation Memory. Re-training required

Memory. No re-training

Regularization. Re-training required

iCARL: Centroid Memory buffer with reservoir sampling.
Updated Loss function and distillation loss. Binary cross-entropy
between old and new class

MIR: Estimated parameter update based on the incoming batch
using stochastic gradient descent, using samples from the mem-
ory buffer that have the largest estimates as loss increases and
mixes them with the incoming mini-batch

ER: Replay method that applied reservoir sampling and trains
the model with the incoming data and memory data using cross
entropy loss

AdaDeepStream (Ours): Trains model with incoming data win-
dows where novel classes have been detected. Samples data from
DNN activation training data and true-labelled data.

LwF: A student model is created and the original model becomes
the teacher. Uses knowledge distillation.

tem can accept a standard pre-trained CNN and adapt it
to novel classes. For drift detection we adopt a statistical
method to ensure fast detection of concept evolution. For
the CNN adaptation, we adopt a partial model parameter
update methodology for the reasons of complexity affecting
training time, making only the classification layers of the
CNN plastic so that it will adapt quickly, and use a memory-
based methodology for providing samples to the adaptation.
Section 3 provides an in-depth description of our AdaDeep-
Stream system.

3 AdaDeepStream system

This section details our AdaDeepStream system components
and their interactions via descriptions and algorithms. We
present our two activation reduction methods (JSDL and
DS-CBIR), our drift detection method, our CNN adaptation
method (DS-Adapt), and how the application of the four sub-
stituted CNN adaptation methods is achieved.

Firstly, some fundamental concepts are given. For the def-
inition of a datastream, let D = {(x;, y;)}7° where (x;, y;) is
aninstance that has arrived at timestep 7. x; € RY where R is
a d-dimensional feature vector. y; is the true class label of the
instance. Concept evolution are new classes that emerge dur-
ing inference. They are not present in the initial training data.
For data stream classification with novel class detection: Let
Dini¢ be a training set of m examples: Dinic = {(x;, ¥)}7'
where the class labels are: y; € ¥ = {1,2,..., L} and Y
are the known class labels. An initial model is built with:
f + X — Y. The model f, is then used to predict the
class labels of incoming instances if it belongs to a known
class, or flag up a change. Each change detection is consid-
ered a possible new class in that window. The model is then
adapted to include the novel class. In the following algorithm

@ Springer

descriptions, index notation is used. For instance, x;j, is the
ith instance in hidden layer /. Table 3 lists the commonly
used symbols. For brevity in the descriptions, the Hoeffding
Adaptive Tree streaming activation classifier is referred to as
HAT, JS-Divergence is referred to as JSD and the SAMKNN
streaming clusterer is referred to as SAM.

Figure 2 shows the proposed AdaDeepStream system. The
prerequisites for the system are: (1) a trained CNN on which
the detection and adaptation is being applied, and (2) the
data instances on which the deep neural network is trained.
AdaDeepStream is an offline-online system in that it is
trained offline and processes unseen instances online. To train
AdaDeepStream, the training instances are presented to the
CNN. The activations of each training instance are extracted,
then the activation data proceeds through 3 stages: (1) acti-
vation reduction, (2) drift detection setup and (3) adaptation
setup. Activation reduction is achieved via JSDL (Section
3.1) or via DS-CBIR (Section 3.2). The HAT and SAM are
trained with reduced activation data: Ainie = {(a;, y)I7T"
Where Ajni¢ is a training set of m samples of activation
data, where q; is an instance of reduced activation data. The
class buffer is initialised with image and activation data:
Einit = {(x;,a;, y))}]'. Where Ejy; is a training set of m
samples of image and activation data. At inference time, a
window of image data, D,, is applied. The reduced acti-
vations are extracted via JSDL or DS-CBIR to give A,.
Each instance in A, is classified by the HAT to give a win-
dow of HAT predictions, S,,. The CNN predictions, P, are
compared with S,,. Instances where the HAT and CNN pre-
dictions match are assigned as 0. Instances where the HAT
and CNN prediction do not match are assigned as 1. These
are provided to the DDM drift detector. If the drift detector
identifies changes, the window data, (A,,, Dy,) is passed to
the adaptation phase. In Fig. 2, units involving the adapta-
tion phase are shown in orange. The window that change was



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27329

Table 3 Summary of symbols

Symbol Description Symbol Description

Ainit Activation training data I Maximum activation values of each channel
a; Reduced activation data for an instance Jw Hidden layer activations for window

Ag Sampled activation data from class buffer Ky SAMKNN predicted values for window
Ay Reduced activations for window L Total number of classes

b Convolutional block / Known class

B Set of change detection windows l Known class

by Pooling layer of convolutional block m Number of samples

B, Previous window buffer M Maximum number of activation values in a layer
C CNN P CNN predicted results for datastream

Cqy Adapted CNN Di CNN predicted class label for an instance
D Datastream Py CNN class predictions for window

Dinit Image training data qi Drift detector output

d; Drift detector input Ow Set of drift detector outputs for window
Dy Sampled image data from class buffer S HAT predicted class lable for an instance
Dy, Data window Sw HAT class predictions for window

E Class buffer U Set of stored windows

Einit Class buffer of initial training data w Window number

G Number of windows in U w Total number of windows in buffer

h Hidden layer number w Window number

H Total number of hidden layers w Total number of windows in buffer

j Hidden layer Xi An instance of image data

Jpr Section averaged convolutional block activations Y All known classes

Jnr Section averaged final hidden layer activations Vi True class label for an instance

Jp Set of activation values for convolutional blocks Y, Novel classes

Je Activation values of convolutional layer Y Sampled class labels from class buffer
Ju Final hidden layer activations Yu True class labels for window

Ji Activations for an instance

Fig.2 AdaDeepStream System
overview. An unknown image of
a frog is presented to the CNN,
the activations are extracted,
drift is detected and the CNN is
adapted to recognise the new
class. CNN image adapted

from [65]

O)

NN

K
B
i

Dw

—>

Unknown Image

.

(7 Convolutional +ReLU
7  MaxPooling Pu
! Fully Connected + RelU l Airplane
T xr—a;a;aff} ; P : gy \utomobile
 ———
Block, b | | » Horse
activations from hidden layers j1 to ji A , -> Frog

-

i ) (New class)
Jw

Activation Reduction
(JSDL or DS-CBIR)

yAw e e et o] [k i o it e e e
t
Drift Detection | Aw Adaptation
Pw A |
Hoeffding N [ Previous Window Buffer I
Adaptive Tree DDM

Streaming  F=» Drift (Aw,Yw) .| SAMKNN
Activation Detector (A, D) > Drift LR frain
Classifie Clustering lassifier

w:?\“,) r Change v Cla \‘tu

- /A Instances . ayers

Jbels) (Dv,r,A.-,/,Y,-.L (DsY:)
(As,Ys)

@ Springer



27330

L. Chambers et al.

detected in is true labelled. The SAM and the class buffer
are updated with the true labelled window data. Windows
prior to the drift detection are collected from the previous
window buffer. Samples are taken from the class buffer for
each class detected in the previous window buffer to assist
in mitigating catastrophic forgetting. The sampled image
data (Dy, Ys) is applied to the adaptation of the CNN. Only
the CNN classification layers are trained as shown by the
dashed orange box in the CNN. If the CNN is adapting when
new windows, Dw are arriving, the instance labels stored in
the previous window use the prediction from SAM instead
of from the CNN as SAM has already been updated with
the novel classes. While the CNN is adapted, the HAT is
adapted with the activation instances from the class buffer
(Ay, Yy) to recognise i.e. the Frog class. From this point on
the frog is a recognised class and does not trigger the drift
detector.

3.1 Activation reduction JS-diverge last (JSDL)

We calculate the JS-Divergence between each pair of con-
secutive hidden layers and between each layer and the final
hidden layer. (1), (2), and (3) show how JS-Divergence
is calculated in order to achieve a dynamic representa-
tion of the activations of a deep neural network. The
symbols for the following equations are standard mathemat-
ical notation and are defined in the following text, not in
Table 3.

N
H ==Y px)-log p(x;) §))
i=1 N
DiL(pllg) = p(x;) - (log p(x;) — log q(x)) )
i=1
1 + 1 +
Dysplle) = 3Dk (Pl + 2Dk @ P @)

JS-Divergence is a smooth symmetric measure of the sim-
ilarity between two probability distributions based on the
Kullback-Leibler divergence (KL-Divergence). KL-
Divergence Dk is based on entropy (a quantification of
how much information is in data). H is the entropy and
if log, is used, entropy is the minimum number of bits it
would take to encode the information. For instance, if p is
the probability distribution of the activations in hidden layer
1, we get an entropy measure of H bits from hidden layer
1. The KL-Divergence combines two probability distribu-
tions and calculates the difference of the log values for each.
For instance, if ¢ is our distribution of the activations from
hidden layer 2, KL-Divergence calculates how much infor-
mation is lost when p is compared with g. However, KL
divergence cannot be used to measure the distance between
two distributions as it is not symmetric. The JS-Divergence

@ Springer

D s calculates a normalized score that is symmetrical. The
JS-Divergence has been selected as the statistical differ-
ence measure as it, or the KL-Divergence has been used in
conjunction with DNN activations [66, 67]. Other statisti-
cal measures of Kolmogorov-Smirnov and cosine similarity
were experimented with. However, JS-Divergence provided
superior results. To compare layers using JS-Divergence, the
number of activations utilised from each neighbouring layer
needs to be the same. The largest layer size in the CNN is
selected and if the layer sizes are smaller, they are padded
with zero’s, then the JS-Divergence is calculated between the
neighbouring layers. This yields one value between each acti-
vation layer per data instance. The algorithm for our JSDL
implementation is presented in Algorithm 1. In the over-
all AdaDeepStream system (Algorithm 3), JSDL would be
called in Line 2 via the reduceActivations method.

For previously unseen instances arriving at the deep neu-
ral network, the activations for one layer at a time is extracted
via bluegetActivations (Line 6). The JS-Divergence is cal-
culated for two neighbouring layers; therefore, the first layer
is skipped as shown in Line 7. The layers are flattened into
a 1-D array via flatten in (Line 8) and padded to the size
of the largest layer in the network in pad (Line 9) and the
JS-Divergence is calculated between the neighbouring lay-
ers in jsdiverge (Line 10). This JS-Divergence calculation
process is repeated for the current layer and the final layer in
jsdiverge (Line 11). This is repeated for all layers. The set
of reduced activations (A,,) for the window is returned.

3.2 CBIR activation reduction - DS-CBIR

CBIR [36] is intended for content-based image retrieval. It
creates descriptors for images using deep neural networks. It
is based on obtaining neural codes from fully connected lay-
ers activations. CBIR takes this one stage further by using the
information contained in convolutional layers. However, the
number of neurons in the convolutional part is large and most
of them do not contribute significantly to the final classifica-
tion. Therefore the most significant neuron activations only
are extracted in order to provide extra information about the
image such as background textures or colour distribution that
is present in the convolutional layers [36]. We have modified
CBIR to use within AdaDeepStream to extract the most use-
ful activations from the network such that we can utilise it in
our streaming classifier. The algorithm for our CBIR imple-
mentation is presented in Algorithm 2. We have called this
DS-CBIR to distinguish it from the original. This is invoked
in the overall AdaDeepStream system (Algorithm 3) Line 2,
via the reduceActivations method.

For previously unseen instances arriving at the deep neural
network, the activations for one block at a time is extracted,
where a block in a CNN consists of convolutional layers, then
a pooling layer. For each channel in the block, the maximum



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27331

Algorithm 1 JSDL

Input: One window of image data, D,
Input: CNN, C expressed in hidden layers: h € C = {1,2,..., H}
Output: A,,: One window of reduced activations

1: let M be the max number of activations in all layers of C
2: let H be the number of the final hidden layer
3: for x; € Dy, do

4 let layer number, 4 = 0

5 for h € C do

6: Jin <— getActivations(/1) > get activations for current instance and hidden layer

7 if 7 > 1 then

8 Jin < flatten(J;;) B> convert activations into 1-D array

9: J,‘h <~ pad(J[h 5 J,',17 1s M) > pad adjacent activation layers to the same size
10: Jin <jsdiverge(Jip, Jin—1) D> calculate JSD for adjacent layers
11: Ay < jsdiverge(Jin, Jin) B> caleulate ISD for current and last layer
12: end if

13: h=h+1

14:  end for

15: end for

16: Return A,,

Algorithm 2 DS-CBIR

Input: One window of image data, D

Input: CNN, C expressed in convolutional blocks: b € C =
{1,2,..., N}

QOutput: A, : One window of reduced activations

1: for x; € D, do

2 for b € C do

3 let b, be the pooling layer of block b

4 for each channel, ¢ of b, do

5: I <~ max(bp) > get max channel value in pooling layer, no threshold
6: end for

7 J. < getConvLayer(b)

8: Add J,,, and J. to set Jp

9:  end for

10:  Jy < getActivations(H)
11: Jpr < sectionAvg(J,, 16)
12: Jnr < sectionAvg(Jy, 32)
13: Ay < Jpr + Jpr

14: end for

> get conv layer 1 values, no threshold

> get final hidden layer activations
D> get the average value for 16 sections

> get the average value for 32 sections

activations for the pooling layer is extracted via max (Line
5). Corresponding values are obtained from the first convolu-
tional layer in the block via the getConvLayer method (Line
7). This is repeated for each block in the network. Due to the
constraint on the number of input features the streaming clas-
sifier can accept, we have modified CBIR. We only extract
the values from the first convolutional layer in each block.
The original CBIR paper [36] used a threshold to save on
computing time, reasoning that as ReLLU (Rectified Linear
Unit) activation functions were used, then processing under
an activation threshold of 0.5 was not advantageous. As our
system is designed to be flexible for different types of CNNs,
we removed this threshold which, on our system, did not
incur a significant increase in computing time but improved
the clustering of the activations. Lines 2 to 10 is the original
CBIR algorithm [36]. Additionally, the combined output of

the max pooling layer activations and the convolutional layer
activations from each block are reduced further via the sec-
tionAvg method (Line 11) where set C; is split into 16 equal
parts and the average for each part is calculated. The activa-
tions for the last hidden layer Jg are extracted and these are
also reduced into 32 values in the same way (Line 12). These
reduced sets are combined (Line 13) and returned as the set
of reduced activations for the window. This is required so that
the number of values presented to the streaming classifiers
are within the range of the number of input features accepted
by the streaming classifier.

To achieve DS-CBIR, the convolutional blocks need to
be identified for the CNN. This is done automatically by
AdaDeepStream, but may need manually adjusting, whereas
JSDL simply uses all of the networks layers. Figure 3 shows
UMAP [68] representations of the reduced activations. From
this we can see that Fashion-MNIST activation data poten-
tially has superior clustering and separation of the classes
than the CIFAR-10 and CIFAR-100 data.

3.3 Drift detection method

DDM (Drift Detection Method) [38] is used for drift detec-
tion. The drift detection method in AdaDeepStream can be
substituted for any other drift detection method. An empirical
study was conducted with other drift detectors. As only drift
detection and not more information such as severity or region
of the drift is required, error-based drift detection methods
only were analysed. Statistical control-based and data dis-
tribution window-based drift detectors were selected. The
statistical based drift detectors of DDM [38] and EDDM [53]
outperformed the data distribution window-based drift detec-
tors of ADWIN [50], KSWIN [51], HDDMA and HDDMW
methods [52]. DDM was significantly faster than EDDM,
therefore it was selected.

After the activations have been reduced, they are supplied
to a Hoeffding Adaptive Tree streaming classifier which is
established and well used [37]. The Hoeffding Adaptive Tree
is trained on the reduced activations obtained from the train-
ing data. Algorithm 3 shows the overall AdaDeepStream
process at inference time. For previously unseen instances
arriving in the datastream, the prediction is obtained from
the CNN, cnnPredict (Line 3). The reduced activations are
extracted and a prediction from these is obtained from the
Hoeffding Adaptive Tree Classifier, hatPredict (Line 4). The
predictions are then compared. If they match, 0 is provided to
the drift detector, otherwise 1 is provided (Lines 5 to 15). The
drift detector returns a "W’ if a change warning is detected,
and returns a *C’ if a change is detected. This is stored for
later use (Line 14). If a warning or a change is detected in the
window, then the true labels for that window are obtained,
getTrueValues (Line 17). In reality, the images in this win-
dow would be displayed to the user for them to label them

@ Springer



27332

L. Chambers et al.

Fig.3 UMAP representations
of reduced activation training
data for six classes in the
CIFAR-10, CIFAR-100 and
Fashion-MNIST datasets

(a) CIFAR-10
JSDL

JSDL

(b) CIFAR-100

Algorithm 3 AdaDeepStream

Input: Windows of image data D

Input: Pre-trained CNN, C on L classes

Input: Pre-trained Hoeffding Adaptive Tree on activations of L
classes

Output: P: A set of CNN predicted classes for datastream

1: for D, € D do
2: A, < reduceActivations(D,,)
via JSDL or DS-CBIR

> reduce activation

3: P, < cnnPredict(D,) > get CNN predictions

4: S, < hatPredict(A,) > get HAT predictions

5. for x; € D, do

6: let a; be the reduced activations for x;

7 let p; be the CNN predicted class for x;

8: let s; be the HAT predicted class for x;

9: if p; = s; then > check if CNN and HAT predictions
match

10: di=0 > 0 if match

11: else

12: di=1 > otherwise 1

13: end if

14: Q. < driftDetector(d;) > detect drift change

15:  end for

16:  if "W’ or’C’ isin Q,, then
for warning or *C’ for change

> drift detector returns "W’

17: Y, < getTrueValues(D,,) > get true values for the
drift detection window

18: Y<~Y+Y, > add new labels to known classes

19: C <« adaptDnn(D,,, Ay, Yy) > adapt CNN via
DS-Adapt or another method

20:  else

21: Let U be the window buffer and G be the number of
windows in U

22: if CNN adaptation in progress then

23: K, <« samPredict(A,) > use SAM predictions if
CNN adapting

24: U < (Dy, Ay, Ky)

25: else

26: U <« (Dy, Ay, Py) > use CNN predictions

27: end if

28: if G > 2 then > only store 2 windows

29: U<« U-U > remove oldest window

30: end if

31:  endif

32: P <« P,

33: end for

with the true values. As only the windows where the change
was detected are displayed to the user, there is less labelling
than if all the true values are used. The next step is adaptation
(Line 19). Image data D,,, reduced activation data A,, and
their true labels Y, are provided to the adaptDNN method.

@ Springer

(d) CIFAR-10
DS-CBIR

(c) Fashion-MNIST
JSDL

(e) CIFAR-100 (f) Fashion-MNIST
DS-CBIR DS-CBIR

This method can be any CNN adaptation method. Our CNN
adaptation algorithm, DSAdapt, is described in Algorithm 4.
We substituted this adaptation with four other state-of-the-
art methods. The results are shown in Section 5. If there
is no drift detected, the previous G windows are stored in
U (Lines 28 and 29). If there is CNN adaptation occurring
in the background, the window is re-predicted via the SAM
clusterer, samPredict and stored (Lines 23 and 24). As the
SAM clusterer is the first to be updated with true labels, this
improves the accuracy of the stored windows whilst the CNN
adaptation is awaited. If there is no CNN adaptation occur-
ring, the window is stored with the CNN predictions (Line
26). SAMKNN is a popular Self Adjusting Memory (SAM)
model for the k Nearest Neighbor (kNN) [69, 70]. It oper-
ates on a window of instances which is set to 1000 instances;
therefore, the memory usage will not increase over time.

3.4 CNN adaptation

CNN adaptation is based on transfer learning with clustering,
a class buffer and some memory of previous instances. Our
CNN adaptation method DS Adapt is described in Algorithm
4. When a warning of a change or a change is detected, the
window of data within which it is detected is provided to
the CNN adaptation method. The current window and the
previous 2 windows are added to a buffer (Line 2). These
are the change detection windows. If the buffer exceeds 5
groups of change detection windows, the first group in the
buffer is removed (Line 4). This provides some 'memory’
for the CNN adaptation. True-labelled instances are sup-
plied to the SAMKNN clusterer [71] (Line 6). The buffer
instances are re-predicted via the SAMKNN Streaming Clas-
sifier (Line 7) to give K. True-labelled instances are also
supplied to a class buffer that stores training data instances
of the original image data and the equivalent activation data
(Line 9). Each time a window is added to the class buffer,
the oldest window is removed (Line 10), ensuring that the
size of the class buffer does not increase. Each class in K,
and the true values for the change detection window Y,
is randomly sampled from the class buffer. One hundred
instances (or if there is not enough, the maximum number
of instances that are available) are randomly selected from
the class buffer (Lines 11 to 13). The change detection win-
dows, B are added to the sampled class buffer data (Line
14). The CNN is adapted for 3 epochs (Line 15). The current



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27333

Algorithm 4 AdaDeepStream Adaptation Method -
DSAdapt

Input: One window of image data: D,,

Input: One window of reduced activation data A,,
Input: One window of true labels: Y,

Input: CNN to be adapted, C

Input: Buffer of two previous windows, U
Output: Adapted CNN, C,

1: let W be the total number of change detection groups in buffer, B

2: B« U+ (Dy, Ay, Yw) > save the current change detection
and previous two windows

3:if W > 5 then > if there’s more than 5 groups of change

detection buffers
B <« B— By

. end if

: samPartialFit(A,,, Y,,)

. Ky, < samPredict(B)

: Let E be the class buffer

D E < E+ (Dy, Ay, Yu)

buffer

10: E < E — (Dyg, Ao, Yp)

11: for class [ in (K, + Y,) do
buffer

12: (Dy, Ag, Ys) < getClassBufferSample(/, 100)

13: end for

14: (Dy, Ag, Ys) < (D, Ag, Ys) + B
windows to samples

15: copy C and train with (Dy, Y5) for 3 epochs

16: hatPartialFit(A,, Y;) > adapt HAT

17: replace C with adapted CNN, C,

18: repeat steps 1 to 17 on background thread

> remove oldest group

> add true labelled data to SAM

e NN R

> Add true labelled data to class

> remove oldest instance
> get 100 samples per class from

> add change detection

> adapt CNN

CNN is replaced with the adapted CNN (Line 17). Once the
adaptation has been triggered, it continues adapting (Lines
1 to 17) on a background thread, using the current instance
window and previous windows predicted via the SAMKNN
Streaming Clusterer (Line 18), replacing the true values Y,
with the predicted values from the clusterer K,. In summary,
to achieve a balance between avoiding catastrophic forget-
ting and remembering recent data only, windows pertaining
to the last five change detections are stored. Only the classes
found in these change detection windows are sampled from
the class buffer. Therefore, not all previous classes that have
ever arrived are used in the adaptation, but only more recent
ones. As a true-labelled instance is added to the class buffer,
the oldest instance is removed, ensuring the size of the class
buffer does not increase over time. Catastrophic forgetting is
partially mitigated by remembering the recent classes only.
This is intentional as in the concept evolution field it is not
the aim to remember all classes.

4 Experimental study

In this section, we present our experimental setup. We use
datasets CIFAR-10, CIFAR-100 [34] and Fashion-MNIST

[35]. The CIFAR-10 dataset consists of 10 different classes
of 32 x 32 colour images. In total there are 50000 training
images and 10000 test images. The CIFAR-100 dataset con-
sists of 100 different classes of 32 x 32 colour images. The
100 classes are grouped into 20 super-classes. The super-
classes are used in this paper and are listed in Table 4. In
total there are 5000 training images and 1000 test images.
There are 2500 training images per super-class, and 500 test
images per super-class. The Fashion-MNIST dataset consists
of 10 different classes of 28 x 28 greyscale images. In total
there are 60000 training images and 10000 test images. Each
of the classes is assigned a class number ranging from 0 to
9. Three combinations of eight trained classes and two novel
classes have been selected from each dataset. An empiri-
cal study was conducted on the effectiveness of our drift
detection mechanism on different combinations of pairs of
novel classes. It was found that the drift detection was more
effective when the classes differed in their categories. For
CIFAR-10, the classes can be split into categories of Trans-
port and Animals, and for Fashion-MNIST, the classes can
be split into categories of Clothing and Footwear. Therefore,
to give a more rounded analysis, novel class combinations
were selected as (1) a pair containing a mix of categories, (2)
a pair containing classes from the same category (Animals
for CIFAR-10 and Clothing for Fashion-MNIST) and (3) a
pair containing classes from the other category (Transport for
CIFAR-10 and Footwear for Fashion-MNIST). The selected
combinations are shown in Table 4. For CIFAR-100, the
class combinations were randomly selected. The trained and
novel class identifiers are listed with a key of the class labels.

The CNN that has been applied to the proposed system
is VGGI16, using transfer learning from ImageNet weights
and trained on three combinations of classes for each data
setup. All hidden layers that have measurable outputs in
Pytorch [72] are used. We selected a well-known pre-trained
network and applied transfer learning as this is a common
scenario in real-world applications.

For the test data, the instances are applied as in Figs. 4
and 5. The x-axis is the number of images, and the y-axis is
the cumulative number of concept evolution classes that have
been introduced into the datastream. For instance, in Figs. 4
and 5, when the line is at zero, this represents that only
images the CNN has been trained on are in the data stream,
and when the line is at 1, all concept evolution classes have
been applied to the stream. Figure 5 shows the categorical
patterns. There are two steps, representing that there were
two concept evolution classes that have been cumulatively
applied at different times in the datastream. No incorrectly
classified instances are removed during testing in order to
simulate real-world applications.

The CNN adaptation of AdaDeepStream is substituted
with four different adaptation methods: (1) LwF [15] (2)
iCARL [14], (3) ER [29, 30] and (4) MIR [16], augmented

@ Springer



27334

L. Chambers et al.

Table 4 Class data combinations

Trained Classes

Novel Classes

Class Identification Key

0-1-2-3-5-6-8-9
2-3-4-5-6-7-8-9
0-1-2-3-4-6-7-8
0-1-2-3-4-6
4-5-6-7-8-9
2-3-4-6-8-9
0-1-8-9

0-1-5-6

0-1-2-7

6-9

1-8

0-5

0-1-2-3-4-6-7-8
2-3-4-5-6-7-8-9
0-1-2-4-5-6-8-9
0-1-2-3-6-7
2-3-4-5-6-7
0-1-4-5-8-9
5-7-8-9

0-2-6-7

1-2-3-4

0-7

1-8

23

1-3-4-5-6-7-10-11-13-17
0-1-3-5-11-12-15-17-18-19
1-5-7-8-9-14-15-16-17-18
4-7-8-9-11-14-15-17-18-19
0-2-4-5-7-9-13-14-15-18
5-6-7-10-11-12-14-17-18-19
1-2-4-6-7-9-11-16-18-19
0-1-6-7-8-9-11-12-17-18
0-2-3-5-8-9-10-11-12-19
0-9-10-11-12-13-14-16-17-18
0-2-3-4-6-8-9-13-16-19
2-5-10-11-13-15-16-17-18-19
4-5-8-12-14-15-16-17-18-19
1-2-3-4-5-6-7-8-12-13
0-1-7-8-9-10-11-14-18-19

Fashion-MNIST

4.7

0-1

5-9

5-7-8-9

0-1-2-3

0-1-5-7

2-3-4-5-6-7

2-3-4-7-8-9

3-4-5-6-8-9

0-1-2-3-4-5-7-8

0-2-3-4-5-6-7-9

1-2-3-4-6-7-8-9

CIFAR-10

5-9

0-1

3.7

4-5-8-9

0-1-8-9

2-3-6-7

0-1-2-3-4-6

1-3-4-5-8-9

0-5-6-7-8-9

1-2-3-4-5-6-8-9

0-2-3-4-5-6-7-9

0-1-4-5-6-7-8-9
CIFAR-100

8-18

2-7

0-10

2-5-6-16

10-11-12-19

1-4-8-9

0-8-10-12-13-17

2-4-5-15-16-19

4-6-13-15-17-18
2-3-4-5-6-8-15-19
1-10-11-12-14-15-17-18
1-3-6-7-8-9-12-14
0-1-2-3-6-7-9-10-11-13
0-9-10-11-14-15-16-17-18-19
2-3-4-5-6-12-13-15-16-17

0 = T-Shirt/Top
1 =Trousers

2 = Pullover

3 =Dress

4 = Coat

5 = Sandal

6 = Shirt

7 = Sneaker

8 =Bag

0 = Airplane

1 = Automobile
2 = Bird

3 =Cat

4 = Deer

5 =Dog

6 = Frog

7 = Horse

8 = Ship

9 = Truck

0 = Aquatic Mammals

1 =Fish

2 = Flowers

3 = Food Containers

4 = Fruit and Vegetables

5 = Household Electrical Devices

6 = Household Furniture

7 = Insects

8 = Large Carnivores

9 = Large Man-Made Outdoor Things
10 = Large Natural Outdoor Scenes
11 = Large Omnivores and Herbivores
12 = Medium-Sized Mammals

13 = Non-Insect Invertibrates

14 = People

15 = Reptiles

16 = Small Mammals

17 = Trees

18 = Vehicles 1

19 = Vehicles 2

@ Springer



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks 27335

Fig.4 Temporal types of 2
concept evolution patterns

(a) Abrupt

1000
2000
2500
3000

with trick RV [39]. These are successful methods in the
OCI setting. Some methods are adjusted to be appropriate
for the single-head setting. Single-head [73] configuration is
where all classes (previously known and novel classes) have
a single shared output layer and do not need to know the
class label [12]. The alternative is multi-head where more
than one output layer is created as the model adapts and
extra information is required to select the correct head. Our
method is a single-head configuration and we will there-
fore compare with the single-head implementations. Each
of these methods has been adjusted to receive only the true-
labelled windows of instances when drift was detected from
AdaDeepStream and to remove prior knowledge of the num-
ber of novel classes. The following hyper-parameters, as
specified in [12] are set for all of the CNN adaptation meth-
ods: learning rate = 0.01, epochs = 3, weight decay = 0
and memory buffers = 5000 (the mid-range that was used in
the survey paper [12]). The entire AdaDeepStream system
is compared to RSB [21] and CPE [10]. Implementations
of these methods are available along with our AdaDeep-
Stream code at the location referenced in the Code and Data
Auvailability Section. An overview of each of these methods
follows.

1. LwF (Learning without Forgetting) is a regularization-
based method and uses knowledge distillation [18] to
remember past tasks. A student model is created for the
new task and the original model becomes the teacher
model. A variant of LwF is used LwEMC that only
has one head (where all tasks share the same output
head) [14].

2. iCARL (Incremental Classifier and Representation
Learning) is a memory-based method. A training set is
constructed by mixing all the samples in the memory
buffer and the current task samples. The loss function
has a classification loss to help the model correctly pre-

2 2 [’\“(\‘W’\_
1 1
1 OAAAAA{l(

(a) Abrupt

2500

(b) Reoccurring

Fig.5 Categorical types of concept evolution patterns

2500

(c) Gradual

1000
1500
2000
3000

______

(b) Reoccurring

dict the novel classes and a knowledge distillation loss to
prompt the model to reproduce the outputs from the pre-
vious model for old classes. It uses binary cross-entropy
for each class to handle the imbalance between old and
new classes. Originally, an NCM classifier is used with
the memory buffer to predict labels for test images [60],
which means it looks for a subset of samples whose mean
of latent features have the closest Euclidean distance to
the mean of all samples in this class; however, this method
requires all samples from all classes, and therefore cannot
be applied in the online setting. Therefore, the modified
version from [12] with reservoir sampling [74] is used
instead of NCM [14].

. ER (Experience Replay) is a memory-based method that
applies reservoir sampling [74] and random sampling.
ER trains the model with the incoming data and memory
batches using the cross-entropy loss.

. MIR (Maximally Interfered Retrieval) is a recent
memory-based method that performs an estimated
parameter update based on the incoming mini-batch
using stochastic gradient descent. It uses the samples
from the memory buffer that have the largest estimated
loss increases and mixes them with the incoming mini-
batch. In this paper, MIR is augmented with RV (Review
Trick) [39]. as RV can provide an improvement and is
more efficient in memory than NCM [12]. RV reduces
class imbalance by applying a fine-tuning step with a
small learning rate, using a balanced subset from the
memory buffer and the training set [75]. As recom-
mended, We use RV from [75] with a learning rate 10
times smaller than the training learning rate.

. RSB (Reactive Subspace Buffer) is a memory-based
method. It has centroid-driven memory and stores diverse
samples of incrementally arriving instances. A reactive
sub space buffer tracks drift occurrences in previously
seen classes and adapts clusters accordingly [21]. User

|

|
o— |

(c) Gradual (d) Incremental

@ Springer



27336

L. Chambers et al.

configurable parameters are set to: max centroids = 10,
max size of class buffer = 100, window size = 100. All
other parameters are as recommended in the paper [21].

6. CPE (CNN based Prototype Ensemble) is cluster-based
and projects the images into a learned discriminated fea-
ture representation called prototypes. This improves the
intra-class compactness and expand inter-class separate-
ness in the output feature representation to enable the
robustness of novel class detection. When a pre-defined
number of novel class instances are detected, the CNN
re-trains [10]. Contrary to our system and RSB, the CNN
is used in the detection of the novel classes, not as an
overall image classifying CNN. Recommended settings
from the paper are used for the training of the CNN:
1000 instances from each class of training data, number
of novel classes that are accumulated before CNN re-
training = 1000, learning rate = 0.001 [10]. Tuning was
performed for the threshold of the prototypes and a value
of 5.0 was found to produce the best results.

We experiment with two different methods of activation
reduction: JSDL and DS-CBIR. The system is running on
AMD Ryzen Threadripper PRO 3955WX 16-Cores 3.90
GHz, 256 GB RAM with NVIDIA RTX A6000 GPU.

5 Experimental results

In this section, we discuss our thorough experimental study,
evidencing the efficacy of the proposed method. The results
are discussed in terms of accuracy for each of the activation
reduction methods and subsequently, timings for the time per
instance and DNN adaptation time.

Experiments were conducted on three datasets (CIFAR-
10, CIFAR-100 and Fashion-MNIST). Each using two dif-
ferent activation reduction methods (DS-CBIR and JSDL).

Temporal-Abrupt Temporal-Gradual

Accuracy
o o
» o

Accuracy

Number of novel classes

Number of novel classes

CIFAR-100 accuracy plots are shown in Figs. 6 and 7. Plots
for all other datasets are included in Appendix A. The RSB
and CPE results are displayed within the DS-CBIR plots
for ease of comparison, but they do not use any activation
reduction method. Figures 6 and 7 show how the accuracy of
the models vary with an increasing number of applied novel
classes for the CIFAR-100 dataset. Generally, the accuracy
of all methods tend to decrease when the number of novel
classes are increased. This is more prominent in the DS-CBIR
results (Fig. 6) than it is in the JSDL results (Fig. 7), where
the accuracies are more erratic. This pattern is also prominent
in the other dataset results in Appendix A. This indicates that
DS-CBIR is more consistent at detecting the changes in drift
than JSDL. In the Temporal-Reoccurring plots in Figs. 6, 7
and Appendix A, higher accuracies are reported than for the
other concept evolution patterns. This can be seen for both
DS-CBIR and JSDL. This could be due to there being a more
diverse range of old and new classes in less windows in this
pattern as compared to the other patterns. It is temporal, so
the known classes are applied randomly rather than incre-
mentally. The novel classes occur in small blocks alongside
the known classes. This more diverse data is applied to the
adaptation.

As DS-CBIR is more stable than JSDL, we focus on the
DS-CBIR activation reduction method. Table 5 shows the
average accuracy after adaptation for DS-CBIR, all datasets
and all concept evolution patterns. The equivalent data for the
JSDL activation reduction method is included in Appendix A,
Table 8. The data combinations with a large number of trained
classes and a small number of novel classes are shown in these
tables. This scenario is more usually seen in real-world appli-
cations. For instance, a model would be pre-trained on known
data, and see a few novel classes arriving, such as in medical
image analysis where identification of changes in chest x-rays
is required. A deep neural network would be trained on many
known diseases, and one or two new variations resulting in

Temporal-Reoccurring

iCARL

LwF

ER

MIR-RV
DSAdapt (Ours)
RSB

—— CPE

[ T ]

- — | —

Categorical-Incremental Categorical-Reoccurring

Number of novel classes Number of novel classes

Fig.6 Number of novel classes against accuracy for DS-CBIR VGG16 CNN, CIFAR-100 for all concept evolution patterns

@ Springer



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27337

Temporal-Abrupt

Fig.7 Number of novel classes 10
against Accuracy for JSDL
VGG16 CNN, CIFAR-100 for
all concept evolution patterns

Categorical-Abrupt

6
Number of novel classes

different chest x-ray results would occur, rather than many
new manifestations in a short amount of time. For DS-CBIR,
CIFAR-10 and CIFAR-100, Our method (ADS) has exceeded
all others, except in one scenario of Temporal-Reoccurring.
The accuracies for Fashion-MNIST are generally higher for
all methods. This is probably due to the superior intra-class
cohesion and inter-class separation of the reduced activation
data, as demonstrated in the UMAP [68] representations in
Fig. 3. Our method is among the best; however, CPE excels
on the Fashion-MNIST dataset. The standard deviation of
the methods ranges from 0.116 to 0.684, our method has the
highest. The implicit drift detection methods of RSB and CPE
have standard deviations of 0.116 and 0.091 respectively,

Temporal-Gradual Temporal-Reoccurring

— iCARL
LwF

— ER

— MIR-RV

—— DSAdapt (Ours)

Categorical-Reoccurring

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of novel classes Number of novel classes Number of novel classes

which are the lowest. Therefore, the higher standard deviation
may indicate that the explicit nature of the drift detection has
an effect on the consistency of our method. There is a connec-
tion between how successful the CNN adaptation is and how
successful the drift detection is, as the drift detection is based
on the difference in predictions between the CNN and the
Hoeffding Adaptive Tree Streaming Classifier. Therefore, the
less successful the adaptation is, the more unstable the drift
detection will be. On average, of the different concept evolu-
tion patterns applied, our DSAdapt method outperforms the
other adaptation methods. The two best-performing methods
are DSAdapt (ours) and ER, which are both memory-based
and use the standard cross-entropy loss. The regularization-

Table5 Average accuracy after

CNN adaptation for each Reduction/ Method Cat. Tem. Cat. Tem. Cat. Cat. Tem.
concept evolution pattern for Dataset Abr. Abr. Gra. Gra. inc. Reo. Reo.
DS-CBIR activation reduction. DS-CBIR iCARL 0304 0308  0.171  0.174 0154 0056 0442
Highest values are in bold
CIFAR-10 LwF 0.044 0.080 0.236 0.127 0.354 0.187 0.437
8 Trained ER 0.548 0.453 0.459 0.677 0.457 0.377 0.694
2 Novel MIR-RV 0.070 0.090 0.131 0.113 0.162 0.112 0.491
classes RSB 0.359 0.416 0.343 0.429 0.270 0.386 0.630
CPE 0.546 0.470 0.458 0.481 0.372 0.460 0.398
ADS (ours) 0.888 0.819 0.543 0.807 0.732 0.702 0.598
DS-CBIR iCARL 0.365 0.190 0.238 0.201 0.274 0.290 0.425
CIFAR-100 LwF 0.053 0.097 0.193 0.112 0.305 0.172 0.298
10 Trained ER 0.363 0.157 0.207 0.298 0.305 0.204 0.471
2 Novel MIR-RV 0.112 0.122 0.143 0.027 0.193 0.110 0.278
classes RSB 0.080 0.200 0.078 0.055 0.058 0.145 0.299
CPE 0.104 0.12 0.175 0.084 0.102 0.131 0.153
ADS (ours) 0.838 0.752 0.629 0.753 0.655 0.433 0.547
DS-CBIR iCARL 0.681 0.116 0.235 0.569 0.227 0.103 0.626
MNIST-Fashion LwF 0.180 0.049 0.106 0.115 0.183 0.102 0.461
8 Trained ER 0.806 0.606 0.317 0.907 0.324 0.166 0.728
2 Novel MIR-RV 0.18 0.167 0.198 0.205 0.001 0.038 0.547
classes RSB 0.771 0.656 0.606 0.644 0.682 0.687 0.816
CPE 0.925 0.897 0.93 0.898 0.907 0.861 0.815
ADS (ours) 0.964 0.661 0.831 0.884 0.860 0.807 0.568

@ Springer



27338

L. Chambers et al.

Table 6 Time per instance (ms) (with standard deviation in brackets)
and rank. Lowest values are in bold

DS-CBIR JSDL

Time (ms) Rank Time (ms) Rank
iCARL 266.5 (82.2) 6 329.5(92.5) 6
LwF 8.1(7.7) 3 14.2 (8.0) 1
ER 7.1(2.8) 1 16.3 (13.5) 3
MIR-RV 72(2.4) 2 16.3 (13.6) 4
RSB 19.9 (7.8) 5 -
CPE 545.2 (290.1) 7 -
ADS (Ours) 8.5(2.1) 4 15.7 (7.0) 2

based method, LwF did not perform well in our scenarios.
CPE only performs well on the Fashion-MNIST dataset. This
method does not have a CNN that classifies images, but has
a CNN that learns a feature representation of the images.
Therefore, it is not a direct comparison and our results sug-
gest it prefers data that has superior intra-class cohesion
and inter-class separation. After AdaDeepStream, the next
highest performing adaptation method is ER and the next
best performing overall concept evolution/CNN adaptation
method is CPE. On average, in our scenarios in Table 5,
AdaDeepStream outperforms ER by 27% and CPE by 24%.
The Wilcoxon Signed-Rank test is used to analyse the dif-
ference between the accuracies of methods. The difference
between the accuracy of AdaDeepStream and that of ER over
the 272 tested data patterns is statistically significant. The
p-value is less than 0.00001, which is less than 0.05 sig-
nificance level, suggesting the acceptance of the alternative
hypothesis that true location shift is not equal to 0. The same
is true for cPE and RSB. Therefore, AdaDeepStream with
our DSAdapt adaptation method significantly outperforms
the next-best substituted CNN adaptation method of ER and
AdaDeepStream significantly outperforms the drift detection
and adaptation methods of CPE and RSB.

Tables 6 and 7 summarise the timings for the inference
time and the time to adapt, respectively. The time to process

Table 7 Adaptation time (s) (with standard deviation in brackets) and
rank. Lowest values are in bold

DS-CBIR JSDL

Time (s) Rank  Time (s) Rank
iCARL 78.095 (45.3) 6 115373 (53.2) 6
LwF 6.095 (7.1) 1 21.463 (23.4) 3
ER 6.774 (6.1) 2 16.976 (18.2) 2
MIR-RV 36.000 (17.9) 5 56.256 (38.1) 5
RSB 1.995 (0.7) 4
CPE 420.000 (123.0) 7 -
ADS (Ours)  7.690 (1.9) 3 7.816 (1.2) 1

@ Springer

one instance in milliseconds is shown in Table 6. This is the
time per instance, measured in batches of 100 instances. ER
has the fastest time per instance with 7.1ms, with AdaDeep-
Stream having the fourth fastest at 8.5ms. This is close to the
fastest results given that CPE and iCARL are 545.2m and
266.5ms respectively. From the adaptation time, ours is third
fastest at 7.69 seconds. The fastest is LwWF at 6s, with CPE
being the slowest at 420s, placing AdaDeepStream close to
the fastest adaptation time. From Tables 6 and 7, JSDL out-
performs DS-CBIR with regards to the time per instance, and
adaptation time. However the drift detection is erratic.

6 Conclusion and future work

This paper places CNN adaptation methods from the OCI
field in the Concept Evolution field. Our AdaDeepStream
adaptation method overall outperforms other leading OCI
adaptation methods in accuracy when placed in the concept
evolution scenario with limited true-labelled data. AdaDeep-
Stream also outperforms other drift detection and CNN
adaptation systems (RSB and CPE) in accuracy. From the
two novel activation reduction methods presented (JSDL
and DS-CBIR), DS-CBIR produces more stable results than
JSDL. AdaDeepStream performs well on all concept evo-
lution patterns whilst other methods show an improvement
on the Temporal-Reoccurring pattern, possibly due to a more
diverse range of classes arriving in the drift detection win-
dows. Compared to the other methods, AdaDeepStream also
performs well on data with less intra-class cohesion and
inter-class separation. However, it is less stable compared
to the implicit drift detection comparison methods. This
could indicate that the explicit drift detection and the use
of CNN predictions in the drift detection method has an
effect on the consistency of our method. Therefore, a good
drift detection method is important. The speed of inference
and adaptation of AdaDeepStream is comparable with the
fastest adaptation methods. AdaDeepStream is a memory-
based CNN adaptation method as is the next best performing
method, ER. In this scenario of small datasets, it indicates
that the simple memory-based methods achieve good results.
In this paper, we applied our method to image data and a
CNN. Further directions of study are: (1) apply to larger
real-world datasets, (2) further explorations into the drift
detection to extend it to concept drift detection, (3) pro-
viding mechanisms to assist in true labelling of samples,
(4) Apply to other types of DNNs, although DS-CBIR is
specific to CNNs and would need to be adjusted for the
architecture of the DNN and (5) perform an ablation study
to investigate what effect areas such as the activation reduc-
tion, the class buffer and the previous window buffers have
upon our system.



AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27339

Appendix A Accuracy Plots

Extended results plots and tables.

2 =
®» o

Accuracy

o i
E

Accuracy

Temporal-Abrupt

\

= —
= e S

Categorical-Abrupt

Number of novel classes

Temporal-Gradual

Categorical-Gradual

2 4 6 8

Number of novel classes

Temporal-Reoccurring

Categorical-Incremental

—— iCARL
— LwF
— ER
—— MIR-RV
—— DSAdapt (Ours)
— RSB
CPE

Categorical-Reoccurring

\/\

2 4 6
Number of novel classes

2 4 6 8
Number of novel classes

Fig.8 Number of novel classes against accuracy for DS-CBIR, VGG16 CNN, CIFAR-10 for all concept evolution patterns

Accuracy
e 9 9 =
R o © o

o
N

0.0

Accuracy

Temporal-Abrupt

Categorical-Abrupt

Temporal-Gradual

=

Categorical-Gradual

Temporal-Reoccurring

Categorical-Incremental

—— iCARL
— LwF
R
— MIR-RV
—— DSAdapt (Ours)
— RSB
CPE

Categorical-Reoccurring

Number of novel classes

2 4 6 8

Number of novel classes

2
Number of novel classes

x
4 6

8 2

— —
=
4 6 8

Number of novel classes

Fig.9 Number of novel classes against accuracy for DS-CBIR, VGG16 CNN, Fashion-MNIST for all concept evolution patterns

Accuracy
o
o

Temporal-Abrupt

Categorical-Abrupt

Number of novel classes

Temporal-Gradual

Categorical-Gradual

2 4 6 8

Number of novel classes

Temporal-Reoccurring

Categorical-Incremental

NS

2 4 6
Number of novel classes

—— iCARL

— LwF

— [ER

— MIRRV

—— DSAdapt (Ours)

Categorical-Reoccurring

2 4 6 8
Number of novel classes

Fig. 10 Number of novel classes against accuracy for JSDL, VGG16 CNN, CIFAR-10 for all concept evolution patterns

@ Springer



27340

L. Chambers et al.

Temporal-Abrupt

Number of novel classes

Temporal-Gradual

Number of novel classes

Temporal-Reoccurring

— ICARL
LwF
— ER
—— MIRRV
—— DSAdapt (Ours)

Categorical-Reoccurring

Number of novel classes

Number of novel classes

Fig. 11 Number of novel classes against accuracy for JSDL, VGG16 CNN, Fashion-MNIST for all concept evolution patterns

Table 8 Average accuracy after

CNN adaptation for each Reduction/ Method Cat Tem. Cat. Tem. Cat. Cat. Tem.

concept evolution pattern for Dataset (Abr. Abr. Gra. Gra. inc. Reo. Reo.

i{silg);; :‘tcilxé‘;f;rr:‘jﬁgg JSDL iCARL 0588 0452 0431 0301 025 0452 0438
CIFAR-10 LwF 0582 0631 048 0682 0632 0662 0563
8 Trained ER 0.832 0568 0343 0331  0.669 093 0535
2 Novel MIR-RV 0481 0613 0261 0095 0580 0064  0.748
classes ADS (ours)  0.830  0.883 0734 0792 0622 0893  0.555
JSDL iCARL 0578 0491 0460 0324 0303 0612 0508
CIFAR-100 LwF 0708 0732 0642 0180 0522 0512 0591
10 Trained ER 0.856 0821 0744 0787 0429 0376 0572
2 Novel MIR-RV 0453 058  0.642 0688 0765 0372  0.645
classes ADS (ours) 0793 0.864  0.691  0.842 0746  0.644  0.760
JSDL iCARL 0821 0759 0516  0.663 0543 0196  0.450
MNIST-Fashion ~ LwF 0848 0302 0322 0317 0501 0308  0.589
8 Trained ER 0.892 0503 0425 0308 0462 0299 0615
2 Novel MIR-RV 0527 0425 0467 0236 0339 0171  0.674
classes ADS (ours)  0.880 0584  0.611 0620 0.621 0562  0.685

Funding The authors did not receive support from any organization for
the submitted work.

Data Availability The datasets generated during and/or analysed during
the current study are publicly available datasets and are downloaded
upon first use via the code in the Code Availability Section

Code Availability The code is available at https://github.com/chambai/
AdaDeepStream

Declarations

Conflicts of interest The authors have no conflicts of interest to declare
that are relevant to the content of this article

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

@ Springer

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436-444. https://doi.org/10.1038/nature14539. Num-
ber: 7553 Publisher: Nature Publishing Group

2. Szegedy C, loffe S, Vanhoucke V, Alemi AA (2017) Inception-
v4, inception-ResNet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence (AAAI Press, San Francisco, California,
USA, 2017), AAAT’ 17, pp 42784284

3. Pal SK, Pramanik A, Maiti J, Mitra P (2021) Deep learning in
multi-object detection and tracking: state of the art. Appl Intell
51(9):6400-6429. https://doi.org/10.1007/s10489-021-02293-7


https://github.com/chambai/AdaDeepStream
https://github.com/chambai/AdaDeepStream
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10489-021-02293-7

AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27341

4.

10.

11.

12.

13.

14.

15.

18.

20.

21.

Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S (2018)
Activity recognition with evolving data streams: a review. ACM
Comput Surv 51(4):71:1-71:36. https://doi.org/10.1145/3158645

. Lee D (2016) Google self-driving car hits a bus. BBC News
. Yadron D, Tynan D (2016) Tesla driver dies in first fatal crash while

using autopilot mode. Section: technology

. Din SU, Shao J, Kumar J, Mawuli CB, Mahmud SMH, Zhang

W, Yang Q (2021) Data stream classification with novel class
detection: a review, comparison and challenges. Knowl Inf Syst
63(9):2231-2276. https://doi.org/10.1007/s10115-021-01582-4

. GamaJ, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014)

A survey on concept drift adaptation. ACM Comput Surv 46(4):1-
37. https://doi.org/10.1145/2523813

. Zhang Z, Li Y, Gong Y, Yang Y, Ma S, Guo X, Ercisli S (2023)

Dataset and baselines for IID and OOD image classification consid-
ering data quality and evolving environments. International Journal
of Interactive Multimedia and Artificial Intelligence 8(Special
Issue on Al-driven Algorithms and Applications in the Dynamic
and Evolving Environments)

Wang Z, Kong Z, Changra S, Tao H, Khan L (2019) Robust
high dimensional stream classification with novel class detection.
In 2019 IEEE 35th international conference on data engineer-
ing (ICDE), pp 1418-1429. https://doi.org/10.1109/ICDE.2019.
00128. ISSN: 2375-026X

Yuan L, Li H, Xia B, Gao C, Liu M, Yuan W, You X (2022) Recent
advances in concept drift adaptation methods for deep learning.
In thirty-first international joint conference on artificial intelli-
gence, vol. 6: pp 5654-5661. https://doi.org/10.24963/ijcai.2022/
788. ISSN: 1045-0823

Mai Z, Li R, Jeong J, Quispe D, Kim H, Sanner S (2022)
Online continual learning in image classification: An empiri-
cal survey. Neurocomputing 469:28-51. https://doi.org/10.1016/
j-neucom.2021.10.021

Yoon J, Yang E, Lee J, Hwang SJ (2018) Lifelong learning with
dynamically expandable networks. International Conference on
Learning Representations p 11

Rebuffi SA, Kolesnikov A, Sperl G, Lampert CH (2017) iCaRL:
incremental classifier and representation learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 2001-2010

Li Z, Hoiem D (2018) Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence
40(12):2935-2947. https://doi.org/10.1109/TPAMI.2017.
2773081. (Conference name IEEE Transactions on pattern
analysis and machine intelligence)

. Aljundi R, Belilovsky E, Tuytelaars T, Charlin L, Caccia M, Lin

M, Page-Caccia L (2019) Online continual learning with maximal
interfered retrieval. In advances in neural information processing
systems, vol. 32 (Curran Associates, Inc., 2019)

. GamaJ, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014)

A survey on concept drift adaptation. ACM computing surveys
(CSUR)

Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a
neural network. In NIPS deep learning and representation learning
workshop

. Vyas A, Jammalamadaka N, Zhu X, Das D, Kaul B, Willke TL

(2018) Out-of-distribution detection using an ensemble of self
supervised leave-out classifiers. In proceedings of the european
conference on computer vision (ECCV), pp 550-564

Gao Y, Chandra S, Wang Z, Khan L (2018) Adaptive image
stream classification via convolutional neural network with intrin-
sic similarity metrics. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining
(ACM, London, 2018)

Korycki L, Krawczyk B (2021) Class-incremental experience
replay for continual learning under concept drift. In 2021

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

IEEE/CVF Conference on computer vision and pattern recogni-
tion workshops (CVPRW) (IEEE, Nashville, TN, USA, 2021), pp
3644-3653. https://doi.org/10.1109/CVPRW53098.2021.00404
Din SU, Shao J (2020) Exploiting evolving micro-clusters for
data stream classification with emerging class detection. Inf Sci
507:404-420. https://doi.org/10.1016/].ins.2019.08.050

Haque A, Khan L, Baron M (2016) SAND: Semi-Supervised Adap-
tive Novel Class Detection and Classification over Data Stream. In
Thirtieth AAAI conference on artificial intelligence

Cai XQ, Zhao P, Ting KM, Mu X, Jiang Y (2019) Nearest neighbor
ensembles: an effective method for difficult problems in streaming
classification with emerging new classes. In 2019 IEEE interna-
tional conference on data mining (ICDM), pp 970-975. https:/
doi.org/10.1109/ICDM.2019.00109. ISSN: 2374-8486

Zhang J, Wang T, Ng WWY, Pedrycz W (2022) KNNENS: A k-
nearest neighbor ensemble-based method for incremental learning
Under data stream with emerging new classes. IEEE Transactions
on Neural Networks and Learning Systems pp 1-8. https://doi.org/
10.1109/TNNLS.2022.3149991. Conference Name: IEEE Trans-
actions on Neural Networks and Learning Systems

Hendrycks D, Gimpel K (2017) A baseline for detecting mis-
classified and Out-of-distribution examples in neural networks. In
5th international conference in learning representations. Toulon,
France

Liang S, Li Y, Srikant R (2017) Enhancing the reliability of out-of-
distribution image detection in neural networks. In 5th international
conference in learning representations. Toulon, France
Adimoolam M, Mohan S, J A, Srivastava G (2022) A novel
technique to detect and track multiple objects in dynamic video
surveillance systems. https://doi.org/10.9781/ijimai.2022.01.002.
Accepted: 2022-10-10T11:18:19Z Publisher: International Journal
of Interactive Multimedia and Artificial Intelligence (IJIMAI)
Chaudhry A, Rohrbach M, Elhoseiny M, Ajanthan T, Dokania PK,
Torr PHS, Ranzato M (2019) On tiny episodic memories in contin-
ual learning. In 33rd Conference on Neural Information Processing
Systems (NeurIPS, Vancouver, Canada, 2019)

Hayes TL, Cahill ND, Kanan C (2019) Memory efficient experi-
ence replay for streaming learning. In 2019 International Confer-
ence on Robotics and Automation (ICRA) (2019), pp 9769-9776.
https://doi.org/10.1109/ICRA.2019.8793982. ISSN: 2577-087X
Chambers L, Gaber MM, Abdallah ZS (2020) DeepStreamCE: A
Streaming Approach to Concept Evolution Detection in Deep Neu-
ral Networks. arXiv:2004.04116, [cs, stat]

Chambers L (2022) Gaber MM (2022) DeepStreamOS: Fast
open-Set classification for convolutional neural networks. Pattern
Recogn Lett 154:75-82. https://doi.org/10.1016/j.patrec.2022.01.
011

Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In ICLR 2015 (San Diego,
2015)

Krizhevsky A (2009) Learning multiple layers of features from tiny
images. University of Toronto, Tech. rep

Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:1708.07747

Staszewski P, Jaworski M, Cao J, Rutkowski L (2021) A New
Approach to Descriptors Generation for Image Retrieval by Ana-
lyzing Activations of Deep Neural Network Layers. IEEE Trans-
actions on Neural Networks and Learning Systems pp 1-8. https://
doi.org/10.1109/TNNLS.2021.3084633. Conference Name: IEEE
Transactions on Neural Networks and Learning Systems

Bifet A, Gavalda R (2009) Adaptive learning from evolving data
streams. In Advances in Intelligent Data Analysis VIII, ed. by
Adams NM, Robardet C, Siebes A, Boulicaut JF (Springer, Berlin,
Heidelberg, 2009), Lecture Notes in Computer Science, pp 249—
260. https://doi.org/10.1007/978-3-642-03915-7_22

@ Springer


https://doi.org/10.1145/3158645
https://doi.org/10.1007/s10115-021-01582-4
https://doi.org/10.1145/2523813
https://doi.org/10.1109/ICDE.2019.00128
https://doi.org/10.1109/ICDE.2019.00128
https://doi.org/10.24963/ijcai.2022/788
https://doi.org/10.24963/ijcai.2022/788
https://doi.org/10.1016/j.neucom.2021.10.021
https://doi.org/10.1016/j.neucom.2021.10.021
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/CVPRW53098.2021.00404
https://doi.org/10.1016/j.ins.2019.08.050
https://doi.org/10.1109/ICDM.2019.00109
https://doi.org/10.1109/ICDM.2019.00109
https://doi.org/10.1109/TNNLS.2022.3149991
https://doi.org/10.1109/TNNLS.2022.3149991
https://doi.org/10.9781/ijimai.2022.01.002
https://doi.org/10.1109/ICRA.2019.8793982
http://arxiv.org/abs/2004.04116
https://doi.org/10.1016/j.patrec.2022.01.011
https://doi.org/10.1016/j.patrec.2022.01.011
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/TNNLS.2021.3084633
https://doi.org/10.1109/TNNLS.2021.3084633
https://doi.org/10.1007/978-3-642-03915-7_22

27342

L. Chambers et al.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

438.

49.

50.

51.

52.

Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with
drift detection. In Advances in Artificial Intelligence — SBIA, ed.
by Bazzan ALC, Labidi S (Springer, Berlin, Heidelberg, 2004),
Lecture Notes in Computer Science, pp 286—295. https://doi.org/
10.1007/978-3-540-28645-5_29

Castro FM, Marin-Jimenez MJ, Guil N, Schmid C, Alahari K
(2018) End-to-end incremental learning. In Proceedings of the
European Conference on Computer Vision (ECCV), pp 233-248
Spinosa EJ, de Leon AP, de Carvalho F, Gama J (2007) OLINDDA:
a cluster-based approach for detecting novelty and concept drift
in data streams. In Proceedings of the 2007 ACM symposium on
Applied computing (Association for Computing Machinery, New
York, NY, USA, 2007), SAC *07, pp 448-452. https://doi.org/10.
1145/1244002.1244107

de Faria ER, de Leon Ponce, Ferreira Carvalho AC, Gama J (2016)
MINAS: multiclass learning algorithm for novelty detection in data
streams. Data Min Knowl Disc 30(3):640-680. https://doi.org/10.
1007/s10618-015-0433-y

Masud M, Gao J, Khan L, Han J, Thuraisingham BM (2011) Clas-
sification and Novel Class Detection in Concept-Drifting Data
Streams under Time Constraints. IEEE Trans Knowl Data Eng
23(6):859-874. https://doi.org/10.1109/TKDE.2010.61

Haque A, Khan L, Baron M, Thuraisingham B, Aggarwal C (2016)
Efficient handling of concept drift and concept evolution over
stream data. In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE), pp 481-492. https://doi.org/10.1109/ICDE.
2016.7498264. 00046 ISSN: null

Verleysen M, Frangois D (2005) The curse of dimensionality in data
mining and time series prediction. In Computational Intelligence
and Bioinspired Systems, ed. by Cabestany J, Prieto A, Sandoval F
(Springer, Berlin, Heidelberg, 2005), Lecture Notes in Computer
Science, pp 758-770. https://doi.org/10.1007/11494669_93

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2019)
Learning under Concept Drift: A Review. IEEE Trans Knowl
Data Eng 31(12):2346-2363. https://doi.org/10.1109/TKDE.
2018.2876857. (Conference Name: IEEE Transactions on
Knowledge and Data Engineering)

Yan MMW (2020) Accurate detecting concept drift in evolving
data streams. ICT Express 6(4):332-338. https://doi.org/10.1016/
jcte.2020.05.011

Agrahari S, Singh AK (2021) Concept Drift Detection in Data
Stream Mining?: A literature review. Journal of King Saud Uni-
versity - Computer and Information Sciences. https://doi.org/10.
1016/j.jksuci.2021.11.006

Page ES (1954) Continuous Inspection Schemes. Biometrika
41(12):100-115. https://doi.org/10.2307/2333009

Roberts SW (2000) Control Chart Tests Based on Geomet-
ric Moving Averages. Technometrics 42(1):97-101. https:/
doi.org/10.1080/00401706.2000.10485986, Publisher: Taylor &
Francis _eprint: https://www.tandfonline.com/doi/pdf/10.1080/
00401706.2000.10485986

Bifet A, GavaldA R (2007) Learning from time-changing data with
adaptive windowing. In: Proceedings of the 2007 SIAM Inter-
national Conference on Data Mining, Proceedings (Society for
Industrial and Applied Mathematics, 2007), pp 443—448. https://
doi.org/10.1137/1.9781611972771.42

Raab C, Heusinger M, Schleif FM (2020) Reactive Soft Prototype
Computing for Concept Drift Streams. Neurocomputing 416:340—
351. https://doi.org/10.1016/j.neucom.2019.11.111

Frias-Blanco I, Campo-Avila Jd, Ramos-Jiménez G, Morales-
Bueno R, Ortiz-Diaz A, Caballero-Mota Y (2015) Online and
Non-Parametric Drift Detection Methods Based on Hoeffding’s
Bounds. IEEE Transactions on Knowledge and Data Engineer-
ing 27(3), 810-823 (2015). https://doi.org/10.1109/TKDE.2014.
2345382. Conference Name: IEEE Transactions on Knowledge
and Data Engineering

@ Springer

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Baena-Garcia M, Campo-Avila J, Fidalgo-Merino R, Bifet A,
Gavald R, Morales-Bueno R (2006) Early Drift Detection Method.
4th ECML PKDD international workshop on knowledge discovery
Gongalves PM, de Carvalho Santos SGT, Barros RSM, Vieira DCL
(2014) A comparative study on concept drift detectors. Expert Syst
Appl 41(18):8144-8156. https://doi.org/10.1016/j.eswa.2014.07.
019.00073

Ditzler G, Roveri M, Alippi C (2015) Polikar R (2015) Learning in
Nonstationary Environments: A Survey. IEEE Comput Intell Mag
10(4):12-25. https://doi.org/10.1109/MCI1.2015.2471196.00315
Kantchelian A, Afroz S, Huang L, Islam AC, Miller B, Tschantz
MC, Greenstadt R, Joseph AD, Tygar JD (2013) Approaches to
adversarial drift. In Proceedings of the 2013 ACM workshop on
Artificial intelligence and security (Association for Computing
Machinery, New York, NY, USA, 2013), AlSec "13, pp 99-110.
https://doi.org/10.1145/2517312.2517320

Ryan S, Corizzo R, Kiringa I, Japkowicz N (2019) Deep learning
versus conventional learning in data streams with concept drifts.
In 2019 18th IEEE International Conference On Machine Learn-
ing And Applications (ICMLA), pp 1306—1313. https://doi.org/10.
1109/ICMLA.2019.00213

Disabato S, Roveri M (2019) Learning convolutional neural net-
works in presence of concept drift. In 2019 International Joint
Conference on Neural Networks (IICNN), pp 1-8. https://doi.org/
10.1109/1JCNN.2019.8851731. ISSN: 2161-4407

Goodfellow 1J, Mirza M, Xiao D, Courville A, Bengio Y (2015)
An empirical investigation of catastrophic forgetting in gradient-
based neural networks. In International Conference on Learning
Representations (ICLR) 2014 (ICLR, Banff, Canada, 2015)
Mensink T, Verbeek J, Perronnin F (2013) Csurka G (2013)
Distance-Based Image Classification: Generalizing to New Classes
at Near-Zero Cost. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35(11):2624-2637. https://doi.org/10.1109/
TPAMIL.2013.83. (IEEE Transactions on Pattern Analysis and
Machine Intelligence)

Zhu YN, Li YF (2020) Semi-Supervised Streaming Learning with
Emerging New Labels. Proc AAAI Conf Artif Intell 34(04):7015-
7022. https://doi.org/10.1609/aaai.v34i04.6186. Number: 04

Mu X, Ting KM, Zhou ZH (2017) Classification Under Streaming
Emerging New Classes: A Solution Using Completely-Random
Trees. IEEE Trans Knowl Data Eng 29(8):1605-1618. https:/
doi.org/10.1109/TKDE.2017.2691702. (IEEE Transactions on
Components, Packaging and Manufacturing Technology)

Gao Y, Chandra S, Li Y, Khan L (2022) Bhavani T (2022) SACCOS:
A Semi-Supervised Framework for Emerging Class Detection and
Concept Drift Adaption Over Data Streams. IEEE Trans Knowl
Data Eng 34(3):1416-1426. https://doi.org/10.1109/TKDE.2020.
2993193. (IEEE Transactions on Knowledge and Data Engi-
neering)

Mu X, Zhu F, Du J, Lim EP, Zhou ZH (2017) Streaming Clas-
sification with Emerging New Class by Class Matrix Sketching.
Proceedings of the AAAI Conference on Artificial Intelligence
31(1). https://doi.org/10.1609/aaai.v31i1.10842. Number: 1
Ferguson M, Ak R, Lee YTT, Law KH (2017) Automatic localiza-
tion of casting defects with convolutional neural networks. In 2017
IEEE International Conference on Big Data (Big Data) (2017), pp
1726-1735. https://doi.org/10.1109/BigData.2017.8258115

Ong EJ, Husain S, Bober M (2022) Understanding the Dis-
tributions of Aggregation Layers in Deep Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems
pp 1-15 (2022). https://doi.org/10.1109/TNNLS.2022.3207790.
Conference Name: IEEE Transactions on Neural Networks and
Learning Systems

Ulger F, Yuksel SE, Yilmaz A, Gokcen D (2023) Fine-Grained
Classification of Solder Joints With \alpha-Skew Jensen-Shannon
Divergence. IEEE Transactions on Components, Packaging and


https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/1244002.1244107
https://doi.org/10.1145/1244002.1244107
https://doi.org/10.1007/s10618-015-0433-y
https://doi.org/10.1007/s10618-015-0433-y
https://doi.org/10.1109/TKDE.2010.61
https://doi.org/10.1109/ICDE.2016.7498264
https://doi.org/10.1109/ICDE.2016.7498264
https://doi.org/10.1007/11494669_93
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1016/j.icte.2020.05.011
https://doi.org/10.1016/j.icte.2020.05.011
https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/10.1016/j.jksuci.2021.11.006
https://doi.org/10.2307/2333009
https://doi.org/10.1080/00401706.2000.10485986
https://doi.org/10.1080/00401706.2000.10485986
https://www.tandfonline.com/doi/pdf/10.1080/00401706.2000.10485986
https://www.tandfonline.com/doi/pdf/10.1080/00401706.2000.10485986
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1016/j.neucom.2019.11.111
https://doi.org/10.1109/TKDE.2014.2345382
https://doi.org/10.1109/TKDE.2014.2345382
https://doi.org/10.1016/j.eswa.2014.07.019.00073
https://doi.org/10.1016/j.eswa.2014.07.019.00073
https://doi.org/10.1109/MCI.2015.2471196.00315
https://doi.org/10.1145/2517312.2517320
https://doi.org/10.1109/ICMLA.2019.00213
https://doi.org/10.1109/ICMLA.2019.00213
https://doi.org/10.1109/IJCNN.2019.8851731
https://doi.org/10.1109/IJCNN.2019.8851731
https://doi.org/10.1109/TPAMI.2013.83
https://doi.org/10.1109/TPAMI.2013.83
https://doi.org/10.1609/aaai.v34i04.6186
https://doi.org/10.1109/TKDE.2017.2691702
https://doi.org/10.1109/TKDE.2017.2691702
https://doi.org/10.1109/TKDE.2020.2993193
https://doi.org/10.1109/TKDE.2020.2993193
https://doi.org/10.1609/aaai.v31i1.10842
https://doi.org/10.1109/BigData.2017.8258115
https://doi.org/10.1109/TNNLS.2022.3207790

AdaDeepStream: streaming adaptation to concept evolution in deep neural networks

27343

68.

69.

70.

71.

72.

Manufacturing Technology 13(2):257-264. https://doi.org/10.
1109/TCPMT.2023.3249193. (IEEE Transactions on Compo-
nents, Packaging and Manufacturing Technology)

Mclnnes L, Healy J, Melville J (2020) UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction
Roseberry M, Krawczyk B, Cano A (2019) Multi-Label Puni-
tive KNN with Self-Adjusting Memory for Drifting Data Streams.
ACM Trans Knowl Discov Data 13(6):60:1-60:31. https://doi.org/
10.1145/3363573

Losing V, Hammer B, Wersing H (2018) Tackling heterogeneous
concept drift with the Self-Adjusting Memory (SAM). Knowl Inf
Syst 54(1):171-201. https://doi.org/10.1007/s10115-017-1137-y
Losing V, Hammer B, Wersing H (2016) KNN classifier with self
adjusting memory for heterogeneous concept drift. In 2016 IEEE
16th International Conference on Data Mining (ICDM) (2016), pp
291-300. https://doi.org/10.1109/ICDM.2016.0040. ISSN: 2374-
8486

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chintala S
(2019) PyTorch: an imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems,
vol. 32 (Curran Associates, Inc., 2019)

73.

74.

75.

Chaudhry A, Dokania PK, Ajanthan T, Torr PHS (2018) Rieman-
nian walk for incremental learning: understanding forgetting and
intransigence. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp 532-547

Vitter JS (1985) Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software 11(1):37-57. https://doi.org/10.
1145/3147.3165

Mai Z, Kim H, Jeong J, Sanner S (2020) Batch-level experience
replay with review for continual learning. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (IEEE,
Seattle, USA, 2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1109/TCPMT.2023.3249193
https://doi.org/10.1109/TCPMT.2023.3249193
https://doi.org/10.1145/3363573
https://doi.org/10.1145/3363573
https://doi.org/10.1007/s10115-017-1137-y
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165

	AdaDeepStream: streaming adaptation to concept evolution in deep neural networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Concept evolution
	2.2 Drift detection
	2.3 Concept evolution and DNN adaptation
	2.4 Online class incremental
	2.5 Novel class detection and adaptation in high dimensional data

	3 AdaDeepStream system
	3.1 Activation reduction JS-diverge last (JSDL)
	3.2 CBIR activation reduction - DS-CBIR
	3.3 Drift detection method
	3.4 CNN adaptation

	4 Experimental study
	5 Experimental results
	6 Conclusion and future work
	Appendix A Accuracy Plots
	References


