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Abstract
Automated image-based plant identification systems are black-boxes, failing to provide an explanation of a classification. 
Such explanations are seen as being essential by taxonomists and are part of the traditional procedure of plant identification. 
In this paper, we propose a different method by extracting explicit features from flower images that can be employed to gen-
erate explanations. We take the benefit of feature extraction derived from the taxonomic characteristics of plants, with the 
orchids as an example domain. Feature classifiers were developed using deep neural networks. Two different methods were 
studied: (1) a separate deep neural network was trained for every individual feature, and (2) a single, multi-label, deep neural 
network was trained, combining all features. The feature classifiers were tested in predicting 63 orchid species using naive 
Bayes (NB) and tree-augmented Bayesian networks (TAN). The results show that the accuracy of the feature classifiers is in 
the range 83-93%. By combining these features using NB and TAN the species can be predicted with an accuracy of 88.9%, 
which is better than a standard pre-trained deep neural-network architecture, but inferior to a deep learning architecture 
after fine-tuning of multiple layers. The proposed novel feature extraction method still performs well for identification and 
is explainable, as opposed to black-box solutions that only aim for the best performance.

Keywords  Feature extraction · Deep learning · Orchids · Automated digital plant classification · Image interpretation

1  Introduction

In traditional plant identification, the determination of 
a plant’s species follows a fixed procedure, based on the 
deployment of a combination of taxonomic characteris-
tics, as already initiated by Carl Linnaeus in the eighteenth 
century Linnaeus [1]. Since that time, after much further 
improvement, this procedure has evolved into the standard.

In more recent times, a number of fully automated image-
based plant identification systems have become available; 
they can assist both expert and non-expert botanists with 
the identification process. Example are: LeafSnap Kumar 
et al. [2] and Plantnet Joly et al. [3]. However, these systems 
work as a black-box: decisions are provided without explana-
tion. This is not in accordance with standard practice which 
demands the outcome to be supported and understood in 
common botanic terms, i.e., being explainable.

To attach a species name to a photographic picture of 
a plant, a black-box identification system usually employs 
one of following two approaches. The first approach uses 
low-level feature extraction such as Moment Invariant Ming-
Kuei [4], HSV color, and Histogram of Gradient (HoG), etc. 
Combining such low-level features may lead to finding the 
species name as was done by Yang et al. [5], Kho et al. [6], 
and Lee and Hong [7]. However, features extracted in this 
way have no botanic meaning, and thus cannot be easily 
understand by the common user. The second approach uses 
deep learning such as explored by Liu et al. [8], Ou et al. 
[9], and Rzanny et al. [10]. Even though deep learning often 
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gives good to superior performance, the features extracted 
are implicit, hidden, and hard to understand as well.

In this paper, we propose an alternative approach, where 
the role of explicit, botanic descriptions as features is 
emphasized. These features are derived from the taxonomic 
characterization of plants, as used in traditional plant 
determination. Using these features, the determination of 
a particular plant as belonging to a particular species can 
be explained always in terms of the characteristic botanic 
features used.

The concept of taxonomic feature extraction is quite 
different from low-level feature extraction. A feature in an 
image is extracted by a feature classifier, to be combined 
with other features to determine the species name. Whereas 
the results of low-level feature extraction are hard to be 
explained to the user, the results of taxonomic feature extrac-
tion are the plant’s characteristics that are already familiar 
to the user. The difference between feature extraction using 
– low-level features and taxonomic features – is illustrated 
in Fig. 1.

In our research we aim to remain close to the traditional 
approach to plant identification as adopted by botanists, i.e., 
the explicit, descriptive approach. However, we still wish 
to profit from the recent advantages in deep learning, and 
in particular transfer learning, by employing specific suc-
cessful deep learning neural network architectures and fine-
tuning these on new data. Our idea is to employ deep learn-
ing for extracting the explicit descriptive features of plants.

Throughout this paper we use the orchids as our exam-
ple domain of a plant family. There are more than 25,000 
orchid species, with some species looking very similar to 
other orchid species. We only deal with blooming orchids 
and the explicit features we exploit describe the flower 
parts of an orchid. The flowers of the orchid are often the 
most distinguishing part of an orchid. It is often hard to 
identify a particular orchid species, partly also because 
there are so many of them, which explains the need for 
digital support.

The developed method exploits the best of both worlds: 
the potential of deep neural network architectures in inter-
preting images, and the easy explainability of plant identi-
fication in terms of taxonomic features. However, it is clear 
that this approach very much relies on how accurate a par-
ticular plant feature can be extracted from a digital image.

As far as we are aware of, it is the first time that this 
combination of methods in computer-based automated plant 
classification were studied and compared to black-box neural 
networks. Therefore, the main contributions of this paper 
are as follows:

1.	 A number of explainable feature classifiers based on 
taxonomic features of plant are developed and evaluated.

2.	 Two different feature classifier methods are compared:

(a)	 using a separate deep neural network for every 
individual feature (multi-class classification), and

Fig. 1   The difference between 
(a) low level, and (b) taxonomic 
features of plants
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(b)	 using a single deep neural network for all features 
together (multi-label classification).

3.	 The significance of different feature combinations is 
determined.

4.	 The (explicit, taxonomic) feature classifiers are com-
bined in machine learning to predict orchid species 
and compared to two common deep learning black-box 
methods.

The remaining part of the paper is organized as fol-
lows. Section 2 presents related research in identification of 
plants using digital images, Section 3 discusses the methods 
employed in the research. In Section 4, the experiments and 
their results are presented, which is followed by a discussion 
in Section 5 and conclusions in Section 6.

2 � Related work

In this section, related work in low-level extraction meth-
ods, feature extraction and plant identification using deep 
learning, and other explainable feature extraction methods 
are discussed.

As already mentioned above, most current automated 
plant identification approaches are non-descriptive in nature. 
Some low-level features were used in several studies. Most 
of the studies make use of color, shape and texture for fea-
ture extraction. Sabri et al. [11] extracted HSV color and 
shape features such as area, perimeter, eccentricity, circu-
larity, etc. on orchid flower image, then applied Support 
Vector Machine (SVM) for classifying the species. The 
system achieved the accuracy rate of 82.2%. Shape features 
employed in this paper are quite understandable. However, 
those are not invariant to the position of the flower. In this 
case, the flower image has to be taken from front. In predict-
ing species using low-level features, HSV color and SVM 
seem to be often used. Another study that applied those 
features is Andono et al. [12]. They combined HSV color 
feature and texture feature called GLCM together with SVM, 
naive Bayes, and k-Nearest Neighbour (k-NN) to classify 
orchids. Even though applying naive Bayes gives an oppor-
tunity to track the decision, however the features extracted 
in this paper are hard to understand by the common users. 
Overall, the limitation of the approach mentioned above are: 
features have neither taxonomic nor biological meaning, sys-
tems act as black-boxes, need segmentation to obtain region 
of interest (ROI) for feature extraction, and the accuracy of 
the system is not too high.

Nowadays, instead of using low-level features and some 
machine learning classifiers, deep learning (DL) methods 
are increasingly used for automated flower recognition. 
Arwatchananukul et al. [13] built an orchid identification 

system based on 1500 images from 15 species of orchid 
flowers. The research used the Inception-v3 as backbone 
for DL. The performance, up to 98.6% accuracy, was very 
good, however very uniform images and the same orchids 
were used multiple times to obtain class balance. Other 
research concerns work done by Sarachai et al. [14] using 
homogeneous ensemble of small deep convolutional neu-
ral network. Three part of network are used. They claimed 
that the proposed method can handle the complication of 
orchids flowers. A study about orchid plant identification 
using ensemble method also conducted by Ou et al. [9]. An 
ensemble of three pre-trained model i.e. ResNet50, Effi-
cientNet, and Big Transfer (BiT) were used. The system 
can achive the accuracy 84.67% which is higher than only 
using a pre-trained model. In automated flower recognition 
systems using deep learning, all studies directly process the 
images into deep learning. In this case, segmentation process 
did not use. Deep learning approach also often give a high 
accuracy compared to using low-level features and machine 
learning classifiers. But, still the systems act as black-boxes.

Research conducted by Farhadi et al. [15] has some simi-
larity to our proposed method. Even though the research 
was not done in the context of plant or flower identification, 
this was the first research to explore descriptions of physi-
cal objects and subsequently used these in machine learn-
ing. Firstly, the low-level features or the base features are 
extracted from the image. Then, attribute classifiers were 
trained using the extracted base features. Finally, the fea-
tures yielded by attribute classifiers were used to learn the 
object category. According to this research, inferring attrib-
utes of objects is key in object recognition. Semantic and 
discriminative features like parts, shapes and materials can 
be used for inferring the attributes. This methods does not 
only allow recognizing objects using an attribute classifier, 
but also supports describing unfamiliar (new) objects. In 
other fields, some research for designing explainable feature 
extraction such as in handwriting recognition Faghihi et al. 
[16] and medical image analysis Pintelas et al. [17] were 
found. Faghihi et al. extracts the features by scanning eight 
defined regions of the image in different direction and count-
ing the number of times they cross a line (from 1 to 4). They 
claimed that this method can explain how an image was 
misrecognized. Pintelas et al. propose a new set of explain-
able features based on mathematical and geometric concepts, 
such as lines, vertices, contours, and the area size of objects. 
They carefully selected and created six features category 
namely “Whole Image”, “Contours numbers”, “Contours 
Perimeter Size”, “Contours Area Size”, “Contours Verti-
ces Number”, and “Contours Gravity” in order to guarantee 
explainability.

To the best of our knowledge, we were the first to propose 
explainable feature extraction using the features commonly 
employed by taxonomists.
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A compact summary of related work is provided in 
Table 1.

3 � Methods

Instead of using deep neural network for directly finding the 
species name, deep neural network are employed for extract-
ing the taxonomic features of the flower. Figure 2 depicts a 
diagrammatic summary of our proposed feature extraction 
method.

3.1 � Flower characteristics

Since the work of Linnaeus [1], plants are identified by using 
a binomial nomenclature, consisting of a genus, followed by 
the name of the species. For example, Cypripedium is a genus 
of orchid, the latter being the family of the plant, consisting 
of 58 species, one of which is Cypripedium montanum (large 
lady’s slipper). When we speak of ‘species’ in the following, 

we mean genus followed by species which constitute the 
‘name’ of the plant.

In plant determination or identification, the characteris-
tics, taxonomic keys, or features as we call them here, of 
the plant are always used to determine the species it belongs 
to. For the purpose of orchid identification from digital pho-
tographs, the shape and color of the flower are of primary 
importance, which explains why in this paper the focus is 
on flower features. Flowers usually consist of sepals and 
petals (modified leaves that are the outer sterile whorls of 
the flower). In orchids, besides sepals and petals, there is 
also a unique part that can differentiate one orchid flower 
from others, called labellum or lip. Some of the features of 
an orchid flower concern shape and structure and are called 
morphological features. In this research, texture, inflores-
cence, the number of flowers, labellum characteristics are 
morphological features. In addition, the color of the flower 
and the color of labellum are characteristic features. Typi-
cal for the features of orchid flowers is that they are almost 
never unique. Hence, they have to be combined to identify 

Table 1   Literature review summary

Authors Title Method

Low-level features for plant identification
Sabri et al. [11] Combination of Color, Shape and Texture Fea-

tures for Orchid Classification
Feature extraction: HSV color, shape features 

(area, perimeter, eccentricity, circularity, etc.)
Classification: SVM

Andono et al. [12] Orchid types classification using supervised 
learning algorithm based on feature and color 
extraction

Feature extraction: HSV color, GLCM.
Classification: SVM, naive Bayes, k-NN

Deep learning for plant identification
Arwatchananukul et al. [13] A new paphiopedilum orchid database and 

its recognition using convolutional neural 
network

Inception v3

Sarachai et al. [14] Orchid classification using homogeneous 
ensemble of small deep convolutional neural 
network

The global prediction network (GPN),
the local prediction network (LPN),
and the ensemble neural network (ENN)

Ou et al. [9] An ensemble voting method of pre-trained deep 
learning models for orchid recognition.

An ensemble of three pre-trained model i.e. 
ResNet50,

EfficientNet, and Big Transfer (BiT)
Another research about descriptive features
Farhadi et al. [15] Describing objects by their attributes Extract low-level features, train them in attribute 

classifiers, the features from attribute classifiers 
were used to learn the object category

Faghihi et al. [16] A nonsynaptic memory based neural network 
for hand-written digit classification using an 
explainable feature extraction method.

Scanning eight defined regions of the image in 
different direction and counting the number of 
times they cross a line (from 1 to 4)

Pintelas et al. [17] Explainable feature extraction and prediction 
framework for d image recognition applied to 
pneumonia detection.

Selected and created six features categories 
namely:

“Whole Image”,
“Contours numbers”,
“Contours Perimeter Size”,
“Contours Area Size”,
“Contours Vertices Number”,
and “Contours Gravity”
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the species of an orchid, and in some cases, even a feature 
combination does not yield a unique solution.

Figure 3 illustrates two morphological features used in 
this research. All features are discussed one by one in the 
following:

•	 Texture. We only observe texture, abbreviated to T, for 
the labellum. It is described by the presence of spots or 
absence of spots (no spots). We call texture a ‘spot’ if 
there are some regular shapes which have a different 
color from the base color of the labellum. The spots may 
be small or large, few or many. We speak of ‘no spots’ in 
the opposite situation.

•	 Inflorescence, or In for short, is the arrangement of flow-
ers on the stem. We group the inflorescence type into 4 
groups: panicle, raceme, single or pair, and spike.

•	 Number of Flowers, abbreviated to NF, just a count of 
the number of distinguishable flowers of an orchid, is 
another relevant characteristic feature.

•	 Labellum Characteristic, or LC for short, is the outline 
of the labellum. We group the labellum characteristics 
into 4 groups: fringed, lobed, pouched, and simple.

•	 Finally, two types of color feature are distinguished. The 
first one being the Color of Flower, or CF for short, 
which concerns the color of sepals and petals.

•	 The second color used to characterize an orchid is the 
Color of the Labellum, or CL for brevity.

The complete list of individual features is given in 
Table 2.

3.2 � Multi‑class and multi‑label classification

To build feature classifiers based on morphological and 
color features using deep learning, we have two options: 
(a) using a separate deep neural network for every individ-
ual feature (binary and multi-class classification), and (b) 
using a single deep neural network for all features together 

Fig. 2   A graphical summary of our proposed method. A feature is 
either extracted by a separate neural network (multi-class classifi-
ers), or all features are extracted together by a single neural network 
(multi-label classifier); To evaluate whether or not our extracted 

features can be used to classify an orchid, the extracted features are 
entered into a classification algorithm that support explainability such 
as naive Bayes (NB) and Tree-Augmented Bayesian Network (TAN) 
to determine a species name

Fig. 3   Morphological features: (a) Inflorescence, (b) Labellum characteristic
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(multi-label classification). In this paper, we explore the use 
of multi-class and multi-label classification to find out which 
of the two methods is more appropriate to our case. How-
ever, first a formal definition of these classification methods 
is provided.

3.2.1 � Multi‑class classification

Let database D = {(fi, li)| i = 1, …, N} be a multiset of N 
tuples or instances (fi, li), with m-tuple fi =

(

f i
1
,… , f i

m

)

 com-
posed of values of different features Fj, j = 1, …, m, and 
f i
j
∈ D

(

Fj

)

 , the (finite or infinite) domain of feature Fj, and 
li =

(

li
1
,… , li

p

)

 being a p-tuple of values of different labels 
Lk, k = 1, …, p, and li

k
∈ D

(

Lk
)

 , the finite label domain of 
label Lk. A classifier C now takes the features of an instance 
f as input in order to produce label value(s) as output:

A multi-class classifier MC is a function that assigns one 
label value, usually simply called a class, to a given tuple of 
feature values, i.e.

with l ∈ D(L1) as p = 1; there is only one set of label values. 
Multi-class classification concerns classifying an instance 
into exact one of more than two different label values; if 
only two label values are distinguished one speaks of binary 
classification. The complexity of multi-class classification 
can be similar to single binary classifier Honeine et al. [18].

3.2.2 � Multi‑label classification

In contrast to multi-class classification, a multi-label clas-
sifier ML is a function that assigns one label value to each 
of the p labels Lj of an instance:

where lj ∈ D(Lj), j = 1, …, p. Thus, in multi-label classifi-
cation, each instance will be mapped to multiple labels at 
the same time. For modeling multi-label classification in 
general, we can use several different methods, which are 
described below.

a. Problem transformation methods transform the 
multi-label problem into a set of binary classification prob-
lems. There are several methods to transform it into a binary 
classification problem, for example, binary relevance, clas-
sifier chains and label power-set. The simplest method is 
binary relevance Tsoumakas and Katakis [19]. It works by 
training independent binary classifiers to predict each label. 
The independent predictions are then aggregated to form a 

C ∶ D
(

F1

)

×⋯ × D
(

Fm

)

→ D
(

L1
)

×⋯ × D
(

Lp
)

.

MC(f) = l

ML(f) = l =
(

l1,… , lp
)

collection of relevant labels. Classifier chains in Read et al. 
[20] take a similar approach to binary relevance but explic-
itly take the associations between labels into account. Label 
power-set Gupta et al. [21] is well known as the multi-label 
classification method that has a better performance com-
pared to the other multi-label classification methods. Each 
unique combination of relevant labels is mapped to a class. 
This method takes possible correlations between class labels 
into account. Although this method can perform well, the 
number of possible unique label combinations grows expo-
nentially, i.e., ∣D(L1) × ⋯ × D(Lp)∣, the cardinality of the Car-
tesian product of label domains, reducing its usefulness in 
practical applications.

b. Adapted algorithms try to address the problem in its 
full form rather than trying to convert the problem to a sim-
pler problem. The algorithms that are most widely used are 
multi-label k-nearest neighbor, multi-label decision trees, 
and neural networks Breiman et al. [22]; Bishop [23]. Multi-
label k-nearest neighbor uses a binary relevance algorithm, 
which acts on the labels individually, but instead of applying 
the standard k-nearest neighbor algorithm directly, it com-
bines with the maximum a posteriori principle. Multi-label 
decision tree extends the C4.5 decision tree algorithm to 
allow multiple labels in the leaves, and choose node splits 
based on a re-defined multi-label entropy function. A type 
of neural networks that is included in adapted algorithms is 
back-propagation for multi-label learning (BPMLL).

From the beginning, multi-label classification was 
inspired by text categorization problems, where each docu-
ment may belong to several predefined topics simultane-
ously. Therefore, in this research we investigate whether this 
method is appropriate for feature classification.

3.3 � Deep learning architecture

In the recent past, we already carried out experiments with 
some well-known pre-trained deep-learning architectures 
such as VGG-16, ResNet50, InceptionV3, Xception, and 
NasNet used as color classifiers Apriyanti et al. [24]. The 
number of parameters used in those deep learning archi-
tectures are 138 million, 23.6 million, 54.3 million, 22.8 
million, and 22.6 million, respectively Saleem et al. [25]; 
Radhika et al. [26]. Xception yielded the best performance 
as color classifier in these experiments. To investigate 
whether or not Xception would yield the best performance 
for the other features of the flower, we compared it with 
the other architectures mentioned above. Compared were 
the classifier performances for texture and inflorescence of 
different deep learning architectures with the assumption 
that sufficient information was obtained to draw conclusions 
concerning the other four features.
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The inputs to the DL networks consisted of images with 
size 224 × 224 × 3 (where 3 comes from the RGB color cod-
ing). For this experiment, we use a pre-trained Xception 
architecture by freezing the first layer and unfreezing the 
rest. We added a flatten layer and one dense layer with 256 
neurons using the ReLU activation function. We also added 
a dropout layer with threshold value equal to 0.5.

For multi-class classification the softmax function was 
chosen as the final layer of the DL architecture, as only a 
single value for the output was needed, in this case the maxi-
mum. The individual class values have to sum up to 1 so that 
a probabilistic interpretation is allowed. As a consequence, 
the outputs of a softmax will be all interrelated. If the prob-
ability of one class increases, the probabilities of at least one 
of the other classes will decrease. Each multi-class classifier 
was trained separately, so there was no dependence between 
the image features obtained in this way. Figure 4 illustrates 
the DL architecture used in the multi-class classification 
scenario.

For multi-label classification, we used deep learning, 
using the binary relevance method mentioned above (Sec-
tion 3.2.2(a)), that transforms the values of the features into 
labels: a positive value is replaced by 1 and a negative value 
by 0. The number of output neurons was chosen to be equal 
to the number of labels, where labels were represented using 
a one-hot encoding so that they could be easier to process 
in a NN. However, this has no effect on the semantics of 
the labels, which is kept unchanged. To be able to obtain 
simultaneous, i.e., non-mutual-exclusive, outputs a sigmoid 
instead of softmax function was used as the output layer. As 
the probabilities produced by a sigmoid function are inde-
pendent there are no mutual constraints amongst the label 
outputs. The multi-label classification scenario is illustrated 
in Fig. 5.

3.4 � Dataset

In our experiments a dataset was used that consisted of 
orchid flower images with associated ground truth flower 
characteristics. The images were downloaded from sources 
such as Flickr, EoL (Encyclopedia of Life), and the Go Bot-
any website, while the morphological characteristics were 
obtained from descriptions available in the Go Orchid and 
Go Botany websites.

There are several reasons why this orchid flower dataset 
is very challenging: flower images have a high variation in 
size, background, position, and illumination characteristics. 
The dataset can be freely downloaded from https://​doi.​org/​
10.​7910/​DVN/​0HNECY Apriyanti et al. [27].

In the experiments to build feature classifiers, 7156 
images were used, split up into 5119 images for training, 
1235 image for validations, and 802 images for testing, 
respectively. The testing set contains new images that were 

never used for training and validation. The training-data dis-
tribution of the features is shown in Fig. 6.

For evaluating the feature classifiers to predict the spe-
cies using naive Bayes, TAN, InceptionV3 and Xception, 
we use 6300 images consists of 63 species, and split the 
images into 5040 images for training, 630 images for vali-
dation, and 630 images for testing. The distribution of the 
orchid species class variable in the training data was bal-
anced in such way that each class consisted of 90 images 
and associated feature descriptions (where in DL 80 images 
were used for training, and 10 for validation, and for the 
Bayesian classifiers all 90 cases per class were used); for 
the independent test dataset the corresponding number of 
cases per class was equal to 10.

3.5 � Performance evaluation

Common performance evaluation metrics for binary classifi-
ers are true positive rate (TPR) and true negative rate (TNR), 
in addition to accuracy and the F1 score. TPR represents the 
number of cases with positive class value that were predicted 
correctly as being positive, while TNR represents the number 
of cases with negative class value that are predicted correctly 
as being negative. For multi-class classification, which we 
study in this paper, the definitions of these metrics are more 
elaborate, but still in the same vein; details have been moved 
to Appendix A.

In addition to an evaluation of the performance of the 
DL feature classifiers, we also carried out an evaluation of 
the performance of flower classification methods based on 
the DL features classifiers and compare the results with the 
state-of-the-art black-box DL methods which take the image, 
not the features, as input. Hence, we basically compare DL 
where vision-based image interpretation is employed, to 
taxonomic features, still extracted using DL, but interpreted 
using classifiers. Another way to look as this comparison is 
as a comparison between whole image, and therefore black-
box, interpretation versus image features interpretation. As 
mentioned in the Introduction, the advantage of using taxo-
nomic features is that classification results can be explained 
in an understandable manner to the user, as traditionally 
done by taxonomists.

For the evaluation of the performance using DL methods, 
we investigated two scenarios, pre-trained without tuning 
multiple of layers and pre-trained with tuning multiple lay-
ers. We chose InceptionV3 and Xception as representative 
of the blackbox method, therefore we conducted those two 
scenarios in InceptionV3 and Xception. The first scenario 
is freezing all layers except the top layer. When we freeze 
all layers except the top layer (the top layer usually is a clas-
sifier), it means that we use the feature extractors and the 
weight from source domain, to extract the features of images 
in our target domain. After that, we train the top layer to get 

https://doi.org/10.7910/DVN/0HNECY
https://doi.org/10.7910/DVN/0HNECY
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Fig. 4   Multi-class classification using deep learning

Fig. 5   Multi-label classification 
using deep learning resulting 
in a single neural network with 
29 outputs (the complete list of 
outputs is provided in Table 2)
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the species name. The second scenario is freezing only the 
first layer. When we freeze only the first layer, it means that 
we try to tune the network to find better features, because the 
first layer is expected to provide generic features/low-level 
features like edges, corners, blobs, etc.

3.6 � Software used

Part of the experiments were done using the R language 
and the R packages bnlearn and gRain Scutari [28]; Højs-
gaard [29]. In addition, the DL experiments were carried 
out using the python3 language version 3.7.6 and the ten-
sorflow package Abadi et al. [30]. We also used a high 
performance computing cluster provided by the University 

of Twente. For the GPU, we used the NVIDIA QUADRO 
RTX 6000.

4 � Experimental results

4.1 � Comparison of different deep learning 
architectures

Figure 7 shows a comparison between the performance of dif-
ferent deep learning architectures for texture and inflorescence 
classifiers. It is obvious that the feature classifiers using Xcep-
tion give the best performance compared to other deep learn-
ing architectures, i.e., VGG16, Resnet50, and InceptionV3.

Fig. 6   Distribution of training 
data
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4.2 � Multi‑class classification results

The results for multi-class classification are summarized in 
Table 2. In general the feature classifiers yield quite reason-
able results. Most of them have a TPR above 0.80. There 
are only a few features that have a TPR below 0.80 such as: 
‘Panicle’ for inflorescence (In), ‘AFew’ for number of flower 
(NF), ‘Fringed’ for labellum characteristic (LC), ‘GreenYel-
low’ and ‘PurpleYellow’ for color of flower (CF), ‘Green-
Red’, ‘GreenYellow’, and ‘RedYellow’ for color of labellum 
(CL).

We repeated the experiment three times for each feature 
classifier using multi-class classification to obtain insight 
into the variability of their performance. In this case, the 
variability was produced by different initialisation in deep 
learning. The results of repeating the experiments are shown 
in Table 3. From the table it can be concluded that the stand-
ard deviation for each classifier is really small – between 
0.1% and 1.0% –, meaning that the feature classifiers’ per-
formance appears to be robust.

4.3 � Multi‑label classification results

For multi-label classification, two methods were explored. 
First, we used the common multi-label classification method 
where different levels’ of confidence are used as threshold 
to classify features. We carried out several experiments 
using level of confidence, e.g. 0.5, 0.6, and 0.8. However, 
often this method yielded more than one value for a feature, 
whereas we aim for a unique classification result. There-
fore, another method was used where results, interpreted as 
a probabilities, were ranked from high to low. The results of 
this method are shown in Table 2. Overall the TPR is above 
80%. The features that have TPR below 80% are exactly the 
same as in the multi-class classification. Hence, it appears 
that the results obtained by multi-class and multi-label 

classification for features are often very similar, but not 
always, as we will discuss below.

4.4 � Comparison of Bayesian feature classifiers 
and whole image black‑box deep learning 
classifiers

So far we discussed results obtained from DL experiments 
in extracting features from orchid flower images. How-
ever, having obtained these features allows determining 
the species to which an orchid belongs to, based on those 
features, in a similar way as a botanist would do, using 
taxonomic characteristics. For this purpose we trained 
and validated two different Bayesian network classifiers 
with the orchid species class variable as a central variable 
that was linked to the feature variables mentioned above: 
a naive Bayes classifier Wickramasinghe and Kalutarage 
[31], and a TAN classifier Zhao et al. [32]. The advantage 
of a TAN classifier is that dependencies between the fea-
ture variables can be captured by the tree structure, which 
is missing in naive Bayes, where the assumption is made 
that all features are conditionally independent given the 
species class variable.

These two Bayesian network classifiers were compared 
to two DL architectures, InceptionV3 and Xception, where 
whole images were classified into orchid species by the DL 
neural networks. The results are shown in Table 4.

5 � Discussion

5.1 � Flower feature extraction using deep learning

For each of the six orchid flower features we employed in 
our research it was possible to obtain a reasonably good 
performance using the Xception architecture, although only 

Fig. 7   Comparison between 
several DL architectures; texture 
(T: blue line) and inflorescence 
(In: yellow line) are the two 
features studied as examples for 
all six features
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after training on the orchid data without which an acceptable 
result could not be achieved.

We also compared DL for each feature separately (multi-
class and binary classification) and multi-label classification, 

where all features were combined into one neural network. 
Figure 8 shows a comparison of the performance between 
multi-class classification and multi-label classification. 
From the figure, we can conclude that most of all features 
extracted using multi-class classification outperform multi-
label classification, with the exception of ‘AFew’, ‘Many’, 
and ‘SinglePair’ for number of flowers (NF), ‘Green’ and 
‘Red’ for color of labellum (CL), ‘Panicle’ for inflorescence 
(In), and finally ‘Fringed’ for labellum characteristics (LC), 
which have a slightly higher performance.

5.2 � Feature importance and comparison 
to black‑box deep learning

Using the Bayesian-network classifiers mentioned above, 
we tried to shed light on which orchid flower feature or 
combination of features had most impact on the classifi-
cation performance. The results are summarized in Fig. 9. 
Concerning the individual feature, the two most important 
individual features were color of labellum (CL), and color 
of flower (CF), which also appeared to hold when used as 
pair, although labellum characteristic (LC) combined with 
CL achieved similar performance. Adding more features 
achieves a steady improvement in performance: indeed, 
using all features gives the best performance. It also is clear 
that it does not matter much whether naive Bayes or TAN 
was used as method, i.e. there is no effect of direct interac-
tion between the features.

As Table 4 shows, naive Bayes and TAN yield perfor-
mance results that are better than the transfer learning with-
out tuning the layers, whereas the best results were obtained 
by transfer learning with tuning the layers.

5.3 � The challenges faced in explainable feature 
extraction

In this research, data has a main role in obtaining a good per-
formance. We face some challenges during data processing.

5.3.1 � Collection of data

We crawled the flower images from multiple websites 
using API based on the name of the orchid species. We 
realized that some of the images that we obtained do not 
contain flower, but only contain bushes, seed, flower paint-
ing, etc., so we need to eliminate them from our data-
set. This process was time consuming because we had to 
check it one by one. As we aim to build an explainable 
classifier, our dataset also includes the flower description 
of the orchid species. The flower descriptions are based 
on a taxonomy of plants and we need to integrate flower 

Table 3   The variability of the accuracy (%) of the DL (Xception) fea-
ture classifiers

Feature Experi-
ment 1
(%)

Experi-
ment 2
(%)

Experi-
ment 3
(%)

Average
(%)

Stdev
(%)

T 92.9 91.3 92.6 92.3 0.7
In 90.0 89.4 90.0 89.8 0.1
NF 83.9 86.3 84.4 84.9 1.0
LC 85.4 85.7 85.5 85.5 0.1
CL 84.8 82.7 83.3 83.6 0.9
CF 84.8 85.7 84.8 85.1 0.4

Table 2   The results of the Xception feature classifiers using multi-
class and multi-label classification

Features Multi-class Multi-label

TPR (%) TNR (%) TPR (%) TNR (%)

T NoSpot 97.0 86.9 89.2 85.4
Spot 86.9 97.0 79.9 93.6

In Panicle 57.9 99.5 68.4 99.1
Raceme 91.3 91.0 90.2 87.6
SingleOrPair 94.8 97.9 95.9 97.9
Spike 85.9 95.3 82.8 94.1

NF AFew 75.9 88.1 71.2 92.8
Many 84.2 86.7 84.2 87.1
SinglePair 93.6 98.4 95.3 98.3

LC Fringed 66.2 98.6 73.2 98.6
Lobed 85.9 89.3 80.4 90.8
Pouched 89.3 97.8 90.4 96.8
Simple 87.7 92.7 83.8 90.9

CF Green 87.0 94.0 86.8 93.9
GreenRed 91.0 94.9 87.5 95.7
GreenYellow 50.0 99.7 66.7 97.5
Purple 86.0 98.0 88.7 97.6
PurpleYellow 72.0 99.4 62.1 98.4
Red 80.0 99.0 80.0 99.5
RedYellow 90.0 95.4 95.8 96.8
Yellow 84.0 96.6 82.5 95.8

CL Green 82.0 92.8 90.6 94.3
GreenRed 57.0 99.7 57.1 98.6
GreenYellow 57.0 99.7 71.4 99.6
Purple 82.0 97.1 83.2 96.4
PurpleYellow 89.0 96.4 81.2 96.3
Red 90.0 99.9 87.1 100
RedYellow 65.0 99.9 58.8 99.2
Yellow 87.0 87.5 86.2 91.3
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Fig. 8   Comparison of multi-class and multi-label classification

Fig. 9   Feature importance 
was determined by studying 
the accuracy of two Bayesian-
network classifiers (naive Bayes 
and TAN) for the elements of 
the power set of all features. 
Best performance was achieved 
when all features were entered 
into each of the two different 
Bayesian-network classifiers

Table 4   The performance 
of Bayesian network feature 
classifiers and black-box DL

Orchid Classifier Accuracy (%)

Bayesian-network classifiers Naive Bayes 88.9
TAN 88.9

Blackbox-transfer learning without tuning the layers (as used 
in Arwatchananukul et al. [13])

InceptionV3 44.9

Xception 48.3
Blackbox-transfer learning with tuning the layers InceptionV3 95.2

Xception 95.1
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descriptions from various sources. This was handled by 
saving the data into a single persistent data storage.

5.3.2 � Imbalanced data

This phenomenon also appeared in our dataset. Some spe-
cies had many images in the dataset, whereas others were 
represented by only a few images. Imbalance in data is a 
serious problem in machine learning. We have tried to han-
dle this problem by deep learning using training techniques 
that take this into account and the orchid class was made 
balanced (cf. Section 3.4).

5.3.3 � Poor description and metadata

Another challenge that we faced in this research is poor 
flower descriptions and metadata. This problem resulted 
originally into some wrong annotations of our dataset. The 
problem was tackled by checking again the description from 
the literature and visual inspection whether the appearance 
of the image and the description matched.

5.3.4 � Feature selection

Our aim was to extract the features directly from the image. 
The selected features were derived from the features used by 
taxonomists in traditional plant identification. The feasibility 
of extraction of taxonomic features directly from an image 
varies. Not all taxonomic features can be extracted from a 
2D image, and some features play a more important role in 
plant identification than others. Therefore, feature selection 
must be done in such a way that the system can distinguish 
the orchid flowers based on the given set of features.

6 � Conclusion

In this paper, a novel flower feature extraction method is pro-
posed based on deep neural networks. We explored the use 
of a separate deep neural network for every feature (multi-
class and binary classification) and a single deep neural net-
work for all features (multi-label classification). Both of the 
methods can predict the characteristics of the flower very 
well, with slightly better performance for the separate DL 
classifiers. The results also show that the proposed explain-
able feature extraction can be used for orchid identification 
and yields better results compared to standard pre-trained 
deep learning. Even though the ultimate performance is 
inferior to deep learning after fine-tuning of multiple lay-
ers, employing explicit taxonomic features offers much bet-
ter opportunities for explanation, while still providing an 
acceptable performance.

The features that we selected in this paper do not always 
suffice to distinguish all types of orchid, therefore inclusion 
of more features may be needed. Improvement of the perfor-
mance of automated orchid classification using taxonomic 
features can also be achieved by improving the performance 
of feature classifiers, for example by conducting image filter-
ing and image pre-processing.

Appendix A Classifier evaluation metrics

A common method used to evaluate the performance of a 
classifier (binary or multi-class) is to use summary statistics 
based on the n × n confusion matrix C (by definition a square 
matrix), as shown in Table 5, where xij, 1 ≤ i, j ≤ n, stands for 
the number of cases where the actual value vi is predicted as 
vj by the classifier. For the binary case, i.e., n = 2, it is com-
mon to define the true positive rate (TPR) as

where x11 are known as the true positives (TPs), and x12 as 
the false negatives (FNs). Similarly, a true negative rate 
(TNR) is defined as:

where x22 are the true negatives (TNs) and x21 the false posi-
tives (FPs). Together these measures offer a good summary 
of the performance of a classifier.

However, in the case of a multi-class classifier (i.e., 
n > 2) it is no longer possible to make a distinction between 
positive and negative and we have instead to redefine the 
measures TPR and TNR for the individual class values. Let 

ni =
∑n

j=1
xi,j

 be the total number of cases with actual value 

vi and predicted value vj, 1 ≤  j ≤ n, i.e., the sum of row i of 
the confusion matrix C. The TPR for class value vi, denoted 
TPRi is defined as follows:

(A1)TPR =
x11

x11 + x12

(A2)TNR =
x22

x22 + x21

(A3)TPRi =
xii

ni

Table 5   Confusion matrix C for 
multi-class classification

Predicted

v1 v2 ⋯ vn

Actual v1 x11 x12 ⋯ x1n

v2 x21 x22 ⋯ x2n

⋮ ⋮ ⋮ ⋮ ⋮
vn xn1 xn2 ⋯ xnn
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The TPR is also known as the recall, in particular in 
information retrieval literature, but also sometimes in 
machine learning.

The definition of the true negative rate for class value 
vi is more complicated. First we have to exclude those ele-
ments from the confusion matrix regarding the predicted 
and actual value vi. All the other elements are part of the 
true negatives. Second, we have to compute the false posi-
tives, which is done by summing together the values of 
column i with the exception of xii (the TPs). This results 
in the following formula:

The denominator of eq. (A4) can be simplified by real-
izing that it represents the sum of elements in the part of 
the confusion matrix after removing row i:

resulting in the following definition of the TNR:

A common performance metric to describe the global per-
formance of multi-class classifier across different class val-
ues is accuracy, normally only used when the data has class 
balance (possibly after resolving class imbalance), which is 
defined as the sum of the elements along the diagonal of the 
confusion matrix C, divided by the sum of all elements of C:

The last performance measure we will use is called the Fi

1
 

score for class value i, that combines more of the informa-
tion from the confusion matrix than accuracy and thus is 
normally seen as a better measure than accuracy for imbal-
anced data. It is defined as follows:

(A4)TNRi =

∑

1≤j≤n,
j≠i

∑

1≤k≤n,
k≠i

xjk

∑

1≤j≤n,
j≠i

∑

1≤k≤n,
k≠i

xjk +
∑

1≤k≤n,
k≠i

xki

∑

1≤j≤n,
j≠i

∑

1≤k≤n,
k≠i

xjk +
∑

1≤k≤n,
k≠i

xki =
∑

1≤j,k≤n,
j≠i

xjk

(A5)TNRi =

∑

1≤j≤n,
j≠i

∑

1≤k≤n,
k≠i

xjk

∑

1≤j,k≤n,
j≠i

xjk

(A6)accuracy =

∑n

i=1
xii

∑n

i,j=1
xij

where recalli, which is identical to the TPRi, is defined 
above; precisioni is defined as follows:

where TPi = xii and FPi
∑

1≤j≤n,
j≠i

xji.

As an example, consider the confusion matrix shown 
in Table 6.

We first compute the TPR (or recall) for a, b, and c:

Subsequently, the TNRs are computed:

The (overall) accuracy of the classifier is equal to:

The Fi
1
 scores are being computed next:

where precisiona = 20/(20 + 1 + 4) = 0.8,

where precisionb = 25/(25 + 3 + 3) = 0.8,

where precisionc = 11/(11 + 1 + 2) ≈ 0.79.

Fi
1
=

2 ⋅ precisioni ⋅ recalli

precisioni + recalli

precisioni =
TPi

TPi + FPi
=

xii
∑n

j=1
xji

TPRa =
20

20+3+1
=

20

24
≈ 0.83

TPRb =
25

25+1+2
=

25

28
≈ 0.89

TPRc =
11

11+4+3
=

11

18
≈ 0.61

TNRa =
25+2+3+11

25+2+3+11+1+4
≈ 0.89

TNRb =
20+1+4+11

20+1+4+11+3+3
≈ 0.85

TNRc =
20+3+1+25

20+3+1+25+1+2
≈ 0.94

accuracy =
20 + 25 + 11

20 + 3 + 1 + 1 + 25 + 2 + 4 + 3 + 11
=

56

70
= 0.8

Fa
1
=

2 ⋅ 0.8 ⋅ 0.83

0.8 + 0.83
≈ 0.81

Fb
1
=

2 ⋅ 0.8 ⋅ 0.89

0.8 + 0.89
≈ 0.84

Fc
1
=

2 ⋅ 0.79 ⋅ 0.61

0.79 + 0.61
≈ 0.69

Table 6   Example confusion 
matrix C for multi-class 
classification of 70 cases

Predicted

a b c

Actual a 20 3 1
b 1 25 2
c 4 3 11
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