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Abstract

With the advent of the big data era, the data quality problem is becom-
ing more critical. Among many factors, data with missing values is one
primary issue, and thus developing effective imputation models is a key
topic in the research community. Recently, a major research direction
is to employ neural network models such as self-organizing mappings or
automatic encoders for filling missing values. However, these classical
methods can hardly discover interrelated features and common features
simultaneously among data attributes. Especially, it is a very typical
problem for classical autoencoders that they often learn invalid con-
stant mappings, which dramatically hurts the filling performance. To
solve the above-mentioned problems, we propose a missing-value-filling
model based on a feature-fusion-enhanced autoencoder. We first incor-
porate into an autoencoder a hidden layer that consists of de-tracking
neurons and radial basis function neurons, which can enhance the abil-
ity of learning interrelated features and common features. Besides, we
develop a missing value filling strategy based on dynamic clustering that
is incorporated into an iterative optimization process. This design can
enhance the multi-dimensional feature fusion ability and thus improves
the dynamic collaborative missing-value-filling performance. The effec-
tiveness of the proposed model is validated by extensive experiments
compared to a variety of baseline methods on thirteen data sets.

Keywords: Missing value filling, feature fusion, autoencoder, Radial basis
function, Deep neural network.
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1 Introduction

Data quality issue is one of the key challenges in many research fields such as
data science, data mining, and machine learning. Good-enough data quality
is often a prerequisite to many downstream tasks. If this issue is not handled
properly, unexpected outcomes or even wrong conclusions can be drawn, which
is known as the “Garbage In Garbage Out” problem [1]. Among many factors,
data containing missing values is one primary reason that harms data quality
and has received enormous attention from the research community. Many real-
world applications do generate incomplete or fragmented data pieces [2] but
most learning models do not readily work with missing values. Therefore, many
researchers have proposed and developed various missing-value-filling methods
from different perspectives [3][4][5]. The principle is to properly estimate the
distribution of missing values and then induce deterministic numbers from the
uncertainty.

While many missing value estimations are based on conventional statisti-
cal models, the recent advances of deep learning models have provided a new
perspective [6]. Deep neural nets excel in in non-linearity approximation, and
even models with simple architectures can achieve decent performance. Exam-
ple models are Self-Organizing Map (SOM) [7], Multi-Layer Perceptron (MLP)
, and AutoEncoder (AE) [8]. On the other hand, the functionality of simple
models is also limited. For example, the SOM model ignores the correlation
among data attributes, thus resulting in low model accuracy [3]; the MLP-
based model training process is overly time-consuming because of its high
computational complexity; the AE-based model, which is most related to our
work, has effectively reduced the model complexity by implementing only one
network structure, but the model outputs are likely to track the corresponding
inputs, thus leading to an invalid identity mapping learned and showing the
self-tracking problem [4]. Hence, many improvements have been made upon the
basic autoencoder-based model. For instance, Radial Basis Function Neural
Network (RBFNN) [9], Generalized Regression Neural Network (GRNN) [10],
Tracking-removed Autoencoder (TRAE)[4], and Correlation-enhanced Auto-
associative Neural Network (CE-AANN)[5]. However, the above methods could
hardly learn the common features and the interrelated features simultaneously.
Especially when using a only basic autoencoder to fill missing values, it often
learns invalid constant mappings.1

To address the aforementioned problems, this paper proposes a feature-
fusion-enhanced and autoencoder-based missing-value-imputation model
(FFEAM). The first novelty is that we incorporate a hidden layer comprised
of de-tracking neurons and radial basis function neurons, which can enhance
the multi-dimensional feature fusion ability. De-tracking neurons can avoid
learning invalid constant mappings that often occur in classical autoencoders;
besides, the neurons can also explore the interrelated features among data

1This paper is an extended version of [11], which has been accepted for presentation at the 15th
International FLINS Conferences on Machine learning, Multi agent and Cyber physical systems
(FLINS2022).
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attributes effectively. Radial basis function neurons are designed to have an
automatic clustering ability, which can better learn the common features
among data missing samples. The outputs of these two types of neurons are
further constrained by each other, and thus the model can simultaneously dis-
cover common features and interrelated features among data attributes. The
second novelty is that we develop a missing value filling strategy based on
dynamic clustering (MVDC) that is incorporated into an iterative optimiza-
tion process. Specifically, the MVDC strategy clusters the current training
data and feeds the selected centroids and widths to the radial basis function
neurons, while the missing values are considered as variables along with the
model parameters and are jointly optimised. As the optimization proceeds,
the estimation of the missing values will be more accurate, and thus the filling
precision will gradually improve.

The main contributions of this paper can be summarized as follows:

• We propose a missing value filling model based on a feature-fusion-enhanced
autoencoder. We address the typical problem occurring in classical autoen-
coders by adding a hidden layer that consists of de-tracking neurons and
radial basis function neurons. By exchanging information and constraining
each other’s outputs, both types of neurons enable the model to effec-
tively learn interrelated features and common features across different data
dimensions.

• We develop a missing value filling strategy based on dynamic clustering
that is incorporated into an iterative optimization process. This design can
enhance the multi-dimensional feature fusion ability and thus improves the
dynamic collaborative missing-value-filling performance.

• We conducted extensive experiments on seven publicly available datasets
and six artificial datasets, of which the results demonstrate that the proposed
model achieves a better performance compared to many benchmark models
under different missing value conditions.

The rest of this paper is organized as follows. Section 2 introduces the
related work. Section 3 first presents the preliminaries and then details the
model implementation. Section 4 introduces the architecture of FFEAM.
Section 5 validates the effectiveness of the proposed model through compara-
tive experiments, and finally, Section 6 concludes this paper.

2 Related Work

The current popular missing value filling methods can be divided into two
categories: statistical models and machine learning models [12]. For the first
category, the mean filling method is utilized as the classical method which pri-
marily involves utilizing the average value of a data attribute column to fill in
missing values [13]. The Expectation-Maximization (EM) filling method uses
the marginal distribution of the available data to perform the Maximum Like-
lihood Estimate (MLE) on the missing data to analyze the most likely value to
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be obtained for the missing value filling [14]. In the research of missing value
filling models based on machine learning, K-Nearest Neighbors (KNN) is one
of the classical methods, and its main idea is to select the top K categories
with the least variance by sorting the variance between the categorical samples
and the training samples from smallest to largest [15]. Tutz et al. proposed a
weight parameter adjustment method to optimize the weight between samples
under different K values to improve the effect of missing value filling [16]. The
ordered nearest neighbor imputation method is an enhanced version of the
KNN imputation, which utilizes filled data samples from prior missing data
to improve data utilization rates [17]. Migdady et al. proposed an enhanced
fuzzy k-means clustering approach that employs a K-Means clustering model
to partition the input dataset into K clusters [18]. Li et al. proposed a miss-
ing value filling method based on spatio-temporal multi-view learning, which
automatically fill missing records of geosensing data by learning from multi-
ple views from both local and global perspectives [19]. Deng et al. proposed
an improved random forest padding algorithm, which combines linear inter-
polation, matrix combination and matrix transposition, to solve the padding
problem [20]. Noei et al, proposed a hybrid GA and ARO algorithm (GARO),
which significantly improves the computation time of genetic algorithms used
to interpolate missing values [21]. Mostafa et al. presented two interpolation
methods that utilize Bayesian Ridge techniques for feature selection under two
different conditions [22].

Since the deep learning method was proposed in 2006, it has attracted
the attention of researchers [23]. The deep learning model can automatically
extract and learn the deep features in the data through the multi-layer neu-
ral network [24]. Currently, deep learning-based missing value filling methods
are becoming a hot research topic [25]. For instance, Ravi et al proposed
more variants of classical autoencoder models for missing value filling, and
the experiments demonstrated that the generalized regression autoencoder has
better filling performance in the family of autoencoder-based architectures
[10]. However, the generalized regression autoencoder has high computational
complexity due to the need to repeatedly calculate the distance between incom-
plete data and all complete data during filling. Considering that the classical
autoencoder has a certain dependence on the model input and may learn
invalid constant mappings. In order to reasonably weaken the tracking of the
input by the autoencoder, Lai et al. developed a dynamic filling method for
the de-tracking autoencoder, whose hidden layer neurons can avoid the self-
tracking of the network output to the corresponding input by dynamically
organizing the input structure [4]. Lai et al. also continued their improvement
to propose the association enhanced autoassociative neural network model for
missing value filling, which can well explore the association features among
data attributes [5]. Wang et al. developed a new model based on gated recur-
rent units (GRU), which can efficiently learn the internal features of IoT data
as well as the historical information of time series data [26].
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The above methods such as mean filling, K-nearest neighbor filling [27],
and clustering-based filling [18] mostly analyze and process the missing data
from the data common feature perspective, i.e., fill the data by learning the
similarity features between data. Due to its nonlinear feature learning ability,
deep neural network can automatically mine complex nonlinear relationships
between data attributes, and can learn the interrelated features between data
attributes to fill in missing values. However, it is difficult for the proposed
missing value filling models to perform feature fusion learning from the above
two dimensions (common features and interrelated features) at the same time.

3 Preliminaries

3.1 Classical autoencoder

Autoencoder(AE) is a classical deep learning model consisting of an encoder
and decoder whose output attempts to reconstruct its corresponding input[28].
Since the autoencoder can reproduce the value of the input, if there are missing
values in the sample, it can be filled by the value reproduced at the output. The
model achieves input reconstruction and missing value filling by minimizing
the cost function shown in Equation (1).

L =
1

2n

n∑
i=1

s∑
j=1

(yij − xij)
2
, (1)

where n represents the number of training samples; s represents the number of
attributes of the samples; xij represents the input values, i.e., the data contain-
ing pre-filled missing values; and yij represents the filled values of the model. To
continuously enhance the model, efforts are made to minimize training errors.
However, this may lead to reconstructed outputs that become invalid due
to constant mappings, resulting in high similarity or equality between model
inputs and outputs. These outputs tend to closely track the corresponding
inputs, thereby presenting a self-tracking problem.

3.2 Radial basis function autoencoder

The radial basis function autoencoder consists of an input layer, a single hidden
layer, and an output layer [9]. In this model, the connection weight between
the input layer and the hidden layer is fixed to 1, while the connection weight
between the hidden layer and the output layer is used as a parameter for the
training of the model, and the computation process of the radial basis function
hidden layer neurons is shown in Equation (2).

net
(1)
ik = exp

[
−∥xi − µk∥

2σ2
k

]
, k = 1, 2, ..., n(1), (2)

where µk represents the centroid of the k hidden layer neurons; σk is the width
of the k hidden layer neurons, which determines the magnitude of the decay of
the function taking values along the center to the surrounding. According to
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the properties of radial basis function, when the input sample is far from the
centroid, the activation of the neuron is approximately 0, which belongs to the
neuron with low activation. And when the input sample is closer to the center,
the activation of the neuron is approximately 1, which belongs to the neuron
with high activation. The output layer of the model uses a linear activation
function, so the output of the model is approximately equal to the weighted
sum of neurons with high activation. The radial basis function autoencoder
model has a certain clustering ability, which can explore the common features
of data and reduce the self-tracking of the classical autoencoder to a certain
extent, but the model is weak in learning the interrelated features of data.

3.3 Correlation-enhanced autoassociative neural network

The hidden layer of the the correlation-enhanced autoassociative neural net-
work model(CE-AANN) [5] consists of m1 traditional hidden layer neurons
and m2 improved hidden layer neurons and produces two outputs in the out-
put layer for both types of neurons. Taking the kth hidden layer neuron as an
example, the traditionally hidden layer neuron is solved according to Equation
(3).

net
(1)
ikj = ϕ(

s∑
l=1

w
(1)
lk · xil + b

(1)
k ), j = 1, 2, ..., s, (3)

where ϕ() denotes the activation function of the hidden layer neuron; k repre-
sents the kth traditional hidden layer neuron; and s represents the number of
attributes. The improved hidden layer neuron is solved according to Equation
(4).

net
(1)
ikj = ϕ(

s∑
l=1,l ̸=j

w
(1)
lk · xil + b

(1)
k ), j = 1, 2, ..., s, (4)

where ϕ() denotes the activation function of the hidden layer neuron; k rep-
resents the kth improved hidden layer neurons, and s represents the number
of attributes. From Equation (4), it can be seen that for the jth neuron in
the output layer of the network, the hidden layer neuron dynamically rejects
the value of xij , i.e., the corresponding input of yij is rejected, and the input
values other than xij are used to solve the hidden layer output.

The cost function of the CE-AANN is shown in Equation (5).

L =
1

2

n∑
i=1

s∑
j=1

[(yij − xij)
2 + (yij − rij)

2], (5)

where yi= [yi1,yi2,...,yis]
T denotes the network output; ri= [ri1,ri2,...,ris]

T is
the reference output; n represents the total number of data; s represents the
number of sample attributes. According to Equation (5),it can be seen that
the CE-AANN model constantly minimizes the error between the output yij
and input xij , and also de-tracked the similarity of input and output, through
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the mutual constraint of the two types of outputs, the model can weaken the
dependence of the output on the input while making the network input have a
certain borrowing effect on the output, so as to improve the model’s learning
ability of data interrelated features, but the model is weak in learning common
features of the data.

4 Method

4.1 Overall framework of the model

To address the main problems in the classical autoencoder model used for
missing value filling, a missing value filling model based on feature fusion
enhanced autoencoder is developed, and a novel neural network hidden layer
based on de-tracking neurons and radial basis function neurons are designed to
collaboratively train to fill missing values. Figure 1 shows the overall framework
of the model, which first pre-fills the missing data set by the random forest.
The missing values are set as variables by the MVDC filling strategy, and then
the samples containing dynamic filling values are input to the FFEAM, which
performs two dimensions of fusion learning on the interrelated features and
common features in the data. Meanwhile, the MVDC filling strategy, through
K-means clustering self-organized learning, selects the centroids and variances
required for the radial basis function neurons, and finally optimizes the missing
filling effect iteratively.

Fig. 1 Design diagram of Feature Fusion Enhanced Autoencoder Model for Missing Value
Filling (FFEAM)
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4.2 Feature Fusion Enhanced Autoencoder Design

As shown in Figure 1, the FFEAM contains an input layer, a modified novel
hidden layer, and an output layer. in which two types of neurons are developed
and jointly constructed: include m1 de-tracking neurons and m2 radial basis
function neurons. According to the mutual design of the two types of hidden
layer neurons, two types of outputs will be generated in the output layer: yi=
[yi1,yi2,...,yis]

T represents the output of the network based on the solution
of the de-tracking hidden layer neurons, ri= [ri1,ri2,...,ris]

T is the reference
output based on the radial basis function hidden layer neuron solution. To
introduce the design idea of the novel hidden layer in detail, Figure 2 shows the
difference between the conventional neuron, the de-tracking neuron, and the
radial basis function neuron with the kth hidden layer neuron as an example.

Fig. 2 Three different hidden layer neurons

As shown in Figure 2, the output of a conventional neuron is typically
computed using Equation (1), and such hidden layer neurons are frequently
employed in self-encoders. However, one drawback is that when using these
neurons in self-encoders, it may be easy to learn an output that simply repli-
cates the input mapping, which can’t effectively extracting interrelated features
and common features of the data. On the other hand, de-tracking neuron
calculate their output using Equation (4). Figure 2 shows how these neu-
rons dynamically discard xij based on the output yij . This ensures that the
self-encoder does not learn invalid mappings, which would lead to directly
reproducing the input. As a result, de-tracking neurons outperform tradi-
tional neurons in extracting inter-attribute interrelated features in the data.
Nonetheless, they face the same limitation as traditional neurons in discov-
ering common features of the data attributes. Meanwhile, the output of the
radial basis function neuron is calculated according to Equation (2), with lower
activation as the input sample is further away from the centroid and higher
activation as it gets closer, which allows the output of the radial basis func-
tion neuron to approximately represent a weighted sum of highly activated
neurons, helping to cluster the data and discover common features. However,
radial basis function neurons have limited ability to reveal interrelated features
between data attributes.

The FFEAM model comprehensively considers the advantages and disad-
vantages of various types of neurons and complements the advantages of the
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two types of neurons through the fusion design of de-tracking neurons and
radial basis function neurons. The de-tracking neuron reduces the self-tracking
of the classical autoencoder by dynamically eliminating some inputs, and
improves the model’s learning ability of data interrelated features. Moreover,
the radial basis function neuron is activated by the radial basis function, and
the network reference output can be approximately regarded as the weighted
summation of the high activation neurons, which has a certain ability for
cluster analysis and exploring the common features of the data. The multi-
dimensional feature fusion learning is performed through the complementation
of the above two types of neurons, thereby improving the missing value filling
performance.

The whole FFEAM calculation process is described below, the input
dataset of the model containing missing values {Xij∥i= 1, 2, ...,n; j= 1, 2, ...,s},
where n is the number of samples and s is the number of attributes, and the
missing values Xij are pre-filled using random forest. The method first tra-
verses all the features and starts filling from the column with the least missing.
After each regression prediction is completed, the predicted value is put back
into the original feature matrix, and then the next feature is filled, and the
pre-filling of all missing columns is completed in turn. Then the weights and
thresholds of the FFEAM are initialized. Meanwhile, based on the MVDC
dynamic filling strategy, the K-means clustering algorithm is used to find h
centroids µh in the data set after pre-filling, and the width σg is calculated by
Equation (6).

σg =
cmax√
2h

(g = 1, 2, ...., h), (6)

where cmax denotes the maximum distance between h centers; h represents
the number of centers and also the number of radial basis function neurons.

Next, the data association features are discovered using the de-tracking
neurons in the novel hidden layer, and the data common features are discovered
using the radial basis function neurons. The output of the de-tracking neuron
is shown in Equation (7).

netikj = relu(

s∑
l=1,l ̸=j

w
(1)
lk · xil + b

(1)
k ), j = 1, 2, ..., s, k = 1, 2...,m1, (7)

where netikj represents the output of the kth de-tracking neuron after elimi-
nating the corresponding input xij , s represents the number of attributes which
is the number of columns in the xij data set, k represents the kth de-tracking
neuron, m1 is the number of de-tracking neurons, wlk

(1) represents the connec-
tion weight of the lth node in the input layer and the kth de-tracking neuron
in the hidden layer, bk

(1) denotes the threshold of the kth de-tracking neuron
of the hidden layer; from Equation (7), we can see that for the jth neuron of
the output layer, the hidden layer neuron will dynamically reject xij and use
the input values other than xij to solve the hidden layer output.
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The output of the radial basis function hidden layer neuron is shown in
Equation (8).

netigj = exp

[
−∥xij − µg∥

2σ2
g

]
, j = 1, 2, ..., s, g = 1, 2, ...,m2, (8)

where netigj represents the output of the gth radial basis function neuron for
input xij , g represents the gth radial basis function neuron, s represents the
number of attributes, and m2 is the number of radial basis function neurons;
µg is the centroid of the g radial basis function hidden layer neurons, which is
found according to the k-means algorithm. σg is the width of the g radial basis
function hidden layer neurons, which determine the magnitude of the decay of
the function taking values along the center to the surrounding, and is found
according to Equation (6).

After the new hidden layer, two types of outputs are obtained in the output
layer of the neural network, one is the output yij of the de-tracking neuron in
the corresponding hidden layer, which is calculated according to Equation (9).

yij =

m1∑
k=1

w
(2)
kj netikj + b

(2)
j , j = 1, 2, ..., s, (9)

where netikj is the output of the kth de-tracking neuron; s is the number
of attributes; m1 is the number of de-tracking neurons, wkj

(2) represents the
connection weight of the kth de-tracking neuron in the hidden layer and the
jth output layer neuron in the output layer, and bj

(2) represents the threshold
value between the jth output layer neurons.

Second, the network output rij corresponding to the radial basis function
neuron in the hidden layer is calculated according to Equation (10).

rij =

m2∑
g=1

w
(2)
gj netigj + b

(2)
j , j = 1, 2, ..., s, (10)

where netigj is the output of the gth radial basis function neuron: s is the

number of attributes; m2 is the number of radial basis function neurons; w
(2)
gj

represents the connection weight of the gth radial basis function neuron in the
hidden layer and the jth output layer neuron in the output layer, and bj

(2)

represents the threshold value between the jth output layer neurons. According
to the activation function of Equation (8), when the input sample is far from
the centroid, the activation of the neuron is approximately 0, which belongs
to the neuron with low activation. And when the input samples are closer to
the centroid, the neuron activation is approximately 1, which belongs to the
neuron with high activation.

The model loss function is as follows.

L =
1

2

n∑
i=1

s∑
j=1

[(yij − xij)
2 + (yij − rij)

2], (11)
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Through the above computational process, the model minimizes the error
between the output of the de-tracking neuron yij and the input xij while being
as close as possible to the reference output of the radial basis function neuron
rij . Through the mutual constraint of the two types of outputs, the model is
able to effectively learn the interrelated features and common features in the
sample data while weakening the correlation between the inputs and outputs
to reduce the self-tracking problem.

4.3 Description of the algorithm process

Algorithm 1 FFEAM algorithm

Input: Data sets containing missing values: {Xij∥i= 1, 2, ...,n; j= 1, 2, ...,s}.
Output: Filling the complete data set {Yij∥i= 1, 2, ...,n; j= 1, 2, ...,s}.
1: Pre-filling of missing values Xij using random forest;
2: Set the missing values in Xij as variables;
3: Initialize the weights wk , thresholds bk, and missing value variables;
4: A number of centroids µh are found in Xij based on the k-means clustering

algorithm, and the width σg is calculated by equation (6);
5: repeat
6: Select the batch sample Xb from the pre-filled sample of missing values;
7: repeat
8: Take a sample xij in Xb;

9: netikj = relu(
s∑

l=1,l ̸=j

w
(1)
lk · xil + b

(1)
k ), j = 1, 2, ..., s, k = 1, 2...,m1;

10: netigj = exp
[
−∥xij−µg∥

2σ2
g

]
, j = 1, 2, ..., s, g = 1, 2, ...,m2;

11: yij =
m1∑
k=1

w
(2)
kj netikj + b

(2)
j , j = 1, 2, ..., s;

12: rij =
m2∑
g=1

w
(2)
gj netigj + b

(2)
j , j = 1, 2, ..., s;

13: Minimization objective function equation and updates the model
weights wk and threshold bk;

14: if xij is the sample containing the missing values then
15: Update the missing value variables in xij based on Adam

optimization algorithm. The missing value variables will be dynamically
optimised in collaboration with the model parameters;

16: end if
17: Continue to take the next sample in Xb;
18: until After traversing all samples in Xb

19: The final output of the algorithm is the complete dataset Yij , where
the model output yij corresponding to the missing values is used as the
final fill value.

20: until Termination of training conditions
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FFEAM first fills the missing data set with random forest in advance. Then,
the MVDC fill strategy treats the entire incomplete dataset as the training set
and includes the missing values as variables in the loss function, while the h
centroids µh are selected according to the k-means algorithm, and the width
σg is calculated by Equation (6).

As we treat missing values as variables and include incomplete samples and
complete samples in network training, the missing value variables and model
parameters are dynamically optimized together. The advantage of the MVDC
filling scheme lies in its dynamic optimization of missing values, allowing the
network model to gradually match the regression structure in incomplete data.
With the increase of optimization depth, the filling accuracy of missing values
and the accuracy of the model will also be improved.

The samples that contain dynamic fill values are then fed into FFEAM,
which carries out two-dimensional fusion learning of the interrelated features
and common features in the data. The pseudo code is shown in Algorithm 1.

5 Experiments

In this section, we first conduct experiments on four UCI (University of Cal-
ifornia Irvine) datasets to evaluate the performance of the proposed method.
Secondly, we perform extensive additional experiments on three more complex
real datasets to analyze the effectiveness of our model, and the effectiveness
of the model was verified by comparing the filling performance with the mean
filling method, Autoencoder [8], KNN [27], MIDAS [29] and CE-AANN [5].
We also constructed six artificial datasets and conducted six model compari-
son experiments on these to analyse the effect of information such as noise and
data dimensionality on the models. Finally, we also performed time complexity
analysis on the FFEAM model.

Firstly, various types of deep learning models were constructed based on
Tensorflow, including the proposed FFEAM, and the Scikit-learn machine
learning library was used to construct the mean-fill model, and all experiments
were conducted on a PC computer with an operating system of Windows 10
Professional, a processor of Intel(R) Core(TM) i7-7700HQ CPU @2.80 GHz
quad-core, 16 GB of RAM (DDR4 2400 MHz), and SD8SN8U- 128G -1006
(128 GB) as the main hard disk.

5.1 Datasets

In this paper, we have conducted relevant experiments in 13 datasets. For each
dataset we set a different missing rate, the whole incomplete dataset was used
as the training set and the missing values were used as variables for the loss
function.

The first four datasets used in the experiments are open-source datasets
originating from UCI, as detailed in Table 1, and the experiments were con-
ducted by randomly removing some existing values from the complete data,
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thus constructing incomplete datasets with missing rates set to 20%, 30%,
40%, and 50%, respectively.

Table 1 Description of the UCI experimental dataset

Data set name Sample size Number of attributes

Iris 150 4
Wine 178 14
Cloud 1024 10
Seeds 210 7

Source: The data in the above table are all from the public UCI dataset:
https : //archive.ics.uci.edu/ml/index.php

Secondly, extensive experiments were also conducted on three more com-
plex real datasets (missing rate set to 20%), as detailed in Table 2. the first
dataset is the traffic flow data of Baoan district released by the Shenzhen gov-
ernment open platform in China, which spans from November 2017 to May
2021, and contains 10 attributes with a total of 1102 samples. The second one
is the Beijing PM2.5Data Data Set, which contains air quality data of Bei-
jing from 2010-2014, with a time interval of 1 hour, 13 attributes, and 43824
samples. The third dataset is the AI4I 2020 Predictive Maintenance Dataset,
which is a comprehensive dataset reflecting real predictive maintenance data
encountered in the industry, and contains 14 attributes with 10,000 samples.

Finally, we manually constructed six artificial datasets to validate the effect
of noise, data dimensionality on the effect of the model. All six datasets con-
sisted of 1000 samples, and their box plots are shown in Figure 3. Figure (a)
represents the artificial data DS3 7,with a total of 10 features, of which 3 fea-
tures are valid and 7 features are random noise features. Figure (b) shows the
artificial data DS5 5, with a total of 10 features, of which 5 are valid and 5 are
random noise features. Figure (c) shows the artificial data DS7 3, with a total
of 10 features, of which 7 are valid and 3 are random noise features. Figure
(d) shows the artificial data DS10 0, with a total of 10 features, of which all

Table 2 Description of complex experimental dataset

Data set name Sample size Number of attributes

Traffic data of Baoan District1 1102 10
Beijing PM2.5Data Data Set2 43824 13
AI4I 2020 Predictive Maintenance Dataset Data Set3 10000 14

1The data comes from traffic flow data in Baoan district released by the Shenzhen
municipal government’s open platform:

https : //opendata.sz.gov.cn/data/dataSet/toDataDetails/2920002803199
2The data comes from Beijing’s air quality data set: http : //www.bjmemc.com.cn/

3This data comes from the AI4I 2020 Predictive Maintenance dataset: https :
//archive.ics.uci.edu/ml/datasets/AI4I + 2020 + Predictive+Maintenance+Dataset#
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10 features are valid. Figure (e) shows the artificial data DS13 0, with 13 fea-
tures in total, of which all features are valid. Figure (f) shows the artificial
data DS16 0, with 16 features in total, and all features are valid.

Fig. 3 Box plot of artificial data

5.2 Baseline model and hyperparameter settings

To validate the filling performance of the model, FFEAM was compared
with five benchmark models of mean filling (Means), Autoencoder[8],KNN[27],
MIDAS[29], and CE-AANN[5].

Means: a classical traditional statistical filling method where numerical
data is filled with the average of all existing values in the incomplete attribute
column.

AE[8]:Based on classical autoencoder for missing value filling, autoencoder
are generally used for feature learning where we fill in the missing values by
reproducing the input values at the output.

KNN[27]:KNN finds the K complete samples that are closest to or most
correlated with each incomplete sample and uses the weighted average of the
existing values of each complete sample as the fill value.

MIDAS[29]:An accurate, fast, and scalable approach to multiple imputa-
tion, which call MIDAS (Multiple Imputation with Denoising Autoencoders)
proposed by Lall et al.
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CE-AANN[5]: A correlation-enhanced self-encoder filling model proposed
by Lai et al.

To ensure the fairness of the experiments, the base hyperparameters of the
benchmark comparison model and the FFEAM model were the same for each
dataset with different missing rates, specifically set as follows: learning rate
of 0.1, number of training iterations of 1000, batch size of 20, and the total
number of hidden layer neurons of 20. Since in the correlation-enhanced self-
encoder model, two types of hidden layer neurons are contained, the specific
hidden layer The neuron assignments are both m1=10 and m2=10. Adam
function is used as the training optimizer for all models.

5.3 Evaluation Indicators

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used
as evaluation indexes for filling performance, and the formulas for RMSE and
MAE are Equation (12) and (13), respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)
2
, (12)

MAE =
1

n

n∑
i=1

∥xi − yi∥ , (13)

in Equation (12) and (13), n is the total number of samples, yi denotes the
filled value, and xi denotes the true value corresponding to that filled value.

5.4 Analysis of experimental results

Experiments were first conducted based on four UCI datasets, and Table 3
depicts the filling errors of different models for different datasets with differ-
ent missing rates. From Table 3, it can be seen that FFEAM outperforms the
other comparison models in terms of missing value filling. According to the
experimental results, the KNN-based filling method is better than the tradi-
tional mean-value filling and AE methods, mainly because it selects the K
samples that are closest to the missing values and fills the missing values based
on these K samples, making better use of the common features among the
samples. However, compared with KNN, FFEAM achieves the lowest RMSE
and MAE for different missing rates, for example, in the Wine dataset with
20% missing rate, the RMSE and MAE of FFEAM are 2.73 and 0.261 lower
than KNN respectively. Based on the comparison of the experimental results
of FFEAM and CE-AANN, it can be seen that the filling accuracy of FFEAM
is improved in all four datasets with different missing rates. For example, when
there is a 20% missing rate, FFEAM can reduce the RMSE values by 0.032,
2.984, and 0.102 compared to CE-AANN on the Iris, Wine, Cloud, and Seeds
datasets, respectively, while MAE decreased by 0.008, 0.222, 0.531, and 0.007,
respectively. Combining the performance of the other datasets, the results of
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Table 3 Comparison of filling errors of different models

Data set name Model name
RMSE MAE

20% 30% 40% 50% 20% 30% 40% 50%

Iris

MEANS 0.465 0.517 0.633 0.674 0.149 0.205 0.275 0.328
AE 0.277 0.355 0.495 0.407 0.083 0.126 0.205 0.199
KNN 0.228 0.274 0.386 0.351 0.063 0.098 0.147 0.159
MIDAS 0.151 0.213 0.339 0.343 0.048 0.083 0.136 0.151
CE-AANN 0.161 0.287 0.435 0.355 0.049 0.089 0.145 0.144
FFEAM 0.129 0.175 0.335 0.294 0.041 0.064 0.126 0.129

Wine

MEANS 32.616 42.534 52.027 48.024 3.405 5.035 6.931 7.420
AE 32.669 42.502 51.894 47.605 3.432 5.056 7.007 7.469
KNN 25.510 27.932 35.179 36.678 2.644 3.423 4.537 5.623
MIDAS 25.487 26.539 37.571 38.946 2.732 3.152 4.579 5.637
CE-AANN 25.764 35.115 44.731 44.193 2.605 4.084 5.669 6.547
FFEAM 22.780 24.553 29.518 35.272 2.383 3.226 4.044 5.456

Cloud

MEANS 60.972 69.023 86.299 87.653 13.607 19.073 25.100 29.261
AE 59.680 53.559 72.482 72.233 6.804 7.858 15.558 15.345
KNN 29.084 38.730 58.432 55.562 3.573 8.079 13.901 15.960
MIDAS 26.549 37.481 45.609 50.959 3.596 5.992 8.463 11.396
CE-AANN 17.148 29.276 28.669 37.128 3.473 5.388 6.504 10.627
FFEAM 15.516 28.777 28.944 32.532 2.942 5.225 5.920 8.655

Seeds

MEANS 0.600 0.697 0.782 0.822 0.155 0.220 0.292 0.332
AE 0.606 0.719 0.794 0.821 0.158 0.234 0.299 0.339
KNN 0.322 0.488 0.442 0.503 0.064 0.130 0.146 0.183
MIDAS 0.264 0.350 0.381 0.492 0.061 0.095 0.119 0.173
CE-AANN 0.363 0.564 0.444 0.589 0.073 0.141 0.147 0.199
FFEAM 0.261 0.336 0.379 0.482 0.066 0.109 0.127 0.179

FFEAM in most cases, achieved the lowest RMSE and MAE still outperformed
MIDAS. This is mainly due to the fact that the MIDAS method mainly fills
missing values from the data interrelated feature dimension without consider-
ing the common features, and FFEAM combines both types of features to fill
missing values, thus improving the filling accuracy.

Figure 4 shows the differences in RMSE metrics of the six models on the
different datasets, and Figure 5 shows the differences in MAE metrics. Accord-
ing to Figure 4 and Figure 5, it can be seen that the error metrics of AE are
close to Means in Wine and Seed datasets, while in the other two datasets,
the error of AE decreases compared to Means, indicating that the filling effect
of AE is better than Means, and it also shows that AE itself has self-tracking
and lacks the ability to discover the interrelated and common features among
attributes. In addition, the KNN method is superior to the Means and AE
methods, mainly because of the KNN’s ability to discover the common feature
dimensions of the data. It can also be seen from the figure that the vast major-
ity of sub-optimal results come from MIDAS, with CE-AANN being slightly
inferior to MIDAS, while the best performer is FFEAM. This is mainly because
the model has a better fusion learning ability of data interrelated features
and common features, which further improves the performance of the missing
values filling model.
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Fig. 4 Comparison of RMSE of different models on four UCI datasets

Fig. 5 Comparison of MAE of different models on four UCI datasets

In addition, three more complex real dataset comparison experiments were
conducted, based on the traffic flow data of Baoan District, Beijing PM2.5Data
Data Set and AI4I 2020 Predictive Maintenance Dataset Data Set, and the
incomplete dataset with 20% missing rate was randomly constructed and com-
pared with the five benchmark models. The experimental results obtained are
shown in Table 4. We can observe that FFEAM outperforms the benchmark
models in terms of filling missing values on the real dataset with the low-
est RMSE and MAE. In the Beijing PM2.5Data Data Set experiment, the
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Table 4 Comparison of filling errors of different models in real data sets

Data set name Model Name RMSE MAE

Traffic data of Baoan District

MEANS 1687.9270 286.815
AE 1694.582 278.533
KNN 875.594 115.499

MIDAS 916.408 127.106
CE-AANN 807.186 101.557
FFEAM 593.246 85.458

Beijing PM2.5Data Data Set

MEANS 13.746 1.541
AE 13.767 1.568
KNN 16.264 2.958

MIDAS 14.686 1.463
CE-AANN 12.793 1.484
FFEAM 12.107 1.321

AI4I 2020 Predictive Maintenance Dataset Data Set

MEANS 24.716 3.183
AE 24.714 3.195
KNN 24.542 3.074

MIDAS 19.258 3.191
CE-AANN 21.633 3.153
FFEAM 15.426 2.601

RMSE of FFEAM decreased by 1.639, 1.660, 4.157, 2.579, and 0.686 com-
pared to MEANS, AE, KNN, MIDAS, and CE-AANN, respectively. In the
AI4I 2020 Predictive Maintenance Dataset Data Set, the RMSE of FFEAM
was reduced by 9.29, 9.288, 9.116, 3.832, and 6.207 compared to MEANS, AE,
KNN, MIDAS, and CE-AANN, respectively;

Figure 6 shows the differences in RMSE and MAEmetrics for the six models
on three complex real data sets. The visual comparison analysis in the figure
shows that MEANS and AE perform comparable results, and their RMSE and
MAE are not very different, KNN and MIDAS have a reduced effect on larger
data sets, while the CE-AANN model maintains good performance with large
amounts of data, with lower RMSE and MAE than KNN and MIDAS, and
greater robustness. However, the best results on these three real datasets still
come from the model FFEAM.

Fig. 6 Comparison histogram of filling errors of different models in real data sets
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Table 5 Comparison of filling errors of different models in Artificial datasets

Data set name Model Name RMSE MAE

Artificial DS3 7

MEANS 0.452 0.153
AE 0.546 0.185
KNN 0.439 0.148

MIDAS 0.459 0.154
CE-AANN 0.458 0.152
FFEAM 0.437 0.147

Artificial DS5 5

MEANS 0.596 0.198
AE 0.682 0.227
KNN 0.565 0.187

MIDAS 0.567 0.189
CE-AANN 0.571 0.189
FFEAM 0.562 0.187

Artificial DS7 3

MEANS 0.638 0.212
AE 0.758 0.254
KNN 0.591 0.196

MIDAS 0.594 0.197
CE-AANN 0.596 0.198
FFEAM 0.576 0.190

Artificial DS10 0

MEANS 0.881 0.297
AE 1.038 0.349
KNN 0.836 0.282

MIDAS 0.806 0.270
CE-AANN 0.891 0.297
FFEAM 0.769 0.255

Artificial DS13 0

MEANS 0.951 0.321
AE 1.182 0.393
KNN 0.902 0.301

MIDAS 0.881 0.293
CE-AANN 0.923 0.305
FFEAM 0.826 0.273

Artificial DS16 0

MEANS 1.060 0.357
AE 1.355 0.458
KNN 0.997 0.335

MIDAS 0.955 0.313
CE-AANN 1.051 0.352
FFEAM 0.935 0.313

We also tested six models on six artificial datasets, where we set the miss-
ing rate to 20% for each dataset, and the results are shown in the Table 5.
In the experiments on datasets DS3 7, DS5 5, DS7 3, FFEAM achieved the
lowest RMSE and MAE for all three datasets, which consisted of 70%, 50%
and 30% noisy vectors respectively, indicating that FFEAM can maintain high
filling accuracy even in data containing noise. Similarly, in the experiments
on datasets DS10 0, DS13 0, DS16 0, FFEAM outperformed other methods
by achieving the lowest RMSE and MAE values. The experiments proved
that FFEAM still achieved better filling results as the feature dimension was
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Table 6 Statistical test of different models on artificial data sets

Data sets Model Name P

Artificial DS3 7

MEANS 0.954
AE 0.731
KNN 0.981

MIDAS 0.944
CE-AANN 0.952
FFEAM 0.987

Artificial DS5 5

MEANS 0.809
AE 0.631
KNN 0.929

MIDAS 0.908
CE-AANN 0.854
FFEAM 0.978

Artificial DS7 3

MEANS 0.810
AE 0.729
KNN 0.969

MIDAS 0.911
CE-AANN 0.875
FFEAM 0.982

Artificial DS10 0

MEANS 0.761
AE 0.742
KNN 0.972

MIDAS 0.916
CE-AANN 0.772
FFEAM 0.987

Artificial DS13 0

MEANS 0.818
AE 0.781
KNN 0.953

MIDAS 0.941
CE-AANN 0.903
FFEAM 0.976

Artificial DS16 0

MEANS 0.865
AE 0.749
KNN 0.926

MIDAS 0.925
CE-AANN 0.873
FFEAM 0.968

increased. In the aforementioned experiment, the presence of noise vectors
had a significant impact on the learning and extraction of interrelated fea-
tures between attributes. therefore, methods such as CE-AANN and MIDAS
that fill in interrelated features from attribute dimensions did not perform
as well as KNN. As feature dimensions increased, common features between
data became more complex, and therefore filling KNN with common feature
dimensions led to a decrease in performance. FFEAM maintains the best fill-
ing results in both of these cases, mainly because it learns from the advantages
of both dimensions simultaneously and performs imputation by incorporating
both common and interrelated features.

In addition, we carried out statistical testing on six artificial data sets uti-
lizing the T-Test from STAC [30]. We conducted a T-Test separately between
the original data (complete data set) and the data filled in by each model. The
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outcomes of this test are displayed in Table 6. A higher p-value observed dur-
ing the T-Test indicates a smaller difference between the model filled data and
the original data. This means that there is no significant disparity between
them, and FFEAM yielded the highest P-value across all baseline algorithms,
implying that the data filled by FFEAM differed the least from the original
data.

To investigate the effect of the specific assignment of m1 and m2 values on
the filling effect of the FFEAM model when the total number of neurons in
the hidden layer is constant, experiments were conducted on the Iris dataset
with different deletion rates. By setting the total number of neurons constant
and fixed to 20, i.e., m1+m2=20, the experimental error results were obtained
by changing the ratio of m1 and m2, as shown in Table 7. It can be seen
through Table 7 that the optimal results with different deletion rates are mostly
clustered around m1=9 and m2=11, and there is not much fluctuation. And
combined with Table 3, it can be seen that the worst performance of the
FFEAM model with different missing rates is also better than the second-best
result of CE-AANN with the same missing rate in Table 3, for example, in the
case of 20% missing rate, the highest RMSE of the FFEAM model is 0.145
and the highest MAE is 0.045, while in CE-AANN, the RMSE is 0.161 and
the MAE is 0.049, once again validating the filling performance of the FFEAM
model.

Table 7 Comparison of filling errors for different m1 and m2 assignments

m1,m2
RMSE MAE

20% 30% 40% 50% 20% 30% 40% 50%

5,15 0.205 0.218 0.425 0.385 0.058 0.085 0.147 0.149
6,14 0.145 0.188 0.422 0.340 0.045 0.073 0.138 0.141
7,13 0.139 0.183 0.379 0.348 0.043 0.071 0.123 0.145
8,12 0.133 0.168 0.369 0.344 0.042 0.067 0.30 0.137
9,11 0.128 0.171 0.320 0.311 0.040 0.068 0.117 0.131
10,10 0.129 0.175 0.335 0.294 0.041 0.064 0.126 0.129
11,9 0.131 0.176 0.358 0.332 0.042 0.069 0.124 0.142
12,8 0.137 0.177 0.393 0.333 0.043 0.070 0.128 0.138
13,7 0.139 0.175 0.387 0.357 0.046 0.068 0.139 0.155
14,6 0.140 0.180 0.399 0.387 0.044 0.070 0.133 0.158
15,5 0.141 0.182 0.407 0.402 0.045 0.070 0.127 0.154

Figure 7 shows the line graph of filling error comparison for different m1

and m2 assignments. Through Figure 7, it can be visualized that the model
filling error, with the total number of hidden layer neurons unchanged, first
shows a decreasing trend as m1 increases and m2 decreases, and then shows an
increasing trend when it decreases to a certain value. The main reason is that
when the value of m1 is too small, the number of de-tracking neurons is too
small to effectively explore the interrelated features among data attributes, so
as the number of m1 increases, the ability to explore the association features
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is improved and the model error is reduced. And when the value of m2 is too
small, the number of radial basis function neurons is too small, and the ability
of the model to mine the common features of the data is insufficient, which
leads to an increase in the model error. Therefore, the proposed mutual design
of the two types of neuron hidden layers needs to set the values of m1, m2

reasonably in order to support the cooperative fusion learning of data common
features and interrelated features.

Fig. 7 Comparison of filling errors for different m1 and m2 assignments

In summary, the proposed FFEAM has better filling performance than
the benchmark models regardless of the settings for different missing rates or
on different datasets. The main reason lies in the fact that the interaction
design between de-tracking neurons and radial basis function neurons allows
the model to perform fusion learning of data interrelated features and data
common features simultaneously.

5.5 Time complexity analysis

We performed time complexity experiments on three datasets: Traffic data of
Baoan District, AI4I 2020 Predictive Maintenance Dataset, and Cloud. For all
three datasets, we kept the hyperparameters of FFEAM, CE-AANN, and AE
identical, and the results are presented in Table 8.

Table 8 Performance comparison of FFEAM, CE-AANN and AE on various datasets in
terms of computing time and MAE

Data sets
Times(seconds) MAE

FFEAM CE-AANN AE FFEAM CE-AANN AE
Traffic data of Baoan District 91.0942 90.8161 65.3581 85.458 101.557 278.533

AI4I 2020 Predictive Maintenance Dataset Data Set 408.9239 409.5457 324.647 2.601 3.153 3.195
Cloud 218.1206 217.8263 158.5564 2.942 3.473 6.804

According to Table 8, FFEAM and CE-AANN exhibit similar runtimes
while AE demonstrates the fastest runtime. For instance, on the Baoan Dis-
trict traffic dataset, AE ran 25.7361 seconds faster than FFEAM. However,
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FFEAM’s MAE is 193.075 lower than AE’s, achieving a substantial improve-
ment in filling accuracy. In general, the time difference between FFEAM and
CE-AANN is insignificant and negligible. By contrast, compared to the conven-
tional AE model, FFEAM comes with high model time consumption. However,
its accuracy is substantially improved compared to the simple model. There-
fore, the slightly longer time consumption of FFEAM is worthwhile since the
model’s increased accuracy justifies it.

6 Conclusion

A missing value filling model based on feature fusion enhanced autoencoder
is proposed to address the key problems faced by the classical autoencoder
model. The model constructed a new hidden layer of neural network by intro-
ducing two types of neurons, namely de-tracking neurons and radial basis
function neurons, which combine the characteristics of the two types of neu-
rons and exploit the interrelated features and common features of input data,
so as to achieve multi-dimensional data feature fusion learning and improve
the missing filling performance of the model. In addition, MVDC filling strat-
egy was designed, and iterative training is optimized together with the model
parameters to improve the filling perfromance. The experimental results on
seven publicly available datasets and six artificial datasets show that FFEAM
has better filling performance compared to the benchmark model. The current
research has focused on methods to fill in missing numeric values. Non-numeric
missing can generally be filled by plurality or by training a classifier to predict
missing values of categorical variables, but how to effectively learn the implicit
information within non-numeric and numeric attributes is a key issue to be
addressed in future research.
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