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Abstract—The progress of EEG-based emotion recognition has
received widespread attention from the fields of human-machine
interactions and cognitive science in recent years. However, how
to recognize emotions with limited labels has become a new
research and application bottleneck. To address the issue, this
paper proposes a Self-supervised Group Meiosis Contrastive
learning framework (SGMC) based on the stimuli consistent
EEG signals in human being. In the SGMC, a novel genetics-
inspired data augmentation method, named Meiosis, is developed.
It takes advantage of the alignment of stimuli among the EEG
samples in a group for generating augmented groups by pairing,
cross exchanging, and separating. And the model adopts a group
projector to extract group-level feature representations from
group EEG samples triggered by the same emotion video stimuli.
Then contrastive learning is employed to maximize the similarity
of group-level representations of augmented groups with the
same stimuli. The SGMC achieves the state-of-the-art emotion
recognition results on the publicly available DEAP dataset with
an accuracy of 94.72% and 95.68% in valence and arousal
dimensions, and also reaches competitive performance on the
public SEED dataset with an accuracy of 94.04%. It is worthy of
noting that the SGMC shows significant performance even when
using limited labels. Moreover, the results of feature visualization
suggest that the model might have learned video-level emotion-
related feature representations to improve emotion recognition.
And the effects of group size are further evaluated in the hyper
parametric analysis. Finally, a control experiment and ablation
study are carried out to examine the rationality of architecture.
The code is provided publicly online1.

Index Terms—EEG-based emotion recognition, group-level
representation, contrastive-learning, self-supervised learning,
data augmentation, meiosis

I. INTRODUCTION

Emotion plays a crucial role in human cognition and in-
volves many application fields. For example, in the field of
human-machine interaction [1], emotion recognition enables

*Corresponding author
1 https://github.com/kanhaoning/Self-supervised-group-meiosis-contrastive-
learning-for-EEG-based-emotion-recognition

the machine to provide more humanized interaction. In con-
sumer neuroscience, emotion analysis is a common tool to
obtain the user experience for product design [2]. Recently, the
method of emotion recognition based on Electroencephalog-
raphy (EEG) signal has shown its advantages. Compared to
conscious behavior signals such as facial expression and body
language, the EEG has the advantage of being difficult to hide
or disguise. Compared with other physiological signals such as
the fMRI (functional magnetic resonance imaging), and ECG
(Electrocardiogram), the EEG is more convenient for sampling
and has a higher time resolution.

There is great progress in the field of EEG-based emotion
recognition. With traditional machine learning techniques, the
handcrafted features are calculated and selected carefully,
which is quite critical during emotion recognition. While these
approaches relie too much on the researcher’s experiences
on EEG signals and cognitive related knowledge. In recent
years, the development of deep learning methods achieves
competitive accuracy, which could not pay attention to the
handcrafted features. With the guidance of a large number
of data with labels, the deep learning models would learn
high-level emotion-related feature representation for precise
affective computing [3]–[7].

Generally, artificial labels are crucial for training deep
learning models based on the common supervised methods.
But there is some condition requiring higher accurate and
real-time recognition, obtaining qualified labels is expensive.
For example, in neuroscience, EEG is frequently used to
explore the process of emotion, such as in the tasks of
empathy and reading comprehension. Participants are usually
required to answer questions, so that the researchers could get
their emotion situations. However, the emotion labels obtained
through this way are time-consuming and laborious. And it
is easy to generate subjective bias, which might decrease
the reliability of labels [8], [9]. Similarly, in the application
of consumer neuroscience, the EEG signals are recorded to
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evaluate the participants’ emotional states while they are
playing games, listening to music, and watching movies, and
advertisements, which aims to provide instructive references to
the content creator, [10]–[13]. In these conditions, the precise
and time-intensive labels are also required. Therefore, the lack
of qualified labels hinders the application of machine learning-
based models in many precise fields.

Previous studies have explored to reduce the dependence
on artificial labels [14], [15]. Several neuroscience studies
have shown the exploitable consistency of stimuli in emotion
EEG signals. They have discovered that the EEG signals
among a group of subjects who watched the same emotional
video clips share similar group-level stimuli-related features
[16], [17]. Such features correlated with preference, arousal,
valence, etc, are potential to make up for the lack of artificial
labels. Existing methods mainly adopt the self-supervised
learning (SSL) method to exploit such stimuli consistency.
SSL can generate labels according to the attributes of data for
learning. For example, shen et al. proposed a novel contrastive
learning framework [18] to learn representation by making
the model maximizing the similarity between representations
of EEG signals corresponding to the same stimuli. However,
there exist random effects in the emotion-related EEG signals.
For example, whether the subjects were distracted during the
emotional tasks and their fatigue situations would increase the
noise of the signals. And also the responses of participants
could not be totally the same, which increases the difficulty
in maximizing the similarity across subjects in contrastive
learning.

To further improve the EEG-based emotion recognition
under the SSL framework, we proposed a Self-supervised
Group Meiosis Contrastive learning (SGMC) framework for
EEG-based emotion recognition.

First, since larger samples could be better to represent the
characteristics of signals from the view of statistics, we design
a group projector in SGMC to collect a group of EEG samples
to extract group-level representation for contrastive learning.

Second, we proposed a novel method of data augmentation
to provides augmented group samples for contrastive learning.
Applying data augmentation to enhance contrastive learning
is a basic paradigm, however, there are few studies on aug-
menting group samples. Inspired by the meiosis mechanism
in genetics [19], we augment data without changing stimuli
features by pairing, cross exchanging, and separating. In this
way, data augmentation enables contrastive learning further
take the advantage of the alignment of stimuli in the EEG
signal group. And then the SGMC enables the model learn
critical representations and achieve competitive emotion recog-
nition performance with a significant improvement. Here we
summarize the contributions of this paper as follows:
• To reduce the dependence on emotion labels, we intro-

duce a self-supervised contrastive learning framework to
further exploit the consistency of stimuli for EEG-based
emotion recognition.

• To decrease the effects of individual difference and
random effects in EEG signals, we design a group-

based contrastive learning framework to extract group-
level stimuli-related feature representations.

• To augment the group sample, we design a genetics-
inspired data augmentation method, named Meiosis. It
utilizes the alignment of stimuli to augment group sam-
ples without changing stimuli features. which provides
augmented group samples to enhance contrastive learn-
ing.

• The SGMC achieves the state-of-the-art emotion classifi-
cation results on the publicly available DEAP dataset with
an accuracy of 94.72% and 95.68% in valence and arousal
dimensions. On public SEED dataset also reaches com-
petitive 94.04% accuracy, and achieve 91.01% accuracy
fine-tuned with 50 labeled samples per category (0.14%
of the full training set), exceeding 89.83% accuracy of
fully-supervised learning with the full training set.

II. RELATED WORK

A. EEG-based Emotion Recognition

In earlier studies, emotional features of EEG signals were
usually extracted to recognize by some traditional machine
learning strategies. Such as the support vector machine (SVM)
[20], Gaussian Naive Bayes classification [21], and k-nearest
neighbor (k-NN) [22] are widely used classify emotion of the
EEG signal.

Compared with the traditional machine learning method,
the deep learning model has more advantages in extracting
high-level emotional features. In recent years, more and more
deep learning neural networks based on emotion recognition
models achieved good performance on EEG-based emotion
recognition tasks [3]–[7].

Recently popular methods focus on recurrent neural net-
works (RNNs/LSTMs), and convolutional neural networks
(CNNs). In 2017, Alhagry et al [23] adopted a two-layer
long-short term memory (LSTM) to reach satisfactory emo-
tion classification with the input of the raw EEG signals.
In 2020, Li et al [24] constructed model BiHDM adopted
four RNN modules to capture the input of each hemispheric
EEG electrode’s data from horizontal and vertical streams and
achieved the SOTA. CNN is also widely used for extracting
spatial features of the EEG signal. In 2016, Li et al [25]
proposed a hybrid network structure based on CNN and RNN
for emotion recognition based on multi-channel EEG signals,
which shown the effectiveness of a hybrid network in the
trial-level emotion recognition tasks. In 2017, Alhagry et al.
[26] explored a convolutional neural network and a simple
deep neural network. This CNN model shown more significant
performance and achieved the SOTA. In 2018 Shawky et
al. [27] proposed a 3D CNNs model, which divides raw
signals into 6-s segments to input. In the same year, Yang
et al. [28] proposed a hybrid model combining CNN and
RNN networks to learn spatial-temporal representation for
emotion recognition. It utilized a sparse matrix as input to
reflect the relative position of the electrodes. Compared with
complex input of RNNs and 2D/3D CNNs, Cheah et al. [29]
proposed a 1D-CNN based ResNet18, which adopted simple



input(channel × time) to train the deeper neural network.
It is more suitable to perform pre-training with simple data
processing and a faster training process.

B. Self-supervised Learning

Self-supervised learning aims to learn representation with-
out relying on artificial labels. The latest research in the field of
machine learning and deep learning shown the potential of the
SSL method in learning generalized and robust representations
[30]–[35]. SSL has been widely used in many fields. For
example, in computer vision (CV), Gidaris et al. [30] based on
spatial properties designed an SSL task to rotate the original
image and require the model to predict the rotation angle.
Based on the temporal properties of the video, an SSL task
[31] was designed to require the model to predict whether
the two video frames are close in time. In natural language
processing (NLP), word2vec [32] designed SSL tasks such
as predicting headword and adjacency words, etc. BERT
[33] designed two SSL tasks masked language prediction and
next sentence prediction, and achieved SOTA on 11 NLP
tasks. In EEG signal processing, Zhang et al. [36] applied
Generative Adversarial Network to design the SSL method. It
makes the generator augment masked original signals to get
simulated signals and requires the model to distinguish real
and simulated signals, which alleviates the problem of EEG
data scarcity and achieves SOTA.

Recently contrastive-learning-based SSL has made progress
in EEG signal processing. Contrastive learning defines any
two samples with internal relations as the positive pair,
otherwise, it is the negative pair, whose loss function aims to
maximize the similarity of representations between positive
pairs minimums the similarity of representation between
negative pairs. Shen et al. [18] proposed a self-supervised
contrastive learning framework CLISA to improve inter-
subjects prediction, which requires the model to predict
whether two EEG signals are recorded when two subjects
watch the same video clip. In this way, the model learned
well inter-subject representation ability and achieved SOTA
in inter-subject prediction after fine-tuning. In [14] several
self-supervised contrastive learning methods were proposed
to improve performance on limited label sample tasks.
Among them, Relative Positioning (RP) requires the model
to predict whether the two EEG signals are recorded in
close time, and Contrastive Predictive Coding (CPC) requires
the model to predict the representation of adjacent EEG
signals via the anchor signal. They confirmed that models
learned physiologically and clinically meaningful feature
representations by SSL pre-training without label guidance.
Further, they fine-tuned the pre-trained model to significantly
outperformed the fully-supervised baseline on less labeled
sample learning tasks. In [15] an augment-based SSL method
is proposed, which requires the model to predict whether two
augmented EEG signals come from the same original signal.
It applies classical data augmentation such as time warping
permutation and crop&resize and so on. The generalization
ability of the model has significantly improved and exceeded
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Fig. 1. Illustration of the proposed SGMC. During the process of pre-training,
each group of samples is sampled from EEG samples corresponding to the
same video clip stimuli. Then each group of EEG samples is augmented
by genetics inspired Meiosis data augmentation to generate two augmented
group samples. Each augmented group is sent to the base encoder to extract
individual representations of each individual sample and then the group
projector aggregates them to obtain the group-level representation. The model
is required to maximize the similarity of representations between groups
sharing the same stimuli and minimize the representations of groups that
correspond to the different stimuli for minimizing the contrastive loss. The
pre-trained base encoder will be fine-tuned with a classifier for emotion
recognition.

fully-supervised learning in both the full and the limited
labeled sample learning on sleep staging. Contrastive learning
shows its excellence in improving inter-subject prediction,
learning physiological feature representation without labels,
and so on in EEG signal processing.

III. PROPOSED METHOD

A. Overall Framework

This paper designs a Self-supervised Group Meiosis Con-
trastive learning (SGMC) framework for EEG-based emotion
recognition. As illustrated in Fig.1 the proposed framework
consists of a contrastive learning pre-training process and an
emotion recognition fine-tuning process. In the pre-training
process, SGMC contains five components: a group sampler,
the Meiosis data augmentation, a base encoder, a group
projector, and a contrastive loss function. Firstly, the group
sampler generates a minibatch containing several groups of
EEG signals for augmenting. Secondly, the Meiosis augments
each EEG group to generate two groups for constructing the
positive and negative pairs. Nextly the base encoder extracts
individual-level stimuli-related representations from each EEG
signal. Then the group projector aggregates each group of
representations to extract group-level stimuli-related represen-
tations and map them into another latent space for computing
the similarity. Together, the parameters of the base encoder and
group projector are optimized by minimizing the contrastive
loss. In the fine-tuning process, the model that consisted of
the pre-trained base encoder and initialized classifier performs
the emotion classification training.



B. Group Sampler

Generally, it is difficult to contrastive learning through ex-
tracting stimuli-related features from individual EEG samples.
So we take the strategy of extracting from group EEG samples,
to achieve it we construct the sampler to provide input for the
minibatch.

In the processed dataset, video clips and subjects correspond
to two axes of the dataset tensor. Among it, each EEG
sample was defined as Xs

v ∈ RM×C, corresponding to a 1-
second signal recorded when subject s watched a 1-second
video clip v, where M is the number of times samples and
C is the dimension of signals (e.g .,channels). To obtain a
minibatch, illustrated in Fig.2 sampler first randomly sample
P video clips v1, v2, ..., vP that have not been sampled in
the current epoch. To sample two equal sample groups to
construct positive pair for each clip stimuli, sampler nextly
randomly select 2Q subjects s1, s2, ..., s2Q to prepare for
grouping. Further sampler extract the EEG signals corre-
sponding to selected subjects and video clips, 2PQ samples
D = {Xsk

vi |i = 1, 2, ..., P ; k = 1, 2, ..., 2Q} are obtained,
which were recorded by 2Q subjects when watched P video
clips respectively. Furthermore, we note a group samples Gi =
{Xs1

vi ,X
s2
vi , ...,X

s2Q
vi } corresponding to the video clip vi.

Among Gi, each individual sample shared the similar -related
features. In this way, sampler would provide the minibatch
with P group samples {G1,G2, ...,GP } corresponding to P
different stimuli for pre-training.
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𝑮2 𝑮𝑃

Fig. 2. The illustration of sampling for a minibatch. Sampler first samples
P video clip and 2Q subjects. For each sampled video clip, next the sampler
samples a group of EEG signals recorded when sampled 2Q subject watched
it. Then P groups of EEG samples are obtained for a minibatch.

C. Meiosis Data Augmentation

Meiosis aims to augment one group sample to generate
two groups that preserve the same stimuli-related features
by utilizing the alignment of stimuli in the EEG group for
constructing the positive pair.

To increase the meaningful difficulty of the model decoding
EEG samples, we hope to mix signals of different subjects.
Moreover, to preserve the original stimuli-related features for
extraction by SGMC, we select the signals corresponding to
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Fig. 3. The illustration of the Meiosis data augmentation. A group of EEG
samples sharing the same stimuli are randomly paired and cross exchanged a
part of the signal in a pair, and then separated into two groups.

the same stimuli to split and splice. So we design the crossover
transformation as follows:

We represent {a1,a2, ...,aM} as any EEG signal A, where
ai is the data at ith sampling point (i=1,2,...,M). Similarly
represent {b1, b2, ..., bM} as any other signal B. Further we
exchange the data of the first c sampling points of two samples
A and B to obtain Ã = {b1, b2, ..., bc,ac+1,ac+2, ...,aM}
and B̃ = {a1,a2, ...,ac, bc+1, bc+2, ..., bM} , where c is
given. Such transformation for any two EEG signals is en-
capsulated as the following function expression:

{Ã, B̃} = T (A,B, c) (1)

Furthermore, to take the advantage of the diversity of
group combinations, we can randomly pair for crossover and
separating. As illustrated in Fig.3 the overall Meiosis data
augmentation can be designed as follows:
1) Individual pairing: For one original EEG signals group
Gi={Xs1

vi |k = 1, 2, ..., 2Q} (corresponding to a video
clip vi) individual signals are randomly paired to form
Q pairs {Xs1

vi ,X
s1+Q
vi
}, {Xs2

vi ,X
s2+Q
vi }, ..., {XsQ

vi
,Xs2Q

vi } for
crossover.
2) Crossover : Meiosis receives a randomly given split position
c to perform transformation (1) for each pairs to obtain
{{X̃

sk

vi , X̃
sk+Q

vi }|k = 1, 2, ..., Q}.
3) Separation: The transformed signals are randomly divided
into two groups, and paired transformed signals are required
enter into the different groups A and B. Two homologous
groups of EEG G̃

A

i = {X̃
sk

vi |k = 1, 2, ..., Q} and G̃
B

i =

{X̃
sk

vi |k = Q+1, Q+2, ..., 2Q} can be obtained that sharing
the similar group-level stimuli-related features.

Such data augmentation for group sample we represent it
as follows function expression:

{G̃
A

i , G̃
B

i } =Meiosis(G̃i) (2)



When Meiosis is built, for one minibatch of P group
samples G, 2P group samples G̃ can be obtained as follows:

G̃ = {G̃
t

i|i = 1, 2, ..., P ; t ∈ {A,B}} =Meiosis(G) (3)

G̃
A

i could form a positive pair with G̃
B

i , form negative pairs
with any other 2(P − 1) group samples .

D. Base Encoder

To extract group-level stimuli-related features for contrastive
learning, we fisrt design a base encoder to extract individual-
level stimuli-related features from each individual EEG sam-
ple. We introduce the base encoder f : RM×C → RD which
map individual EEG sample X to its representation h on a
512-dimensional feature space. Based on the existing model
ResNet18-1D [29], the base encoder is designed as follows:

As illustrated in Fig.4. It mainly contains 17 convolutional
layers (Conv) with a 1D kernel. The kernels of the first
convolutional layer parallel the time axis of the EEG signal
tensor with a length of 9. Each residual block contains two
convolutional layers with the same number and length of
the kernels. In each residual block, kernels of the first layer
parallel the time axis of the input EEG tensor, and the
second layer parallels the channel axis. For the eight residual
blocks, the length of the kernels is 15, 15, 11, 11, 7, 7, 3,
and 3 in descending order. Max pooling with the 1D kernel
(Maxpool), Avg pooling with the 1D kernel (Avgpool), Batch
Normalization (BN), and Rectified Linear Unit (RELU) layers
are shown in the corresponding positions in the figure.

Through the base encoder, for a augmented group sam-
ple G̃

t

i, its individual-level stimuli-related representation set
{h1,h2, ...,hQ} can be obtained as by:

Ht
i = f(G̃

t

i) (4)

The set is used for further extracting group-level features.
The individual representations can also be used for extracting
emotional features for emotion classification.

E. Group Projector

The group projector aims to accurately project stimuli-
related representations into latent space from just 1-second
EEG signals for calculating the similarity of video clip stimuli.
To alleviate the hinders in extracting stimuli-related features
from individual samples ( fatigue, distraction, etc), the group
projector is designed to extract group-level features from
multiple samples.

A group of samples is an unordered set of matrixes that
lacks a special extraction method. Most models focus on
regular input representations. Such as the input of multi-
channel images, there is a fixed order between different
channels, as well as video, there is a fixed sequence between
different frames. In the problem of unordered point cloud
classification, [37] proposed PointNet adopting the symmetric
function to build a network realized the features extraction of
the unordered point cloud.
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Fig. 4. Details of the architecture of the base encoder, group projector,
and classifier. Conv represent convolutional layer with 1D kernel. Maxpool
and Avgpool represet Max pooling and Avg pooling with 1D kernel. BN
represent Batch Normalization. FC layer represent fully-connected layer.
RELU represent Rectified Linear Unit.

Inspired by it, we adopted a symmetric function to design a
model suitable for extracting features from group EEG signals.
As illustrated in Fig.4 we designed the group projector consist-
ing of a base projector and symmetric function MaxPool1D.

To mitigate individual feature loss, the dimension of indi-
vidual representation can be upgraded for extraction. We in-
troduce the base projector l : RD → RH that adopt a multilayer
perceptron (MLP) to project each individual representation
h on a 4096-dimensional feature space. The base projector
contains three fully-connected layers with 1024, 2048, and
4096 hidden units in ascending order and adopt ReLU as the
activation function of the first two layers. Batch Normalization
and Dropout with 0.5 are shown in the corresponding positions
in the figure.

To ensure an invariant output to represent the group sample
with any input permutations, 1-dimension max-pooling (Max-
Pool1D) is adopted to aggregate the information from each
dimension-upgraded representation. As illustrated in Fig.4, the
1D kernel of MaxPool1D is perpendicular to the dimension-
upgraded representation vector. The scanning direction of the
kernel is parallel to upgraded representation vector with a
stride of 1, and the padding is 0. Such MaxPool can extract
the maximum values on 4096 feature dimensions from Q
dimension-upgraded representations to obtain the group-level



feature representation in latent space.
We note group projector as g : RQ×D → RH. Extracted

group represetation in latent space can be obtained through g
as follows:

zt
v = g(Ht

v) =MaxPool1D(l(h1), l(h2), ..., l(hQ)) (5)

F. Classifier

In the emotion classification fine-tuing task, we use the
classifier to extract emotional features and predict emotion
labels from the representations extracted by the base encoder.
As illustrated in Fig.4 the classifier mainly contains three
fully-connected layers with 512, 256, and 128 hidden units
in descending order. Batch Normalization ReLU and Dropout
with 0.5 are shown in the corresponding positions in the figure.

G. The Contrastive Loss

To measure the similarity of group-level stimuli-related
features between two group samples, we can calculate the
cosine similarity of their group representation vectors. The
input group samples {G̃

t

i|i = 1, 2, ..., P ; t ∈ {A,B}}
would be extracted to obtain group feature representations
{zt

i|i = 1, 2, ..., P ; t ∈ {A,B}} via the base encoder and
group projector. Then, the similarity of two augmented group
samples G̃

A

i and G̃
B

j can be calculated on zA
i and zB

j :

s(zA
i , z

B
j ) =

zA
i · zB

j

‖zA
i ‖‖zB

j ‖
, s(zA

i , z
B
j ) ∈ [0, 1] (6)

The contrastive loss is designed to maximize the similar-
ity of two group-level representations of groups sharing the
same stimuli label in a positive pair. Similar to the SimCLR
framework [38], we adopt the normalized temperature-scaled
cross-entropy to define loss function as follows:

`Ai =−log
exp(s(zA

i ,z
B
j )/τ)∑P

j=11[j6=i]exp(s(zA
i ,z

A
j )/τ)+

∑P
j=1exp(s(z

A
i ,z

B
j )/τ)

(7)

where 1[j 6=i] ∈ {0, 1} is an indicator function equaling to 1 if
j 6= i. τ is the temperature parameter of softmax. The smaller
the loss function is, the larger similarity between zA

i and zB
i

, and the smaller the similarity between zA
i and other group

representations come from the same minibatch.
Finally, the total loss for an iteration is the average of all

contrastive losses for backpropagation as follows:

L =
1

2P

P∑
i=1

(`Ai + `Bi ) (8)

H. Pre-training Process

Based on the constructed group sampler, data augmentation,
base encoder, group projector, and loss function the SGMC
pre-training can be performed.

In a pre-training, we first set a number of epochs T1,
and then iterate the epoch. In each epoch, we continue
to sample P video clips per iteration until all video clips
are enumerated. Each iteration, Sampler extract 2PQ EEG
samples D = {Xsk

vi |i = 1, 2, ..., P ; k = 1, 2, ..., 2Q} and pack
them into groups G = {Gi|i = 1, 2, ..., P}.

Nextly for the Meiosis data augmentation, to avoid the
model cheating by recognizing the split position, we randomly
generate a fixed split position c, sent it to each time of Meiosis
in this iteration (1 < c < M − 1). 2Q augmented group
samples G̃ = {G̃

t

i|i = 1, 2, ..., P ; t ∈ {A,B}}} can be
obtained by (3). Further we extract group-level features and
project them to latent space to obtain group representations
by (4) and (5). Furthermore, we calculate loss L by (6)-
(8). Finally, we abate loss L by backpropagation to calculate
the gradient for optimizer updating parameters of f and g.
Detailed procedures are summarized in Algorithm 1.

Algorithm 1 Self-supervised Group Meiosis Contrastive
Learning
Input: Number of video clips P per minibatch, number of

subjects Q per group. Initilized base encoder f and group
projector g.

1: for epoch = 1 to T1 do
2: repeat
3: Sample P video clips {vi|i = 1, 2, ..., P}.
4: Randomly select 2Q subjects {sk|k = 1, 2, ..., 2Q}.
5: Sampler pack minibatch G = {Gi|i = 1, 2, ..., P}}

from D = {Xsk
vi |i = 1, 2, ..., P ; k = 1, 2, ..., 2Q}

6: Randomly generate a split position c.
7: Obtain G̃ = {G̃

t

i|i = 1, 2, ..., P ; t ∈ {A,B}} from G
through Meiosis with c by (1)-(3).

8: Obtain Z = {zt
i|i = 1, 2, ..., P ; t =∈ {A,B}} from

G̃ through f and g by (4) and (5).
9: Calculate loss L by (6)-(8).

10: Abate loss L through optimizer updating parameters
of f and g.

11: until all video clips are enumerated.
12: end for
Output: base encoder f , throw away group projector g.

I. Fine-tuning Process

To achieve excellent emotional classification performance,
based on learned feature representations we further fine-tune
the model with labeled samples. As illustrated in Fig.1 emotion
classification supervised training is performed on the model
consisting of an initialized classifier and the SGMC pre-trained
base encoder.

We denote the training data as X and their labels as y.
We denote the classifier as k(·) The label y is a categorical
variable. For example, if there are four emotional categories,
y can take four values: 0, 1, 2 or 3. We need to predict the
emotion category y for each sample X ∈ RM×C. The pre-
trained base encoder f extracts the representation from original
EEG signal X for classifier k(·) extract predictive features
to obtain prediction category ypre = k(f(X)). We apply
the cross entropy function to define the loss function for the
emotion classification task and apply an optimizer to minimize
the loss function to optimize the parameters of the model.
Finally, when the loss function converges, a predictive EEG-
based emotion recognition model is obtained.



IV. EXPERIMENTS

In this section, we introduce the implementation detail on
the DEAP and SEED dataset and our experiment evaluation.
In our experiment, we verify the effectiveness by comparing
the SGMC with other competitive methods of emotion
recognition and evaluating its performance on limited labeled
sample learning. Further, we explore the reason for the
effectiveness by visualizing the feature representation learned
by the SGMC. Moreover, we explore the meaningful law
of the framework by evaluating the different combinations
of hyper parameters. Furthermore, we verify the rationality
of architecture design by conducting control and ablation
experiments.

A. Implementation Detail

In this section, we elaborate on our implementation detail
of the dataset, data processing, and basic hyper parameters
utilized in the experiments.
(1) Dataset

DEAP: The widely-used DEAP dataset [21] includes 32-
channel EEG signals and 8-channel peripheral physiological
signals recorded by 32 subjects when watched 40 pieces of a
one-minute music video. Each trial data was recorded under
3-seconds of resting state and 60-seconds of stimuli. The
recorded EEG signals are down-sampled to a 128 Hz sampling
rate and processed with a bandpass frequency filter from 4-
45 Hz by the provider. After watching each video, subjects
were asked to rate their emotional levels of arousal, valence,
liking, and dominance from 1 to 9 for each video. We adopt
the EEG signals and rating values of arousal and valence to
perform emotion recognition. We set the threshold value of the
rating value of arousal and valence at 5. When the rating value
is more than 5.0, the corresponding EEG signals are labeled
as high arousal or valence. Otherwise, it is labeled as low
arousal or valence. Each EEG signal corresponds to valence
and arousal two labels, which can be used to construct two or
four classification tasks.

SEED: The SEED dataset is widely used in emotion recog-
nition algorithms [39]. The dataset recorded the EEG signals
from 15 subjects when watching 15 videos selected from
movies in three categories of emotions, including positive,

neutral, and negative. Each video is about 4 minutes long.
Each subject repeated the experiments for three sessions, with
an interval of more than one week. The EEG signals were
recorded via 62 electrodes at a sampling rate of 1000Hz and
have been downsampled to 200 Hz and filtered from 0 to 75
Hz by the provider.
(2) Data Process

On the DEAP, we use a 1-second-long sliding window to
separate the 63s signal of each trial into 63 non-overlapping
EEG signal segments. To improve accuracy, following existing
work [28] we reduce the 3s resting state EEG signals from
the 60s emotional stimuli EEG signal. In detail, in each
trial, we average the 3s baseline EEG signal segments to get
a 1s average baseline EEG signal segment. The remaining
60 segments each subtract the average baseline segment to
become input samples. All samples correspond to a total of
2400 (40 videos with 60-seconds-long) repeated 1-second-
long video clips. 1680, 320, and 320 1-second video clips
are randomly divided into three sets from 2400 video clips
in the ratio of 70:15:15. These three sets of video clips that
were watched by 32 subjects correspond to 53760, 11520, and
11520 (70:15:15) EEG segments which are used as the training
set, testing set, and validation set respectively.

On SEED, we first perform an L2 normalization for each
trial of EEG signal in each channel. Similar to the DEAP
dataset we divide movie videos into 1-second windows. Be-
cause the length between the trial videos is different, we
segment adjacent windows from front to back according to
the time axis until the coverage of windows exceeds the video
range. 3394 video clips are obtained from 15 movie videos and
randomly divided into 2734, 510, and 510 clips , which three
sets of video clips are in the ratio of 70:15:15. These three
sets of video clips that were watched by 15 subjects three
times correspond to 123030, 22950, and 22950 (70:15:15)
EEG segments which are used as the training set, testing set,
and validation set respectively.
(3) Basic Configuration

To accurately evaluate the performance of emotion recog-
nition for a pre-training framework, there are two steps we
adopted for evaluating the results. We first save pre-trained
models with the different epochs. Next, we select the model
with the highest average accuracy on emotion recognition

TABLE I
HYPER PARAMETERS UTILIZED IN THE PROPOSED SGMC

Epoch batchsize lr τ P Q Shapetr Shapete/Shapeval

DEAP Pre-training 2800 32 10−4 10−1 8 2 (1680, 32, 1, 32, 128) (360, 32, 1, 32, 128)

Fine-tuning 60 2048 10−3 - - - (53760, 1, 32, 128) (11520, 1, 32, 128)

SEED Pre-training 3288 64 10−3 10−1 16 2 (2374, 45, 1, 62, 200) (510, 45, 1, 62, 200)

Fine-tuning 70 256 10−3 - - - (106380, 1, 62, 200) (22950, 1, 62, 200)

Shapetr, Shapete, Shapeval respectively represent size of tensor of training test and validation dataset for pre-training
or fine-tuning. Epoch represent an appropriate number of the pre-training or fine-tuning epochs for achieving the fine
emotion recognition performance. batchsize represent the number of samples in a minibatch.



obtained by five times of fine-tuning. Such average accuracy
is evaluated as the result.

To speed up sampling, in the pre-training process we set
the five axes of dataset tensor to correspond to video clip,
subject, 1, channel, sampling point respectivey. In the fine-
tuning process, the first two axes video clip and subject of the
dataset are reshaped into a sample axis. Each axis of reshaped
dataset corresponds to sample, 1, channel, sampling point
in turn. In the pre-training task, each epoch traverses every
video clip of the dataset, a fine pre-training task generally
needs to train more than 2000 epochs. To reduce the workload,
we use the validation dataset to adjust the hyper parameters
of the SGMC framework and use the test dataset to evaluate
the model. The tensor shape of the training set, testing set,
and validation set are represented as Shapetr, Shapete, and
Shapeval and are listed in Table I.

In this paper, we use PyTorch [40] to implement our
experiments based on the NVIDIA RTX3060 GPU. The Adam
optimizer [41] is used to minimize the loss functions for both
the pre-training and fine-tuning process. We represent lr as
the learning rate of the optimizer. In the pre-training process
and fine-tuning process, the number of epochs, batch size, the
temperature parameter τ , learning rate lr, number of video
clips per iteration P , number of samples per group Q, and
size of the tensor of the dataset have applied different values,
as shown in Table I, we list all hyper parameters utilized in
two processes on DEAP and SEED dataset.

B. Emotion Classification Performance

(1) Performance on DEAP
As illustrated in Table II, On the DEAP dataset, We first

compare the SGMC with four state-of-the-art methods in the
two emotion dimensions of valence and arousal: one resid-
ual long short-term memory network utilizing multi-modal
data MMResLSTM [43], a channel-fused dense convolutional
network CDCN [42], and a hybrid network of convolutional
neural networks and recurrent networks with a channel-wise
attention mechanism ACRNN [44]. From Table II, it can
be found that the accuracy of the proposed SGMC is 1%
higher than the second in the valence dimension and 2.3%
higher than in the arousal dimension. The comparison results
demonstrate the effectiveness of the SGMC on EEG-based
emotion recognition.

To verify the effectiveness of the proposed framework in the
data augmentation and self-supervised learning fields, we fur-
ther compare the SGMC with a GAN-based data augmentation
method MCLFS-GAN [45] and a self-supervised GAN-based
data augmentation framework GANSER [36]. Especially, ac-
cording to the experimental setting of MCLFS-GAN [45] and
GANSER [36], we further performe a comparison on a four-
category classification problem: distinguishing EEG signals of
four categories: high valence and high arousal, high valence
and low arousal, low valence and high arousal, and low valence
and high arousal. In Table II, it can be found that the proposed
method outperforms the existing data augmentation and self-
supervised learning method over 11.33% and 2.09% on four-

TABLE II
PERFORMANCES ON DEAP

Method Valence Arousal Four

CNN-LSTM (2020) [28] 90.82 86.13 -
CDCN (2020) [42] 92.24 92.92 -
MMResLSTM (2019) [43] 92.87 92.30 -
ARCNN (2019) [44] 93.72 93.38 -

MCLFS-GAN (2020) [45] - - 81.32
GANSER (2022) [36] 93.52 94.21 89.74

Proposed(Fully-supervised) 91.23 92.36 87.68
Proposed(Fine-tuned) 94.72 95.68 92.65

Average accuracy(%) of state-of-the-art method on the DEAP
dataset for valence classification, arousal classification and four
classification.
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Fig. 5. The confusion matrix of classification on DEAP

category classification. As illustrated in Fig.5. meanwhile, the
confusion matrices of the SGMC on four-category classifica-
tion are presented. It shows that the SGMC achieves good
performance in each category, especially in low arousal and
high valence.

Furthermore, we first compare the proposed SGMC with our
own fully-supervised baseline using the same network model
without pre-training. In valence, arousal, and four-category
dimensions, the accuracy of the SGMC exceedes the fully-
supervised baseline over 3.49% 3.32% and 4.97%, which
shows the significant effect of improving emotion recognition.
(2) Performance on SEED

As illustrated in Table III, Similar to the DEAP, we first
compare our proposed SGMC with four fully-supervised state-
of-the-art studies : GRSLR [46] adopting a graph regularized
sparse linear regression model, BiHDM [24] utilizing two
independent recurrent networks for the left and right hemi-
spheres of the brain, DGCNN [47] adopting a dynamic graph
convolutional neural network, and a 1D CNN-based residual
neural network ResNet18 [29]. Results use accuracy in the



TABLE III
PERFORMANCES ON SEED

Method Accuracy(%)

Percentage of labels 1% 10% 50% 100%

GRSLR(2018) [46] - - - 87.39
DGCNN(2018) [47] - - - 90.40
BiHDM(2019) [24] - - - 93.12
ResNet18 1D kernel(2021) [29] - - - 93.43

Proposed(Fully-supervised) 44.81 59.77 85.47 89.83
Proposed(Fine-tuned) 89.65 93.29 93.71 94.04

Average accuracy(%) of state-of-the-art method on the
SEED dataset for postive, neutral and negative three-
classification. Percentages of labels represent labeled
samples use to training emotion recognition account for
the percentage of the full training set.

three classification tasks of positive neutral, and negative emo-
tions. As illustrated in Fig.5. The details of the classification
result are shown in the confusion matrix. The SGMC achieves
good accuracy in three categories, especially performing better
on positive than negative and neutral. As illustrated in Table
III the proposed SGMC outperforms the four state-of-the-art
studies, reflecting its good emotion recognition performance
on the SEED.

Further, we compare the SGMC with our fully-supervised
baseline using the same model. Especially, the SEED
dataset has nearly five times the data volume of the DEAP
dataset. Therefore, it can better reflect the performance
of self-supervised learning by utilizing a large number of
unlabeled samples to make up for scarce artificial accurate
labels. We report results obtained from fine-tuning with four
various percentages of the total training set labeled samples
(based on pre-training on the full training set). From 1%
to 50% percentage of labeled samples, the SGMC exceeds
our fully-supervised baseline over 44.84%, 33.52%, and
8.24%. Such results show the proposed SGMC can take
advantage of consistency of stimuli to significantly make
up for artificial accurate labels. Using the full training set
labeled samples to fine-tune, the SGMC significantly exceed
our fully-supervised baseline over 4.27% as well. This shows
the SGMC contributes a significant improvement by utilizing
large unlabeled data.

C. Performance on Limited Labeled Sample Learning

Based on the above results on SEED, it can be found
that fewer labeled samples can also lead to good results. To
evaluate the performance on limited labeled sample learning,
we further evaluate the results on DEAP and SEED when the
number of labeled samples per category increasing. We adopte
a model based on SGMC pre-trained with the full training
set and an initialized model to compare their performance
on fine-tuning/fully-supervised learning with the same limited
labeled sample. On the DEAP the results adopt a four-category
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Fig. 6. The confusion matrix of classification on SEED

classification of arousal and valence. On SEED the results
adopt a three-category classification. As illustrated in Fig. 7.
the results of the different number of labeled samples per
category for fine-tuning/fully-supervised learning are reported.

we can find that in any amount of labeled samples regimes,
the accuracy of the SGMC fine-tuning is significantly superior
to the fully-supervised baseline, and it is more significant
in the lower labeled samples regime. On the DEAP dataset,
when the number of labeled samples per category is over 10,
the performance of the SGMC significantly outperforms the
supervised. When fine-tuned with 5000 labeled samples per
category (37.2% of the full training set), the SGMC reaches
a good accuracy of 87.51% which is nearly by 87.68% of
fully-supervised accuracy training with the full training set.
On the SEED dataset, when fine-tuned with even only one
labeled sample per category (0.00278% of the training set),
the SGMC reached an accuracy of 59.42%. When fine-tuned
with 50 samples per category (0.14% of the training set), the
accuracy of 91.01% outperforms the fully-supervised baseline
with 100% labeled data. Further, we observe that when the
number of category is over 500, the curve has converged. This
shows the SGMC enables a significant decline in the demand
for artificial labels and reflects the consistency of stimuli have
been well exploited to make up for artificial labels.

D. Representation Visualization

To explore how SGMC contributes to superior performance
on emotion recognition, we visualize the learned feature
representations of the SGMC fine-tuned model and the only
fully-supervised model.

As illustrated in Fig. 8, the 512-dimension feature represen-
tations extracted by the base encoder from the samples of the
full SEED testing set are projected to two dimensions through
t-SNE [48]. In the figure above, 15 colors represent samples
corresponding to the 15 trial video clips (about 4-minutes).
It can be found that in the visualization of the SGMC fine-
tuned (right), the feature representation of the same video clip
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Fig. 7. Learning effect of the labeled sample size for the emotion recognition. the left is for the result on DEAP, and the right is for SEED. The red line
represents the model is based on the SGMC pre-trained with the full training set and fine-tuned with the different number of labeled samples per category.
Blue line represents the model is only fully-supervised trained with the different number of labeled samples per category. The results are the average test
accuracy of five times of emotion classification training and the shade area represents standard deviation.

Fig. 8. t-SNE visualization for feature representations demonstrated on SEED
with fully-supervised (left) and the SGMC fine-tuned (right). Tops are the
visualization marked by movie videos, and the different colors represent the
15 videos. Bottoms are the visualization marked by emotion labels, and three
colors represent positive, neutral, and negative videos respectively.

tends to gather together to form 15 distinguishable groups. On
the contrary, in the visualization of fully-supervised (left), the
representations corresponding to the different video clips can-
not be distinguished significantly. Visualization reveals that the

SGMC not only learns stimuli-related feature representations
but also enables the model to distinguish whether different
stimuli come from a continuous video. Further, we mark the
corresponding emotion labels with three colors in the figure
below. There are more indistinguishable representations with
different emotion labels mixed together in fully-supervised
visualization (left). In the SGMC fine-tuned visualization
(right), there are fewer feature representations with the differ-
ent emotion labels mixed together and shows better emotional
discrimination. It reflects that the SGMC enables the model to
learn the video-level stimuli-related representation to improve
emotion recognition performance.

E. Effect of Hyper Parameters

To explore the effect of the number of samples per group
(Q) and the number of selected video clips per iteration (P)
on contrastive learning, we evaluate various combinations of
hyper parameters. In our experiment strategy, each given Q,
we evaluate various P including 2, 4, 8, 16, 32, 64, and select
the one that achieves the best result on emotion recognition as
the appropriate P for given Q. The results of the different Q on
emotion recognition are illustrated in Fig.11. The appropriate
P and number of epochs of pre-training, and corresponding
pre-training accuracy of the different Q are reported in Table
IV .

On the DEAP, When Q = 2 and P = 4, the SGMC achieves
the best performance. On the SEED, when Q = 2 and P = 16,
the SGMC achieves the best performance.



TABLE IV
ILLUSTRATION OF THE APPROPRIATE COMBINATION OF HYPER

PARAMETERS OF Q AND P IN THE HYPER PARAMETER ANALYSIS ON
DEAP AND SEED.

DEAP SEED

Q P Epochpre accpre Q P Epochpre accpre

1 16 440 70.56 1 8 1992 71.58
2 8 2800 91.11 2 16 3288 80.68
3 8 3600 87.50 3 32 1296 66.24
4 4 800 93.06 4 32 744 69.82
8 4 475 96.94 7 32 548 72.45
16 4 450 97.08

Epochpre represent the appropriate number of epochs of pre-
training, accpre represent the accuracy of pre-training task, Q
represent number of samples per group, P represent number of
sampled video clips per iteration.
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Fig. 9. The group size effect on accuracy of DEAP (left) and SEED (right).
The x-axis represents the number of samples (Q). The four lines with colors
show the various percentage of labeled samples used for fine-tuning in the
training set.

Further, it can be observed that an opposite law exists
in the DEAP and SEED datasets. When given a larger Q,
the appropriate P on the DEAP tends to be smaller, and
on the SEED tends to be larger. The possible reason is the
difference in labeling between the two datasets. On the SEED,
the emotional labels are labeled by the experiment designer,
which is determined by the emotional attribute of the video
stimuli. On the DEAP dataset, emotional labels are labeled by
the rating of the subjects. Such labeling is more related to the
personalized differences of the subject than to the SEED. And
because the larger P , the more difficult the contrastive learning
is. At the time the model is more encouraged to focus on
extracting stimuli-related features and ignore the personalized
features that are irrelevant stimuli. So the larger P lead to
better results on the SEED and hinders better results on the
DEAP. This indicates that a smaller P should be considered
first to use when the data was labeled by the subject, and a
larger P should be considered first to use when the data was
labeled by the emotional attributes of the stimuli.

Furthermore, it can be found that generally the greater the
Q (when P are constant), the greater the accuracy of pre-

TABLE V
ILLUSTRATION OF APPROPRIATE NUMBER OF EPOCHS OF THE

PRE-TRAINING ON DEAP AND SEED WHEN COMPARING THE SYMMETRIC
FUNCTIONS.

Symmetric function Epochpre

DEAP SEED

MinPool1D 2440 1480
AvePool1D 1720 2472
MaxPool1D 2880 3288

training. The possible reason is that the greater group sample
contains the more comprehensive group-level stimuli-related
features to alleviate the interference of random distractions,
fatigue, and individual differences. However, good accuracy
in pre-training is not always beneficial to emotion recognition.
Too smaller Q leads to lower accuracy of pre-training, which
hinders the learning of meaningful representation. Too larger
Q leads the model to focus on the aggregation of group-
level stimuli-related features and leads the base encoder to
ignore learning some emotion-related features to hinder better
emotion recognition. So it is critical to select an appropriate Q
for constructing the group-sample-based contrastive learning.

F. Archtechture Design Analysis

In this section, we validate our designed choices by control
and ablation experiments. We first verify the rationality of the
symmetric function we choose. Furthermore, we evaluate the
rationality of the strategy of constructing the group sample,
utilizing Meiosis augmentation, and constructing the positive-
negative pairs.
(1) Comparison with Various Symmetric Function

The SGMC selects the symmetric function MaxPool1D to
construct the group projector. To verify its rationality, we
compare MaxPool1D with a common similar AvgPool1D and
an additional opposite MinPool1D which is implemented by
taking the minimum value in each dimension of upgraded
representations. Illustrate in Fig.4. and Table IV MaxPool1D
is significantly better than others. The possible reason is that
MaxPool1D is more beneficial for model selecting emotion-
related features to extract from upgraded feature representa-
tions. Although MinPool1D also has a selection ability, the
features it selects are more detrimental to improving learning
emotion-related representation. This verifies the rationality of
using MaxPool1D to aggregating group features for contrastive
learning.
(2) Ablation Study

To investigate the rationality of some novel designs of
the architecture, we conduct an ablation study for these
three components: group sample, Meiosis data augmentation,
and stimuli consistency. We can get the new version by
removing one or two components, and the evaluation strategy
is consistent with the basic configuration. When the group
sample is ablated, we use individual samples for contrastive
learning (just let Q = 1). When Meiosis data augmentation
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Fig. 10. Emotion classification accuracy based on fully-supervised model
and SGMC fine-tuned model with various symmetric functions on DEAP (left)
and SEED (right). The x-axis represents the percentages of labeled sample
for fine-tuning/supervised training in the training set.

TABLE VI
THE COMPONENTS OF THE FIVE NEW VERSIONS AND THE COMPLETE

SGMC, AND THE APPROPRIATE NUMBER OF EPOCHS FOR PRE-TRAINING
WITH EACH VERSION ON DEAP AND SEED.

Method Group Augment Consistent Epochpre

DEAP SEED

Non-group % Crossover ! 440 1848
Non-augment ! No augment ! 800 2280
Mixup-augment ! Mixup ! 275 1304
Non-consistent ! Crossover % 60 2752*
Consistent-only % No augment ! 1740 2368
Proposed ! Crossover ! 2800 3288

* Non-consistent leads to worse performance of emotion recog-
nition than fully-supervised on the SEED dataset, so we adopt
the result obtained when the loss function of pre-training
converges.
Epochpre represents the appropriate number of epochs of pre-
training.
No augmet represent ablating crossover, Crossover represent
adopt crossover to data augment ,and Mixup represent adopt
Mixup to substitute crossover

is ablated, for augmenting the group/individual samples we
skip the crossover process and go directly into the separation
process after completing individual pairing. After removing
the stimuli consistency, we change the way of constructing the
positive pair with samples sharing the same stimuli. Instead,
the sampler is required randomly sample EEG signals with
any stimuli to form the sample group for augmenting and
constructing pairs.

The results of the four-category classification on DEAP and
three-category classification on SEED are reported in Fig.11.
The detail of ablation and the number of epochs of pre-training
are reported in Table VI.

To verify the effectiveness of group sample on the SGMC,
we design a version Non-group by removing the group sample.
It can be observed that the emotion recognition performance
significantly declined on DEAP and SEED by more than
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Fig. 11. Emotion classification accuracy based on the five new versions fully-
supervised, and the complete SGMC on DEAP (left) and SEED (right). The
x-axis represents the percentages of labeled sample for fine-tuning/supervised
training in the training set.

1.5%. This reflects group sample is important to alleviate the
obstacles of contrastive learning for the SGMC framework. To
verify the effectiveness of Meiosis augmentation, we design
a version Non-augment by removing Meiosis augmentation.
It can be observed that on DEAP the accuracy decreases
significantly more than 3%, and on SEED decreases by more
than 1.2%. It verifies the critical role of Meiosis data aug-
mentation to improve emotion recognition in the SGMC. To
verify the superiority of Meiosis utilizing the stimuli alignment
in the group sample, we design a competitive version Mixup-
augment. For the mutual augmentation of two samples, we
can naturally think of Mixup [49] data augmentation, which
can mix two samples and generate two samples. We construct
the Mixup-augment version by substituting the crossover of
Meiosis with Mixup. The result shows the Meiosis-based
SGMC significantly exceeds Mixup-augment by more than
2.3% on the DEAP and 2.6% on SEED. This shows the
effectiveness of designing the Meiosis data augmentation by
mimicking the physiological mechanisms of meiosis. To verify
the importance of constructing the positive-negative pair based
on the consistent stimuli, we design a version Non-aligned by
removing stimuli consistent. The results significantly decrease
by more than 2.7% on DEAP, even lower than the fully-
supervised baseline on SEED. It reflects that stimuli consis-
tent is critical to guiding learning meaningful stimuli-related
feature representation by constructing instructive positive-
negative pairs. Further, to investigate the utilizability of po-
tential stimuli consistency, we perform a version Consistent-
only by removing the group sample and Meiosis augment, and
keeping stimuli consistent only for contrastive learning. The
result exceeds the fully-supervised baseline by more than 1.7
% on DEAP and by more than 0.6% on SEED, which indicates
that consistency of stimuli are exploitable but hindered.

CONCLUSION AND FUTURE WORK

In this work, a self-supervised Group Meiosis Contrastive
learning (SGMC) framework is designed to improve emo-
tion recognition. In the proposed framework, Meiosis data



augmentation is introduced to augment EEG group samples
without changing stimuli features. A base encoder and a
group projector are designed in the model to extract group-
level feature representations. With the consistency of stimuli,
contrastive learning is designed to learn stimuli-related feature
representation.

The proposed framework achieves state-of-the-art emotion
recognition results on the DEAP, and also reaches competitive
performance on the SEED datasets. Compared to the fully-
supervised baseline, the SGMC improves emotion recognition
significantly, especially when there are limited labels. In addi-
tion, the results of feature visualization suggest that the model
might have learned the video-level feature representations, and
improves the performance of the model. The hyper parametric
analysis further demonstrates the role of group samples during
emotion recognition. Finally, the rationality of the framework
design including the selection of symmetric functions, the
construction of the positive-negative pairs, and Meiosis data
augmentation are verified.

In the future, we will continue to develop such kinds of
group-sample-based SSL frameworks while with low calcula-
tion costs.
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