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Abstract
Few-shot learning aims at recognizingnovel visual categories fromvery few labelled examples.Different from the existing few-
shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the
representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer
(DSKT) framework, to guidemodels towards better optimization. Specifically, we first exploit an improvedmulti-task learning
approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective
dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the
teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive
experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification
benchmarks.

Keywords Knowledge transfer · Few-shot classification · Feature extractor

1 Introduction

Deep learning models have achieved breakthroughs in many
visual understanding tasks, such as image classification [17]
and object detection [20]. However, their performances
degrade significantly when few labelled examples are avail-
able and these large-capacitymodels usually have difficulties
in transferring the learnt knowledge to unseen classes.
As such, there has been increasing interest in few-shot
learning (FSL) [14, 38, 40], which aims to develop well-
generalized models to recognize new categories using only
limited annotated samples.

Recently, meta-learning [8, 33, 42], a.k.a. learning-to-
learn, has made significant advances in FSL. The primary
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idea ofmeta-learning is to exploit episodic training to transfer
the knowledge learnt from a massive known meta-training
set to novel classes. For example, Sun et al. [39] proposed
Meta-Transfer Learning, which introduced the scaling and
translation parameters to adjust the weight parameters, meet-
ing the needs of new tasks. However, the success of transfer
ability depends on the similarity between tasks. It’s difficult
to transfer knowledge effectively when new tasks are signif-
icantly different from old ones. Another practical solution
to FSL is metric-based methods [23, 31, 45], which aims
to learn good representations through deep networks and
generate final predictions based on the similarity or distance
between support and query samples, such asRelationNet [40]
and ProtoNet [38]. Though metric learning has become the
prominent methods for FSL, it’s still challenging to select an
appropriate distance metric for various tasks and datasets, as
different metrics can yield different results.

In this paper, we propose a new dual selective knowl-
edge transfer (DSKT) framework for FSL tasks, following
the transfer learning strategy. The framework and overall
training process are illustrated in Fig. 1. In the first stage of
the DSKT framework (DSKT-1), we introduce a multi-task
loss to mine useful signals or information from the limited
labelled examples. This enables the model to reduce the risk
of overfitting and to ensure heterogeneity in the prediction
space, simultaneously.
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Fig. 1 Overall training process of DSKT, where fφ is a feature extrac-
tor, gθ and gϕ are two different classifiers. DSKT-1 denotes the first
process which includes a binary cross entropy (BCE) loss and a cross
entropy (CE) loss, with the goal to learn a good feature extractor. DSKT-

2 represents the stage of dual selective knowledge distillation (DSKD),
which selectively transfers knowledge to ensure the student model’s
generalization ability

Furthermore, to implement selective knowledge transfer,
we propose an effective dual selective knowledge distilla-
tion method in the second stage (DSKT-2). Specifically,
we first employ the learnt model in DSKT-1 as a teacher
network and train a student model based on the teacher’s out-
puts. Then, different from the classical knowledge distillation
(KD) [18] loss that considers different classes equally, we
reformulate the KD loss into two independent components
according to the class labels of samples, inspired by [50]. By
separately fine-tuning the KD strength of each component,
models are endowed with the ability to selectively transfer
knowledge.Meanwhile,we introducePolyLoss [22] to adjust
the strengths of learning on current samples, which comple-
ments the knowledge transferred from the teacher model.
After training, we freeze the student model up to the penul-
timate layer and apply it as a feature extractor. During the
evaluation, we fit a logistic regression classifier based on
the frozen feature extractor without fine-tune, implemented
as [41].

Compared to previous work[32], we take similar action in
the first stage to train a discriminative feature extractor. How-
ever, we design a distinct DSKD framework for knowledge
distillation. The difference and superiority can be simply con-
cluded as follows: 1)We only use the original samples during

the knowledge distillation process, which reduces computa-
tion to some extent. 2) We propose a new DSKD frame-
work for knowledge distillation, which integrates decoupled
knowledge distillation (DKD) and PolyLoss, enabling the
student model could effectively learn knowledge from both
the teachermodel and current samples, enhancing the student
model’s capacity to generalize on new tasks.

The main contributions of this work are as follows: 1)
We incorporate KD and PolyLoss as a knowledge transfer
framework for FSL tasks. 2) We exploit DKD to improve the
conventional KD, which enables the student model to selec-
tively learn knowledge from the teacher. 3) the experiments
on four popular benchmark datasets show that our approach
achieves new state-of-the-art performances in all the 5-way
1-shot and 5-way 5-shot tasks.

2 Related work

Few-shot learning (FSL) As a surprising research area in
deep learning, FSL focus on learning patterns from a set of
data (base dataset) and then adapting to a disjoint set (novel
dataset) with few labelled samples. In order to evaluate the
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model’s performance, the novel dataset is split into a sup-
port set and a query set. FSL is also named N-way K-shot
classification when the support set contains N classes and K
samples per class.

Twomain training streams have been explored in few-shot
learning, namely meta-learning and metric learning. On one
hand, meta-learning consists of two phases, namely meta-
training andmeta-testing,where each phase involves a family
of tasks. Meta-learning aims to perform well on new tasks
basedon the knowledge learnt fromprevious tasks. For exam-
ple, Finn et al. [8] proposed a model-agnostic meta-learning
(MAML) approach, which can adapt to new tasks quickly
with a better initialization weight. With the goal to simply
MAML, Reptile [30] removes re-initialization for each task.
MetaOptNet [21] employs SVM to replace its original lin-
ear classifier and solves the convex optimization problem by
using quadratic programming (QP). Sun et al. [39] proposed a
meta-transfer learning (MTL) method, which learns to adapt
a deep neural network for few-shot learning tasks. Bansal
et al. [5] proposed a meta-learning model, which combines
supervised learning and self-supervised learning for natural
language classification tasks.

On the other hand, metric learning pays attention to find-
ing an existing or learned metric space, where the support set
can be simply matched with the query set. In metric learning,
additional parameters are not required to learn once the met-
ric is acquired. Snell et al. [38] proposed ProtoNet, which
learns a metric space where classification can be performed
by computing distances to prototype representations of each
class. RelationNet [40] applies network to learn the relation
(similarity) between support and query images. Based on
memory module, MatchingNet [42] uses cosine distance as
a metric to classify query samples. To achieve better clas-
sification, CAN [19] is designed to highlight the proper
region of interest by learning an attention module. Zhang
et al. [48] proposed a DeepEMD algorithm, which adopts
the Earth Mover’s Distance (EMD) as a distance metric to
calculate the similarity. Different from these approaches, we
propose a new two-stage knowledge transfer framework, fur-
ther improving the model’s generalization ability for FSL
tasks.

Knowledge distillation (KD) With the goal to deploy cum-
bersome deep models on devices with limited resources, KD
is developed for model compression and acceleration. KD
works by effectively transferring knowledge from a large
and complex model, called teacher model, to a smaller and
simple one, called student model. During the process of KD,
the student learning performance is influenced by multiple
factors, such as knowledge types, distillation strategies and
teacher-student architectures.

Hinton et al. [18] first generalized and brought this idea
into deep learning. By minimizing the loss between the

teacher model’s and student model’s outputs, informative
knowledge can be transferred. Tasks [10, 11] show KD’s
benefits for knowledge transfer and optimization. Besides,
sequential distillation [9] is introduced to improve the per-
formance of teacher models. Mobahi et al. [29] presented
a theoretical analysis of self-distillation. Lim et al. [24]
proposed an Efficient-PrototypicalNet, which involves both
transfer learning and knowledge distillation for few-shot
learning tasks. Liu et al. [27] proposed learning a model
through online self-distillation, which combines supervised
training with knowledge distillation via a continuously
updated teacher. A novel Supervised Masked Knowledge
Distillationmodel (SMKD) [25] is also designed for few-shot
Transformers,which incorporates label information into self-
distillation frameworks. Unlike commonly-used KD which
only transfers knowledge from the teacher model, we use a
dual selective knowledge distillation method to encourage
the student model to selectively learn knowledge from the
teacher model and examples simultaneously.

3 Dual selective knowledge transfer

To address the challenges caused by FSL, we propose a
new dual selective knowledge transfer (DSKT) framework,
which consists of two stages: multi-task learning and dual
selective knowledge distillation (DSKD). In the first stage,
we introduce multi-task learning and enforce the learnt rep-
resentations equivariant to image transformations, which is
beneficial for extracting low-level features. Furthermore, we
propose an effectiveDSKD,which enables the studentmodel
to selectively learn knowledge from both the teacher model
and the current samples.

3.1 Problem formulation

In this work, we use a large-scale labelled base dataset for
training a feature extractor. The base dataset is defined as

Dbase = {
xbaset , ybaset

}Nbase

t=1 , with label ybaset ∈ Cbase. In
order to learn a good feature extractor, we hold the assump-
tion that both the amount of classes

(∣∣Cbase
∣∣) and that of

examples
(
Nbase

)
are large. For the novel dataset used for

evaluation, we denote it as Dnovel = {
xnovelt , ynovelt

}Nnovel

t=1 ,
with label ynovelt ∈ Cnovel . Notice that base classes and
novel classes are disjoint, which means Cbase ∩Cnovel = ∅.
The testing of the learnt model is organized in episodes,
in which each episode contains a support set Dsupport

i =
{
xsupporti,t , ysupporti,t

}CK

t=1
and a query set Dquery

i =
{
xqueryi,t ,

yqueryi,t

}CK ′

t=1
, which contains C classes, with K and K’ exam-

ples per class from the novel dataset Dnovel , respectively.
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3.2 Multi-task Learning

In the first stage of our DSKT framework, we introduce a
multi-task learning method which consists of category task
and rotation task to train a discriminative feature extractor
with good representations on the base dataset. Following a
similar training strategy [41], we adopt a neural network that
contains a feature extractor fφ , a category classifier gθ and
an additional rotation classifier gϕ .

First, we randomly sample a minibatch B = {xi , yi }mi=1
from the base dataset Dbase, where m stands for the batch
size. We impose the rotate transformation with 90, 180 and
270 degrees on the images x , to generate augmented copies
x90, x180 and x270, respectively. Then, we stack the original
images and their transformed versions together, resulting in

a single tensor
∧
x = {

x, x90, x180, x270
} ∈ R

(h×w)×(4×m)

with corresponding labels
∧
y ∈ R

4×m . According to the
rotation direction, we also create one-hot encoded labels
∧
r = {ri ∈ R

s}4×m , where s = 4 indicates that four rota-
tion directions are applied in our method.

Next, by using the feature extractor fφ , the stacked tensor
∧
x is mapped to feature vectors

∧
v = fφ

(∧
x

)
∈ R

d×(4×m),

where d denotes the feature map size. Then, we pass the

feature vectors
∧
v through category classifier gθ to obtain its

corresponding logits
∧
p = gθ

(∧
v
)

∈ R
c×(4×m). Finally, we

apply rotation classifier gϕ to map the logits
∧
p to the rotation

logits
∧
q = gϕ

(∧
p

)
∈ R

s×(4×m).

Afterwards, to train all network modules (i.e., fφ , gθ and
gϕ), we use two loss functions to jointly optimize three mod-
ules. One is a commonly-used cross entropy loss [41] for
classifying categories of samples, which is denoted by �CE .
The other is a binary cross entropy loss for rotation predic-
tion,which serves as the rotation loss �BCE . The optimization
problem is formulated as:

φ, θ, ϕ = arg min
φ,θ,ϕ

E(x,y)∼Dbase

[
�CE

(
gθ

(
fφ

(∧
x

))
,

∧
y
)

+α�BCE

(
gϕ

(
gθ

(
fφ

(∧
x

)))
,
∧
r

)]
. (1)

where α is a weighting coefficient to control the strength of
rotation loss.

Learning a good feature extractor is challenging in FSL
as limited labelled samples are available during this process.
In this work, we introduce multi-task learning and it enables
the feature extractor to effectively learn the low-level fea-
tures [3]. In addition, the risk of overfitting can be reduced
through multi-task loss [3]. Experimental results in Table 4
demonstrate the superiority of our method.

3.3 Dual selective knowledge distillation

To improve the model’s generalization ability by knowledge
transfer, we develop an effective dual selective knowledge
distillation (DSKD) to promote models in learning informa-
tive knowledge. Once the first stage is finished, we take one
clone of the trained model as a teacher model, where weights
are frozen and only used for inference. The knowledge distil-
lation (KD) [18] loss is reformulated into two components, by
separately adjusting the strength of each component, infor-
mative knowledge can be selectively transferred to a new
student model, which only contains a feature extractor and a
classifier. In addition, PolyLoss [22] is introduced to ensure
the student model selectively learns knowledge from current
training samples. By considering such dual learning strate-
gies, our DSKD enables the student model to simultaneously
learn knowledge from the teachermodel and current samples.

To make the different components of the transferred
knowledge controllable, we first reformulate the KD loss
into target class knowledge distillation (TCKD) loss and non-
target class knowledge distillation (NCKD) loss, inspired by
[50]. For the i-th input image, we use pi ∈ R

c to denote its
output logits, and pi,t represents the logit of the t-th class.
Hence, the possibility that the i-th sample belongs to the t-th
class zi,t and all the other classes zi,\t can be formulated as:

zi,t = epi,t
∑

j e
pi, j

, zi,\t =
∑c

k=1,k �=t e
pi,k

∑
j e

pi, j
. (2)

Meanwhile, another vector
∧
z i stands for the possibilities

among non-target classes (i.e., the t-th class is not consid-
ered),

∧
z i =

[∧
z

i,1 , · · · ,
∧
z

i,t−1 ,
∧
z

i,t+1 , · · · ,
∧
z i,c

]
,

s.t .,
∧
z

i,k = epi,k∑c
j=1, j �=t e

pi, j .
(3)

Thereby, TCKD loss and NCKD loss can be defined as:

�TCK D=KL
(
bTi ||bSi

)
, �NCK D=KL

(∧
z
T

i ||∧z
S

i

)
,

s.t ., bi = [
zi,t , zi,\t

]T ∈ R
2×1,

(4)

where KL is Kullback-Leibler divergence, T and S represent
the teacher and student model, respectively. By adjusting the
strength of �TCK D and �NCK D , the student model can selec-
tively learn the knowledge from well-predicted samples.

Apart from learning from the teacher model, we further
explore adjustable learning from current samples by intro-
ducing PolyLoss [22]. PolyLoss provides a unified view
on common loss functions for classification problems. It
defines loss function as a linear combination of polynomial
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functions, under polynomial expansion, focal loss is a hori-
zontal shift of the polynomial coefficients compared to cross
entropy loss. In this paper, PolyLoss is used to calculate the
loss between predictions and ground-truth labels so as to
guide the student model’s training toward good optimization.
The formulation of PolyLoss is defined as follows:

�Poly−N = − log (Pt ) +
N∑

k=1

βk(1 − Pt )
k, (5)

where Pt denotes the model’s prediction probability of the
target ground-truth class, N represents the number of lead-
ing coefficients. With this flexible form, PolyLoss can easily
adjust the importance of different polynomial bases accord-
ing to the targeting datasets and tasks, consistently improving
the performance. In this work, we set N = 1 and it achieves
significant improvement.

Finally, the optimization problem of DSKD can bewritten
as,

φ
′
, θ

′ = arg min
φ

′
,θ

′ E(x,y)∼Dbase

[
η1�Poly−1

(
g
θ

′
(
f
φ

′ (x)
)

, y
)

+ η2

[
λ1�TCK D

(
g
θ

′
(
f
φ

′ (x)
)

, gθ

(
fφ (x)

)
, y

)

+λ2�NCK D

(
g
θ

′
(
f
φ

′ (x)
)

, gθ

(
fφ (x)

)
, y

)]]

(6)

where η2 = 1− η1, λ1 and λ2 are the weights of �TCK D and
�NCK D , respectively. Our proposed DSKD method enables
the student model to selectively learn knowledge from the
teacher model and current samples.

4 Experiments

In this section, we elaborate on the experimental con-
figuration and evaluation. The description of the datasets
and implementation details are first presented, followed by
experimental results of our approach on popular benchmark
datasets. Finally, an ablative analysis is presented.

4.1 Datasets and implementation details

Datasets We conduct extensive experiments on four pop-
ular FSL benchmark datasets, i.e., miniImageNet [42],
tieredImageNet [35], Fewshot-CIFAR100 (FC100) [31] and
Caltech-UCSD Birds-200-2011 (CUB) [43]. For miniIm-
ageNet, as a subset of ImageNet, it includes 100 classes
and each class contains 600 images. We follow the splitting
protocol proposed in [33], with 64 classes for training, 16
classes for validation and 20 classes for testing. The tiered-
ImageNet contains 608 classes, which can be grouped into

34 high-level categories. We use 20 categories (351 classes),
6 categories (97 classes), and 8 categories (160 classes)
for training, validation and testing, respectively. FC100 is
derived from CIFAR100 dataset and employs a split simi-
lar to tieredImageNet, which can be divided into 60 training
classes, 20 validation classes and 20 testing classes. Each
class includes 100 images. The CUB was originally used
for fine-grained bird classification, which has 11,788 images
from 200 classes. We follow the split division in [6] that 100,
50, and 50 classes are grouped for training, validation and
testing, respectively.

Implementation details To make a fair comparison with
recent works [41], we use ResNet12 as our backbone. We
follow [21] to applyDropblock as a regularizer and adjust the
amount of filters from (64, 128, 256, 512) to (64, 160, 320,
640). Besides, a 4-neuron fully-connected layer is applied
after the final classification layer. Each batch contains 64
samples. We use SGD with a momentum of 0.9 and a weight
decay of 5e−4. The initial learning rate is set as 0.05 and
decayed with a factor of 0.1. We train 100 epochs and decay
twice for miniImageNet and CUB, 60 epochs and decay
three times for tieredImageNet, 65 epochs and decay once
for FC100. The same learning schedule is applied during
distillation. Besides, we use random cropping, color jittering
and random horizontal flip for data augmentation during the
whole process. Further, for the hyper-parameters, we set the
temperature coefficient as 4.0 and η1 = η2 = 0.5, where
α, β1, λ1 and λ2 are tuned on the validation dataset. For
evaluation, we train a N-way logistic regression classifier.

4.2 Evaluations

miniImageNet and tieredImageNet Table 1 presents a com-
parison between our approach and the state-of-the-art meth-
ods in FSL tasks on the two ImageNet-based benchmarks.
Our method is denoted as DSKT, where DSKT-1 and DSKT-
2 represent the first and second stage, respectively. On both
datasets and in both 1-shot and 5-shot scenarios, our approach
yields state-of-the-art results. On miniIamgeNet, DSKT-1
achieves 65.88% and 83.09% in 5-way 1-shot and 5-way
5-shot tasks, respectively. This shows a gain of 1.06% and
0.68% over RFS-distill. The improvement becomes more
substantial after distillation, with DSKT-2 producing a gain
of 2.51% and 1.78% over RFS-distill under 5-way 1-shot
and 5-way 5-shot settings, respectively. On tieredImageNet,
DSKT-1 achieves improvements over RFS-distill by 0.08%
and 0.58% in the 1-shot and 5-shot tasks, respectively. The
improvements are 0.59% and 0.66% with DSKT-2.

FC100 Table 2 illustrates similar comparisons, this time on
FC100. Here, DSKT provides accuracy improvements in all
cases. For DSKT-1, the improvements over RFS-distill for
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Table 1 Comparison of DSKT (our approach) to prior works on miniImageNet and tieredImageNet datasets, with mean accuracy (%) and 95%
confidence interval

Model Backbone miniImageNet 5-way tieredImageNet 5-way
1-shot 5-shot 1-shot 5-shot

ProtoNet [38] (NIPS’17) ResNet-12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65

TADAM [31] (NIPS’18) ResNet-12 58.50 ± 0.30 76.70 ± 0.30 − −
MTL [39] (CVPR’19) ResNet-12 61.20 ± 1.80 75.50 ± 0.80 65.62 ± 1.80 80.61 ± 0.90

MetaOptNet [21] (CVPR’19) ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

TapNet [47] (ICML’19) ResNet-12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12

Shot-Free [34] (ICCV’19) ResNet-12 59.04 ± 0.43 77.64 ± 0.39 66.87 ± 0.43 82.64 ± 0.43

DeepEMD [48] (CVPR’20) ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

DSN-MR [37] (CVPR’20) ResNet-12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.83 82.85 ± 0.56

FEAT [46] (CVPR’20) ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16

Neg-Cosine [26] (ECCV’20) ResNet-12 63.85 ± 0.81 81.57 ± 0.56 − −
AssoAlign [1] (ECCV’20) ResNet-18‡ 59.88 ± 0.67 80.35 ± 0.73 69.29 ± 0.56 85.97 ± 0.49

RFS-distill [41] (ECCV’20) ResNet-12 64.82 ± 0.82 82.41 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

P-Transfer [36] (AAAI’21) ResNet-12 64.21 ± 0.77 80.38 ± 0.59 − −
ALFA+MeTA [4] (ICCV’21) ResNet-12 66.61 ± 0.28 81.43 ± 0.25 70.29 ± 0.40 86.17 ± 0.35

MixtFSL [2] (ICCV’21) ResNet-12 63.98 ± 0.79 82.04 ± 0.49 70.97 ± 1.03 86.16 ± 0.67

BML [52] (ICCV’21) ResNet-12 67.04 ± 0.63 83.63 ± 0.29 68.99 ± 0.50 85.49 ± 0.34

FRN [44] (CVPR’21) ResNet-12 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15

SKD-GEN1 [32] (BMVC’21) ResNet-12 67.04 ± 0.85 83.54 ± 0.54 72.03 ± 0.91 86.50 ± 0.58

APP2S [28] (AAAI’22) ResNet-12 66.25 ± 0.20 83.42 ± 0.15 72.00 ± 0.22 86.23 ± 0.15

DCAP [15] (ACM’22) ResNet-12 65.20 ± 0.67 80.93 ± 0.53 70.15 ± 0.74 85.33 ± 0.55

MDM-Net [12] (IJMLC’22) ResNet-12 59.88 ± 0.42 76.60 ± 0.24 − −
DSKT-1 ResNet-12 65.88 ± 0.81 83.09 ± 0.54 71.60 ± 0.90 86.61 ± 0.60

DSKT-2 ResNet-12 67.33 ± 0.82 84.19 ± 0.50 72.11 ± 0.89 86.69 ± 0.59

‡ indicates a deeper backbone

Table 2 Comparison of DSKT
(our approach) to prior works on
FC100 dataset, with mean
accuracy (%) and 95%
confidence interval

Model Backbone FC100 5-way
1-shot 5-shot

ProtoNet [38] (NIPS’17) ResNet-12 37.5 ± 0.6 52.5 ± 0.6

TADAM [31] (NIPS’18) ResNet-12 40.1 ± 0.4 56.1 ± 0.4

MTL [39] (CVPR’19) ResNet-12 45.1 ± 1.8 57.6 ± 0.9

MetaOptNet [21] (CVPR’19) ResNet-12 41.1 ± 0.6 55.5 ± 0.6

DeepEMD [48] (CVPR’20) ResNet-12 46.5 ± 0.8 63.2 ± 0.7

AssoAlign [1] (ECCV’20) ResNet-18‡ 45.8 ± 0.5 59.7 ± 0.6

RFS-distill [41] (ECCV’20) ResNet-12 44.6 ± 0.7 60.9 ± 0.6

InfoPatch [13] (AAAI’21) ResNet-12 43.8 ± 0.4 58.0 ± 0.4

MixtFSL [2] (ICCV’21) ResNet-12 44.9 ± 0.6 60.7 ± 0.7

Meta-Navigator [49] (ICCV’21) ResNet-12 45.6 ± 0.8 59.9 ± 0.8

SKD-GEN1 [32] (BMVC’21) ResNet-12 46.5 ± 0.8 63.1 ± 0.7

CORL [16] (WACV’22) ResNet-12 44.8 ± 0.7 61.3 ± 0.5

MDM-Net [12] (IJMLC’22) ResNet-12 43.6 ± 0.4 57.4 ± 0.3

DSKT-1 ResNet-12 45.4 ± 0.8 62.7 ± 0.7

DSKT-2 ResNet-12 46.6 ± 0.8 63.7 ± 0.7

‡indicates a deeper backbone
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Table 3 Comparison of DSKT
(our approach) to prior works on
CUB dataset, with mean
accuracy (%) and 95%
confidence interval

Model Backbone CUB 5-way
1-shot 5-shot

MatchNet [42] (NIPS’16) ResNet-12 71.87 ± 0.9 85.08 ± 0.6

ProtoNet [38] (NIPS’17) ResNet-18‡ 71.88 ± 0.9 86.64 ± 0.5

MAML [8] (ICML’17) ResNet-18‡ 68.42 ± 1.0 83.47 ± 0.6

RelationNet [40] (CVPR’18) ResNet-18‡ 67.59 ± 1.0 82.75 ± 0.6

DEML [51] (Arxiv’18) ResNet-50‡ 66.95 ± 1.0 77.11 ± 0.8

Robust-20 [7] (ICCV’19) ResNet-18‡ 58.67 ± 0.7 75.62 ± 0.5

DeepEMD [48] (CVPR’20) ResNet-12 75.65 ± 0.8 88.69 ± 0.5

Neg-Margin [26] (ECCV’20) ResNet-18‡ 72.66 ± 0.9 89.40 ± 0.4

MixtFSL [2] (ICCV’21) ResNet-18‡ 73.94 ± 1.1 86.01 ± 0.5

APP2S [28] (AAAI’22) ResNet-12 77.64 ± 0.1 90.43 ± 0.1

DSKT-1 ResNet-12 76.26 ± 0.8 90.76 ± 0.4

DSKT-2 ResNet-12 78.32 ± 0.8 91.47 ± 0.4

‡ indicates a deeper backbone

1-shot and 5-shot are 0.8% and 1.8%, respectively. Fur-
thermore, the addition of distillation (DSKT-2) shows an
exclusive improvement of 1.2%under 5-way1-shot and1.0%
under 5-way 5-shot settings.

CUB Table 3 compares our approach DSKT, against the
state-of-the-art on CUB for fine-grained classification. Here,
our method outperforms previous work even if they are
implemented with deeper backbones. In particular, DSKT-
2 achieves improvements over the best-reported numbers by
2.67% and 2.07% in 5-way 1-shot and 5-way 5-shot scenar-
ios, respectively.

4.3 Ablative analysis

Benefits ofmulti-task learning To study the impact of multi-
task learning, we evaluate our approach with and without the
rotation loss on CUB. As shown in Table 4, we first simply
train the DSKT-1 with cross entropy loss, which is similar to

RFS-simple [41], the model achieves 71.74% and 87.23% in
5-way 1-shot and 5-way 5-shot tasks, respectively. Then, we
train theDSKT-1with additional rotation loss, themodel per-
formance improves to 76.26% and 90.76%, which presents
an absolute gain of 4.52% and 3.53%. From the results, we
can infer the importance of multi-task learning during the
training process.

Benefits of DSKD To better evaluate the contribution of
DSKD, we train the model with different combinations of
loss functions on CUB. From Table 4, we can find that, for
models trained only with cross entropy loss in the first stage,
DSKD gives 1.01% and 0.73% gains compared with KD
(KD is defined as �K D = K L

(
pTi pSi

)
, where pi denotes

the output logits of the i-th sample, and T and S represent
the teacher and student model, respectively.) in 1-shot and 5-
shot tasks, respectively. For models trained with both cross
entropy and binary cross loss functions, DSKD still achieves
0.45% and 0.39% improvements thanKD. These results con-
firm the effectiveness of DSKD.

Table 4 FSL results on CUB,
with different combinations of
loss functions

Model Loss function CUB 5-way
1-shot 5-shot

DSKT-1 �CE 71.74 87.23

�CE + α�BCE 76.26 90.76

DSKT-2 �CE → �K D 73.59 88.47

�CE → λ1�TCK D + λ2�NCK D 74.05 88.67

�CE → η1�Poly−1 + η2 (λ1�TCK D + λ2�NCK D) 74.60 89.20

�CE + α�BCE → �K D 77.87 91.08

�CE + α�BCE → λ1�TCK D + λ2�NCK D 78.16 91.23

�CE + α�BCE → η1�Poly−1 + η2 (λ1�TCK D + λ2�NCK D) 78.32 91.47

For DSKT-2, the loss functions on the left side of the arrow are employed to train the DSKT-1 model
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Table 5 FSL results on CUB, with different processing methods in the
first stage

Processing methods CUB 5-way
1-shot 5-shot

Puzzle 75.75 ± 0.8 89.50 ± 0.5

Fusion 73.93 ± 0.8 89.02 ± 0.5

Rotation 76.26 ± 0.8 90.76 ± 0.4

Benefits of rotation and logistic regression classifier To
study the impact of rotation and logistic regression classi-
fier, we evaluate our approach with other processingmethods
and classifiers on CUB. Table 5 presents the results on CUB
with different processing methods in the first stage (DSKT-
1). From Table 5 we can find that rotation performs much
better than fusion (Three channels of RGB images are fused
and the coefficient of each channel is set to 0.5 in this
work). When compared to puzzle (split the original image
into pieces, randomly sort and then reassemble. The puzzle
size is set to 7 on CUB 5-way tasks.), rotation still obtains
0.5% and 1% improvements on CUB 5-way 1-shot and 5-
shot tasks, respectively. Table 6 shows the FSL results with
different classifiers on CUB during the evaluation process.
From Table 6, we can find that logistic regression classifier
achieves the best performance when compared to Nearest
classifier (make predictions based on the euclidean distances
between query and support samples) and Cosine classifier
(make predictions based on the cosine similarities between
query and support samples) on both CUB 5-way 1-shot and
5-shot tasks during the evaluation process.

Benefits of using the output of the category classifier as
input for the rotation classifier In this paper, we exploit the
output of category classifier as input for the rotation classifier,
rather than that of the feature extractor. This can help improve
the model’s performance on complex data. Table 7 present
the comparison results on CUB. From Table 7, we can find
that applying the output of the category classifier gains 0.89%
and 0.66% improvements in CUB 5-way 1-shot and 5-shot
tasks, respectively.

Different degrees of polynomial in PolyLoss The degree of
polynomial in PolyLoss N is set to 1 in this work. To study

Table 6 FSL results on CUB, with different classifiers during the eval-
uation process

Classifiers CUB 5-way
1-shot 5-shot

Nearest classifier 77.92 ± 0.7 88.02 ± 0.5

Cosine classifier 77.67 ± 0.7 88.04 ± 0.5

Logistic Regression 78.32 ± 0.8 91.47 ± 0.4

Table 7 FSL results on CUB, with different inputs for the rotation
classifier in the first stage

Input of the rotation classifier CUB 5-way
1-shot 5-shot

The feature extractor’s output 75.37 ± 0.8 90.10 ± 0.4

The category classifier’s output 76.26 ± 0.8 90.76 ± 0.4

the impact of the degree, we assign the degree with different
values in CUB 5-way tasks. From Table 8, we can find that
when N = 1, our method achieves around 0.8% and 0.3%
improvements compared to N = 2 or N = 3 in CUB 5-way
1-shot and 5-shot tasks, respectively.

Application of the rotation loss In this work, the rotation
loss is directly applied to the predicted logits of the category
classifier. To learn its contribution, we make a comparison
with applying rotation loss on the features in CUB 5-way
tasks. Table 9 shows that compared with applying multi-task
loss on the features, applying on the category logits achieves
around 0.5% and 0.9% improvements on CUB 5-way 1-shot
and 5-shot tasks, respectively.

Variations of Hyper-parameters There are totally seven
hyper-parameters in this work, t, α, β1, λ1, λ2, η1 and η2.

t denotes the temperature coefficient, α controls the contri-
bution of rotation loss during DSKT-1, β1 is used to adjust
the contribution of the first polynomial base, λ1, λ2, η1 and
η2 are the weights of different loss functions. We mainly
investigate the variants of hyper-parameters α, β1, λ1 and
λ2, where the default values of t, η1 and η2 are 4.0, 0.5 and
0.5, respectively. Figure 2a shows the DSKT-1 performance
on CUB 5-way 1-shot tasks by changing α. It’s obviously
that our model performance increases from 0.5 till 2, and
then decreases when α = 5, which indicates the impor-
tance of multi-task learning. Figure 2c shows the DSKT-2
performance on CUB 5-way 1-shot tasks by changing β1.We
observe that DSKT-2 achieves over 78% when β1 increases
from 1 till 5, while β1 = 10 performs the lowest. Note that
the performance drops only by about 0.6%, which indicates
that it is not sensitive to the value of β1. Figure 2b presents
the DSKT-2 performance on CUB 5-way 1-shot tasks by
changing λ1. When λ1 ranges from 0.5 till 5, DSKT-2 can
always obtains over 77% accuracies and achieves the highest
accuracy when λ1 = 1.0, indicating it is not sensitive to the

Table 8 Results of different
degrees of polynomial in
PolyLoss on CUB

N CUB 5-way
1-shot 5-shot

1 78.32 ± 0.8 91.47 ± 0.4

2 77.57 ± 0.8 91.10 ± 0.4

3 77.42 ± 0.8 91.11 ± 0.4
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Table 9 Results of different applications of rotation loss on CUB

Application of the rotation loss CUB 5-way
1-shot 5-shot

Applied on the features 75.73 ± 0.8 89.84 ± 0.4

Applied on the category logits 76.26 ± 0.8 90.76 ± 0.4

value of λ1. Figure 2d presents the DSKT-2 performance on
the same tasks by changing λ2. We find that the performance
increases from 1 to 2, then decreases with larger values of
λ2. These results indicate that it is not a good idea to blindly
increase the weights of �NCK D .

5 Conclusion

In this work, we aim to raise awareness of the importance
of training a well-generalized feature extractor for FSL

tasks by proposing a new two-stage dual selective knowl-
edge transfer framework. First, we use multi-task learning
to enforce the feature extractor to learn robust low-level
features. Then, we propose an effective dual knowledge
distillation method, which enables the student model to
selectively learn knowledge from the teacher model and
current examples, further improving the model’s general-
ization ability. Extensive experimental results demonstrate
the importance of strong feature extractors for FSL and our
approach outperforms the state-of-the-art on four popular
FSL benchmark datasets. Despite the promising results in
our study, there are some areas that worth further investi-
gation. We only apply our method on classification tasks
in this paper, object detection tasks will be our future
research direction The correlation between the distillation
performance and polynomial function coefficients βi is not
fully investigated, we will expand upon our work in future
researches.

Fig. 2 Ablative Analysis
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