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Abstract
Marine mammals are an important part of marine ecosystems, and human intervention seriously threatens their living environ-
ments. Few studies exist on the marine mammal call recognition task, and the accuracy of current research needs to improve.
In this paper, a novel MG-ResFormer two-channel fusion network architecture is proposed, which can extract local features
and global timing information from sound signals almost perfectly. Second, in the input stage of the model, we propose an
improved acoustic feature energy fingerprint, which is different from the traditional single feature approach. This feature also
contains frequency, energy, time sequence and other speech information and has a strong identity. Additionally, to achieve
more reliable accuracy in the multiclass call recognition task, we propose a multigranular joint layer to capture the family and
genus relationships between classes. In the experimental section, the proposed method is compared with the existing feature
extraction methods and recognition methods. In addition, this paper also compares with the latest research, and the proposed
method is the most advanced algorithm thus far. Ultimately, our proposed method achieves an accuracy of 99.39% in the
marine mammal call recognition task.
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1 Introduction

The ocean contains numerous mammals. Marine mammals
have always been an important part of marine biodiversity
and have a very important role in developing marine ecosys-
tems and maintaining ecological balance. However, with the
expansion of human activities, the survival of many marine
species is directly or indirectly threatened [1]. To date, the
identification and conservation ofmarinemammals have also
remained a hot topic of interest in the field [2]. It is impossible
for humans to directly observe the movements of mammals
living in the ocean, such as whales and seals, in opaque
media, which undoubtedly makes it more difficult to pro-
tect marine mammals. However, for most marine mammals,
tracking andmonitoring tasks through their call signals is one
of the most feasible approaches [3]. By implementing effec-
tive call classificationmonitoring tasks for marinemammals,
it is important to promote marine mammal conservation and
animal welfare.

Most mammals communicate with their own kind through
their calls. For example, Seyfarth et al. discovered that
animals obtain relevant information for early warning and
communication through the same kind of call signals and
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discovered the importance of the same kind of call infor-
mation in communication [4]. The effect of animal alert
messages on foraging behavior was found by Bhattacharjee
et al. through simulations using a computer [5]. Takahashi
studied information exchange between meerkats and found
information exchange among large meerkats [6]. Among
marine mammals, call signal transmission has become an
important method for recognizing their own kind as well
as communicating information. For example, sperm whales
communicate with each other by making four different calls
[7]. RootGutteridge et al. analyzed the calls of North Atlantic
right whales to determine their age by their calls [8]. Tortero-
tot et al. used bluewhale calls to detect bluewhale population
distribution in the Southern Indian Ocean [9]. The task of
monitoring mammal calls is of great importance for under-
standing and analyzing their behavior and population status,
and scientific and effective detection methods are an impor-
tant part of supporting this task.

Convolutional neural networks (CNNs) have demon-
strated excellent capabilities in many research areas [10].
CNNs can effectively capture the high-dimensional fea-
ture information of input data to obtain more expressive
information. Its excellent performance was demonstrated in
processing animal call classification tasks. Xie et al. achieved
success in improving bioacoustic signal classification tasks
using CNN structures [11]. Tabak et al. used a CNN model
based on the ResNet18 structure to classify 10 bat calls,
achieving 92%accuracy [12].Maegawa et al. proposed a new
study for monitoring the presence and reproductive capac-
ity of birds by building CNN models [13]. CNNs have also
been widely used in the study of marine mammal calls. For
example, Duan et al. proposed using convolutional neural
networks for the frame spectrogram data classification task
of three marinemammals [14]. Luo et al. accomplished auto-
matic monitoring of toothed whale echolocation clicks by
using CNN, which showed excellent stability [15]. Lu et al.
proposed a migration learning-based AlexNet approach for
marinemammalmonitoring tasks, achieving an overall accu-
racy of 97.42% in three categories [16]. The widespread use
of CNNs has proven their suitability for handling animal call
classification tasks, as well as for greatly improving animal
protection and other welfare causes.

In speech recognition tasks, timing information is
extremely important. With the emergence of recurrent neural
networks and further research, their application in the speech
recognition field is becoming increasingly widespread [17,
18]. For example, Fatih Ertam used a deeper long short-term
memory (LSTM) network structure for predicting gender
from an audio dataset, and the study successfully predicted
gender with a recognition accuracy of 98.4% [19]. Zijiang
Zhu et al. proposed a speech emotion recognition model
based on Bi-GRU (bidirectional gated recursive unit) and
focus loss, which effectively extends short-duration speech

samples and uses a focus loss function to address classifi-
cation difficulties caused by the imbalance of sample emo-
tion categories [20]. Additionally, the attention mechanism
achieves excellent performance in capturing dependencies
in distant sequences. Compared with the fixed time step of
RNN, the attention mechanism can focus on the next predic-
tion task without losing information at longer distances as
well. For example, MohammedM. Nasef et al. proposed two
self-attention-based models to provide an end-to-end speech
gender recognition system in an unconstrained environment,
and theirmodels achieved95.11%and96.23%accuracy [21].
Junfeng Zhang et al. extracted speech and text features sep-
arately using a two-layer transformer encoder combination
model and modeled MoCap using a deep residual shrink-
age network with a recognition accuracy of 75.6% [22].
The widespread use of models such as recurrent neural net-
works and attentional mechanisms that have a good ability
to capture temporal information proves their importance for
processing speech recognition tasks.

In recent years, marine mammal habitats and popula-
tions have been threatened by human activities and other
impacts, and an increasing number of researchers are work-
ing on marine mammal monitoring and conservation. The
main approach of existing studies is the identification and
analysis of their calls. However, analyzing all current stud-
ies revealed that vocal behavior among mammals is rarely
explained in detail, and the description of communication
information between mammals is rarely detected [23, 24]. In
the existing methods, there are still low model recognition
accuracy, few recognition categories, and poor generalization
and robustness problems. To address the above problems, this
paper proposes a two-way fusionnetwork-based approach for
detecting marine mammal classes.

This paper is divided into five sections, the first of which
is an introductory section that introduces the work of other
researchers and leads us to identify the problem. The second
section presents the theoretical and applied possibilities of
our approach. The third section shows the experiments and
results of our method and provides a rational analysis. The
fourth section discusses our work. The fifth section is the
conclusion.

1.1 Main innovations and contributions

The main innovations and contributions of this paper are as
follows:

1. In the previous audio recognition tasks,most of them take
a single network structure for recognition. Such as CNN,
RNN, transformer, etc. But the single network structure
cannot extract the information in the audio thoroughly,
such as CNN cannot use the timing information in the
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sound signal effectively. In this paper, a two-way parallel
fusion network structure is constructed, and by com-
bining the improved MG-Resnet and MG-Transformer
structures, the fusion network can have the ability to cap-
ture audio high-dimensional features and utilize audio
timing information at the same time.

2. In this paper, we construct a multi-granularity joint
layer for aiding multi-classification tasks. We construct
a coarse-grained layer and a fine-grained layer for the
species data to be identified by using the "kingdom, phy-
lum, class, order, family, genus and species" division.
The coarse-grained layer corresponds to the "family" of
the species, and the fine-grained layer corresponds to
the "genus" of the species, and the coarse-grained a pri-
ori judgments are used to consolidate the decisions of
the fine-grained layer in subsequent work. Our proposed
multigranularity fusion layer has strong generalizability
and can be applied to other studies.

3. In this paper, we design a new audio feature called energy
fingerprint. This feature contains a large amount of infor-
mation about marine mammal calls, such as energy,
frequency, timing information, etc., which identifies the
vocal expression ability ofmarinemammals.After exper-
iments, the feature is proved to have good performance.

2 Related work

Convolutional neural networks use feature invariance to over-
come the inherent diversity of speech signals in the audio
recognition domain and can learn data-driven, highly repre-
sentative hierarchical audio features from sufficient training
data and have shown excellent performance in the audio
domain. However, it still suffers from problems such as
nontrivial feature selection, environmental noise or degra-
dation of accuracy due to intensive local computation. In
recent years,many studies have been devoted to solving these
problems. Cao et al. conducted an appropriate combination
of CNNs and hand-designed features, using the minimum
redundancy andmaximum correlation (mRMR) algorithm as
a criterion for selecting the best set of hand-designed features,
and achieved higher recognition accuracy than using CNNs
alone [25]. Xu et al. designed and implemented a CNN-based
acoustic classification system. Additionally, to improve the
accuracy in noisy environments, a multiview CNN frame-
work is proposed that contains three convolution operations
and three different filter lengths to extract short-, medium-
and long-term information simultaneously. The architec-
ture achieves better accuracy and significantly outperforms
traditional CNN classification models when ambient noise
dominates the audio signal (low SNR) [26]. Shawn et al.
investigated the size of the training set and label vocabulary
and found that state-of-the-art image networks were able to

achieve superior results in audio classification compared to
simple fully connected networks or earlier image classifi-
cation architectures. Some performance improvements were
derived when training on larger training and label sets, and
regularization reduced the gap between models trained on
smaller datasets and 70 M datasets [27]. Nanni et al. studied
a collection of classifiers for automatic animal audio classi-
fication using different data enhancement techniques to train
convolutional neural networks (CNNs) and showed that train-
ing differentCNNanimal audio classificationmodelsworked
better than standalone classifiers [28]. Xie et al. proposed a
new feature set by first applying a sliding window to the
audio waveform to obtain the plus-window signal, where
the five windows with the highest energy are selected. An
orthogonal matching trace is applied to these windowed sig-
nals to extract the significant Gabor atoms. A multiwindow
scale frequency map is constructed as an input feature for
three different CNNs, and experiments on two classification
datasets also demonstrate the effectiveness of their frame-
work in complementing traditional audio time-frequency
representations [29].

After the transformerwas proposed in the natural language
processing field, it was successively introduced to the speech
recognition and computer vision fields and has performed
very well. Since then, transformers have been increasingly
used in speech recognition. pan et al. extracted latent repre-
sentations by sampling a subset of patches with low attention
weights in the transformer encodermodel. and using environ-
mental information for fusionwith tokenswith high attention
weights to improve the distinguishability of dynamic atten-
tion fusionmodels [30]. Gong et al. used self-attention-based
neural networks in the audio domain, where the audio spec-
trogram transformer (AST) achieved excellent performance
in various audio classification tasks [31]. Lee et al. proposed a
dual cross-modal (DCM) attention scheme that exploits both
audio context vectors from video queries and video context
vectors using audio queries and introduces a connection-
ist temporal classification (CTC) loss to the attention-based
model to enforce the required monotonic alignment in AVSR
[32]. Wang et al. proposed a distributed visual channel cod-
ing scheme based on a multimodal converter and deep joint
source channel coding-based distributed audiovisual parsing
network (DAVPNet), which is used to enhance attentional
computation between audiovisual events [33].

In recent years, good progress has been made in other
audio recognition tasks. For example, Dufourq et al. evalu-
ated the ability of state-of-the-art migration learning models
to classify animal calls in four bioacoustic datasets and the
impact of various modeling decisions on recognition accu-
racy, fully developing migration learning in a PAM-based
environment while simplifying the CNN design architecture
[34]. Oikarinen et al. introduced an end-to-end feedforward
convolutional neural network Oikarinen et al. introduced
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an end-to-end feedforward convolutional neural network
that can reliably classify the source and type of animal
calls in noisy environments after training with imperfectly
labeled datasets, providing an idea for researchers inter-
ested in studying vocalizations [35]. Salamon et al. com-
pared a ‘shallow learning’ approach based on unsupervised
dictionary learning with a deep convolutional neural net-
work enhanced with data to improve the ability to monitor
biodiversity [36].

3 Ourmethod

We propose a pioneering parallel recognition model. It con-
sists of two phases. The first stage extracts energy fingerprint
features from the original audio. The energy fingerprint is a
new feature we propose for audio signals, which aims to
retain as much information as possible from multiple per-
spectives in the audio signal, such as frequency, energy, and
timing information. The good performance of this feature
is verified in the experimental section. The energy finger-
print features are fed into ResNet18 with a combined coarse
and fine granularity layer added for training (MG-ResNet)
to finally obtain the classification vector in the first stage.
The second stage extracts the traditional audio signal fea-
tures from the original audio: MFCC. The MFCC features
will be fed into the transformer (MG-Transformer) with the
coarse-fine granularity joint layer for training, and finally,
the classification vector of the second stage is obtained. We
design a trainable fusion layer to receive the first- and second-
stage classification vectors and fuse them.After that, the final
classification results are output. Figure 1 illustrates the gen-
eral architecture of our approach.

3.1 Feature extraction

In training deep learning models, the input features must be
insensitive to phase, so the task of signal processing can-
not be accomplished using raw audio. Raw audio data are
often high-dimensional and contain considerable redundant
information caused by strong correlations, so direct training
is often inefficient. Therefore, feature extraction of the raw
audio is essential.

Audio feature extraction can streamline the sampled sig-
nal of the original waveform, thus accelerating the machine’s
understanding of the semantic meaning in the audio. To
obtain the audio features that work best, we extracted nine
features that are mainstream in audio data: chromatographic
information, constant-Q chromatographic information, nor-
malized chromatographic information, Meier spectral infor-
mation, MFCC, spectral contrast, tonal center of mass, local
autocorrelation of the onset intensity envelope, and Fourier
tachogram. These nine features are explained in Table 1.

Figure 2 shows a sample from our data, which was first
preemphasized in the initial processing to increase the energy
of the high-frequency part of the signal. Given a time-domain
input signal x[n], the signal after preemphasis is:

y[n] = x[n] − αx[n − 1], 0.9 ≤ α ≤ 1.0 (1)

The windowing process is carried out for the preempha-
sized sound signal, and to facilitate the subsequent extraction
of various features,wemake the value of the signal at thewin-
dow boundary approximate to 0 so that the signal tends to be
a periodic signal, and the windowing function is as follows:

w[n] =
{
0.54 − 0.46 cos

( 2πn
L

)
, 0 ≤ n ≤ L − 1

0, otherwize
(2)

Fig. 1 Methodology Overview
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Table 1 Feature Introduction

Name Description Related work

MFCC MFCC are cepstrum parameters extracted in the frequency
domain of the Mel scale,

Hasan M R et al. [37]

which describes the nonlinear properties of human ear hear-
ing.

Chromagram Chromagram, also called a pitch class profile, shows the
energy distribution of a sound over a series of pitches.

Ellis et al. [38]

This series of pitches is usually the twelve pitches of western
music.

Spectral contrast The spectral contrast divides each frame of the spectrum into
subbands. For each subband, the energy contrast is estimated
by comparing the average energy of the

Jiang et al. [39]

top part bits with the average energy of the bottom part bits.

Mel scaled spectrogram The sound spectrum map of the raw data is often a very large
map, which is often transformed into a mel spectrum by

Hasan M R et al. [40]

passing it through mel-scale filter banks in order to obtain
sound features of the right size.

Constant-Q chromagram The chromatogramafter constantQ-transformation. The con-
stant Q-transform transforms time series to the frequency

Manzo-Martinez A et al. [41]

domain and is widely used in the processing of sound data.

Tonal central features In audio theory, tonal central features project chromatic fea-
tures onto a six-dimensional basis, representing

Harte et al. [42]

perfect fifths, minor thirds and major thirds as two-
dimensional coordinates, respectively.

Tempogram Tempogram is obtained by calculating the local autocorrela-
tion of the starting intensity envelope.

Grosche et al. [43]

Chroma energy normalized Chroma energy normalized features are robust in terms of
dynamics, timbre and intelligibility.

Meinard Müller and Sebastian Ewert . [44]

Therefore, they are commonly used in audio matching and
retrieval applications.

Fourier tempogram The fourier tempogram is obtained by performing a short-
time fourier transform on the starting intensity envelope.

Grosche et al. [45]

To visualize these nine features, we extracted features
from one preprocessed signal in the dataset and visualized
the feature matrix. Figure 3 below shows the effect of feature

Fig. 2 Original audio samples

visualization, along with an explanation of the meaning of
each mapping.

Mel-frequency spectrogram is obtained by taking loga-
rithmic transform after Fourier transform and Mayer filter.
It is usually based on time and Mayer frequency as axes,
and the color depth represents the energy intensity of the
frequency. MFCC is based on the Mel spectrum graph and
is obtained by discrete cosine transform, using time and
Mel frequency as coordinate parameters. In fact, it com-
presses the low-frequency information of the Mel spectrum
graph to extract themain features. Spectral contrast enhances
the feature discrimination of the spectrogram and the high-
frequency characteristics of the signal. It is obtained by
calculating the STFT representation and calculating spectral
energy, spectral logarithmic energy, and spectral contrast.
Tempogram extracts the initial intensity envelope, performs
preprocessing to remove DC offsets, and then calculates the
autocorrelation between samples near a certain time point
in the signal from local autocorrelation. In the graph, the
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Fig. 3 From left to right, in order from top to bottom, they are Mel-frequency spectrogram, MFCC, Spectral contrast, Tempogram, Fourier
tempogram, Tonal central features, Chromagram, Constant-Q chromagram and Chroma energy normalized

horizontal axis represents time and the vertical axis repre-
sents local autocorrelation coefficients. Fourier tempogram
performs time-frequency analysis on audio signals, typically
performing frame division processing on audio signals, then
calculating their short-time Fourier transform, and drawing
images with time as the horizontal axis, frequency as the ver-
tical axis, and energy intensity as the color. Tonal Centroids
calculates the pitch spectrum weighted center frequency of
each frame of data to obtain the corresponding tone cen-
troid, and plots it in chronological order. Chroma sift is
a visual representation of audio signals in terms of time
and frequency. It represents the volume levels at different
frequencies through color graphics, presenting the spectral
characteristics of audio signals. Constant cqt uses the CQT
spectrum of the calculated audio to achieve an exponential
distribution of the center frequency, connecting the amplitude
spectra of all frames together to form a color representation
of the amplitude of each frequency along the time and fre-
quency axes.Chroma cens is usually obtained bynormalizing
the spectrum obtained by performing a short time Fourier
transform on audio. Each pixel represents the energy value
within a frequency and time period.

3.2 Energy fingerprint

Traditional audio features such as mel-scaled spectrograms,
MFCCs, and diagrams are often related to only a single piece
of information in the sound pattern. Therefore, we hope to
construct a new type of acoustic signature that contains fre-
quency, energy, and timing to enhance the weaknesses that
exist in a single signal. We also want this feature to reflect
the uniqueness of different species’ vocalizations, which we

call the energy fingerprint, and the construction process is
shown in Fig. 4.

First, we want to minimize the impact of too long and
too short audio on the final classification. Therefore, we
use the atomic frame streaming strategy in the construction
of the energy fingerprint, i.e., the original audio is divided
into atomic frames of the same size, after which a series of
changes are made to the atomic frames to obtain the atomic
features, and the final features are obtained by combining
these atomic features. Common atomic features may not
contain enough information to support the model to iden-
tify them. However, under normal circumstances, the audio
to be recognized is composed of hundreds and thousands of
atomic frames, containing enough of them for efficient and
reliable recognition [46].

Next, we performed a Fourier transform on the data of the
atomic frames to calculate their spectral information. The
Fourier transform is calculated as shown in (3) and (4).

F(ω) =
∫ +∞

−∞
f (t)e− jωt dt (3)

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωt dω (4)

An arbitrary signal is obtained as a sequence of imagi-
nary numbers after Fourier transform. The amplitude of the
spectrum is obtained by modeling each imaginary number
obtained. The calculation formula is shown in (5) and (6).

F
(
e jω

)
= a + ib (5)

|F(e jω)| =
√
a2 + b2 (6)
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Fig. 4 Construction flow of energy fingerprint

To express the energy information more precisely, we
divided the atomic spectrum into 65 spectral bands again, and
for each band, the energy blocks were calculated. According
to Perseval’s theorem, the total energy of the signal can be
obtained either as the integral of the energy per unit of time
over the whole time or as the integral of the energy per unit
of frequency over the whole frequency range. Therefore, the
energy value of each energy block can be calculated by (7).

E = 1

2π

∫ π

−π

|F(e jω)|2dω (7)

Thus, after combining 65 energy blocks, we obtain the
energy information of the atomic spectrum. This energy
information of the atomic spectrum will form an energy
matrix, as shown in Fig. 5. In this way, the frequencies
and energies are fully extracted while retaining some tim-
ing information, which will be an important feature of our
energy fingerprint.

Aswementioned above,wewanted to obtain a feature that
was unique to the vocalizations of the species. It is easy to
understand that much of the uniqueness of species vocaliza-
tions is reflected in the temporal information of the sounds.
However, unlike human vocalizations, it is difficult to obtain
the semantic meaning of marine mammal sounds. For the
language spoken by humans, it is extremely easy to obtain

Fig. 5 Energy matrix

semantic information. Therefore, we need to find a prop-
erty that will change frequently during the vocalizations of
marine mammals while at the same time reflecting a cer-
tain temporal sequence. This property is energy information.
Marine mammals express different semantic meanings dur-
ing vocalization, and the energy changes are obvious. In turn,
the energy change is highly distinguishable among differ-
ent species, such as the period, change interval, and energy
mean. This is one of our reasons for constructing energy fin-
gerprints.

The energy matrix presented above consists of 100 ×
65 energy blocks arranged and combined according to the
time dimension and frequency domain dimension, and each
energy block is obtained by its corresponding spectral band
calculation. To extract as much information as possible about
its timing, we have to consider not only the relationship
between neighboring energy values in the same column of
energy blocks (each energy value represents energy in a
different frequency domain). We also have to consider the
relationship between energy blocks with different times and
the same frequency domain. Therefore, we choose two dif-
ferential calculations in different dimensions to capture the
connection between each energy block and its neighboring
energy blocks. A matrix containing only 0 and 1 is finally
obtained, as shown in Fig. 6. The calculation formula is
shown in (8), where x is the coordinate in the time dimension

Fig. 6 Zero-One matrix

123

3023A classification method of marine...



Fig. 7 The pseudo-code for
extracting audio energy
fingerprint features

of the energy matrix and y is the coordinate in the frequency
domain dimension of the energy matrix.

F(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1,
[E(x, y) − E(x, y + 1)] − [E(x − 1, y) − E(x − 1, y + 1)] > 0

0,
[E(x, y) − E(x, y + 1)] − [E(x − 1, y) − E(x − 1, y + 1)] ≤ 0

(8)

This kind of binary matrix contains the vocal information
of the creature. Eventually, we splice the energy matrix with
the zero-one matrix to obtain the final energy fingerprint.

The following Fig. 7 shows the pseudo-code for extracting
audio energy fingerprint features for reference.

3.3 Multigranularity joint layer

In traditional classification tasks, the classified objects are
often in a hierarchical relationship, which leads to a neural
network with approximate learning ability for each class. In
real life, these taxonomic objects often have corresponding
coarse-grained categories. For example,marinemammals are
very diverse, and biologists have developed a “kingdom, phy-
lum, class, order, family, genus and species” classification to
better distinguish them.

Many effective models and ideas in deep learning are
mostly derived from bionic ideas. For example, the convolu-
tion operation to extract image featuresmimics the process of
receiving a picture in primates [47]. Attentional mechanisms
mimic attention in human vision [48]. The combination of
coarse-grained and fine-grained categorization also mim-
ics the process of perceiving categories of a thing, from
abstract to figurative. The difference in coarse-grained clas-
sification object features is generally large. For example, it is
easy to distinguish between cars and people. The differences
in fine-grained classification object features are smaller.
Thus, for things that have both coarse-grained categories

and fine-grained categories, the neural network can perceive
both coarse-grained attributes and fine-grained attributes.
Such an approach is clearly more reasonable than direct
classification [49].

YOLO9000 can detect more than 9000 object classifica-
tions in real time thanks to its designed WordTree structure
[50]. WordTree is used to mix the data among the detection
dataset and recognition dataset. Additionally, YOLO9000
can obtain different levels of class information of a sam-
ple by WordTree. Ming Sun et al. proposed a multiattention
multiclass constraint structure [51]. Their model learns the
multiattention feature regions of each input image by the
one-squeeze multiexcitation (OSME) model and uses the
multiattention multiclass constraint (MAMC) structure to
guide the extracted attention features to correspond to the
category labels. Therefore, we borrowed these ideas of using
both coarse and fine granularity and added a “multigranular-
ity joint layer” to the neural network. The structure is shown
in Fig. 8 below.

In this structure, we modify the final fully connected layer
of the neural network so that it maps a tensor with lengths
of the number of fine-grained categories and the number of
coarse-grained categories, which are the inputs to our fine-
grained and coarse-grained layers, respectively. It is worth
noting that the data we use here still have only one label, the
fine-grained label, and the capture of coarse-grained infor-
mation relies on the coarse-grained layer for implementation.

The coarse-grained layer uses a softmax operation on the
input data to obtain the probability that a sample belongs
to a coarse-grained category. The fine-grained layer groups
the input data, divides the fine-grained data belonging to
the same coarse-grained category into groups, and later
performs a softmax operation on each group. Finally, the
category probability information is obtained by multiplying
the coarse-grained probabilities with the corresponding fine-
grained probabilities, and the following equation represents
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Fig. 8 Schematic of multi-grain size joint layer structure

the formula for calculating the category probability of killer
whales:

p1( Killer whale ) = p( Killer whale | Whale )

×p( Whale ) (9)

In addition, we need to consider a special case where
the coarse-grained layer may output incorrect coarse-grained
category probabilities, although the probability of this case is
extremely low. Therefore, we design a kind of residual struc-
ture that is used to perform the softmax operation directly on
the input of the fine-grained layer, assign the weight ε and
then operate with the matrix where p1 is located, i.e.,

p2( Killer whale ) = p1 (Killer whale ) + ε

×p0( Killer whale ) (10)

p1(Killerwhale) is the probability of the killerwhale cal-
culated by softmax directly for the input of the fine-grained
layer.

Finally, we normalize the matrix where p2 is located to
obtain the final probability matrix of the sample.

p3( Killer whale ) = p2( Killer whale )∑
p2

(11)

During the actual training process, the neural network will
gradually notice the correctness of the learned features. The
more correct the coarse-grained category division to which

the fine-grained category belongs, the more likely the fine-
grained category will be assigned correctly, and although we
only used fine-grained labels, the final classification result is
still very satisfactory.

3.4 MG-Resnet module for MG-ResFormer

Most traditional sound recognitionmethods rely on some fea-
ture extraction recognition operators, such as hiddenMarkov,
but themodelmachines constructed by thesemethods depend
on the data representation they are designed for; it is time-
consuming and difficult to design a suitable operator for
complex and variable tasks and they do not generalize [52].
Additionally, due to the influence of the data acquisition envi-
ronment and equipment, the performance of the model will
be severely restricted; that is, the operator designedmanually
is not robust.

Sound recognition by a CNN has good robustness and it
can gradually extract features with more advanced seman-
tic information abstractly [53]. For example, its first layer
may notice the overall sound amplitude, the second layer can
capture the information of different species when the sound
transitions and the higher layers can capture richer and more
abstract high-dimensional features, which are tracked and
captured by the neural network as the depth of the network
continues to increase to obtain the final classification results.

Additionally, convolutional neural networks have trans-
lation invariance. In the field of image classification, this
property means that targets in an image can be success-
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fully recognized whether they are panned, rotated, or scaled,
or even in different lighting conditions and viewing angles.
In audio classification, this feature has a further advantage:
when the quantity of data is large enough, any piece of data
input to the CNN can be considered to have been generated
by the previous data translation transformation, but the sys-
tem produces the same response. This effect is what we want
to obtain.

However, there is also a disappearing gradient risk. when
applying CNN directly to audio recognition, so we consider
using a residual neural network in this experiment. TheCNNs
greatest role is to effectively solve the problems of depth
degradation, and exploding and disappearing gradients that
tend to occur during network forward propagation. The more
layers the CNN has, the more abstract features the network
can extract, the richer the semantic information, and themore
likely it is to cause disappearing and exploding gradients. The
solution to exploding and disappearing gradients is usually
to use regularization, but this leads to degradation, that is,
the accuracy of the model on the test set saturates or even
decreases. The deep degradation phenomenon is reflected
in the fact that when we add new convolutional layers to
the CNN, it is likely that the newly added layers will not
learn deeper features but only replicate shallow features. In
ResNet, the residual module is a good solution to the deepen-
ingnetwork anddegradingmodel problems.The residuals are
changed from absolute to relative quantities by introducing
direct connections, and the calculation becomes much easier.
The constant mapping is equivalent to a gradient high-speed
channel that allows the neural network to connect in alternate
layers, weakening the strong connection between each layer
and avoiding the disappearing gradient problem to achieve a
network with deeper layers.

Equation 12 is an expression for the residual structure,
where x and y are the input and output of the module, respec-
tively, and F is the convolution operation. wi is a trainable
parameter, such as a convolution kernel. The rightmost x of
the equation is the residual connection. The x in parentheses
is the input of the residual module, and F(xi , wi ) denotes
the output of the backbone after module processing.

yi = F (xi , wi ) + xi (12)

Shape mismatch may occur when performing tensor addi-
tion. Therefore, it is necessary to add training parameters ws

to the residual connection to adjust the size of the residual
connection.

yi = F (xi , wi ) + ws xi (13)

To facilitate the derivation to illustrate the advantage of
the residual module, we ignore ws and obtain (14).

xi+1 = xi + F (xi , wi ) (14)

This indicates that no parameter adjustment is needed for
the residual connection. Then, we can obtain recursive (15).

xi+2 = xi+1 + F (xi+1, wi+1)

= xi + F (xi , wi ) + F (xi+1, wi+1) (15)

The recursive formula is generalized to obtain (16).

xn = xl +
n−1∑
i=l

F (xi , wi ) (16)

Backpropagating Equation xxx-1 is calculated to obtain
(17).

∂ loss

∂xl
= ∂ loss

∂xn

∂xn
xl

= ∂ loss

∂xn

(
1 + ∂

∂xn

n−1∑
i=l

F (xi , wi )

)
(17)

Here, we find that ∂
∂xn

∑n−1
i=l F (xi , wi ) is not always -1 in

a batch, which means that the gradient will not be 0 when the
weights are small enough, i.e., the gradient will not disap-
pear. Combining the generality of the above derivation and
the characteristics of the audio data, this residual structure
advantage can still be retained for audio recognition tasks,
so we consider applying it to our task.

We conducted experiments comparing multiple features
with multiple convolutional neural networks, and we ana-
lyzed the experimental data and found that the innovative
multigranularity joint layer of ResNet18 has excellent per-
formancewith energyfingerprinting, so this combinationwill
be the CNN module in our fusion network.

ResNet18 is a neural network with the number of weight
layers set to 18, which was proposed by Kaiming He’s team
in 2015 [54]. ResNet18 uses the BasicBlock residual mod-
ule, which contains a residual branch and a shortcut branch,
allowing the network to be trained very deeply because
it has an additional shortcut branch for passing low-level
information compared to traditional convolutional structures.
Resnet18 uses the BasicBlock residual module, which con-
tains a residual branch and a short-cut branch, allowing the
network to be trained very deeply because it has an additional
short-cut branch for passing low-level information than tra-
ditional convolutional structures.

MG-ResNet refers to the structure of ResNet18 and adds
a multigrain joint layer, whose structure and parameters of
each layer are shown in Fig. 9, and has a total of five convo-
lution modules. First, 7× 7 convolution is performed on the
input, then four residual convolutionmodules containing two
build-blocks are performed, followed by two parallel fully
connected layers, and the two outputs are fed into the multi-
grain joint layer to finally obtain the probability prediction
of the model on the samples.
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Fig. 9 MG-Resnet structure

3.5 MG-Transformer module for MG-ResFormer

Speech signals are a common time series, and pronunciation
signals have extremely strong dependencies on each other. In
early classification tasks, recognition methods such as RNN
are widely used, but they still have this drawback. Although
RNNs account for the dependencies existing between adja-
cent time series, they often underperform for long-distance
temporal information. In the call signal of marine mam-
mals, each sample often contains much information. With
a transformer, multifocus is good at capturing dependencies
in distant sequences, allowing us to focus on the next predic-
tion task without losing information over longer distances
[55]. This is very suitable for the task of classifying marine
mammal calls. In thismodule, we use a differentmodel struc-
ture than for tasks such as machine translation and eliminate
the decoding layer. This is because we do not need the model
to be verbal in this task, so we only use the encoding layer.

In the encoding layer, the multihead attention will slice
the input data into multiple parts and use them for the input
of each attention head. Each attention head will process the
input using the attention formula, which is shown in (18).

Attention(Q, K , V ) = softmax

(
QKT

√
dk

)
V (18)

Q is the query matrix, K is the content that we want to
focus on, and QKT is the matrix dot product. Softmax is the

normalization operation because we end up normalizing it to
between 0 and 1, using decimals between 0 and 1 to reflect
the importance of each part. V is our input value, that is, the
input value to complete the attention distribution operation.
It is worth noting that Q, K and V are not the original values
but are obtained by the corresponding matrix multiplication
transformations. The matrix multiplication transformations
used are Wq , Wk , and Wv . The purpose of this is to com-
plete the input vector mapping using the matrix dot product.
This mapping unifies the different Q, K , and V into a uni-
form type that is convenient for computation. After that, the
transformer aggregates the output results of each multihead
attention head and uses the parameters to perform dimen-
sioning, as shown in (19) and (20). Therefore, the multihead
attention mechanism can effectively increase the parallelism
of the transformer by improving the computational speed.

MultiHead(Q, K , V )= Concat ( head 1, . . . , head h)W
O

(19)

where head i = Attention
(
QWQ

i , KWK
i , VWV

i

)
(20)

We could have used an RNN to learn sound sequences,
but the RNN can only learn to predict frequency changes
based on adjacent time steps. In contrast, the transformer’s
powerful parallel computing with multihead attention allows
the network to look at multiple previous time steps when
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predicting the next step, solving the problem of RNNs. For
speech classification tasks, the transformer’s powerful global
sensing capability is its advantage over RNNs in addressing
similar tasks.

We construct a two-layer transformer encoder structure
for sensing global features using MFCC (64 × 75) as the
input to the model, and the main structure of this encoder is
shown in Table 2 below.

As shown in Table 2, we first pool the input features to
reduce the sensitivity of the features to different locations
and then input them to the encoding layer. In the encoding
layer, we use a multihead attention mechanism to extract
different feature signals, and by dividing the features, the
model enhances the attention to global features, which is
useful. In the subsequent processing,we add two linear layers
to extract coarse-grained and fine-grained probabilities, such
that the model maintains efficient recognition performance
for the basic classification task. By using this module, the
model can better perceive global features and achieves better
performance for multicategory tasks.

3.6 MG-ResFormer

In this paper, a new and powerful parallel fusion net-
work is proposed, which consists of MG-ResNet and MG-
Transformer. This architecture takes full advantage of MG-
ResNet’s high-dimensional feature extraction and MG-
Transformer’s global time-series information capture capa-

Table 2 Transformer Encoder Structure

Operator Output Shape

MaxPool2d [64, 1, 64, 37]

Multi-head-Attention [-1, 2, 64]

Dropout [64, 2, 64]

LayerNorm [64, 2, 64]

Linear [64, 2, 64]

Dropout [64, 2, 64]

Linear [64, 2, 64]

Dropout [64, 2, 64]

LayerNorm [64, 2, 64]

Multi-head-Attention [-1, 2, 64]

Dropout [64, 2, 64]

LayerNorm [64, 2, 64]

Linear [64, 2, 64]

Dropout [64, 2, 64]

Linear [64, 2, 64]

Dropout [64, 2, 64]

LayerNorm [64, 2, 64]

Linear [64, 9]

Linear [64, 3]

bility. In contrast to previous sound recognition classification
tasks, where a single network always has the disadvantages
of inadequate feature extraction or failure to notice temporal
information, the fusion architecture proposed in this paper
almost perfectly extracts the valid information in an audio
segment. The structure diagram of the MG-ResFormer pro-
posed in this paper is given in Fig. 10.

The energy fingerprint feature of the audio is input into
MG-ResNet, and its loss function is denoted as loss1. InMG-
Transformer, the MFCC features of the audio are input, and
its loss function is denoted as loss2. In the fusionmodule, the
probabilities of MG-ResNet and MG-Transformer outputs
are used as inputs to fit with the label information after one-
hot encoding, and the loss is denoted as loss3. The final loss
function is denoted as (21).

Loss = a × loss1 +b × loss2 +c × loss3 (21)

We set the hyperparameters a, b, and c as their weights
before loss1, loss2, and loss3, respectively. This is because
there may be different fitting speeds for different modules.
Different fitting speeds of each module will lead to a poor
fusion effect, i.e., the fusion layer will focus too much atten-
tion on one network method and ignore the other method. To
ensure that each module fits at a similar speed to achieve the
best overall model, we use a grid search method to search for
combinations of the above hyperparameters.

To reduce the large number of computations caused by
grid search, we set a, b, c ∈ (10k, k = 0, 1, 2, 3, 4). We
plotted Fig. 11 to visualize the data from the grid search. The
values on the axes in the figure represent the values of the
hyperparameters searched, and the color of the coordinate
points represents the accuracy achieved by the model for
that hyperparameter combination. With the grid search, we
found the highest accuracy that the model can achieve to be
99.39%.

As shown in Fig. 10 above, the fingerprint features and
MFCC features of an audio sample are input intoMG-ResNet
and MG-Transformer, respectively, and after forward propa-
gation of the two-way network, two matrices for predicting
the sample category probability are output and the twomatri-
ces are frozen at this time. Because these two matrices carry
the computation process from the two-way, loss3 will change
the parameters of the two-way network when it is backprop-
agated, while loss1 and loss2 have already completed the
update of the two-way network; then, the backpropagation
of loss3 will have a negative impact on the two-way network.

Since the gradient is backpropagated according to the loss,
the abovementioned loss calculation process is correct. After
careful bias calculation, loss1, loss2 and loss3 contained in
the loss are responsible for backpropagating the module to
which they belong.
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Fig. 10 MG-ResFormer structure

Fig. 11 Grid search visualization

In the fusion module shown in Fig. 12, we set up
nine neurons, and the probability values of the nine cate-
gories of the two network outputs, denoted as Input1 and
Input2, pass through nine neurons and nine pseudoneu-
rons, respectively, where Input1 performs the Hadamard
product operation with the neurons and Input2 performs
the Hadamard product operation with the pseudoneurons,
after which the two sets of probability values obtained are
summed for the normalization operation to obtain Output1.
Here, the pseudoneurons are explained: there are also 9
pseudoneurons, and the value of each pseudoneuron depends
on the value of the neuron at the corresponding position.
As shown in (22), βT i denotes neurons involved in train-
ing and βFi denotes pseudoneurons that are not involved in
training.

βFi = 1 − βT i (22)

To ensure that our fusion structure has the correct impact,
we also use the same idea of class residuals, and the
final probability of the output is normalized by adding
Input1 and Input2. After calculating (23), the final output is
obtained.

Output = Output 1 + Input 1 + Input 2∑
( Output 1 + Input 1 + Input 2)

(23)

Both normalization operations performed in the fusion
layer are L2 parametric normalization. We define the L2

parametrization of the vector x(x1, x2, ..., xn) to be normal-

ized as norm(x) =
√
x21 + x22 + . . . + x2n .

We need to normalize x to the unit L2 parametrization, i.e.,
create a mapping from x to x ′ such that the L2 parametriza-
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Fig. 12 Fusion layer structure

tion of x ′ is 1. Thus, the derivation in (24) is obtained.

1 = norm
(
x′) =

√
x21 + x22 + . . . + x2n

norm(x)

=
√
x21 + x22 + . . . + x2n

norm(x)2

=
√(

x1
norm(x)

)2

+
(

x2
norm(x)

)2

+ . . . +
(

xn
norm(x)

)2

=
√
x ′2
1 + x ′2

2 + . . . + x ′2
n

(24)

The final normalized (25) is obtained.

x ′
i = xi

norm(x)
(25)

The normalization process is necessary to prevent the sin-
gular samples from affecting the model fit. L2 parametric
normalization has the characteristic of nonsparsity and can
take advantage of more features in the matrix instead of sim-
ply ignoring them.

4 Experiments and results

4.1 Datasets

We used information on nine classes of marine mammals
publicly available in the Watkins Marine Mammal Sound

Database, which provides marine mammal sound recordings
from 1940 to 2000 and offers three options for conducting
experiments: best clips, all cuts and masters, with all clips
containing approximately 15,000 sound clips and masters
containing nearly 1,600 complete tapes [56]. We chose the
best cut section as the data used in this paper, and because
the data chosen are from different equipment in different
geographical locations in different generations, our work is
highly generalizable. Additionally, to facilitate the genera-
tion of energy fingerprints with the same network input data
scale, we split the varying audio lengths evenly into 2 s of
audio. The training set and test set are divided according
to the ratio of 4:1, and the specific statistical information is
shown in Fig. 13.

4.2 Evaluation indicators

To better evaluate the prediction quality and generalization
ability of the model in this paper, we chose four evaluation
metrics: ACC, AUC, mAP, and f 1score. Before calculat-
ing these metrics, several concepts need to be clarified.
TP denotes the positive samples predicted by the model
to be in the positive category. TN denotes the negative
samples predicted by the model to be in the negative cat-
egory. FP denotes the negative samples predicted by the
model to be in the positive category. FN denotes the pos-
itive samples predicted by the model to be in the negative
category.

ACC, the most commonly used classification evaluation
metric, is primarily used to indicate the number of samples
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Fig. 13 Data presentation

correctly predicted as a percentage of the total sample size.
the formula is as follows:

Accuracy = (T P + T N )

(T P + FN + FP + T N )
(26)

AUC, area under the curve, represents the sum of the areas
under the ROC curve, a metric that quantifies the perfor-
mance of the classification algorithm. In contrast, the ROC
curve consists of two indicators: TPR, the true positive rate,
and FPR, the false positive rate. Given a classifier, multiple
sets (FPR,TPR) can be obtained by changing the probability
threshold for the classifier to determine positive and negative
samples. By connecting these points, the ROC curve required
to calculate the AUC is obtained. The specific formula is as
follows:

T PR = T P

T P + FN
(27)

FPR = FP

FP + T N
(28)

AUC =
∫ +∞

0
FPRdT PR (29)

ThemAP is an indicator formultiple categories; it requires
AP information for each category. TheAP is calculated using
precision and recall. Precision is the proportion of samples
where both predicted and actual values are true to those pre-
dicted as true. Recall is the proportion of samples where both
predicted and actual values are true to the overall true sample.

Precision = T P

(T P + FP)
(30)

Recall = T P

(T P + FN )
(31)

AP =
∫ 1

0
P(R)dR =

n∑
k=0

P(k)�R(k) (32)

mAP =
∑C

i=1 APi
C

(33)

The F1score accounts for both accuracy and recall and is
defined as the summed average of accuracy and recall. It is
widely used in model evaluation.

f 1score = 2 × Precision × Recall

Precision + Recall
(34)

4.3 Experimental settings

All networks in this paper are written using the mainstream
deep learning framework PyTorch. The hardware and soft-
ware configurations of the devices are shown in Table 3.

The relevant parameters of the deep learning neural net-
work model in this paper are shown in Table 4.

Due to the limitations of the experimental environment of
the device, the batch size and the number of iterations of the

Table 3 Hardware and software configuration table

Configuration Detail

CPU AMD Ryzen 5 2600X Six-Core
Processor

RAM 64G

Graphics Card NVIDIA GeForce RTX 3090

Operating System 64-bit Windows 10

CUDA 11.6

Programming Language
and Version

Python 3.8
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Table 4 Network model parameter list

Parameters Value

Batch Size 32

Epochs 50

Ratio of Training Set to Test Set 4:1

Initial Learning Rate 0.001

deep learningmodel in this paper are set to 32 and 50, respec-
tively. Additionally, Adam is chosen for model optimization
because of its high computational efficiency, faster conver-
gence and good interpretability of the hyperparameters. The
initial learning rate is set to 0.001. The training and test sets
are divided in a ratio of 4:1 for all datasets used in this paper.

4.4 Experiment

A total of four experiments were designed to demonstrate the
effectiveness of the proposed method. The first experiment
is conducted by combining the network capturing tempo-
ral features and the convolutional neural network with each
feature separately. In this way, the combination of network
and features that captures temporal permitting best and the
combination of convolutional neural network that extracts
high-dimensional features best can be selected respectively.
The two combinations obtained from this experiment will be
used as the basis for the subsequent validation experiments
of the two-way fusion network. In the second experiment,
we test the accuracy improvement brought by adding a
multi-granularity joint layer model based on the combination
obtained in the first experiment and prove its effectiveness.
In the third experiment we verify that the fusion network
has a significant improvement in accuracy compared to the
single-way network. In the fourth experiment we validate

the generalization of the method by applying the proposed
method to multiple sound datasets.

1. Network and feature combination selection experi-
ments
In Experiment 1, we conducted experiments on select-

ing two-way networks with feature combinations. The
experiment was designed to obtain the optimal choice
of combinations for capturing local features versus cap-
turing timing information. Among the neural networks
capturing timing, we chose four networks, RNN, GRU,
LSTM, and transformer, for the experiments [19, 55,
57]. Among the convolutional neural networks, we chose
AlexNet, VGG11, ResNet18, and GoogLeNet for the
experiments [58–60].
We used accuracy as an evaluation metric. In the com-

parison of multiple sets of experiments, we obtained
the two combinations with the highest accuracy: ResNet
with the energy fingerprint feature and transformer with
the MFCC feature. The experimental data are shown in
Figs. 14 and 15.

The result shows that ResNet has a very powerful residual
structure and is simpler than other network structures, mak-
ing it easier to achieve better results in this task. Additionally,
the energy fingerprint generation process extracts the main
information and features of the original audio and presents
them in a lower dimension, which facilitates further feature
extraction and learning by the convolutional neural network.
The transformer’s unique network structure and its power-
ful multiheaded attention mechanism can capture the timing
information in the audio features, and the MFCC features
generated after inverse spectrum analysis of the Meier spec-
trum highlight the discrete time-domain information of the
convolutional signal, and the combination of the two gives
excellent results.

Fig. 14 Comparison experiment of RNN, LSTM and Transformer
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Fig. 15 Comparison experiment of AlexNet, Vgg11, Resnet18 and GoogLeNet

2. Comparison of models with the addition of multi-
granularity joint layers
In Table 5, we show the performance of ResNet18 com-

pared to that of MG-ResNet and that of the transformer
compared to that ofMG-Transformer. Themultigranular-
ity union layer achieved significant performance in tasks
with multiple classifications and with hierarchical con-
nections between classes.

3. Comparison of fusion network and general Network
In Experiment 3, we tested the MG-ResFormer pro-

posed in this paper, and we can see in Table 6 that it
performed extremelywell in the audio nine-classification
task for marine mammals. In this task, its ACC, AUC,
Map, and f 1score reached 99.39, 99.99, 99.92 and
99.28, respectively. Compared with classification net-
works commonly used in the same field, this network
achieved significant improvement.

We plotted the accuracy images of MG-ResFormer dur-
ing the training process. Figure 16 shows that MG-ResNet
and MG-Transformer have oscillations in test set accuracy
during training. In contrast, MG-ResFormer has a smooth
increase in test set accuracy. This is the subtlety of the fusion
layer. BothMG-ResNet andMG-Transformer have the oscil-
lation problem, which indicates that there may be some
odd samples in the dataset, causing the two-way network
to not fit smoothly during the training process. We consid-

Table 5 The effect of multi-granularity joint layers on accurcy

Network/Indicators ACC(%) AUC(%) mAP(%) f 1score(%)

Resnet18 96.67 99.91 99.26 99.26

MG-Resnet 97.27 99.93 99.35 96.54

Transformer 95.45 99.87 98.90 94.11

MG-Transformer 96.36 99.85 98.63 95.76

ered the problem of odd samples at the beginning of the
design, as they are commonly found in sound recognition
datasets. Therefore, we designed the fusion layer containing
two normalizations. The classification vectors output from
the two networks goes through two normalization opera-
tions during the fusion process. The normalization speeds
up the gradient descent to find the optimal solution and
speeds up the training network convergence. This is one of
the important reasons why the MG-ResFormer test set accu-
racy rises more smoothly. Additionally, the neurons in the
fusion layer performaweighting calculationon the classifica-
tion vectors of the two network outputs. TheMG-ResFormer
accuracy is almost always higher than that of MG-ResNet
and MG-Transformer, which proves that the fusion of the
two networks plays a complementary role in improving the
MG-ResFormer accuracy.

The final model can achieve high accuracy mainly for the
following reasons.

Wedesigned the backbonenetwork from twodifferent per-
spectives (CNN and transformer) initially, hoping that these
two different classifiers can produce complementary effects
and capture more effective features from the input data.

Convolutional neural networks, when learning traditional
audio features, lose a large amount of timing information.
Therefore, we designed a new feature for audio signals: the
energy fingerprint. This timing information is designed in the
energy fingerprint by differential computation, which can be

Table 6 Converged networks versus general networks

Network/Indicators ACC(%) AUC(%) mAP(%) f 1score(%)

MG-ResFormer 99.39 99.99 99.92 99.28

MG-Resnet 97.27 99.93 99.35 96.54

MG-Transformer 96.36 99.85 98.63 95.76

InceptionV3 94.62 98.97 99.03 94.43

EfficientNet 95.39 99.14 99.02 95.78

123

3033A classification method of marine...



Fig. 16 Changes in test set accuracy during training for MG-
ResFormer, MG-Resnet and MG-Transformer

effectively perceived by the convolutional neural network.
Therefore, this feature can retain as much timing information
as possible during thegradual increase in dimensionality after
the input to the convolutional neural network.

We conducted many experiments to find the best com-
bination, i.e., ResNet with energy fingerprint features and
transformer with MFCC features obtained the best results.
We designed the fusion layer. After the two parallel networks
output their classification vectors separately, the fusion layer
back calculates the weighting of the classification vectors.

We designed the fusion layer. After the two parallel net-
works output their classification vectors separately, the fusion
layer back calculates the weighting of the classification vec-
tors. This weight is obtained by continuously training the
neurons in the fusion layer. The computation also goes
through two normalization operations to accelerate the gradi-
ent descent. In this way, the confidence level of the two-way
network on different categories can be obtained, resulting in
more accurate results.

4. Generalizability experiments
Todemonstrate the excellent generalization of ourwork

to similar tasks, we validated it on other audio datasets.
The audio datasets used are the bird sounds dataset (from
the bird audio data publicly available at xeno-canto) [61]
and the urban sounds dataset (UrbanSound8K) [62].
Xeno-canto is a website dedicated to sharing bird

sounds from around the world and contains the sounds
of 10,357 species. We selected nine of these species
for our validation experiments: pale rainbows, brown
rock nectar suckers, wrens, European silkies, green-
footed sandpipers,western ruffed grouse, greenwhistling
thrushes, gray-breasted hydrangeas, and brownwhistlers.
The length of each audio file varies from a dozen seconds
to a few minutes and was cut to facilitate the generation
of our subsequent features, resulting in 11,670 features
for training purposes. The energy fingerprint size was
130 × 75, and the MFCC size was 64 × 75.
Urbansound8K is awidely used public dataset for auto-

mated urban environmental sound classification studies.
The dataset contains a total of 8,732 annotated sound
segments (<= 4s) in 10 categories: air conditioning,
car sirens, children playing, barking dogs, boreholes,
idling engines, gunshots, handheld drills, police sirens
and street music. The final dataset was segmented to also
generate energy fingerprints of size 130×75 and MFCC
of size 64 × 75 for experiments. We divide the urban
sounds dataset and the bird sounds dataset into training
and testing sets according to 4:1, and the specific statis-
tical information is shown in Figs. 17 and 18.

We conducted experiments on the proposed method using
the urban sounds dataset and bird calls dataset in this paper.
Similarly, we used the ACC, AUC, mAP, and f 1score as
evaluation metrics to evaluate the performance of the model.

Fig. 17 Bird Call Statistics
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Fig. 18 City Voice Statistics

We obtained the experimental results as shown in Table 7.
Experiments using different datasets show that our method
can effectively extract high-dimensional information from
different speech signals, and significantly improve speech
classification task accuracy through multistrength joint lay-
ers, network fusion and multiple features, which are also
highly applicable to different data.

5 Discussion

In this paper, we propose a new acoustic feature, the energy
fingerprint, and apply it to the task of acoustic recognition
of marine mammals. The energy fingerprint was constructed
with the intention of including as much information as pos-
sible about the original sound: frequency, energy, and the
potential information about the unique vocal pattern of the
organism, so that it is well represented as an input feature for
each marine mammal. However, this has the disadvantage
that cutting atomic frames destroys some of the timing infor-
mation of the original audio, but this is perfectly compensated
for by the fusion network structure in this paper, which
will be explained in more detail later. Additionally, humans
perceive categories in terms of granularity, so neural net-
works can also learn granularity information. To make better
use of the relationship between classes, i.e., the hierarchi-
cal relationship between kingdoms, phyla, families, genera
and species”, this paper proposes a multigranularity joint
approach to classification. In addition, this paper constructs
a powerful MG-ResFormer fusion network structure, which

consists of MG-ResNet and MG-Transformer. Since this
paper addresses a classification task and does not require the
model to be linguistically expressive, the MG-Transfomer
consists of the encoder structure in the transformer.

TheMG-ResFormer takes two sanple features, the energy
fingerprint and the Meier cepstral coefficients, and sends the
energy fingerprint to the MG-ResNet, whose local feature
extraction capability is sensitive to the category information
contained in the energy fingerprint, which is not available in
the transformer. TheMerle cepstrum coefficients are fed into
the MG-Transformer. We designed this one-way network to
capture the timing information contained in the features and
to compensate for the lack of sound timing extraction inMG-
ResNet. The reason for not using RNN networks for this task
is that RNN networks can only predict at a fixed time step;
however, most of the sounds made by marine mammals are
high-frequency information, and at a fixed time step, almost
all of this high-frequency information would be wasted, as
demonstrated in the experiments. The transformer’s multi-
headed attention mechanism, on the other hand, can focus
on global temporal information, which means that informa-
tion from any two time steps can be related in some way.
Finally, a network fusion layer is designed to fuse the cate-
gory decisions of two networks for one sample. The output
of MG-ResNet and MG-Transformer are used as input to
flow through the neurons and pseudoneurons of the fusion
layer, respectively, and after a series of operations, the final
category probability values are output. This fusion takes
advantage of the complementary nature of the CNN and the
transformer to perfectly classify the marine mammal sounds.

Table 7 Generalizability
Verification Experiments

Generalizability exprriments/Indicators ACC AUC mAP f 1score

Birds 4 Classification 97.16 99.63 99.02 96.28

City 4 Classification 92.16 98.95 96.84 91.77

Birds 9 Classification 95.63 99.32 97.42 95.51

City 10 Classification 83.47 97.83 91.97 83.12
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Table 8 Our work in comparsion with the work of other research scholars

Study Number of Classes Method Accuracy

Tao Lu et al. [16] 3 classes Spectrogram, Alexnet 97.42%

Fernando RubénGonzález-Hernández et al. [63] 11 classes Octave analysis, Parallel neuural networks 90.00%

Dexin Duan et al. [14] 3 classes Spectrogram, CNN 91.28%

Marek B.Trawicki. [64] 9 classes MFCC, HMM 82.72%

Our Work 9 classes Our Method 99.39%

We compared the method proposed in this paper with
the studies of other scholars in the same field, as shown in
Table 8,which contains data on the research team, the number
of research categories, themethodused, and the performance.
Our proposed method has better performance on the marine
mammal call recognition task. Not only did we identify more
marine mammal categories than most of the works, but we
also achieved a higher accuracy. For the work performed
by Fernando RubénGonzález-Hernández et al., we identified
only two fewer species, but with 9.39% higher accuracy. In
the future, we will improve our method to further expand the
number of recognition categories and guarantee accuracy.

Although the original intention of this paper was to use
a state-of-the-art approach to identify and classify marine
mammal sounds, the method is equally applicable to a num-
ber of other sound recognition tasks. To test this idea, this
paper experimented with the proposed method using data
from Urbansound8K, a widely used public dataset for auto-
matic urban environmental sound classification studies, and
xeno-canto, a world bird sound sharing site. The accuracy
of the model proposed in this paper reached 93.29% and
83.02% in the urban sound10 classification task and the bird
call9 classification task, respectively. This proves that the
method can be widely used for sound classification tasks in
various fields and is highly advanced. We also found that the
classification results of urban sound data are not as satisfac-
tory as those of other types of data. We attempted to analyze
the phenomenon and determined the reasons for this result.
Urban sound data contain sounds such as car whistles, idling
engines, and children playing. These sounds contain a large
amount of noise, which seriously interferes with the neural
network in extracting the effective features in the sounds, and
we believe this is the main reason for the poor results.

Although the method proposed in this paper achieved
objective results, it still has certain drawbacks. First, in the
combined coarse and fine granularity layer, we only rely on
the neural network to perceive the coarse and fine granularity
of the data and do not impose an explicit penalty mechanism
on the neural network in the perception process. An in-depth
study from this perspective may be able to further improve
the model’s performance. Second, the overall architecture
of the neural network in this paper is a two-channel paral-

lel architecture, which may have unexpected effects if some
layers or some parameters in the two-channel network are
allowed to be shared.

We encourage other researchers to propose more novel
approaches based on this paper. The method proposed in this
paper and its excellent call recognition performance is of
great significance and opens new directions for marine mam-
mal conservation. Additionally, the method bridges the gap
between visual methods in marine mammal detection tasks.
Marinemammalsmostly live seat depths of 200-1,000meters
underwater. Due to various reasons, such as light, impuri-
ties, and tides, it is difficult for camera equipment to capture
images that can accomplish the marine mammal visual mon-
itoring task.

The method proposed in this paper is groundbreaking for
the marine mammal call identification task. In this paper,
we innovatively propose the concept of energy fingerprints
and coarse and fine intensity joint layers and combine the
improved ResNet and transformer two-channel parallel net-
works through a fusion layer. Our future work will continue
to explore the application of multichannel deep fusion net-
works for sound recognition.

6 Conclusion

In this paper, we first propose a new audio feature for the
marine mammal call classification task, energy fingerprint-
ing, which contains a large amount of information about the
original audio, such as energy, frequency, timing information
and vocal characteristics specific to different species. The
energy fingerprint contains more information than the cur-
rent mainstream audio features. Moreover, marine mammal
classification includes a “kingdom, phylum, family, genus,
and species” connection between classes, which is often
overlooked by existing research methods, so we designed
a multigranularity joint layer to guide the neural network to
learn this potential connection. Additionally, to compensate
for the shortcomings of convolutional neural networks that
cannot effectively utilize temporal information, we designed
a two-way fusion network structure, MG-ResFormer, which
extracts two different dimensional features of the original
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audio (energy fingerprint and mel inversion coefficient) by
feeding them into different network structures to extract dif-
ferent information (MG-ResNet and MG-Transformer) and
finally, performing the classification task by fusing the high-
dimensional features. This approach makes almost perfect
use of the information present in the audio.Weperformed two
normalization operations on the input vectors in the fusion
layer to make the MG-ResFormer fit better and effectively
avoid the oscillation problem during the training process.
Finally, MG-ResFormer achieves 99.39% accuracy in the
classification task of nine marine mammal calls. In addition,
MG-ResFormer can be widely applied to other audio clas-
sification tasks. We tested our proposed model on the city
sound dataset and the bird calls dataset and showed through
experiments thatMG-ResFormer still achieves excellent gen-
eralization ability for different data and is strongly portable
with little influence from the data. The work in this paper is
a pioneering exploration in the marine mammal call recogni-
tion and sound recognition field. This work can make a great
contribution to the monitoring and identification of marine
mammals while providing new ideas for sound recognition
tasks.
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